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Abstract
We show that macroscopic irreversible thermodynamics for viscous fluids can be derived from
exact information-theoretic thermodynamic identities valid at the microscale. Entropy production,
in particular, is a measure of the loss of many-particle correlations in the same way in which it
measures the loss of system-reservoirs correlations in stochastic thermodynamics (ST). More
specifically, we first show that boundary conditions at the macroscopic level define a natural
decomposition of the entropy production rate (EPR) in terms of thermodynamic forces
multiplying their conjugate currents, as well as a change in suitable nonequilibrium potential that
acts as a Lyapunov function in the absence of forces. Moving to the microscale, we identify the
exact identities at the origin of these dissipative contributions for isolated Hamiltonian systems. We
then show that the molecular chaos hypothesis, which gives rise to the Boltzmann equation at the
mesoscale, leads to a positive rate of loss of many-particle correlations, which we identify with the
Boltzmann EPR. By generalizing the Boltzmann equation to account for boundaries with
nonuniform temperature and nonzero velocity, and resorting to the Chapman–Enskog expansion,
we recover the macroscopic theory we started from. Finally, using a linearized Boltzmann equation
we derive ST for dilute particles in a weakly out-of-equilibrium fluid and its corresponding
macroscopic thermodynamics. Our work unambiguously demonstrates the
information-theoretical origin of thermodynamic notions of entropy and dissipation in
macroscale irreversible thermodynamics.

1. Introduction

Hydrodynamics is a theory of crucial importance across science. It provides tools to deal with systems
spanning many orders of magnitude in terms of spatial scale, and thus it is fundamental for our
understanding of phenomena ranging from chemical physics and biology to planetary science and
astrophysics [1–5]. One of its simplest formulations describes an isotropic fluid in terms of five dynamical
fields, total energy (kinetic, potential and internal), the three components of momentum, and mass. These
are conserved at the microscopic level and thus give rise to balance equations at the macroscopic level [6, 7].
These equations are however not closed from a dynamical standpoint. In irreversible thermodynamics, a
complete thermodynamic description of a fluid assumes the existence of a local entropy which is solely a
function of internal energy, volume and particle number, as in equilibrium. This so-called local equilibrium
assumption defines temperature, pressure and chemical potential fields as partial derivatives of the entropy
field and links them to the total energy, momentum and mass density fields. A second assumption, which
defines linear irreversible thermodynamics, is that the fluxes featured in the balance equations (heat flux and
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pressure tensor) can be linearized in terms of the gradients of temperature and velocity. This linear regime
assumption is essential to make the balance equations a closed dynamical system [1, 2, 8].

The microscopic underpinnings of irreversible thermodynamics have been the object of intense scrutiny
for more than a century and a half [1, 7, 9–13]. The main problems, which remain still open today, are
related to understanding the emergence of a macroscopic irreversible behavior from microscopic reversible
many-body dynamics. The first problem concerns how to go from the microscopic dynamics of a gas
(formulated in terms of the many-body probability distribution of all the fluid particles) which is
Hamiltonian and thus reversible, to a mesoscopic, irreversible closed evolution equation for the
single-particle probability distribution (for example, via the Boltzmann equation [7, 9, 11]). The second
problem is the derivation of irreversible thermodynamics at the macroscopic level from the mesoscopic level
(for example, using the Chapman–Enskog expansion [9, 14, 15]). Irreversibility (i.e. a nonnegative EPR) in
this context is understood to arise from the molecular chaos hypothesis which neglects correlations amongst
particles building after molecular collisions [12, 13].

More recently, significant progress has been achieved in ST [16–20], which offers a different approach to
deal with the mesoscopic level of description. Here the typical setup consists of a system in contact with one
or multiple reservoirs. At the microscopic level of description, the full probability distribution contains both
the system and reservoirs degrees of freedom [21, 22]. Exact identities corresponding to the first and second
law of thermodynamics have been derived when considering a class of initial conditions where the system is
prepared in an arbitrary state but is uncorrelated from the reservoirs that are at equilibrium. The entropy
production is non-negative and takes the form of a relative entropy between the exact total probability
distribution at a given time and the exact system probability distribution times the equilibrium reservoir
distribution [23, 24]. It thus measures the information lost when both the system-reservoirs correlations and
the displacement from equilibrium of the reservoirs are neglected [24, 25]. Various assumptions need to be
made to derive a closed dynamics for the system probability distribution only (obtained by tracing out the
reservoirs) [22]. The most common approach relies on the Born–Markov approximation (assuming fast
reservoirs and weak system-reservoir coupling [20, 22]) which plays a role similar to the molecular chaos
hypothesis in the context of fluids [1, 11]. It also makes it possible to express all the thermodynamic
quantities entering the first and second law in terms of the system probability distribution only and to prove
that the EPR is non-negative [20, 26]. The dynamics of the system only perceives the linear response
properties of the reservoirs via transition rates—or drift and diffusion coefficients in a continuous
description—which as a result satisfy the so-called local detailed balance property [27–30]. This latter
condition is known to be essential to build a consistent nonequilibrium thermodynamic description for a
system described by a stochastic dynamics [30–34]. These approaches hold for a large class of mesoscopic
models such as Markov jump processes, overdamped and underdamped Fokker–Planck equations [33,
35–37].

Furthermore, the formulation of ST for Markov jump processes enables a decomposition of the EPR
which provides a constructive identification of the nonequilibrium potential and of the global
thermodynamic forces driving the system out of equilibrium [34]. Close to equilibrium, it reproduces the
classical results from linear irreversible thermodynamics, such as Onsager reciprocal relations and minimum
entropy production principle [38–40]. This decomposition of the EPR remains valid for macroscopic
systems when assuming local equilibrium but without resorting to the linear regime assumption. This fact
has been shown for chemical reaction networks with diffusion (but neglecting inertial or viscous effects),
where deterministic field theories ensue [41, 42]. This construction reveals substantial differences between
global and local thermodynamics because all global conservation laws can be broken at the local level [42].
These macroscopic thermodynamic theories with local equilibrium can be explicitly constructed from an
underlying ST by scaling up particle numbers (see [43–45], for chemical reaction networks, Potts models and
electronic circuits, respectively, and [46, 47] for the general arguments). These approaches correspond to
overdamped dynamics where inertial effects are neglected, but generalization to underdamped dynamics
seems possible and could be used to derive hydrodynamics.

In this paper, we revisit the derivation of hydrodynamics from the microscopic to the mesoscopic and
macroscopic levels and establish the corresponding thermodynamics at each of these levels, in light of recent
progress in ST. In particular, we give an information-theoretic interpretation to the entropy production and
to the thermodynamic potentials of macroscopic hydrodynamics in the same fashion as it is done in ST [28,
34]. Furthermore, we clarify the role of the two distinct assumptions of local equilibrium and local detailed
balance, which are of fundamental importance for hydrodynamics and ST, respectively, by constructing an
example of mesoscopic evolution that allows us to discuss both. More specifically, in the first part of the
paper we focus on macroscopic hydrodynamics, where we decompose the EPR in terms of the constraints
imposed at the boundaries (e.g. a nonuniform temperature profile). This allows us to identify (i) the global
thermodynamic forces driving the system out of equilibrium and (ii) the proper thermodynamic potential.
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When the thermodynamic forces are switched off and no time-dependent protocol is externally applied, the
thermodynamic potential is maximized in the relaxation process to equilibrium, for which it acts as a
Lyapunov function of the nonlinear dynamics. This shows how thermodynamic consistency (i.e. the
requirement that the heat flux satisfies the second law) translates into a dynamical result for a fully nonlinear
theory. In the second part of the paper, we focus on microscopic and mesoscopic descriptions behind
macroscopic hydrodynamics to reveal the information-theoretic origin of the thermodynamic potential and
EPR derived in the first part. To do so, we revisit the standard derivation of hydrodynamics which starts from
the microscale (Hamiltonian dynamics for particles interacting via pairwise potentials) and goes to the
macroscale via the mesoscale (Boltzmann equation) employing the Chapman–Enskog expansion [1, 7, 11,
12]. For an isolated system, when considering an initially factorized distribution in terms of (identical)
one-particle distributions, we show that the entropy production (identified with the change in Shannon
entropy of the one-particle distribution) is always non-negative. Furthermore, in conceptual analogy with
the system-reservoir setup, it takes the form of a relative entropy between the exact many-body probability
distribution and the product of the one-particle distributions. Entropy production is thus a direct measure of
the information lost when neglecting inter-particle correlations. When resorting to the molecular chaos
hypothesis—used to derive a mesoscopic description in terms of the Boltzmann equation which ensures the
relaxation of the one-particle distribution to equilibrium—the EPR becomes non-negative. Further resorting
to the Chapman–Enskog expansion [1, 11, 48] and the relaxation-time approximation [49] used to derive
macroscopic hydrodynamics, we identify the parts of the EPR which survive and give rise to the entropy
production of irreversible thermodynamics. We then move to non-isolated systems which we model at the
level of the Boltzmann equation by describing the collisions at nonisothermal and possibly moving boundary
in a thermodynamically consistent way inspired by [7, 11, 50, 51]. We show that a first and second law ensue
and that in the absence of thermodynamic forces, the nonequilibrium Massieu potential is maximized by the
relaxation dynamics towards equilibrium. Finally, we derive a linear Boltzmann equation, similar to a master
equation in the momentum space. This mesoscale theory provides a formulation of ST underlying
macroscopic hydrodynamics in the regime where the Chapman–Enskog approach is justified. In fact, the
system is shown to satisfy hydrodynamic equations at the macroscale while also obeying the local detailed
balance at the mesoscopic level, providing, in addition, a systematic treatment of its ST in the presence of an
extended and weakly out-of-equilibrium reservoir [29, 52, 53]. The main outcome of our work is to
unambiguously show how microscopic and mesoscopic formulations of nonequilibrium thermodynamics in
terms of information-theoretic quantities are consistent with the macroscopic thermodynamics of
non-isolated systems.

Outline
The paper is organized as follows. In section 2, we consider the dynamics of continuous systems and their
thermodynamics, we write the balance equations for energy and entropy and then identify the proper
thermodynamic potentials and forces for isolated and non-isolated systems. In section 3, we derive
thermodynamic inequalities for the temporal change in information-theoretic entropy and nonequilibrium
Massieu potential at the microscopic scale following Hamiltonian dynamics by using a coarse-grained
approach based on the one-particle distribution function. In section 4, we move to the mesoscopic scale and
revisit the thermodynamic aspects of the microscopic derivation of the hydrodynamics of isolated systems
using the Boltzmann equation. We use the Chapman–Enskog expansion to obtain the local equilibrium
condition as the leading approximation in terms of the slowly varying variables describing macroscopic
systems. We furthermore estimate the EPR during the initial stages of the relaxation to the local equilibrium.
In section 5, we generalize the Boltzmann equation to describe non-isolated systems in a thermodynamically
consistent fashion. By writing explicitly the energy and entropy balance equations, we show how the
nonequilibrium Massieu potential corresponds to the macroscopic thermodynamic potential identified in
section 2. Finally, in section 6, we formulate a linear version of the generalized Boltzmann equation that is
consistent with both ST and macroscopic hydrodynamics. Future developments are discussed in section 7.

2. Macroscopic scale: Navier–Stokes equations

We revisit here the standard hydrodynamics of viscous fluids [1, 48]. We start by obtaining the local
formulation of thermodynamics (i.e. the one valid in the interior of a domain Ω) and then systematically
show how to determine the thermodynamic potential as well as the global thermodynamic forces keeping
non-isolated fluids out of equilibrium (which require knowledge of the conditions imposed at the boundary
∂Ω).
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2.1. Dynamics
The dynamics of fluids is given by the Navier–Stokes equations [1], written in Lagrangian form using the
material derivative Dt ≡ ∂t + v ·∇x as

Dtρ=−ρ∇x · v , (1a)

ρDtv=−∇x · P+ ρF , (1b)

for the spatio-temporal fields density of mass ρ(x; t), velocity v(x; t), external force (per unit mass) F(x; t),
and pressure tensor P(x; t) (with (∇x · P)j =

∑
i ∂xiPij, and i and j labeling the three spatial components).

The pressure tensor P describes the stress exerted by the fluid element on its surrounding and, in the case of
isotropic, compressible fluids, can be written in terms of the scalar pressure p(x; t) and the (symmetric)
viscous tensor Π(x; t). In turn, for fluids sufficiently close to thermodynamic equilibrium, Π(x; t) is a
function of the derivatives of the velocity [54]:

Pij (x; t) = p(x; t)δij −Πij (x; t)

= p(x; t)δij −
(
δijλ∇x · v(x; t)+ νρ(x; t)

(
∂xjvi (x; t)+ ∂xivj (x; t)

))
.

(2)

This expression of P is obtained under a series of assumptions, valid in the linear regime. First, P is assumed
to be invariant under global Galilean transformations, i.e. v(x; t) 7→ v(x; t)+V, implying that it depends on
the velocity only through its derivatives. Second, P is assumed to depend only on the first derivatives ∂xivj,
which are supposed to be small enough to contribute only linearly to P. Third, the pressure tensor P is
assumed to be symmetric, which is justified when the molecules composing the fluid are spherical or when
the fluid density is very low [1]. Fourth, assuming isotropy, only two different scalar coefficients, ν and , are
needed to characterize viscous effects in the fluid (out of six possible ones). The coefficient ν, accounting for
the shear, is called kinematic viscosity (while ρν is called dynamic viscosity) and the coefficient λ, accounting
for dissipative compression or expansion, is called second viscosity. When it is not specified otherwise, we
will not rely on the specific expression of Πij in (2) in the rest of the article.

The mass conservation (1a) can equivalently be written in Eulerian form as

∂tρ=−∇x · (ρv) . (3)

Since we will often switch between the Lagrangian and Eulerian description, we rely on this useful identity
valid for any scalar quantity o

ρDto= ∂t (ρo)+∇x · (ρov) , (4)

which is derived using the definition of Dt and equation (3).
Note that throughout this manuscript, we use a compact notation in which any spatial and temporal

dependence (of, for instance, ρ and v) is left implicit if no ambiguity can arise.

2.2. Local energy balance
The specific total energy, per unit mass,

e= k+ϕ + u , (5)

is given by three different contributions. The first, k(x; t) = 1
2 (v(x; t))

2, is the specific kinetic energy
associated to the motion of the fluid element. The second, ϕ(x; t), is the specific potential energy of the fluid
element which can always be written as the sum of two terms: ϕ(x; t) = ϕint(x; t)+ϕw(x; t). The term
ϕint(x; t) accounts for the potential energy in the bulk of the fluid. An example of this contribution is the
gravitational potential energy satisfying−∇xϕg(x) =−gu= Fg with Fg the gravitational force (per unit
mass), g the modulus of the gravitational acceleration, and u the unit vector in the vertical direction. The
term ϕw(x; t) accounts instead for the confinement generated by the (moving) boundaries. We assume that
all possible forces acting on a fluid element derive from a suitable potential energy, and therefore F=−∇xϕ
(Fint =−∇xϕint and Fw =−∇xϕw) in the following. The last contribution in equation (5), u(x; t), is the
specific internal energy associated to all the other degrees of freedom. The corresponding global quantities
are

E≡
ˆ

dxρ(x)e(x) , (6a)

K≡
ˆ

dxρ(x)k(x) , (6b)

4
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Epot ≡
ˆ

dxρ(x)ϕ(x) , (6c)

U≡
ˆ

dxρ(x)u(x) . (6d)

The balance equation for the total energy is ρDte+∇x · Je = 0, as long as the potential energy is
time-independent, while it becomes

ρDte+∇x · Je = ρ∂tϕ , (7)

when the potential energy is time-dependent. Here, Je(x; t) is the flux of total energy which can be specified
by considering how each single contribution to the total energy in equation (5) changes in time using the
Navier–Stokes equations (1).

First, we derive the balance equation for k(x; t) from the momentum conservation equations (1b)
and (2):

ρDtk+
∑
i

∂xi

ϕρvi + pvi −
∑
j

Πijvj

= ϕ
∑
i

∂xi (ρvi)+
∑
i

p∂xivi −
∑
ij

Πij∂xivj , (8)

where a term in the form of a divergence of fluxes has been isolated on the left-hand side. On the right-hand
side, source terms appear, even though at this stage it is still not possible to tell apart dissipative
contributions from those that modify the potential energy of the system. Moving to the Eulerian frame using
the identity (4), equation (8) becomes

∂t (ρk)+
∑
i

∂xi

ρ(k+ϕ)vi + pvi −
∑
j

Πijvj

= ϕ
∑
i

∂xi (ρvi)+
∑
i

p∂xivi −
∑
ij

Πij∂xivj . (9)

Second, we consider the balance for the potential energy. By using equation (3), we find

∂t (ρϕ) = ρ∂tϕ −ϕ∇x · (ρv) = ρ∂tϕ −ϕ
∑
i

∂xi (ρvi) . (10)

By adding equations (9) and (10), we obtain the mechanical energy balance in the Eulerian frame:

∂t (ρ(k+ϕ))+
∑
i

∂xi

ρ(k+ϕ)vi + pvi −
∑
j

Πijvj

= ρ∂tϕ +
∑
i

p∂xivi −
∑
ij

Πij∂xivj . (11)

Notice that the first term on the right-hand side of equation (9), representing the nondissipative
interconversion rate of kinetic energy into potential due to compression and advection with the velocity field
v, is entirely compensated by the corresponding term in the potential energy balance equation (10) and,
therefore, does not enter the balance equation for the mechanical energy (11). In Lagrangian form (obtained
using (4)), equation (11) reads

ρDt (k+ϕ)+
∑
i

∂xi

pvi −
∑
j

Πijvj

= ρ∂tϕ+
∑
i

p∂xivi −
∑
ij

Πij∂xivj . (12)

Having derived the balance equation for the total mechanical energy, we use equation (7) to obtain the
balance equation for the internal energy u(x; t):

ρDtu= ρ∂tϕ− ρDt (k+ϕ)−∇x · Je . (13)

Notice that the first term on the right-hand side is due to a time-dependent change in potential energy. It
does not directly contribute to the balance equation of the internal energy because it is compensated by the
corresponding term in the mechanical energy balance (12). Nevertheless, it contributes to the internal energy
indirectly since it enters the Navier–Stokes equations (via equation (1b)) and thus affects the state of the
system.

The expression of total energy flux Je can now be given as the sum of the fluxes on the left-hand side of
equation (12) and the heat flux Jq (for now unspecified)

Je = pv−Πv+ Jq . (14)

5
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Indeed, this leads to a local balance equation for the internal energy (i.e. the first law), obtained using
equations (12) and (14) in equation (13),

ρDtu+∇x · Jq =−p∇x · v+TrΠ∇xv , (15)

where the divergence only acts on the heat flux, while a source term appears on the right-hand side. Here, we
define TrΠ∇xv≡

∑
jiΠij∂xjvi. Notice that the last term in equation (15) can be equivalently written in terms

of the strain-rate tensor ϵ= 1
2 (∂xivj + ∂xjvi) since Π is symmetric: TrΠ∇xv=

1
2

∑
ijΠij(∂xivj + ∂xjvi) =∑

ijΠijϵji. In Eulerian form, equation (15) becomes

∂t (ρu)+∇x ·
(
ρuv+ Jq

)
=−p∇x · v+TrΠϵ . (16)

Equations (15) and (16) constitute two equivalent (local) formulations of the first law of thermodynamics for
fluids. Indeed, once they are integrated over a volume element to obtain their global counterparts, one can
recognize that the internal energy changes because of the exchanged heat at the boundary, or the mechanical
expansion of the system, (accounted on the left-hand side of equation (16)) or the viscous and other
dissipative effects that take place inside the volume (accounted on the right-hand side of equation (16)).

Finally, by substituting the expression of the total energy flux (14) in the balance equation (7) for the
total energy, we obtain

ρDte= ρ∂tϕ −∇x · Jq −∇x · (pv−Πv) , (17)

which will be used to prove the existence of a global Lyapunov function in systems with a well-defined
equilibrium state (section 2.5).

2.3. Local equilibrium and local entropy balance
The second balance equation that the system satisfies concerns the entropy. To derive it in the macroscopic
theory, we resort to the following assumption: each fluid element ω (macroscopic, but small compared to the
domain Ω) becomes locally equilibrated with the surroundings after a very short time scale corresponding to
microscopic collisions. This local equilibrium has well-defined values of local temperature T, pressure p and
chemical potential µ, and the fluid element is thus characterized by the extensive quantities entropy Sω ,
internal energy Uω , volume Vω and number of particles Nω , which can all vary in time. Furthermore, the
particle density inside the volume is uniform. Thus, the fundamental relation of equilibrium
thermodynamics holds for the fluid element and can be written in the form

TdtSω = dtUω + pdtVω −MµdtNω , (18)

also called local equilibrium condition. Note that hereM is the molecular mass and we used the chemical
potential per unit mass µ=−T(∂Sω/∂Nω)/M.

To formulate equation (18) in the same way as the balance equation (15) for the internal energy, we need
to introduce the specific entropy s, the specific internal energy u and the specific volume ρ−1 (that coincides
with the inverse of the local mass density). This, together with Reynolds’ theorem (see appendix A) and the
identity (4), leads to

dtSω = dt

ˆ
ω(t)

dxρs=

ˆ
ω(t)

dx (∂t (ρs)+∇x · (ρsv)) =
ˆ
ω(t)

dxρDts , (19a)

dtUω = dt

ˆ
ω(t)

dxρu=

ˆ
ω(t)

dx (∂t (ρu)+∇x · (ρuv)) =
ˆ
ω(t)

dxρDtu , (19b)

dtVω = dt

ˆ
ω(t)

dxρρ−1 =

ˆ
ω(t)

dx
(
∂t
(
ρρ−1

)
+∇x ·

(
ρρ−1v

))
=

ˆ
ω(t)

dxρDtρ
−1 , (19c)

dtNω = dt

ˆ
ω(t)

dxρM−1 =

ˆ
ω(t)

dx
(
∂t
(
ρM−1

)
+∇x ·

(
ρM−1v

))
=

ˆ
ω(t)

dxρDtM
−1 = 0 , (19d)

where equation (19d) means that particles do not leave or enter the fluid element, which moves according to
the velocity field v. The local equilibrium condition (18) in terms of specific quantities becomes

ˆ
ω(t)

dxρ
(
TDts−Dtu− pDtρ

−1
)
= 0 . (20)

6
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Since all variables are assumed to be uniform inside the fluid element ω, we can also write the specific
variables as s= Sω/(MNω), u= Uω/(MNω), ρ−1 = Vω/(MNω), withMNω being the total mass of the fluid
element. Equation (20) thus becomes

TDts= Dtu+ pDtρ
−1 . (21)

The extensivity of the entropy, i.e. Sω(λUω,λVω,λNω) = λSω(Uω,Vω,Nω) for all positive values of λ,
can be combined with equation (21) to provide a constraint on the intensive fields T, p, µ, which are
therefore not independent from each other. Indeed, by taking the derivative of Sω(λUω,λVω,λNω) in λ
evaluated at λ= 1 and dividing everything by the total massMNω , we get the Euler relation

s=
u

T
+

p

T
ρ−1 − µ

T
. (22)

Then, by subtracting equation (21) from the material derivative of s in equation (22), we obtain the
Gibbs–Duhem equation, that constrains the evolution of intensive quantities

uDt

(
1

T

)
+ ρ−1Dt

( p
T

)
−Dt

(µ
T

)
= 0 . (23)

Finally, the (local) entropy balance is obtained by using the first law (15) and the continuity
equation (1a) in the local equilibrium (21):

TρDts=−∇x · Jq +TrΠ∇xv , (24)

or, equivalently,

ρDts+∇x ·
(
Jq
T

)
= σ̇macro . (25)

In equation (25) we identify the entropy flux Js ≡ Jq/T and the (macroscopic) EPR per unit volume

σ̇macro = Jq ·∇x

(
1

T

)
+

1

T
TrΠ∇xv (26a)

= σ̇hc︸︷︷︸
⩾0

+ σ̇vf︸︷︷︸
⩾0

⩾ 0 . (26b)

The EPR is given by the sum of two different contributions corresponding to different local dissipative
mechanisms: heat conduction (σ̇hc) and viscous friction (σ̇vf). In the macroscopic theory, the assumption
that the two dissipative contributions in equation (26b) are decoupled and separately positive constitutes a
formulation of the second law of thermodynamics, and it is related to the so-called Curie principle’s [1]. This
assumption is the rationale behind the inequalities in equation (26b). In the microscopic and mesoscopic
theory, one is instead interested in showing the positivity of the EPR combining hypotheses concerning the
dynamics and the statistical behavior of a large number of particles (see sections 3–5).

Equations (1a), (1b) and (15) form a closed dynamical system for the spatio-temporal fields (ρ,u,v)
when (i) the intensive fields p, T, µ are also expressed as functions of (ρ,u,v) from the knowledge of the
entropy appearing in equation (22) and (ii) when an expression for the nonequilibrium fluxes Jq and Π is
available. The latter condition is achieved when confining the analysis to the linear regime, where Jq and Π
are linear functions of∇xT and∇xv, see e.g. the second equality in equation (2). In this case, the assumption
that the distinct contributions to the entropy production are positive translates into the positivity of some
coefficients characterizing the material (see section 2.6).

In the following, we will exploit the global conservation laws (i.e. those obtained upon integration over
the whole volume) resulting from the boundary conditions to obtain stronger dynamical results valid beyond
the linear regime. We will demonstrate how different boundary conditions (see figure 1) give rise to different
global thermodynamic forces and thermodynamic potentials. The latter act as a Lyapunov function for
systems in contact with an equilibrium environment.

7
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Figure 1. Illustration of a fluid in contact with 6 different regions of the environment corresponding to different types of
boundary conditions. Regions 1-3 correspond to movable pistons coupling the system to reservoirs at a fixed temperature and
pressure. The corresponding EPR is given in equation (48). Regions 4-5 are characterized by an externally fixed velocity on the
boundary, which results in volume changes (4) or shear (5). The corresponding EPR is given in equation (41). On region 6, the
wall is not moving and a heat flux can be maintained using external thermal devices, e.g. resistors coupled to an electric circuit.
Notice that the external temperature should be defined everywhere on the boundary to allow for equilibration, which occurs
when all the regions of the boundary have the same temperature.

2.4. Entropy balance and thermodynamic potential for isolated systems
We formulate the global entropy balance for an isolated fluid contained in a domain Ω and determine its
thermodynamic potential. We label ∂Ω and n the boundary and the outward pointing unit vector,
respectively. On this boundary, the heat flow and the velocity field must satisfy

Jq (x; t) · n
∣∣
∂Ω

= 0 , (27a)

v(x; t) · n|∂Ω = 0 , (27b)

namely, heat flux and velocity are orthogonal to the boundary which physically means that no energy or
momentum can be exchanged with the boundaries. Note that equation (27b) is trivially satisfied if one
imposes a no-slip condition at the boundary, i.e. v(x; t)|∂Ω = 0. We now take the time derivative of the global
entropy S≡

´
Ω
ρsdx using the local entropy balance (25), equation (4) and the boundary conditions in

equation (27b):

dtS=

ˆ
Ω

dx∂t (ρs) =−
ˆ
∂Ω

dn ·
(
Jq
T
+ ρsv

)
+

ˆ
Ω

dx σ̇macro =

ˆ
Ω

dx σ̇macro ≡ Σ̇macro ⩾ 0 , (28)

where we introduced the global EPR Σ̇macro. The inequality in equation (28) (resulting from equation (26b))
implies that entropy is the thermodynamic potential that is maximized when an isolated system reaches
equilibrium [55]. Prigogine introduced the notion of ‘evolution criterion’ for an inequality of the type in
equation (28), where the time derivative of a thermodynamic potential has a definite sign [56, 57]. If such a
potential has an upper bound, then it plays the role of the (negative of the) Lyapunov function for the
system. In section 2.5, we obtain analogous relations for non-isolated systems.

2.5. Entropy balance and thermodynamic potential for non-isolated systems
In non-isolated systems, the existence of a Lyapunov function satisfying the equivalent of equation (28)
depends on the boundary conditions. We now show how the thermodynamic potential which is maximized
at equilibrium is modified when different experimentally relevant boundary conditions are imposed.

2.5.1. Closed, rigid systems
Consider a closed but non-isolated system in a rigid domain Ω with constant volume V, delimited by a
boundary ∂Ω satisfying

T(x; t)|∂Ω = TB , (29a)

v(x; t)|∂Ω = 0 , (29b)

8
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namely, with fixed temperature and a no-slip condition. The system can exchange heat with the environment
via a nonvanishing heat flux Jq at the boundary. If the potential ϕ as well as the temperature TB are constant
in time, the system will relax to the equilibrium compatible with the external temperature. However, the
global entropy S=

´
Ω
ρsdx is not the thermodynamic potential anymore. Indeed, by using the local entropy

balance equation (25), equation (4) and the boundary conditions in equation (29b), we find

dtS=−
ˆ
∂Ω

dn ·
(
Jq
T
+ ρsv

)
+

ˆ
Ω

dx σ̇macro =
Q̇

TB
+Σ̇macro , (30)

where Q̇≡−
´
∂Ω

dn · Jq is the exchanged heat at the boundary (positive when it flows from the environment
to the system) which is related to the global total energy E≡

´
Ω
ρedx via

dtE=−
ˆ
∂Ω

dn ·
(
Jq + pv−Πv+ ρev

)
= Q̇ , (31)

using equations (17), (4) and (29b). Hence, the thermodynamic potential that is maximized at equilibrium
can be written as

dt

(
S− E

TB

)
= Σ̇macro ⩾ 0 , (32)

where the inequality follows from equation (26b). This means that for a closed, rigid system in contact with
an external thermostat, the thermodynamic potential is the difference between the global entropy and the
global total energy divided by the temperature of the boundary.

2.5.2. Closed system under pressure control
Closed systems where the volume V(t) can change in time due to control on the pressure are exemplified by
the idealized case of a fluid enclosed by a flexible membrane with negligible surface tension or put in a vessel
with a movable, weightless piston which is in contact with a gas in equilibrium at a given temperature and
pressure (see figure 1). Mathematically, the temperature on the boundary is externally fixed according to

T(x; t)|∂Ω(t) = TB . (33)

On the other hand, the pressure P(x; t) of the fluid and that of the environment pB(x) do not have to coincide
on the boundary. In fact, the imbalance between the two pressures generates the external force in the
Navier–Stokes equation (1b), i.e. the force Fw is different from zero only on the boundary ∂Ω(t) and satisfies´
Ω
dxρFw =

´
∂Ω

dn · (P− pB1) (where 1 is the identity matrix). To analyze the dynamics of the boundary, we
assume the no-slip condition on the boundary, such that it moves with a velocity vB(x) that coincides with
the velocity field v(x) of the fluid evaluated on the boundary

(v(x)− vB (x))|∂Ω(t) = 0 . (34)

Hence, the volume changes in time according to

dtV=

ˆ
∂Ω(t)

dn · vB (x) , (35)

as prescribed by Reynolds’ theorem (see equation (A6) in appendix A). To compute the mechanical power
note that the only contribution to the time derivative of the potential energy per unit mass is the one due to
the moving wall, which is localized on the boundary, i.e. ∂tϕ(x) = ∂tϕw(x− xB(t)), the latter being
proportional to δ(x− xB(t)). Using the chain rule, since the wall is moving with velocity vB, we have
∂tϕw(x− xB(t)) =−∇xϕw(x) · vB(x) = Fw · vB. Therefore,

ˆ
Ω(t)

dxρ(x)∂tϕ(x) =

ˆ
∂Ω(t)

dn · (P(x)− pB (x)1)vB (x) , (36)

where we used that the force Fw is different from zero only on the boundary and results from the pressure
unbalance.

Using equations (17), (25) and (36), we can write the balance equations for the total energy E=
´
Ω
ρedx

and entropy S=
´
Ω
ρsdx which read

dtE=

ˆ
Ω(t)

dxρDte= Q̇−
ˆ
∂Ω(t)

dn · pBvB , (37a)

9
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dtS=

ˆ
Ω(t)

dxρDts=
Q̇

TB
+Σ̇macro , (37b)

respectively. By combining now equation (37a) with equation (37b), we obtain the following expression for
the global EPR

Σ̇macro = dt

(
S− E

TB

)
− 1

TB

ˆ
∂Ω(t)

dn · pBvB ⩾ 0 , (38)

where the inequality follows from equation (26b).
If the pressure on the boundary is constant, namely,

´
∂Ω(t) dn · pBvB = pBdtV (from equation (35)),

equation (38) becomes

Σ̇macro = dt

(
S− E+ pBV

TB

)
⩾ 0 , (39)

which allows us to identify the proper thermodynamic potential of a closed systems in contact with an
external thermostat and exposed to a constant pressure as the difference between the global entropy and the
sum of the global energy plus pBV divided by the temperature of the boundary.

For a reversible transformation, the EPR vanishes, Σ̇macro = 0, and equation (38) identifies the maximum
mechanical work which can be extracted as [58]

Wmax
mech ≡ pB∆Veq = TB∆Seq −∆Eeq . (40)

This maximum available work or available free energy is also known as ‘exergy’ in engineering [59, 60].

2.5.3. Closed system under velocity control
The volume of closed systems can also change when the velocity profile on the boundary vB is externally
controlled according to equation (35). If we consider again a uniform temperature on the boundary as in
equation (33), we can combine the balance equations for the global total energy E and entropy S in
equations (17) and (25), respectively, to express the global entropy production as

Σ̇macro = dt

(
S− E

TB

)
+

1

TB

ˆ
Ω(t)

dx (ρ∂tϕ −∇x · Pv) , (41)

= dt

(
S− E

TB

)
+

1

TB

(ˆ
∂Ω(t)

dxρFw · vB −
ˆ
∂Ω(t)

dn · PvB

)
︸ ︷︷ ︸

≡Ẇ

⩾ 0 , (42)

where the inequality follows from equation (26b) and we used that the force Fw is different from zero only on
the boundary ∂Ω(t). Here, as well as in section 2.5.2, the potential energy density is time-dependent because
of the moving boundary. The last equality is obtained after noticing that the contribution of the time
derivative ∂tϕ = ∂tϕint + ∂tϕw is localized on the boundary, as ∂tϕint = 0, ∂tϕw =−vB ·∇xϕw(x− xB(t)) =
vB · Fw.

The thermodynamics behind equation (42) is transparent. If the velocity profile at the boundary is
nonuniform, the system remains out of equilibrium and undergoes either expansion, or compression, or
shearing. From a thermodynamic standpoint, this results from the environment continuously performing
mechanical work. When shearing at constant volume far from the turbulent regime (i.e. when the nonlinear
terms in (1b) are negligible), the system approaches a nonequilibrium steady state. Finally, if the boundary
has uniform and constant speed vB and the center of mass (CM) of the system moves at the same velocity as
the boundary, i.e. vCM = vB, the mechanical power in equation (42) reduces to the rate of change of the
energy of the center of mass, namely Ẇ= dtECM, (see equation (C3)), provided that the internal potential
energy ϕint is linear in x, namely ϕint(x) = g · x (as it is for the gravitational potential). Therefore the system
relaxes towards equilibrium and the EPR reduces to the total derivative Σ̇macro = dt (S− (E− ECM)/TB),
which coincides with equation (32) as the two situations are equivalent under a Galilean transformation.

2.5.4. Closed system with multiple heat baths and time-dependent driving
We now consider a closed non-isolated system contained in a domain Ω of volume V whose boundary ∂Ω is
composed of b= 1, . . . ,B distinct regions ∂Ωb called reservoirs, or baths, i.e. ∂Ω= ∪b∂Ωb. The temperature
of each region Tb(t) and the (uniform) pressure each region is exposed to pb(t) are externally controlled and
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may depend on time following arbitrary protocols (see figure 1). On each region b, the fluid temperature is
assumed to be equilibrated with the environment, namely,

T(x; t)|∂Ωb
= Tb (t) , (43)

while its pressure differs in general from the external pressure, i.e. P(x; t)|∂Ωb 6= pb(t)1. As we already
discussed in section 2.5.2, the mismatch of pressure at each region implies that (i) the boundaries move
according to equation (34) (which now holds at the level of each single region b), (ii) the volume changes
according to equation (35) (which can be split into the contribution of each single region) and (iii) the
potential energy density changes in time according to equation (36) (which now holds at the level of each
single region b).

From a thermodynamic standpoint, by using equations (17), (25) and (36) together with ∂Ω= ∪b∂Ωb,
the balance equations for the total energy E=

´
Ω
ρedx and entropy S=

´
Ω
ρsdx read

dtE=
B∑

b=1

Q̇b −
B∑

b=1

pbdtVb , (44a)

dtS=
B∑

b=1

Q̇b

Tb
+Σ̇macro , (44b)

respectively, with Q̇b ≡−
´
∂Ωb

dn · Jq and dtVb ≡
´
∂Ωb(t)

dn · vb. Without loss of generality, we choose the
reservoir b=B as the reference for the equilibrium temperature and pressure. Thus, by combining now
equation (44a) with equation (44b), the global EPR can be written as

Σ̇macro = dtS−
dtE

TB
+

B∑
b=1

Q̇b

(
1

TB
− 1

Tb

)
− 1

TB

B∑
b=1

pbdtVb ⩾ 0 , (45)

or, by summing and subtracting (pBdtV)/TB (with dtV=
∑

b dtVb) together with collecting all the time
derivatives in a single contribution, as

Σ̇macro = dt

(
S− E+ pBV

TB

)
+

B∑
b=1

Q̇b

(
1

TB
− 1

Tb

)
+

1

TB

B∑
b=1

(pB − pb)dtVb︸ ︷︷ ︸
Ẇmech

+(E+ pBV)dt
1

TB
+

V

TB
dtpB ⩾ 0 ,

(46)
where the inequality follows from equation (26b). Equation (46) is the general balance equation for the
global EPR in terms of (from the right to the left) (i) time-dependent driving of the reference pressure pB and
temperature TB, (ii) global thermodynamic forces (i.e. pressure and temperature differences between the
boundaries), and (iii) the time derivative of a thermodynamic potential,

Y(t)≡ S− E+ pB (t)V(t)

TB (t)
. (47)

If the system is coupled to a single reservoir with no time-dependent driving of TB and pB, then the
thermodynamic potential Y(t) would be maximized at the (equilibrium) steady state.

Note that, by using the thermodynamic potential (47), equation (46) reads

Σ̇macro = dtY+
B∑

b=1

Q̇b

(
1

TB
− 1

Tb

)
+

Ẇmech

TB
− ∂Y

∂ (1/TB)
dt

1

TB
− ∂Y

∂pB
dtpB ⩾ 0 . (48)

The systematic derivation of the decomposition of the EPR in terms of the global thermodynamic forces,
the time-dependent driving and the derivative of a thermodynamic potential is a significant result of the
present work. Indeed, as it is well known, the classic formulation of nonequilibrium thermodynamics [1, 14]
is unable to differentiate systems that relax toward equilibrium from those who are actively maintained away
from it by just looking at the expression of the EPR, in which only local thermodynamic forces appear [8].
The systematic procedure to obtain the decomposition of the EPR that we outlined here for the case of a
single component fluid, but which can be easily extended to more complex situations, is strictly related to the
one used in engineering thermodynamics [59, 60] in the context of the so-called ‘exergy method’ of analysis.
However, the latter is introduced in a phenomenological way that may disregard some contributions, like
those accounting for time-dependent driving on the boundaries. Equation (48) may thus provide a useful
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point of view to interpret new numerical and laboratory experiments in fluid mechanics [61, 62] in which
time-dependent driving at the boundaries translates into nontrivial effects on macroscopic heat fluxes
affecting the efficiency of heat transport.

Notice that an alternative formulation of equation (48) can be obtained by representing each reservoir
b= 1, . . . ,B as an ideal gas at equilibrium at temperature Tb. Indeed, this allows us to quantify the energy
exchanges between the system and the b reservoir according to the equilibrium first law:

dtEb = Q̇b − pbdtVb , (49)

where−dtEb is the energy variation of the b reservoir. Thus, by using equation (49) in equation (48) and
treating 1/TB and pB/TB as independent intensive variables of the thermodynamic potential Y(t) in
equation (47), equation (48) becomes

Σ̇macro = dtY+
B∑

b=1

[
dtEb

(
1

TB
− 1

Tb

)
+

(
pB
TB

− pb
Tb

)
dtVb

]
− ∂Y

∂ (1/TB)
dt

1

TB
− ∂Y

∂ (pB/TB)
dt

(
pB
TB

)
⩾ 0 .

(50)
Equation (50) gives the rationale for the expressions of the intensive fields used in ST, see e.g. [34].

2.6. Linear regime andminimum entropy production principle
We conclude the discussion on the macroscopic aspects of the thermodynamics of non-isolated systems by
showing that systems close to equilibrium satisfy a minimum entropy production principle in a form similar
to the one obtained in the framework of ST [40]. In turn, the latter is akin to the adiabatic-nonadiabatic
decomposition [37] specialized in the linear regime. For related work on decompositions of the EPR in
macroscopic systems see also [63]. To obtain the aforementioned minimum entropy production principle,
we write the macroscopic EPR Σ̇macro obtained by integrating equation (26a) in the linear regime, namely,
when Jq = κ∇x(1/T) and Π are evaluated at the equilibrium density ρeq and temperature Teq:

Σ̇macro '
ˆ

dx

(
∂xi (1/T)

ϵij

)T(
κδij 0
0 L(ij),(i ′j ′)

)
︸ ︷︷ ︸

≡O

(
∂xj (1/T)
ϵi′j ′

)
. (51)

Here, we use a notation such that the vectors’ entries are the three components of ∂xi (1/T) and the nine
components of the strain tensor ϵij ≡ (∂xivj + ∂xjvi)/2. Furthermore, we introduce the 9× 9 positive-definite
matrix whose entries are L(ij),(i ′j ′) ≡ (λδijδi′j ′ + 2ρeqνδii′δjj′)/Teq which together with the 3× 3
positive-definite matrix with entries κδij defines the positive-definite linear response matrixO. By restricting
ourselves to the case of an incompressible fluid (and thus neglecting phenomena like pressure waves or
thermal expansion), in appendix B we prove that equation (51) can be alternatively written in terms of the
steady state EPR Σ̇ss

macro according to the following decomposition

Σ̇macro ' Σ̇ss
macro +

ˆ
dx

(
∂xi (1/T− 1/T ss)

ϵij − ϵssij

)T(
κδij 0
0 L(ij),(i ′j ′)

)(
∂xj (1/T− 1/T ss)

ϵi′j ′ − ϵssi′j ′

)
. (52)

Thus, since the response matrixO is positive-definite, the state that minimizes the total EPR coincides with
the steady-state solution. In appendix B we also prove that the EPR is a Lyapunov function of the dynamics
close to equilibrium (without resorting to further assumptions). We remark that Σ̇ss

macro can be computed in
terms of quantities only defined at the boundaries using for example equation (48), which specializes, for
systems without time-dependent driving, to

Σ̇ss
macro =

B−1∑
b=1

Q̇ss
b

(
1

Tss
B

− 1

Tss
b

)
. (53)

We further stress that the formulation of the minimum entropy production principle given in
equation (52) is different from the version proved in [57] (where no dynamics is directly involved).
Equation (52) has the same form of the decomposition of the EPR proposed by Oono and Paniconi [64] on
phenomenological grounds. In appendix B we provide the conditions under which it can be expected to hold.
Equation (52) is a remarkable property of close to equilibrium steady states, which has a direct analogue in ST
and can be interpreted as a geometric formulation of Prigogine’s minimum entropy production principle [1,
56]. However, notice that the positivity of the quadratic form in the local thermodynamic forces appearing
on the right-hand side of equation (52) is only ensured by the equilibrium properties of the response
coefficients, and thus cannot be generalized to situations in which the steady state is not close to equilibrium.
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3. Microscopic scale: Hamiltonian dynamics

In this section, we derive thermodynamic identities (and the related inequalities) for isolated systems made
of particles obeying Hamiltonian dynamics. We use the symbol xn (resp. pn) for the spatial coordinates (resp.
momentum) of the nth microscopic particle, while the symbol x (resp. p) is reserved to indicate a generic
value of position (resp. momentum).

3.1. Dynamics
We start from a system of N identical particles whose dynamics follows Hamilton’s equations

dtxn =∇pnH , dtpn =−∇xnH , (54)

for n= 1, . . . ,N, with Hamiltonian H=H(ΓN; t) and ΓN = {x1, . . . ,xN;p1, . . . ,pN}. The evolution of the
corresponding phase-space density PN(ΓN; t) follows the Liouville equation [7]

∂tPN =
N∑

n=1

(
∇xnH ·∇pnPN −∇pnH ·∇xnPN

)
= {H,PN} , (55)

where we introduced the Poisson brackets {A,B}=
∑

n∇xnA ·∇pnB−∇pnA ·∇xnB. By extending the
definition of material derivative to the phase space, i.e. Dt = ∂t +

∑
n(∇pnH ·∇xn −∇xnH ·∇pn), and using

the Hamilton equations (54), the Liouville equation becomes

DtPN = ∂tPN +
∑
n

∇pnH ·∇xnPN −
∑
n

∇xnH ·∇pnPN = 0 . (56)

A coarse-grained description of the system in terms of a one-particle probability density P1(x,p; t) is
obtained by marginalization over the N − 1 positions and momenta of the other particles. Since the N
particles are identical and thus there are N identical ways to choose one particle, it is convenient to define the
one-particle distribution function

f1 (γ1; t) = N

ˆ
dΓN−1PN (ΓN; t) , (57)

which is clearly normalized to N. Here and in the following, the volume element is dΓl =
∏N

n=N−l+1 dγn,
where γn = (xn,pn) and dγn = (2π h̄)−3dxndpn are the vector of canonical coordinates of the nth particle
and its associated volume element, respectively.

The evolution equation of the one-particle distribution function is obtained from marginalizing the
Liouville equation (55). When H can be written as H=

∑
n

1
2Mp

2
n +
∑

n(Mϕ(xn)+
∑

m>nψ(|xn − xm|)),
with ϕ the external single-particle potential per unit mass and ψ the interaction potential between pairs of
particles, the time evolution of f 1 is given by the first equation of the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [48]:

∂tf1 (x,p) = {H1, f1}+
ˆ

dγ2∇xψ (|x− x2|) ·∇pf2 (x,p;x2,p2) . (58)

In obtaining equation (58), we used that PN vanishes at the boundary of the integration domain.
Equation (58) shows that the evolution of f 1 splits into (i) the free evolution generated by a single-particle
Hamiltonian H1(γ) =

1
2Mp

2 +Mϕ(x) and (ii) a collision integral depending on the two-particle distribution
function

f2 (x,p;x2,p2; t) = N(N− 1)

ˆ
dΓN−2PN (ΓN; t) . (59)

This procedure can be iterated to obtain the BBGKY hierarchy of equations specifying the evolution of the
l-particles distribution function fl(γ1, . . . ,γl; t) =

N!
(N−l)!

´
dΓN−lPN(ΓN; t) in terms of the l-particles

Hamiltonian Hl(Γl) =
∑l

n=1(H1(γn)+
∑

n<m⩽lψ(|xn − xm|)) and the corresponding collision term [48]. If
the hierarchy is not truncated, all the information of the microscopic dynamics is retained and the system
evolves according to the original Hamiltonian dynamics. Nevertheless, the one-particle distribution
function, the corresponding Boltzmann entropy and the corresponding nonequilibrium free energy satisfy
exact thermodynamic identities, as we proceed to show in section 3.2.
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3.2. Thermodynamic identities
We derive exact thermodynamic identities for the Hamiltonian dynamics, and use them to discuss the
emergence of macroscopic thermodynamics by means of coarse-graining and dynamical chaoticity.

We start by introducing two definitions of entropy. The Shannon entropy

Stot (t)≡−kB

ˆ
dΓNPN (ΓN; t) lnPN (ΓN; t) (60)

is defined using the probability density PN(ΓN; t) over the whole phase-space, while the Boltzmann
entropy [1]

SB (t)≡−kB

ˆ
dγ1 f1 (γ1; t)(ln f1 (γ1; t)− 1) (61)

is defined using the one-particle distribution function (57). On the one hand, the Shannon entropy (60) is
not a thermodynamic entropy: it has not the same properties of the macroscopic entropy introduced by the
local equilibrium (18). For instance, Stot is a constant of motion, i.e. dtStot =−kB

´
dΓN{PN,H}= 0, because

the Liouville equation (55) preserves the volume in phase space. On the other hand, the Boltzmann
entropy (61) can be related to the macroscopic entropy under certain conditions that we now examine.

To do so, we first express the Shannon entropy (60) in terms of the Boltzmann entropy (61):

Stot (t) = SB (t)− kBDKL

(
PN (t)

∣∣∣∣∣
N∏

n=1

P1 (t)

)
+ kBN(lnN− 1) , (62)

where we used (i) multiplication and division by the logarithm of the probability distribution∏N
n=1P1(t)≡

∏N
n=1P1(γn; t) that the system would have if there were no correlations between particles, (ii)

the fact that particles are identical and (iii) the relative entropy (or Kullback–Leibler divergence) DKL(p|q)
between two probability distributions p and q

DKL (p|q) =
ˆ

dxp(x) ln
p(x)

q(x)
⩾ 0 . (63)

Equation (62), together with dtStot = 0, implies that

Stot (t) = Stot (0) = SB (0)+ kBN(lnN− 1) , (64)

if the system is initialized in a state of completely uncorrelated particles, i.e. PN(ΓN;0) =
∏N

n=1P1(γn;0).
Hence, by combining equations (64) and (62), we obtain that the change of Boltzmann entropy is given by
the relative entropy between the N-particle description, in terms of the probability density PN, and a
factorized description of the N-particles, by means of products of one-particle distribution P1 (i.e. the
mutual information with respect to the factorized state [65]):

SB (t)− SB (0) = kBDKL

(
PN

∣∣∣∣∣
N∏
n

P1

)
⩾ 0 . (65)

The thermodynamic identity (65) represents a (weaker) microscopic analog of the second law of
thermodynamics predicting the increase of Boltzmann entropy in isolated systems (like for the macroscopic
entropy in equation (28)). However, equation (65) is not equivalent to equation (28) as it does not imply the
monotone increase of SB (i.e. a H-theorem) since recurrences may occur [24]. This becomes evident when
expressing the variation∆SB(t) during a very short time increment∆t via equation (62) together with
dtStot = 0:

∆tdtSB (t)≈ SB (t+∆t)− SB (t) = kBDKL

(
PN (t+∆t)

∣∣∣∣∣∏
n

P1 (t+∆t)

)
− kBDKL

(
PN (t)

∣∣∣∣∣∏
n

P1 (t)

)
,

(66)

where we did not use any hypothesis on the initial state at time t. Indeed, according to the thermodynamic
identity in equation (66), a positive rate of change of the Boltzmann entropy, namely, dtSB(t)⩾ 0 at all times,
is granted if the contribution coming from the second relative entropy on the right-hand side of
equation (66) is always negligible compared to the first one, in agreement with the intuition gained via
different approaches [10, 12]. This can happen when the stronger requirement of molecular chaos is
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satisfied, that is when the second relative entropy on the right-hand side of equation (66) vanishes at all
times. We can thus conclude that the coarse-grained description alone, in terms of the one-particle
distribution function, is not enough to guarantee irreversible thermodynamic behavior and should be
complemented with hypotheses on the dynamics, e.g. molecular chaos.

For isolated systems, the entropy is the thermodynamic potential that is maximized at equilibrium and
links the microscopic and macroscopic scales via its information-theoretic interpretation (see, for instance,
equation (65)). On the other hand, non-isolated and non-isothermal systems feature a different
thermodynamic potential liking the microscopic and macroscopic scales via its information-theoretic
interpretation. Hence, we define the nonequilibrium Massieu potential [24, 34] at the microscopic scale as

Φ(t)≡ SB (t)−
1

T
〈〈H1〉〉(t) , (67)

where the average 〈〈. . .〉〉 stands for 〈〈. . .〉〉=
´
dγ1f1(γ1)(. . .), in such a way that it gives an extensive

contribution, with T an arbitrary temperature. Its equilibrium counterpart Φeq is obtained via equation (67)
by using the equilibrium one-particle distribution which reads, in the limit of impulsive interactions (i.e.
short-range interaction not contributing to the total energy on average),

feq1 (γ1;T) = NPeq1 (γ1;T) = exp

{
− 1

kBT

(
H1(γ1)−µeq

)}
, (68)

where µeq is the equilibrium chemical potential which gives the correct normalization. Note that (i) at
equilibrium PeqN (ΓN;T) =

∏
nP

eq
1 (γn;T) and (ii) the limit of impulsive interactions allows us to express the

equilibrium one-particle distribution in terms of the H1 only [66].
In the following, we show that (i) Φ(t) is upper bounded by its equilibrium value Φeq and (ii)

Φ(t)−Φ(0)⩾ 0 when the initial state satisfies PN(ΓN;0) =
∏N

n=1P1(γn;0). First, by using equation (68) in
equation (67) and summing and subtracting f eqb , we obtain the following thermodynamic identity for the
nonequilibrium Massieu potential:

Φ(t)−Φeq =−kBD̂KL

(
f1 (t) ||f

eq
1

)
⩽ 0 , (69)

where

D̂KL ( f|g) =
ˆ

dx

(
f(x) ln

f(x)

g(x)
+ g(x)− f(x)

)
⩾ 0 (70)

is the generalization of the relative entropy for non-normalized, positive functions f and g (also called Shear
Lyapunov function in the context of chemical reaction networks [67, 68]). Notice that the same result (69)
applies also in the case of a time-dependent Hamiltonian of the type H1 = p2/2+ϕ(x, t), which we will use
in section 5.

Second, by using equations (67) and (65) together with the conservation of the single-particle energy,

〈〈H1〉〉(t)−〈〈H1〉〉(0) = 0 , (71)

which holds for systems where the resulting force acting on the single particle due to impulsive interactions
vanishes in average, i.e.

´ ∏N
n=1dxnPN∇xψ(|x1 − xm|)) = 0, we obtain that the nonequilibrium Massieu

potential increases in time:

Φ(t)−Φ(0) = SB (t)− SB (0)⩾ 0 . (72)

Note that equation (72), as well as equation (65), holds when the system is initialized in a state of completely
uncorrelated particles, i.e. PN(ΓN;0) =

∏N
n=1P1(γn;0).

Finally, we notice that similar thermodynamic identities have been already observed in different contexts.
A similar thermodynamic identity to equation (65) has been already obtained using integral fluctuation
relations [7, 69]. The difference is that we compare the N-particles distribution with a (completely
decorrelated) product of one-particle distributions, while they introduce the backward Hamiltonian
evolution which enters the integral fluctuation relations. The thermodynamic identities (65), (66) and (69)
are also similar to results obtained for systems coupled to equilibrium baths [24], but here there is no
distinction between degrees of freedom of the system and of the baths. The identities presented in this
section rely on coarse-graining the many degrees of freedom in favor of a description in terms of the
one-particle distribution and the factorization of the initial distribution. They are exact results which are
consistent with the thermodynamic intuition, but do not lead to a full irreversible thermodynamics with a
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positive EPR. In fact, the microscopic dynamics may not be chaotic enough or may involve too few particles
to obtain thermodynamic behavior [13, 70]. A fully consistent thermodynamic description can be obtained
at the mesoscopic level by using the assumption of molecular chaos, as we proceed to do in section 4.

4. Mesoscopic scale: Boltzmann equation

The standard approach to introduce irreversibility in the evolution of the one-particle distribution function
relies on the crucial assumption of molecular chaos [48], which means that particles are assumed to be
uncorrelated before they collide [12]. The resulting mesoscopic evolution is the Boltzmann equation. We
now review the dynamics and thermodynamics of the Boltzmann equation both in general and after
applying the Chapman–Enskog expansion to obtain the hydrodynamic equations.

4.1. Dynamics
The Boltzmann equation

∂tf1 + {f1,H1}= C( f1, f1) (73)

is a closed dynamical equation for the one-particle distribution function f 1 resulting from truncating the
BBGKY hierarchy [1, 7, 48] at the first equation (58) and approximating the collision integral involving the
two-particles distribution function f 2 in terms of the product of two one-particle distribution functions
times a scattering rateW :

C( f1, f1) =

ˆ
dp2dp

′
1dp

′
2 (W(p,p2|p

′
1,p

′
2) f1 (x,p

′
1) f1 (x,p

′
2)−W(p ′

1,p
′
2|p,p2) f1 (x,p) f1 (x,p2)) , (74)

Because of the underlying Hamiltonian dynamics [21], the scattering rateW must satisfy the time-reversal
symmetry

W(p1,p2|p
′
1,p

′
2) =W(−p ′

1,−p
′
2| − p1,−p2) , (75)

and be invariant under a generic rotation which implies invariance under inversion of the coordinate
reference frame (x,p) 7→ (−x,−p)

W(p1,p2|p
′
1,p

′
2) =W(−p1,−p2| − p ′

1,−p
′
2) . (76)

Combining equations (75) and (76) leads to the microscopic reversibility condition:

W(p1,p2|p
′
1,p

′
2) =W(p ′

1,p
′
2|p1,p2) . (77)

In this framework, the so-called summational invariant functions A(x,p) represent quantities satisfying
the conservation law

A(x,p1)+A(x,p2)−A(x,p ′
1)−A(x,p ′

2) = 0 , (78)

when two particles collide in x and the momenta p1, p2, p ′
1 and p

′
2 satisfy the equation of motion, i.e.

W(p ′
1,p

′
2|p1,p2) 6= 0. Their integral over the momentum is zero when multiplied by the collision integral [1]:

ˆ
dpA(x,p)C( f1, f1) = 0 . (79)

This can be proved by multiplying the conservation law (78) by the integrand of C( f1, f1), integrating over all
the momenta and using the symmetry (77) and indistinguishability of particles to obtain four times the
integral in equation (79). Functions A(x) of the position only and constant functions are always
summational invariants. Moreover, since the scattering rateW derives from an underlying Hamiltonian
dynamics, also the kinetic energy and the momentum are summational invariants: (p1)

2 +(p2)
2 − (p ′

1)
2−

(p ′
2)

2 = 0 and p1 + p2 − p ′
1 − p ′

2 = 0. Note that equation (79) implies that
´
dpC( f1, f1) = 0 and, therefore,

that the Boltzmann equation (73) conserves the total number of particles.
To describe the behavior of the system in the configuration space, we introduce the (mesoscopic)

spatio-temporal fields mass density and velocity as

〈ρ〉(x) =M

ˆ
dp

(2π h̄)3
f1 (x,p) , (80a)
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〈v〉(x) = (〈ρ〉(x))−1
ˆ

dp

(2π h̄)3
p f1 (x,p) . (80b)

Their balance equations are obtained by applying the material derivative Dt = ∂t + 〈v〉 ·∇x and using the
Boltzmann equation (73) when evaluating ∂tf1 in equations (80b). The balance equation for mass density
reads

Dt〈ρ〉=−〈ρ〉∇x · 〈v〉 , (81)

while the balance equation for the average velocity reads

〈ρ〉Dt〈v〉=−∇x · 〈P〉+ 〈ρ〉F , (82)

where the pressure tensor can be expressed as

〈P〉(x) = 1

M

ˆ
dp

(2π h̄)3
(p−M〈v〉(x))(p−M〈v〉(x)) f1 (x,p) , (83)

with (p−M〈v〉)(p−M〈v〉) being the matrix whose entries are (pi −M〈vi〉)(pj −M
〈
vj
〉
) (i and j labeling

here the three spatial components) and F=−∇xϕ being the external force per unit mass at point x. Note
that these mesoscopically-derived balance equations (81) and (82) are in one-to-one correspondence to the
macroscopic Navier–Stokes equations (1).

4.2. Thermodynamics
We now introduce the mesoscopic definitions, as well as their respective balance equations, of the specific
thermodynamic quantities examined at the macroscopic level in section 2. The (specific) internal energy is
given by

〈u〉(x) = (〈ρ〉(x))−1

2M

ˆ
dp

(2π h̄)3
(p−M〈v〉(x))2 f1 (x,p) , (84)

and its balance equation, obtained using again the Boltzmann equation (73), reads

〈ρ〉Dt〈u〉=−∇x ·
〈
Jq
〉
−Tr〈P〉∇x〈v〉 , (85)

where the heat flux is given by

〈
Jq
〉
(x) =

1

2M2

ˆ
dp

(2π h̄)3
(p−M〈v〉(x))2 (p−M〈v〉(x)) f1 (x,p) . (86)

The specific entropy per unit mass defined, for consistency with equation (61), as

〈sB〉(x)≡−kB (〈ρ〉(x))−1
ˆ

dp

(2π h̄)3
f1 (x,p)(ln f1 (x,p)− 1) , (87)

satisfies the balance equation

〈ρ〉Dt〈sB〉=−∇x · 〈Js〉+ 〈σ̇B〉 . (88)

Here, the entropy flux is defined as

〈Js〉(x) =−kB

ˆ
dp

(2π h̄)3

( p

M
−〈v〉(x)

)
f1 (x,p) ln f1 (x,p) . (89)

It is worth noting that, unlike the corresponding macroscopic fluxes in equation (25), the mesoscopic
entropy flux (89) is not proportional to the mesoscopic heat flux (86). This difference emerges from the
absence, in general, of the local equilibrium condition. We will verify in section 4.4 that if f 1 satisfies the local
equilibrium, the proportionality between 〈Js〉 and

〈
Jq
〉
is recovered. By omitting the spatial dependence for

shortness and with the notation d4p= (2πh̄)−3
∏

i=1,2 dpidp
′
i , the (local) EPR 〈σ̇B〉 reads

〈σ̇B〉(x) =
kB
4

ˆ
d4pW(p1,p2|p

′
1,p

′
2)( f1 (p

′
1) f1 (p

′
2)− f1 (p1) f1 (p2)) ln

W(p1,p2|p ′
1,p

′
2) f1 (p

′
1) f1 (p

′
2)

W(p ′
1,p

′
2|p1,p2) f1 (p1) f1 (p2)

⩾ 0 ,

(90)
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where the inequality follows from microscopic reversibility (77). Note that the balance equation (88) implies
that for an isolated system

dtSB =

ˆ
dx〈ρ〉(x) Dt〈sB〉(x) =

ˆ
dx〈σ̇B〉(x)⩾ 0 , (91)

namely, the (global) Boltzmann’s entropy SB defined in equation (61) monotonously increases in time
according to the Boltzmann equation, in contrast to what we obtained in the microscopic theory (see
equation (65)). This is an alternative statement of Boltzmann’s H-theorem [1].

The theory developed here is the mesoscopic analog of the macroscopic thermodynamics discussed in
section 2, but they are still not equivalent: the crucial local equilibrium condition (21), or equivalently, the
Euler relation (22), has not been derived yet. To recover them, we need to introduce perturbative solutions of
the Boltzmann equation as we now do in section 4.3.

4.3. Linking the mesoscopic andmacroscopic description via the Chapman–Enskog expansion
Many perturbative solutions of the Boltzmann equation have been derived [1, 11]. Since we are interested in
the dynamics of the spatio-temporal fields accounted by the balance equations (81), (82), (85) and (88), we
apply the Chapman–Enskog scheme, i.e. a type of multiple-scales perturbation theory [15].

4.3.1. Zeroth-order of the Chapman–Enskog expansion
We start by identifying two (temporal and spatial) scales of the Boltzmann dynamics. We introduce a
macroscopic length scale L on which the external potential ϕ varies, and the associated macroscopic
timescale τ = L/vm, with vm the typical molecular velocity. The second timescale corresponds to the mean
free time between collisions τ f and is related to the mean free path l= vmτf. The Knudsen number is defined
as the ratio between these two scales,

ε= l/L= τf/τ , (92)

and plays the role of the small parameter in the Chapman–Enskog perturbative scheme. Indeed, by using
these length and time scales to define adimensional variables (marked by the primes),

t= τ t ′ , x= Lx ′ , p=Mvmp
′ , F=

ML

τ 2
F ′ , C=

C ′

τf
, (93)

the Boltzmann equation (73) becomes (removing the primes for compactness)

∂tf1 + p ·∇xf1 + F ·∇pf1 = ε−1C( f1, f1) . (94)

We are interested in the limit ε→ 0, in which the collision term dominates the evolution of the one-particle
distribution.

We thus consider the expansion

f1 = f(0) + εf(1) + ε2f(2) + . . . , (95)

and substitute it in equation (94). The zeroth-order solution is given by any one-particle distribution
function for which the collision integral of the Boltzmann equation vanishes:

C
(
f(0), f(0)

)
= 0 . (96)

To identify f(0), we notice that a solution for which the EPR in equation (90) vanishes must also satisfy
equation (96). Thus, we look for solutions of 〈σ̇B〉= 0 which can be rewritten in the form (79) for the
quantity A= ln f(0) by using the symmetry in equation (77) and the indistinguishability of the particles. This
implies that ln f(0) must be a function of summational invariants, like mass, momentum and kinetic energy.
We can thus verify that the local Maxwell–Boltzmann distribution

fMB (x,p) = exp

{
− 1

T(x)

(
(p− v(x))2

2
−µ(x)

)}
, (97)

with, in general, x-dependent and t-dependent temperature T(x), velocity v(x), chemical potential of the
ideal gas

µ(x) = T(x) ln(z(x))− 3

2
T(x) ln

T(x)

2π h̄2
, (98)
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and density z(x) (satisfying
´
dxz(x) = N), solves equation (96), namely, f(0) = fMB. Here all the quantities

in equations (97) and (98) are written using the scaling defined in equation (93) (in particular, energy,
temperature and h̄ are expressed inMv2m,Mv2m/kB andMLvm units, respectively). At this stage, the
temperature T(x), the velocity v(x) and the density z(x) in equation (97) are arbitrary parameters of the
Maxwell–Boltzmann distribution, but they will be determined in the following using the balance equations.
For convenience, we recast the expansion in equation (95) truncated at the first order using the
Maxwell–Boltzmann distribution as

f1 (x,p) = fMB (x,p)(1+ εχ(x,p))+O
(
ε2
)
, (99)

namely, defining χ(x,p)≡ f(1)(x,p)/fMB(x,p).
Now we examine how the parameters of the Maxwell–Boltzmann distribution (97), that is the

zeroth-order solution of (94), are related to the (mesoscopic) spatio-temporal fields mass density 〈ρ〉(x) and
velocity 〈v〉(x) introduced in section 4.1. By using equation (97) in equations (80a) and (80b), we obtain

〈ρ〉(x) =
ˆ

dp

(2πh̄)3
fMB (x,p) = z(x) , (100a)

〈ρ〉(x)〈v〉(x) =
ˆ

dp

(2πh̄)3
pfMB (x,p) = z(x)v(x) , (100b)

and, consequently, the density z(x) and velocity v(x) are determined by the balance equations (81) and (82)
which can be rewritten now as

Dtz=−z∇· v , (101a)

zDtv=−∇p+ zF , (101b)

by solving the integral in equation (83) using equation (97) which leads to a diagonal pressure tensor,〈
Pij
〉
(x) = p(x)δij = z(x)T(x)δij . (102)

On the one hand, the zeroth-order Chapman–Enskog expansion recovers the macroscopic mass balance
equation (namely, equation (101a) coincides with equation (1a)). On the other hand, it describes only fluids
without viscous friction since a diagonal pressure tensor enters the zeroth order momentum balance
equation (101b) unlike in equation (1b).

Second, we focus on the thermodynamic quantities introduced in section 4.2, as well as their balance
equations. By using the Maxwell–Boltzmann distribution (97), the (specific) internal energy (84) becomes

〈ρ〉(x)〈u〉(x) = 1

2

ˆ
dp

(2πh̄)3
(p− v)2 fMB (x,p) =

3

2
z(x)T(x) , (103)

while its balance equation (85) reads

DtT=−2

3
T∇x · v , (104)

since the heat flux vanishes, i.e.
〈
Jq
〉
(x) = 0. The balance equation (104) implies that the temperature T(x)

changes only due to the transport caused by the velocity field. Analogously, the balance equation (88) for the
local entropy becomes

Dt〈sB〉= 0 , (105)

since the Maxwell–Boltzmann distribution leads to a vanishing entropy flux 〈Js〉(x) = 0 and entropy
production rate 〈σ̇B〉= 0. This physically means that, at the zeroth-order of Chapman–Enskog expansion,
the evolution of a fluid is isentropic along the flow lines.

Finally, by using the using the Maxwell–Boltzmann distribution (97) in equation (87) together with
equation (103) and p(x) = z(x)T(x), we can write the specific entropy as

T(x)〈sB〉(x) = 〈u〉(x)+ p(x)

z(x)
−µ(x) , (106)

which represents the mesoscopic formulation of the Euler relation (22). Note that, even if the zeroth-order of
Chapman–Enskog expansion is consistent with the Euler relation (22), or equivalently with the local
equilibrium condition (21), this consistency is a trivial one. In fact, the dissipative effects characterizing the
macroscopic thermodynamics and responsible for the variation of the local entropy are not recovered (see
equation (105)). We thus move to the next order of the Chapman–Enskog expansion.
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4.3.2. First-order of the Chapman–Enskog expansion
The first-order equation of the Chapman–Enskog expansion of the (adimensional) Boltzmann equation (94)
can be written as

Dtf
MB +(p− v) ·∇xf

MB + F ·∇pf
MB

=

ˆ
dp2dp

′
1dp

′
2 f

MB (x,p) fMB (x,p2)W(p ′
1,p

′
2|p,p2)(χ(p

′
1)+χ(p ′

2)−χ(p)−χ(p2)) ,
(107)

by using equation (99), the material derivative Dt ≡ ∂t + v ·∇x, C( fMB, fMB) = 0, and
fMB(p ′

1)f
MB(p ′

2) = fMB(p1)f
MB(p2) because of the conservation of the kinetic energy and momentum. The

first order correction χmust not contribute to the value of the spatio-temporal fields mass 〈ρ〉(x),
momentum 〈v〉(x) and internal energy 〈u〉(x) since they are already recovered from the parameters z(x),
v(x) and T(x) of the zeroth-order solution (97) according to equations (100a), (100b) and (103),
respectively. This implies that

ˆ
dp

(2πh̄)3
χ(x,p) fMB (x,p) = 0 , (108a)

ˆ
dp

(2πh̄)3
pχ(x,p) fMB (x,p) = 0 , (108b)

ˆ
dp

(2πh̄)3
(p− v)2χ(x,p) fMB (x,p) = 0 . (108c)

However, the correction χ should affect the balance equations of momentum, internal energy and
entropy via the non-diagonal elements of the pressure tensor and the heat flux and, furthermore, lead to a
nonvanishing entropy flux and EPR.

To determine χ, we start by expressing the terms on left-hand side of equation (107) using equation (97)
together with equations (101a), (101b) and (104). We obtain

Dt ln f
MB =

(
−2

3
∇x · v

)
(p− v)2

2T
+

p− v

T
·
(
−∇xT− T

z
∇xz+ F

)
, (109a)

∇xi ln f
MB =∇xiT

(
(p− v)2

2T2
− 3

2T

)
+

∑
j

(
pj − vj

)
∂xivj

T
+

1

z
∇xiz , (109b)

∇p ln f
MB =− 1

T
(p− v) , (109c)

with i and j labeling the three spatial components. By using the strain tensor ϵij =
1
2 (∂xivj + ∂xjvi), the

left-hand side of equation (107) becomes

Dtf
MB +(p− v) ·∇xf

MB + F ·∇pf
MB

= fMB

 1

T

∑
ij

(
(pi − vi)

(
pj − vj

)
− 1

3
(p− v)2 δij

)
ϵij +

1

T

(
(p− v)2

2T
− 5

2

)
(p− v) ·∇xT

 .
(110)

Comparing this expression with equation (107) suggests that χ is a linear function of the temperature∇xT
and velocity {∂xjvi} gradients [1]. To determine its expression, one could introduce an expansion in
appropriate orthogonal polynomials [9]. However, for the sake of simplicity, we will employ the
relaxation-time approximation or single-collision-time approximation [48, 49]. This approximation
corresponds to use the properties of the Maxwell–Boltzmann distribution fMB to obtain the following
estimate of the collision operator on the right-hand side of equation (107),

C( f, f)'
ˆ

dp2dp
′
1dp

′
2W(p,p2|p

′
1,p

′
2) f

MB (p ′
1) f

MB (p ′
2)(χ(p

′
1)+χ(p ′

2))+

− fMB (p)χ(p)

ˆ
dp2dp

′
1dp

′
2 f

MB (p2)W(p,p2|p
′
1,p

′
2)

(
1+

χ(p2)

χ(p)

)
︸ ︷︷ ︸

1/τR

≈−τ−1
R fMB (p)χ(p) . (111)

Here, we assumed that before a collision takes place the distribution is the equilibrium one, i.e.
χ(p ′

1) = χ(p ′
2)≈ 0. Furthermore, we assumed that the factor fMB(p2)W(p,p2|p ′

1,p
′
2) decays fast enough as a

function of the difference p2 − p that only the zeroth-order contribution in the expansion around p, namely
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χ(p2)' χ(p), can be retained. Therefore, the resulting scattering timescale τR does not depend on χ or on
the gradients of temperature or velocity.

Thus, by using the relaxation time approximation (111) together with equation (110) in equation (107),
we conclude that

χ(p) =−τR
T

∑
ij

(
(pi − vi)

(
pj − vj

)
− 1

3
(p− v)2 δij

)
ϵij +

(
(p− v)2

2T
− 5

2

)
(p− v) ·∇xT

 . (112)

The relaxation time approximation is only appropriate for modeling near-equilibrium systems [49]. A more
rigorous treatment leads to the emergence of two different scattering timescales associated to viscous forces,
accounted by the first term on the right-hand side of equation (112), and thermal diffusion, accounted by the
second term on the right-hand side of equation (112). This discrepancy becomes important in determining
the quantitative values of the pressure tensor (83) and the heat flux (86), but it is not fundamental for our
qualitative discussion of thermodynamics. For this reason, we will further simplify the expressions assuming
τR = 1 in the following.

Notice that χ given in equation (112) satisfies the constraints in equations (108a), (108b) and (108c) as
one can verify using the properties of the Gaussian distribution:〈

(pi − vi)
(
pj − vj

)〉
MB

= z(x)T(x)δij , (113a)

〈
(pi − vi)

(
pj − vj

)
(pk − vk)(pl − vl)

〉
MB

= z(x)(T(x))2
(
δijδkl + δikδjl + δilδjk

)
. (113b)

In particular, equation (108b) is equivalent to
´
dp(p− v)χ(x,p)fMB(x,p) = 0 (by using

equation (108a)), which is verified by χ given in equation (112) because (i) the terms multiplied by the strain
tensor ϵij independently vanish by symmetry, while (ii) the terms multiplied by the temperature gradient
∇xT sum up to zero after integration.

We have now all the elements to assess the consistency of the first order solution (99) (with χ given in
equation (112)) with the macroscopic theory, as originally done by Prigogine [14].

First, we consider the balance equations for the (mesoscopic) spatio-temporal fields mass 〈ρ〉(x),
momentum 〈v〉(x) and internal energy 〈u〉(x) given in equations (81), (82) and (85). These equations have
the same form as the macroscopic balance equations (1a), (1b) and (15) using the zeroth-order solution.
Therefore, we only need to use the correction χ to evaluate the changes in the pressure tensor 〈P〉 in
equation (83) and the heat flux

〈
Jq
〉
in equation (86) which become equal to

〈
Pij
〉
(x) = p(x)δij +

〈
Πij

〉
(x) =

(
p+

2

3
εzT
∑
k

ϵkk

)
δij − 2εzTϵij , (114a)

〈
Jq
〉
(x) =−5

2
εzT∇xT . (114b)

Unlike the zeroth-order expression (102), equations (114a) and (114b) account for the additional viscous
part of the tensor pressure as well as a nonzero thermal conductivity. Furthermore, equations (114a)
and (114b) show a linear relation between 〈Π〉 and

〈
Jq
〉
, on the one hand, and their conjugate

thermodynamic forces {ϵij} and∇xT, on the other hand. This means that the first-order of the
Chapman–Enskog expansion describes fluids in the linear regime, namely, close to equilibrium.

Second, the local thermodynamic equilibrium is left unaffected by the inclusion of the first
Chapman–Enskog correction: substituting the first order solution (99) (with χ in equation (112)) in
equation (87), we obtain again equation (106), as a consequence of the constraints in equations
(108a)–(108c). On the other hand, the first order solution leads to a nonvanishing EPR which reads

〈σ̇B〉=
ε

4

ˆ
d4pW(p ′

1,p
′
2|p1,p2) f

MB (p1) f
MB (p2)(χ(p

′
1)+χ(p ′

2)−χ(p1)−χ(p2))
2
= σ̇macro +O

(
ε2
)
,

(115)

where the σ̇macro is the one computed in the linear regime of irreversible thermodynamics, i.e. after
linearization of 〈Π〉 and

〈
Jq
〉
in terms of (ϵij) and∇xT as given in equation (51).

Third, we verify that in the presence of local equilibrium the entropy and heat flux are proportional to
each other. By substituting the Chapman–Enskog solution (99) in equation (89) and using the expression of
the Maxwell–Boltzmann and the property (108b), we find
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⟨Js⟩=−
ˆ

dp

(2πh̄)3
(p−⟨v⟩) fMB

(
ln fMB + εχ

)
︸ ︷︷ ︸

=0

−ε

ˆ
dp

(2πh̄)3
(p−⟨v⟩) fMBχ ln fMB +O

(
ε2
)
=

1
T

〈
Jq
〉
+O

(
ε2
)
.

(116)

The Chapman–Enskog procedure can in principle be continued to obtain higher order corrections in the
Knudsen number. However, the resulting Burnett and super-Burnett equations display unphysical
oscillations or other artificial behavior near the boundary [11, 71]. Furthermore, by considering the higher
perturbative orders one looses the crucial property of local equilibrium [1, 14]. Therefore, the higher orders
of this approximation have little significance for thermodynamics and will not be considered in the following.

4.4. Thermodynamics of the transient relaxation to local equilibrium
The Chapman–Enskog solution (99) describes only a restricted class of solutions of the Boltzmann
equation (94) close to the equilibrium for which the EPR (90) coincides with the macroscopic one in the
linear regime according to equation (115). However, the Chapman–Enskog perturbation series does not
describe the relaxation of an arbitrary initial condition towards the distribution (99). The study of the
relaxation process of an arbitrary initial condition to the Chapman–Enskog solution is as difficult as the
original Boltzmann equation. Therefore, we employ a perturbative treatment following Grad’s method [11,
72]. In this way, we are able to identify the contribution of this relaxation process to the EPR in equation (90).

We consider an initial condition f1(0) for the one-particle distribution close to the near-equilibrium
solution (99). Then, we introduce two separate timescales. One timescale is associated with the (slow)
dynamics of the Chapman–Enskog solution (99). The other one, τ = ε−1t, is related to a fast relaxation
process, and is relevant only over times comparable to the Knudsen number (92). To account for both
timescales, we add a correction term to the Chapman–Enskog solution (99) and write

f1 (t, τ) = f CE1 (t)+ εf rel1 (τ) , (117)

with the condition that f rel1 (τ) decays to zero exponentially fast for τ � 1. By substituting equation (117) in
the Boltzmann equation (94), we obtain

ε
[(
∂t + p ·∇x+ F ·∇p

)
f CE1 (t)

]
−C

(
f CE1 , f CE1

)
=−ε2

[(
∂t + p ·∇x+ F ·∇p

)
f rel1 (τ)

]
+ ε
(
C
(
f rel1 , f CE1

)
+C

(
f CE1 , f rel1

))
+ ε2C

(
f rel1 , f rel1

)
.

(118)

By introducing ∂τ = ε∂t, keeping only terms linear in ε, and using the fact that f CE1 makes the left-hand side
of equation (118) vanish, being a solution of equation (94) up to order O(ε), we obtain

∂τ f
rel
1 = L

(
f rel1

fMB

)
, (119)

where we introduced the linearized collision operator (acting on a generic distribution function g)

L(g)≡
ˆ

dp ′
1dp2dp

′
2W(p,p2|p

′
1,p

′
2) f

MB (p ′
1) f

MB (p ′
2)(g(p

′
1)+ g(p ′

2)− g(p)− g(p2)) , (120)

with fMB the Maxwell–Boltzmann distribution (97) satisfying fMB(p ′
1)f

MB(p ′
2) = fMB(p1)f

MB(p2) because of
the conservation of the kinetic energy. The dynamics of f rel1 (τ) is obtained by solving equation (119), and we
refer to the original article [72] for the quantitative theory. Here, we focus on the entropy production (90)
for distributions of the type in equation (117). The result in the dominant order in ε is given by

σ̇B ' σ̇macro + σ̇rel + σ̇cross , (121)

where σ̇macro is given in equation (115),

σ̇rel =
ε

4

ˆ
d4pW(p ′

1,p
′
2|p1,p2) f

MB (p1) f
MB (p2)

(
f rel1 (p ′

1)

fMB (p ′
1)

+
f rel1 (p ′

2)

fMB (p ′
2)

− f rel1 (p1)

fMB (p1)
− f rel1 (p2)

fMB (p2)

)2

(122)

is the EPR of the relaxation to the Chapman–Enskog distribution (the local equilibrium distribution) and
becomes negligible for long times τ � 1. It is important to note, however, that for short times τ ≲ 1, the two
contributions are of the same order in ε. The third term in equation (121),
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σ̇cross =
ε

2

ˆ
d4pWfMB (p1) f

MB (p2)(χ(p
′
1)+χ(p ′

2)−χ(p1)−χ(p2))

×
(
f rel1 (p ′

1)

fMB (p ′
1)

+
f rel1 (p ′

2)

fMB (p ′
2)

− f rel1 (p1)

fMB (p1)
− f rel1 (p2)

fMB (p2)

)
, (123)

does not have, in general, a definite sign. This means that while the total EPR in equation (121) is positive
definite, it is not necessarily larger than the one due to the macroscopic processes, i.e. σ̇macro.

5. Mesoscopic scale: generalized Boltzmann equation with external reservoirs

The microscopic and mesoscopic theory discussed in sections 3 and 4, respectively, are derived starting from
an isolated system setup. Therefore, they do not explicitly account for what happens at the system’s boundary
which is crucial in open systems, as it can lead to thermodynamic inconsistencies when arbitrary conditions
are fixed at the boundary [7, 8, 11]. By taking inspiration from both old and recent works in nonequilibrium
thermodynamics and ST [50–53], we develop here a model that includes the boundary directly in the
Boltzmann equation and examine the corresponding thermodynamics. Note that throughout this section we
will use the adimensional variables introduced in equation (93).

5.1. Dynamics
The boundary ∂Ω is split into different reservoirs, or baths, ∂Ω= ∪b∂Ωb like in section 2.5.4. We assume
that each reservoir b is composed of non-interacting particles always in equilibrium at the temperature Tb

and its one-particle distribution function is given by

fb1 (X,P) =
Nb

Z(Tb)
exp

{
− 1

Tb

(
(P− vb)

2

2Mb
+Ub (X)

)}
. (124)

Here, Z(Tb) is the partition function, Nb is the total number of particles, vb is the (externally controlled)
velocity of the reservoir, Ub(X) is a (arbitrary) potential that confines the reservoir’s particles to ∂Ωb, i.e.
Nb =

´
∂Ωb

dX
´
dP fb1 (X,P)/(2πh̄)

3. For simplicity, we further assume that the particles of the reservoir have
the same mass of those of the system:Mb =M.

In the limit of dilute fluids, collisions are rare and can only take place either between pairs of particles of
the system or between one particle of the system and one particle of a single bath. Thus, we modify the
Boltzmann equation (94) by adding collision terms corresponding to each reservoir:

∂tf1 + p ·∇xf1 + F ·∇pf1 = ε−1C( f1, f1)+ ε−1
B∑

b=1

Cb ( f1) , (125)

where C( f1, f1) is given in equation (74), while the linear collision term due to the reservoirs reads

Cb ( f1) =

ˆ
dp ′dPdP ′ (Wb (p,P|p ′,P ′) f1 (p

′) fb1 (P
′)−Wb (p

′,P ′|p,P) f1 (p) fb1 (P)
)
, (126)

with the scattering rateWb satisfying equation (77) likeW. Note that equation (125) generalizes previous
formulations of linear Boltzmann equations discussed in the framework of ST [52, 53] by including the
nonlinear collision integral C( f1, f1).

The balance equations for the (mesoscopic) mass density and velocity defined in equations (80b)
according to the generalized Boltzmann equation (125) (which are analogous to equations (81) and (82))
read:

∂t 〈ρ〉=−∇x · (〈ρ〉〈v〉) , (127a)

〈ρ〉∂t 〈v〉=−〈ρ〉〈v〉 ·∇x 〈v〉−∇x · 〈P〉+ 〈ρ〉F+ ε−1
∑
b

ˆ
dp

(2πh̄)3
pCb ( f1) , (127b)

where the pressure tensor 〈P〉(x) is defined in equation (83), the force can be written as F= Fint + Fw (see
section 2.2), and we used equation (125) together with the property of summational invariance
equation (79). Notice that i) 〈v〉must satisfy the boundary conditions 〈v〉 |∂Ωb = vb, and ii) Fw as well as
Cb( f1) are nonvanishing only on the boundary ∂Ω.

5.2. Thermodynamics
We now derive the thermodynamic description corresponding to the generalized Boltzmann equation (125).
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5.2.1. First and second law
The global momentum, the kinetic and potential energy balances corresponding to equations (127b) are

dt 〈〈p〉〉= 〈〈F〉〉+ ε−1
∑
b

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
pCb ( f1) , (128a)

1

2
dt
〈〈
p2
〉〉
= 〈〈p · F〉〉+ ε−1

∑
b

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
p2

2
Cb ( f1) , (128b)

dt 〈〈ϕ〉〉=−〈〈p · F〉〉+
∑
b

vb ·
ˆ
∂Ωb

dx〈ρ〉Fw , (128c)

respectively. In equation (128c), we used that boundary is split in different reservoirs moving at different
velocities changing the confining potential ϕw in such a way that

´
Ω(t) dx∂tϕ =

´
∂Ω(t) dx∂tϕw =∑

b vb ·
´
∂Ωb(t)

dxFw.
We now use equations (127b) and (128b) to express the balance for the (global) internal energy

U=
〈〈
(p−〈v〉)2

〉〉
/2 in terms of the power Ẇ and the heat flows at the boundaries Q̇b with each reservoir b:

dtU=
1

2
dt
〈〈
p2
〉〉
− 1

2

ˆ
Ω(t)

dx〈v〉2 ∂t 〈ρ〉−
ˆ
Ω(t)

dx〈ρ〉〈v〉 · ∂t 〈v〉 (129a)

=−
ˆ
Ω(t)

dxTr(〈P〉∇x 〈v〉)︸ ︷︷ ︸
≡Ẇ

+
∑
b

ε−1

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3

(
p2

2
−〈v〉 · p

)
Cb ( f1)︸ ︷︷ ︸

≡Q̇b

. (129b)

Equation (129b) is the global formulation of the first law for the generalized Boltzmann equation (125).
Before turning to the entropy balance, we consider the equilibrium distribution corresponding to the

b-th reservoir,

f eqb (x,p) = exp

{
− 1

Tb

(
(p− vb)

2

2
−µbeq (x)

)}
, (130)

with a time-dependent chemical potential µbeq, that becomes the equilibrium solution f eqB of the generalized
Boltzmann equation (125) when all reservoirs have the same temperature Tb = TB and velocity vb = vB.
Indeed, f eqB satisfies

Dtf
eq
B (x,p) = 0 , (131)

where Dt = (∂t + vB ·∇x), and the equilibrium chemical potential µeq satisfies∇xµeq(x) = F(x) and
therefore reads

µeq (x, t) =−ϕ(x, t)+µeq , (132)

at every time t and with µeq a constant. This can be easily proven by direct substitution and using

momentum conservation in the form f eqB (p)f eqB (p2) = f eqB (p ′)f eqB (p ′
2) as well as f

b
1 (P)f

eq
B (p) = fb1 (P

′)f eqB (p ′)
when Tb = TB and vb = vB for every reservoir. Equation (130), together with

´
dpCb( f1) = 0, and the fact

that the bath distribution f b1(P) is nonvanishing only on the region ∂Ωb where 〈v〉= vb, allows us to write
the heat flux (defined in equation (129b)) as

Q̇b =−ε−1Tb

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
ln f eqb Cb ( f1) . (133)

Therefore, we obtain the second law (the global entropy balance) in the form of

dtSB =−dt

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
( f1 ln f1 − f1) (134a)

=−ε−1

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3

(
C( f1, f1) ln f1 +

∑
b

Cb ( f1) ln
f1
feqb

+
∑
b

Cb ( f1) ln f
eq
b

)
(134b)

= Σ̇int +
∑
b

(
Σ̇b +

Q̇b

Tb

)
. (134c)

24



New J. Phys. 26 (2024) 063022 D Forastiere et al

Equation (134c) follows from equation (A6), the summational invariance (79), summing and subtracting
Dtf1 ln f

eq
b , and identifying the EPR inside the system

Σ̇int =− ε−1

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
C( f1, f1) ln f1 , (135)

and on the boundary

Σ̇b =− ε−1

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
Cb ( f1) ln

f1
f eqb

, (136)

which are separately nonnegative as we now show. Indeed, by using the indistinguishability of the particles
and the symmetry (77), equation (135) can be rewritten as

Σ̇int =
ε−1

4

ˆ
Ω(t)

dx

ˆ
dpdp ′

1dp2dp
′
2

(2πh̄)3
W(p,p2|p

′
1,p

′
2)( f1 (p

′
1) f1 (p

′
2)− f1 (p) f1 (p2)) ln

f1 (p ′
1) f1 (p

′
2)

f1 (p) f1 (p2)
⩾ 0 .

(137)

This approach cannot be applied to equation (136) since the particles of the system and the particles of the
reservoirs are not indistinguishable. However, by using i) the explicit expression of fb1 and f eqb in
equations (124) and (130), respectively, together with ii) the conservation of the kinetic energy in the form,
i.e. (p− vb)2 − (p ′ − vb)2 = (P ′ − vb)2 − (P− vb)2, we obtain

Σ̇b =
ε−1

2

ˆ
Ω(t)

dx

ˆ
dpdPdp ′dP ′

(2πh̄)3
Wb (p,P|p ′,P ′)

(
f1 (p

′) fb1 (P
′)− f1 (p) f

b
1 (P)

)
ln

f1 (p ′) f eqb (p)

f1 (p) f
eq
b (p ′)

, (138a)

=
ε−1

2

ˆ
Ω(t)

dx

ˆ
dpdPdp ′dP ′

(2πh̄)3
Wb (p,P|p ′,P ′)

(
f1 (p

′) fb1 (P
′)− f1 (p) f

b
1 (P)

)
ln

f1 (p ′) fb1 (P
′)

f1 (p) fb1 (P)
⩾ 0 .

(138b)

5.2.2. Global thermodynamic potential
We now show that, when the system is i) closed in a domain Ω(t) with the boundary moving at constant and
uniform velocity vB, and ii) in contact with a single external reservoir (identified by b=B) with temperature
TB, the dynamical equation (125) satisfies the analogous of a H-theorem (i.e. it admits a Lyapunov function)
ruling the relaxation to equilibrium. To do so, we rely on the nonequilibrium Massieu potential
Φ = SB(t)−

〈〈
((p−vB)2/2+ϕ)

〉〉
/TB (defined in general in equation (67)), and we proceed in three steps.

First, as proven in equation (69), Φ is upper bounded by its equilibrium value Φeq when the
time-dependent Hamiltonian H1 = (p−vB)2/2+ϕ(x, t) results from all reservoirs moving with the same
uniform velocity vB and all reservoirs having the same temperature TB.

Second, for the general case of multiple reservoirs b= 1, . . .,B with different velocities and temperatures,
the time-derivative dtΦ reads

dtΦ = dtSB −
1

2TB
dt
〈〈
p2
〉〉
− 1

TB
dt 〈〈p〉〉 · vB −

1

TB
dt 〈〈ϕ〉〉 (139a)

= dtSB −
∑
b

Q̇b

TB
− 1

TB

{∑
b

ˆ
Ω(t)

dx (vb−vB) ·

(
〈ρ〉Fw + ε−1

ˆ
dp

(2πh̄)3
pCb ( f1)

)
−〈〈Fint〉〉 · vB

}
︸ ︷︷ ︸

≡Ẇmech

(139b)

= Σ̇int +
∑
b

Σ̇b +
∑
b

(
1

Tb
− 1

TB

)
Q̇b −

Ẇmech

TB
, (139c)

by using equations (128c), (129b) and (134c) (with 〈v〉 |∂Ωb = vb), F= Fw + Fint, and summing and
subtracting (ε−1/TB)

∑
b

´
Ω(t) dx

´
dpvb · pCb( f1)/(2πh̄)

3. The mechanical power Ẇmech generalizes the

power Ẇ featuring the first law (129b). If the boundary is at rest, i.e. vb = 0 ∀b, the mechanical power
vanishes, Ẇmech = 0.

Third, for the case of a single external temperature TB and velocity vb = 0 ∀b on the boundary,
equation (139c) becomes

dtΦ = Σ̇int +
∑
b

Σ̇b ⩾ 0 , (140)
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and, consequently, (minus) the nonequilibrium Massieu potential Φ plays the role of a Lyapunov function
for the relaxation to equilibrium of the dynamics (125). Note that the system relaxes to equilibrium also
when the boundaries move with a single velocity vb = vB ∀b and the center of mass (CM) of the system
moves at the same velocity, i.e. vCM = vB. Indeed, in this case the the mechanical power Ẇmech in
equation (139b) reduces to the rate of change of the potential energy of the center of mass, namely
Ẇmech =mdtϕint(xCM) (see equation (C6)), provided that the internal potential energy ϕint is linear in x,
namely ϕint((x) = g · x (as it is for the gravitational potential), and the thermodynamic potential becomes
Φ ′ = SB − (

〈〈
((p− vB)2/2+ϕ)

〉〉
−mϕint(xCM))/TB, satisfying dtΦ ′ = Σ̇int +

∑
b Σ̇b ⩾ 0.

Finally, we recast equation (139c) in the form of a decomposition of the EPR. By isolating the total EPR,
we obtain

Σ̇tot ≡ Σ̇int +
B∑

b=1

Σ̇b = dtΦ +
Ẇmech

TB
+
∑
b

Q̇b

(
1

TB
− 1

Tb

)
, (141)

that is the mesoscopic analogue of equation (48) (see also equation (42)). Indeed, it features the time
derivative of a thermodynamic potential dtΦ; a mechanical power contribution Ẇmech due to the velocity
externally imposed on the boundary; a flux-force contribution due to the presence of heat fluxes Q̇b

exchanged with the environment and triggered by the presence of global differences in temperature. For
clarity of presentation, we did not consider the possible time-dependence in externally controlled parameters
vb or Tb, and therefore the corresponding terms in equation (48) do not appear here. Therefore, we can
identify the nonequilibrium Massieu potential defined at the mesoscopic scale with the one featuring in
equation (48), i.e. Φ = Y, if the one-particle distribution f 1 satisfies the local equilibrium. This point is
further examined in the following section.

5.2.3. Local thermodynamic potential
We now identify the local thermodynamic potential 〈y〉 (i.e. the local version of the global potential Φ),
upper bounded by its equilibrium value 〈y〉eq, corresponding to the global macroscopic thermodynamic
potential Y given in equation (47), and which governs the relaxation to equilibrium when all the reservoirs
have the same velocity vb = vB and temperature Tb = TB. We start by observing that

0⩽
ˆ

dp

(2π h̄)3

(
f1 (x,p) ln

f1 (x,p)

feqB (x,p)
+ feqB (x,p)− f1 (x,p)

)
=−〈ρ〉〈sB〉+ 〈ρ〉eq +

〈ρ〉
TB

(
(〈v〉− vB)

2

2
+ϕ+ 〈u〉−µeq

)
, (142)

by using equations (80b), (84), (87), (130), (132) and (p− vB)2 = (p−〈v〉)2 + 2p · (〈v〉− vB)−〈v〉2 +(vB)2.
We then identify the local total energy in the frame comoving with ∂Ωb as

〈e〉 ≡ (〈v〉− vB)
2

2
+ϕ+ 〈u〉 , (143)

and recall that the pressure tensor satisfies equation (102) when f 1 is a Maxwell–Boltzmann distribution like
feqB in equation (130) yielding

〈ρ〉eq =
pB
TB
, (144)

where pB is the pressure that the system would reach at equilibrium. This allows us to write the mesoscopic
thermodynamic potential as (minus) the right-hand side of equation (142) divided by the local density 〈ρ〉:

〈y〉= 〈sB〉−
〈e〉+ pB〈ρ〉−1

TB
+
µeq
TB

, (145)

with 〈ρ〉−1 being the specific volume as in section 2.3. Note that 〈y〉eq = 0 because of the local
equilibrium (106) and that 〈y〉− 〈y〉eq ⩽ 0 because of equation (142). Furthermore, 〈y〉 is the local,
mesoscopic analog of the global, macroscopic potential Y, and the exact identity

´
Ω
dx〈ρ〉〈y〉= Y is

recovered when (i) vB = 0 and (ii) f 1 satisfies the local equilibrium, as it is the case for the Chapman–Enskog
solution (99) that turns the mesoscopic specific entropy 〈sB〉 into the macroscopic specific entropy. Notice
that the local thermodynamic potential (145) has the same form as the macroscopic one (47), the only
difference being the term µeq/TB, which emerges because the system is locally open (i.e. it exchanges matter
with its surroundings) as already observed in [42]. This same fact also prevents the existence of a local
version of a H-theorem for 〈y〉.
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6. Stochastic thermodynamics for viscous fluids

By building on equation (125), we now develop a linear theory for the one-particle distribution function,
endowed with the property of local detailed balance featuring an explicit non-conservative contribution,
which is the form usually assumed in Stochastic Thermodynamics [17, 34, 73]. This theory further admits a
Chapman–Enskog solution identical to the one obtained in section 4.3 and therefore gives rise to the
hydrodynamic equations presented in section 2.

6.1. Dynamics and local detailed balance
We consider a diluted suspension of Nα particles α in a weakly out-of-equilibrium fluid made up of Nβ

particles β, with respective molecular masses areMα andMβ . Since Nβ � Nα, the fluid of particles β is not
affected by the presence of particles α. The one-particle distribution, f1β , is thus well described by the
Chapman–Enskog form f1β = fMB

β (1+ εχβ) with fMB
β given in equation (97) and χβ given in equation (112),

except for a trivial change in normalization from N to Nβ . Also, 〈vβ〉= v, where v is the velocity of the fluid
solving the macroscopic Navier–Stokes equations. Since the particles α are diluted, the collisions among
them are neglected, while their collisions with the fluid of particles β and with the reservoirs constituting the
boundaries are retained. Therefore, dynamics of the one-particle distribution f1α is given by (125), where the
collision integral C( f1α, f1α) is neglected, a collision integral C( f1α , f1β) is added and the collision integral
Cb( f1α) is retained.

First, we consider the interaction with the boundary ∂Ωb and we rewrite the collision integral (126) as

Cb ( f1α) =

ˆ
dp ′

αRb (pα|p
′
α) f1α (p

′
α)− f1α (pα)

ˆ
dp ′

αRb (p
′
α|pα) , (146)

where we introduced the transition rates

Rb (pα|p
′
α)≡

ˆ
dPdP ′Wb (pα,P|p

′
α,P

′) fb (P
′) . (147)

By using the one-particle distribution function (124), we prove that the transition rates satisfy the local
detailed balance condition [29, 30, 50, 52, 53, 73]

Rb (pα|p ′
α)

Rb (p ′
α|pα)

= exp

{
−∆kb (pα|p ′

α)

Tb

}
, (148)

with

∆kb (pα|p
′
α)≡

1

2

(
(pα − vb)

2 − (p ′
α − vb)

2
)
=

1

2

[
(pα)

2 − (p ′
α)

2
]
+ vb · (pα − p ′

α) (149)

the variation of the kinetic energy of the system (measured with respect to the wall velocity vb) due to the
transition p ′

α 7→ pα satisfying∆kb(pα|p ′
α) = ((P ′ − vb)2 − (P− vb)2)/2 because of the conservation of the

kinetic energy. Note that equation (148) means that the local detailed balance condition holds for each
reservoir individually. Furthermore, the change in kinetic energy in equation (149) is expressed as the sum of
two terms of the same order in the Knudsen number ε but with different thermodynamic meaning. The first
term after the second equality in equation (149) plays the role of the change in a thermodynamic potential.
The second term after the second equality in equation (149) is a nonconservative term that emerges from the
collisions with the reservoir moving at the velocity vb. Indeed, it is the same as in the local detailed balance
condition obtained in [53].

Second, we consider the dynamics far from the boundary and we write the collision integral C( f1α, f1β) as

Cε ( f1α) =

ˆ
dp ′

αRε (pα|p
′
α) f1α (p

′
α)− f1α (pα)

ˆ
dp ′

αRε (p
′
α|pα) , (150)

with rates

Rε (pα|p
′
α)≡

ˆ
dpβdp

′
βW

(
pα,pβ |p

′
α,p

′
β

)
fMB
β

(
p ′
β

)(
1+ εχβ

(
p ′
β

))
, (151)

since we assumed that f1β = fMB
β (1+ ϵχβ). Note that equations (146), (147), (150) and (151) define a linear

evolution equation for f1α. To verify whether the rates (151) satisfy the local detailed balance condition or
not, we expand the ratio Rε(pα|p ′

α)/Rε(p ′
α|pα) to first order in ε and we obtain
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Rε (pα|p ′
α)

Rε (p ′
α|pα)

= exp

{
−∆k(pα|p ′

α)

T(x)

}1+
ε

T(x)

´
dpβdp

′
βW
(
pα,pβ |p ′

α,p
′
β

)
fMB
β

(
p ′
β

)
w
(
p ′
β ,pβ

)
´
dpβdp

′
βW
(
pα,pβ |p ′

α,p
′
β

)
fMB
β

(
p ′
β

)
 ,

(152)
where we used the notations

∆k(pα|p
′
α)≡

1

2

(
(pα − v)2 − (p ′

α − v)
2
)
=

1

2

[
(pα)

2 − (p ′
α)

2
]
+ v · (p ′

α − pα) , (153a)

w
(
p ′
β ,pβ

)
T(x)

≡ χβ

(
p ′
β

)
−χβ

(
pβ

)
. (153b)

Equation (152) does not correspond to the local detailed balance condition. Indeed, on the one hand,
the most general formulation of the local detailed balance [34] for a transition e reads R(e)/R(−e) =
exp{−(∆eΦ − F(e)Q(e))/Te}, where R(e) (resp. R(−e)) is the forward (resp. backward) rate,∆eΦ is the
change of the thermodynamic potential, as in the local detailed balance (148) for collisions at the boundary,
while F(e)Q(e) is the nonconservative work that depends only on the transition and is given by the product
between a thermodynamic force F(e) and the conjugate quantity Q(e). On the other hand, the term of order
ε in equation (152) does not depend only on the change in momentum, which identifies a transition in our
case. However, equation (152) becomes equivalent to the local detailed balance condition in the small
variance limitMαv2 � kBT where the Maxwell–Boltzmann distribution fMB

β (p ′
β) becomes sharply peaked

around v (see equation (97)). This, together with the momentum conservation p ′
β = pβ +∆pα (with

∆pα = pα − p ′
α), leads to

Rε (pα|p ′
α)

Rε (p ′
α|pα)

= exp

{
−∆k(pα|p ′

α)− εw(v,v−∆pα)

T(x)

}
, (154)

using eεa ' 1+ εa. Equation (154) is the local detailed balance for the collisions between particles of type α
and β, and features two contributions with a different scaling in the Knudsen number ε. The zeroth order
contribution,∆k(pα|p ′

α), can be split into two terms (see equation (153a)) with different thermodynamic
meanings, as for∆kb(pα|p ′

α) in equation (149). The first term after the second equality in equation (153a)
plays the role of the change in a thermodynamic potential. The second term after the second equality in
equation (153a) is a nonconservative term that emerges from the collisions with the particles β moving at the
average velocity v. It generalizes equation (149) to reservoirs with spatially nonuniform temperature and
velocity. The first order contribution, w(v,v−∆pα), is an additional nonconservative term due to
temperature and velocity gradients. Indeed, by using equations (153b) and (112), w(v,v−∆pα) becomes

w(v,v−∆pα) =−Tχβ (v−∆pα) =

∑
ij

(
(∆pα,i)

(
∆pα,j

)
− 1

3
(∆pα)

2
δij

)

× ϵij−

(
(∆pα)

2

2T
− 5

2

)
(∆pα) ·∇xT

}
. (155)

The thermodynamic forces are the local strain tensor ϵij and the local temperature gradient∇xT, while the
conjugate quantities are {∆pα,i}, which are conserved in the corresponding thermodynamically isolated
system. The thermodynamic forces can be determined by solving the macroscopic equations for v and T and
vanish when temperature and velocity become uniform in space. The necessity of a small noise
approximation (like the small variance limit leading to equation (154)) when deriving the local detailed
balance condition as a coarse-graining of an underlying nonconservative dynamics has been already observed
in the context of overdamped diffusion in a potential landscape plus a small nonconservative force [29].

Therefore, by using the rates in equations (147) and (151) satisfying the local detailed balance conditions
in equations (148) and (154), the generalized Boltzmann equation (125) for the type α particles becomes the
following linear equation (dropping the α subscript when redundant from now on):

ε
(
∂t + p ·∇x+ F ·∇p

)
f1α =

ˆ
dp ′ [Rε (p|p ′) f1α (p

′)−Rε (p
′|p) f1α (p)]+

∑
b

ˆ
dp ′ [Rb (p|p ′) f1α (p

′)

−Rb (p
′|p) f1α (p)] . (156)
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6.2. Chapman–Enskog expansion
We now show that equation (156) admits a Chapman–Enskog solution and, consequently, it has a
macroscopic hydrodynamic limit. To do so, we apply the Chapman–Enskog procedure of section 4.3 to
equation (156) in the small variance limit in which the local detailed balance (154) holds. By inserting

f1α = f(0)1α + εf(1)1α +O(ε2) into equation (156), zeroth-order in ε reads

ˆ
dp ′
[
R0 (p|p ′) f(0)1α (p ′)−R0 (p

′|p) f(0)1α (p)
]
+
∑
b

ˆ
dp ′
[
Rb (p|p ′) f(0)1α (p ′)−Rb (p

′|p) f(0)1α (p)
]
= 0 .

(157)

We now assume that the two terms in equation (157) vanish separately and then check the consistency of the
result. Note that the first term must vanish in every point of the domain Ω, while the second only on the
boundary ∂Ω because of the definition of Rb. By using the local detailed balance (154) with ε= 0, we find

that the first term is zero if f(0)1α is a Maxwell–Boltzmann distribution (97) with the temperature and
mesoscopic velocity field v solving the macroscopic Navier–Stokes equations determined by the type β
particles. By using the local detailed balance (148), we find that the Maxwell–Boltzmann distribution makes
also the second term in equation (157) vanish when the temperature and mesoscopic velocity field assume
the values imposed by the reservoirs on the boundary, i.e. Tb and vb.

We now examine the first-order correction in ε of equation (156). The first-order correction of the
left-hand side of equation (156) is the same as the one obtained in equation (110) when applying the
Chapman–Enskog procedure to the original Boltzmann equation (94). To determine the first-order
correction of the right-hand side of equation (156), we use f1α = fMB

α (1+ εχα)+O(ε2) together with
equations (157) and the local detailed balance conditions (148) and (154) obtaining

Rε (p|p ′) f1α (p
′)−Rε (p

′|p) f1α (p) = ε

[
R0 (p|p ′) fMB

α (p ′)
w(v,v−∆p)

T

−R0 (p
′|p) fMB

α (p)(χα (p)−χα (p
′))

]
+O

(
ε2
)

(158a)

Rb (p|p ′) f1α (p
′)−Rb (p

′|p) f1α (p) = εRb (p
′|p) fMB

α (p) [χα (p
′)−χα (p)]+O

(
ε2
)
. (158b)

We now apply again the relaxation time approximation (111). By assuming that i) the perturbation is
negligible before a collision, i.e. χα(p ′

1)≈ 0 and ii) R0(p ′|p) decays fast enough with∆p implying
w(v,v−∆p) = O(|∆p|2), equation (158a) leads to

ˆ
dp ′
{
R0 (p|p ′) fMB

α (p ′)
w(〈v〉 ,〈v〉−∆p)

T
−R0 (p

′|p) fMB
α (p) [χα (p)−χα (p

′)]

}
≈−(τ ′

R)
−1

fMB
α (p)χα (p) , (159)

where (τ ′
R)

−1 ≡
´
dp ′R0(p ′|p) is p-independent for the same reasons as in equation (111). By applying the

same reasoning to equation (158b), we obtain∑
b

ˆ
dp ′Rb (p

′|p) fMB
α (p) [χα (p

′)−χα (p)]≈−fMB
α (p)χα (p)

∑
b

τ−1
b , (160)

with (τb)
−1 ≡

´
dp ′Rb(p ′|p). By combining the left-hand side of equation (110) with equations (159),

and (160), we verify that the expression in equation (112), with the relaxation time τ−1
R =

((τ ′
R)

−1 +
∑

b τ
−1
b ), is the first-order correction in the Chapman–Enskog solution of equation (156).

Notice that by following the same approach, one can also show that f1β is the Chapman–Enskog solution of
equation (125) corresponding to the values of temperature and velocity imposed at the boundaries.

The corresponding dynamical equations for ρα and 〈vα〉= v are, therefore, obtained substituting the
Chapman–Enskog expansion of f1α into the balance equations for mass and momentum, equations (80b),
and result in the macroscopic equations (1) (with ρ= ρα). Notice that the pressure tensor P and heat flux Jq
coincide with those in equations (114b), except for a different relaxation time taking into account the effect
of the boundary.

6.3. Thermodynamics
We now formulate the thermodynamics, namely, the first and second law, corresponding to the
Chapman–Enskog solution of equation (156) (ensuring in particular that 〈vα〉= v) by following the same
steps as in section 5.2.1. We start by writing the balance equations for the velocity and the kinetic energy
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〈ρα〉∂t〈vα〉=−〈ρ〉〈v〉 ·∇x 〈v〉−∇x · 〈P〉+ 〈ρ〉F+ ε−1

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
pCε ( f1α)

+ ε−1
∑
b

ˆ
dp

(2πh̄)3
pCb ( f1) (161a)

1

2
dt
〈〈
p2
〉〉
= 〈〈p · F〉〉+ ε−1

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
p2

2
Cε ( f1α)+ ε−1

∑
b

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
p2

2
Cb ( f1α) , (161b)

respectively. The difference between equations (161a) and (161b), on the one hand, and equations (127b)
and (128b), on the other, results from p2 and p not being summational invariants under the collision
operator Cε( f1α) in equation (150). Hence, equations (161b) lead to the following first law

dtU=
1

2
dt
〈〈
(p−〈vα〉)2

〉〉
=

1

2
dt
〈〈
p2
〉〉
− 1

2
dt

ˆ
Ω(t)

dx〈ρα〉〈vα〉2

= Ẇ+
∑
b

Q̇b + Q̇ε ,
(162)

where the Q̇b and Ẇ are defined like in equation (129b), while Qϵ reads

Q̇ε ≡ ε−1

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3

(
p2

2
− p · 〈vα〉2

)
Cε ( f1α) . (163)

Like in section 5.2.1, the heat flow in the equilibrium reservoirs can also be written as Q̇b =
−ε−1Tb

´
Ω(t) dx

´
dp ln( f eqb )Cb( f1α)/(2πh̄)

3 with f eqb given in equation (130), and analogously the heat

exchanged with the particles of type β can be written as Q̇ε =
´
Ω(t) dx q̇ε(x) with the local (scalar) heat flow

defined as q̇ε(x)≡−ε−1T(x)
´
dp ln( fMB

α )Cε( f1α)/(2πh̄)
3. Note that equation (158a) implies that q̇ε(x) is

of order zero in ε when the local equilibrium holds, namely, f1α = fCE1α.
We now turn to the second law. By using equation (156), the global entropy balance for the particles of

type α now reads

dtS=−dt

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
( f1α ln f1α − f1α) (164a)

=−ε−1

ˆ
Ω(t)

dx

ˆ
dp

(2πh̄)3
Cε ( f1α) ln f1α +

∑
b

(
Σ̇b +

Q̇b

Tb

)
(164b)

= Σ̇int + Ṡε +
∑
b

(
Σ̇b +

Q̇b

Tb

)
, (164c)

where Σ̇b is the EPR on the boundary in equations (136) and (138b). We split the integral in equation (164b)
into

Σ̇int =
ε−1

2

ˆ
Ω(t)

dx

ˆ
dpdp ′

(2πh̄)3
[Rε (p|p ′) f1α (p

′)−Rε (p
′|p) f1α (p)] ln

Rε (p|p ′) f1α (p ′)

Rε (p ′|p) f1α (p)
⩾ 0 , (165)

and

Ṡε =
ε−1

2

ˆ
Ω(t)

dx

ˆ
dpdp ′

(2πh̄)3
[Rε (p|p ′) f1α (p

′)−Rε (p
′|p) f1α (p)] ln

Rε (p ′|p)
Rε (p|p ′)

, (166)

corresponding to the EPR and the entropy flow inside the system, respectively. By introducing the local
entropy flow ṡε(x) satisfying Ṡε =

´
Ω(t) dx ṡε(x) and using the local detailed balance condition (154), we

obtain

ṡε (x) =
q̇ε (x)

T(x)
+

1

2T(x)

ˆ
dpdp ′

(2πh̄)3
[Rε (p|p ′) f1α (p

′)−Rε (p
′|p) f1α (p)]w(v,v−∆p) . (167)

Note that equation (167) together with equation (158a) implies that ṡϵ(x) is given by the sum of two
contributions with a different scaling in the Knudsen number. The zeroth order contribution accounts for the
local heat flow q̇ε(x). At this order, the local equilibrium relation ṡϵ(x) = q̇ε(x)/T(x) holds. The first order
contribution emerges instead from the nonconservative work (resulting from the irreversible momentum
exchanges between α and β particles) and breaks the local equilibrium even if, at the same time, local detailed
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balance is obeyed at the mesoscopic scale and the macroscopic dynamics is the solution to the hydrodynamic
equations. The local equilibrium is broken also in the framework of the so-called Extended Irreversible
Thermodynamics where the nonconservative contributions to the balance equation for the entropy are
included on phenomenological grounds or derived from Grad’s thirteen-moment approximation [74].

We conclude by expressing the entropy production (165) in the first order in ε by using equation (158a),
the local detailed balance condition (154) and R0(p|p ′)fMB

α (p ′) = R0(p ′|p)fMB
α (p). This leads to

Σ̇int =
ε

2

ˆ
Ω(t)

dx

ˆ
dpdp ′

(2πh̄)3
R0 (p

′|p) fMB
α (p)

[
w(v,v−∆p)

T
+χα (p

′)−χα (p)

]2
, (168)

which emphasizes the analogy with the expression obtained in ST (in the corresponding linear regime [40]).
This expression confirms that the physical meaning of w(v,v−∆p) is that of a nonconservative work rate
done by the local thermodynamic forces∇xT and (ϵij). On the other hand, ε(χα(p ′)−χα(p))'
ln
[
f1α(p)fMB

1α (p)/f1α(p ′)fMB
1α (p ′)

]
is the information-theoretic contribution to the EPR due to the fact that

the transition p 7→ p ′ occurs out-of-equilibrium.

7. Conclusions and perspectives

Our work systematically analyzed how to construct nonequilibrium thermodynamics for systems described
by hydrodynamics at the macroscopic level, starting from the microscopic scale. Emphasis has been placed
on the boundary conditions which play a crucial role in determining the right thermodynamic potentials and
the thermodynamic forces.

Several further developments can be envisioned. The description we provide here is based on the
Boltzmann equation and allows for relatively explicit calculations, but the argument used to truncate the
BBGKY hierarchy holds only for very rarefied gases. An alternative approach based on an integral fluctuation
theorem has recently been developed [7, 75–77]. It would be interesting to systematically investigate the
thermodynamic implications of this approach employing techniques from large deviations theory [78],
which recover irreversibility at the mesoscopic level by focusing on the typical microscopic evolution [70].

Our microscopic approach can be extended to include the effect of chemical reactions, where
macroscopic nonequilibrium thermodynamics is well established [1, 58, 79, 80] and continues to receive
attention [42, 81–83]. Recent formulations of nonequilibrium thermodynamics for systems undergoing
chemical reactions [41, 42] are currently assuming the absence of macroscopic motion of the fluid and
isothermal conditions. The effects of viscous flows and heat exchanges are thus neglected but could be
accounted by such extensions.
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Appendix A. Reynolds’ transport theorem

We summarize here a formal proof of Reynolds’ transport theorem. To compute integrals over the
time-dependent domain ω(t) of R3 with a smooth boundary we introduce the indicator function I(x,ω(t)).
Thus,

dt

ˆ
ω(t)

dx f(x, t) = dt

ˆ
R3

dx f(x, t) I(x,ω (t)) =

ˆ
ω(t)

dx∂tf(x, t)+

ˆ
R3

dx f(x, t)∂tI(x,ω (t)) . (A1)

The boundary ∂ω(t) admits a smooth parametrization by means of two functionsmi(t,{xj}j ̸=i) and
Mi(t,{xj}j ̸=i) giving respectively the minimum and maximum value that the ith coordinate can take for a
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given value of the other two coordinates {xj}j̸=i. This means that x= (. . . ,xi, . . .) ∈ ω if and only if all its
coordinates satisfymi(t,{xj}j̸=i)⩽ xi ⩽Mi(t,{xj}j̸=i). The indicator function can therefore be written as

I(x,ω (t)) =
3∏

i=1

(
θ
(
xi −mi

(
t,
{
xj
}
j̸=i

))
+ θ
(
Mi

(
t,
{
xj
}
j ̸=i

)
− xi

)
− 1
)
. (A2)

Its derivative with respect to time reads

∂tI(x,ω (t)) =
3∑

i=1

(
−δ
(
xi −mi

(
t,
{
xj
}
j̸=i

))
∂tmi

(
t,
{
xj
}
j̸=i

)
+δ
(
Mi

(
t,
{
xj
}
j ̸=i

)
− xi

)
∂tMi

(
t,
{
xj
}
j̸=i

))
I(x, i,ω (t)) , (A3)

where

I(x, i,ω (t)) =
3∏

k ̸=i

(
θ
(
xk −mk

(
t,
{
xj
}
j̸=k

))
+ θ
(
Mk

(
t,
{
xj
}
j̸=k

)
− xk

)
− 1
)
, (A4)

is a restricted indicator function that ignores the ith coordinate. The ith components of the velocity field vb
on the boundary are given by v+b,i({x}j̸=i) = ∂tMi(t,{xj}j̸=i) and v−b,i({x}j̸=i) =−∂tmi(t,{xj}j ̸=i). This means
that the second integral in (A1) is restricted to the boundary by the δ-function and can be recast as

ˆ
R3

dx f(x, t)∂tI(x,ω (t)) =

ˆ
∂ω(t)

f(x, t)vb · dn , (A5)

where dn is an oriented surface element pointing outwards. The integral can be transformed back to an
integral over ω(t) using Stokes’ theorem, obtaining the well-known formula

dt

ˆ
ω(t)

dx f(x, t) =

ˆ
ω(t)

dx (∂tf(x, t)+∇x · ( f(x, t)v)) =
ˆ
ω(t)

dx (Dtf (x, t)+ f (x, t)(∇x · v)) , (A6)

with v being the velocity field on the domain ω(t).

Appendix B. Minimum entropy production theorem

Equation (51) can be expressed as in equation (52) if

ˆ
Ω

dx

(
∂xi1/T

ss

ϵssij

)T(
κδij 0
0 L(ij),(i ′j ′)

)(
∂xj (1/T− 1/Tss)

ϵi′j ′ − ϵssi′j ′

)
'
ˆ
Ω

dx

(
∂xiT

ss

ϵssij

)T(
(T eq)

−4
κδij 0

0 L(ij),(i ′j ′)

)(
∂xj (T−Tss)
ϵi′j ′ − ϵssi′j ′

)
= 0 , (B1)

by consider a near-equilibrium condition for which T= T eq + δT and, therefore, ∂xj(1/T) (as well as
∂xj(1/T

ss)) can be written as ∂xj(1/T) =−(T eq)−2∂xjT+O(δT2), by using ∂xiT
eq = 0 or, equivalently,

∂xiT= ∂xiδT. A set of sufficient conditions for equation (B1) to hold is given by
ˆ
Ω

dx∇xT
ss ·∇x (T−Tss) = 0 , (B2a)∑

ij

ˆ
Ω

dx (∂xiv
ss
i ) ∂xj

(
vj − vssj

)
= 0 , (B2b)

∑
ij

ˆ
Ω

dx
(
∂xiv

ss
j

)
∂xi

(
vj − vssj

)
= 0 , (B2c)

∑
ij

ˆ
Ω

dx
(
∂xiv

ss
j

)
∂xj (vi − vssi ) = 0 , (B2d)

where we used L(ij),(i ′j ′) ≡ (λδijδi′j ′ + 2ρeqνδii′δjj′)/Teq and ϵij = (∂xivj + ∂xjvi)/2.
In the following, we show that equation (B2d) holds near equilibrium (with ρ= ρeq + δρ, v= veq + δv,

T= T eq + δT, and p= peq + δp) for incompressible fluids, i.e.

∇x · v= 0 , (B3)
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whose internal energy reads

u= cVT , (B4)

where cV is the heat capacity (per unit volume, computed at constant volume) [2, 58]. Note that the
approximation of incompressible fluids is justified when (i) the Mach number Ma is negligible, i.e.
Ma= v0/c� 1 (where v0 is the characteristic velocity of the flow and c the speed of sound in the fluid), (ii)
fast transient phenomena, like pressure waves, are absent and (iii) thermal expansion can be ignored [84].
The dependence of ρ on the temperature and pressure gradients is therefore assumed to be negligible, i.e.
δρ= 0.

We employ a perturbative analysis for the balance equations of mass, momentum and energy (in
equations (1a), (1b) and (15), respectively) near equilibrium. First, since the EPR (26b) vanishes everywhere
at equilibrium, T eq and veq satisfy

∇xT
eq = 0 , (B5a)

∇xv
eq = 0 . (B5b)

In general, veq 6= 0, but we will use for simplicity a comoving reference system, i.e. veq = 0, in the
following. Hence, the balance equations (1a), (1b) and (15) at the zeroth order read

∇xρ
eq = 0 , (B6a)

−∇xp
eq + ρeqF= 0 , (B6b)

∂tT
eq = 0 . (B6c)

Second, the balance equations, (1b) and (15) at the first order in δv, δT and δp read

ρeq∂tδv=−∇xδp+ νρeq∇2
xδv , (B7a)

ρeqcV(T
eq)

2
∂tδT= κ∇2

xδT , (B7b)

while the balance equation (1a) vanishes at the first order because δρ= 0. At steady state, equation (B7b)
becomes

−∇xδp
ss + νρeq∇2

xv
ss = 0 , (B8a)

∇2
xT

ss = 0 . (B8b)

Notice that for the temperature and the velocity, we have∇xδT=∇xT and∇xδv=∇xv as a
consequence of equation (B5b).

Third, we show that equation (B8b) implies equation (B2d). Indeed, equation (B2a) reads

ˆ
Ω

dx∇xT
ss ·∇x (T−Tss) =

ˆ
∂Ω

dn ·∇xT
ss (T−Tss)−

ˆ
Ω

dx∇2
xT

ss (T−Tss) = 0 , (B9)

where the first term the vanishes because T= Tss on the boundary, while the second term vanishes because
of equation (B8b). Equation (B2b) holds because of incompressibility (B3). Equation (B2c) reads

∑
ij

ˆ
Ω

dx∂xiv
ss
j ∂xi

(
vj − vssj

)
=
∑
j

ˆ
∂Ω

dn ·
(
∇xv

ss
j

)(
vj − vssj

)
−
∑
j

ˆ
Ω

dx

(∑
i

∂2xiv
ss
j

)(
vj − vssj

)
,

(B10a)

=− 1

νρeq

∑
j

ˆ
Ω

dx
(
∂xjδp

ss
)(

vj − vssj

)
, (B10b)

=− 1

νρeq

ˆ
∂Ω

dn · (δpss (v− vss))+
1

νρeq

ˆ
Ω

dxδpss∇x · (v− vss) = 0 , (B10c)

where we used v= vss on the boundaries as well as equations (B3) and (B8a). Equation (B2d) reads

∑
ij

ˆ
Ω

dx∂xiv
ss
j ∂xj (vi − vssi ) =

∑
ij

ˆ
∂Ω

dnj
(
∂xiv

ss
j (vi − vssi )

)
−
∑
i

ˆ
Ω

dx∂xi

∑
j

∂xjv
ss
j

(vi − vssi ) = 0 ,

(B11a)
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where the first term vanishes because v= vss on the boundaries, while the second vanishes because of
equation (B3).

Finally, we prove that Σ̇ acts as a Lyapunov function for incompressible fluids close to equilibrium. To do
so, we rewrite the EPR (51) in terms of∇xv instead of the strain tensor ϵ:

Σ̇ =

ˆ
Ω

dx

(
∇xT
∇xv

)T

O ′
(
∇xT
∇xv

)
, (B12)

whereO ′ = diag(κ(T eq)−4,L ′) and L ′
(i,j),(i ′,j ′) = (λδijδi′j ′ + νρeq(δii′δjj′ + δij′δji′))/Teq. Its time derivative

reads

dtΣ̇ = 2

ˆ
Ω

dx

(
∇xT
∇xv

)T

O ′
(
∇x∂tT
∇x∂tv

)
=−2

ˆ
Ω

dx

(
∇2

xT
∇2

xv

)T

M
(

∇2
xT

∇2
xv− (νρeq)

−1∇xδp

)
, (B13)

by using L ′
(i,j),(i ′,j ′) = L ′

(i ′,j ′),(i,j) (in the first equality), together with i) equation (B7b) and ii)∇xδT=∇xT
and∇xδv=∇xv because of equation (B5b) (in the second equality). In particular, for the second equality,
we integrate by parts using that ∂tvi = 0 and ∂tT= 0 on the boundary together with incompressibility (B3),
and we define the 4× 4 matrixM≡diag(κ2(ρeqcV)−1(T eq)−6,ν2ρeq(T eq)−1). Due to incompressibility (B3),

ˆ
Ω

dx∇2
xv ·∇xδp= 0 . (B14)

Indeed, by expanding δp and v on a basis of plane waves

δp(x) =

ˆ
dkeik·xδp̂(k) , (B15a)

v(x) =

ˆ
dkeik·xv̂(k) , (B15b)

incompressibility (B3) implies

k · v̂(k) = 0 , (B16)

and, therefore,

ˆ
Ω

dx∇2
xv ·∇xδp=−i

ˆ
Ω

dx

ˆ
dk dk ′k2

(
k ′ · v̂(k)

)
δp̂
(
k ′)ei(k+k ′)·x = 2πi

ˆ
dkk2 (k · v̂(k))δp̂(k) = 0 .

(B17)
Thus, dtΣ̇ in equation (B13) can be written in the manifestly non-positive form

dtΣ̇ =−2

ˆ
Ω

dx

(
∇2

xT
∇2

xv

)T

M
(
∇2

xT
∇2

xv

)
⩽ 0 , (B18)

sinceM is diagonal with only positive entries.

Appendix C. Energetics in the laboratory and center of mass frames

We express the macroscopic and mesoscopic power contribution in the balance equations (42) (in
section 2.5.3) and (139b) (in section 5.2.2), respectively, using the system’s center of mass (CM).

C.1. Macroscopic scale
At the macroscopic scale, the CM and its velocity are defined as

xCM ≡ 1

m

ˆ
Ω(t)

dxxρ(x) , vCM ≡ 1

m

ˆ
Ω(t)

dxρ(x)v(x) , (C1)

respectively, withm=
´
dxρ(x) being the total mass. Their time derivatives (by using equations (1a), (1b),

and (A6)) read

dtxCM = vCM , mdtvCM =

ˆ
Ω(t)

dx (−∇x · P(x)+ ρ(x)F(x)) . (C2)
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By assuming that the internal potential energy ϕint is linear in x, namely ϕint(x) = g · x (as it is for the
gravitational potential) and that the velocity vB is uniform on the boundary, the power contribution in
equation (42) becomes

Ẇ=

ˆ
Ω(t)

dxvB · (ρ(x)Fw (x)−∇x · P) = dtECM +m(vB − vCM) · (dtvCM + g) . (C3)

where we used F= Fw + Fint, equation (C2), and we introduced the total mechanical energy of the CM, i.e.
ECM ≡mv2CM/2+mϕint(xCM).

C.2. Mesoscopic scale
At the mesoscopic scale, the CM and its velocity are defined (in the units of equation (93)) as

xCM ≡ 1

m

ˆ
Ω(t)

dxx〈ρ〉(x) , vCM ≡ 1

m

ˆ
Ω(t)

dx〈ρ〉(x)〈v〉(x) , (C4)

respectively, by using the fields mass density (80a) and velocity (80b) and withm=
´
dx〈ρ〉(x). When we

explicitly account for external reservoirs on the boundary (as done in section 5), their time derivatives read

dtxCM = vCM , mdtvCM =

ˆ
Ω(t)

dx

(
〈ρ〉F+ ε−1

∑
b

ˆ
dp

(2πh̄)3
pCb ( f1)

)
. (C5)

by using equations (127a), (127b), and
´
Ω(t) dx∇x · 〈P〉= 0. By assuming that the internal potential energy

ϕint is linear in x, namely ϕint(x) = g · x (as it is for the gravitational potential), and that all reservoirs move at
the same speed vB, the power contribution in equation (139b) becomes

Ẇmech =−〈〈Fint〉〉 · vB =mdtϕint (xCM)+m(vB − vCM) · g , (C6)

where we summed and subtracted the potential energy of the center of massmdtϕint(xCM) =mg · vCM.
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