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Being heterogeneous is advantageous: Extreme Brownian non-Gaussian searches
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Redundancy in biology may be explained by the need to optimize extreme searching processes,
where one or few among many particles are requested to reach the target like in human fertilization.
We show that non-Gaussian rare fluctuations in Brownian diffusion dominates such searches, in-
troducing drastic corrections to the known Gaussian behavior. Our demonstration entails different
physical systems and pinpoints the relevance of diversity within redundancy to boost fast targeting.
We sketch an experimental context to test our results: polydisperse systems.

With the discovery [I] of Brownian non-Gaussian
(BnG) diffusion — a stochastic motion with a mean
squared displacement linearly increasing in time (Brow-
nian or Fickian behavior) and a non-Gaussian probabil-
ity density function (PDF) for the displacements — the
expectation has been raised [2] that the excess of prob-
ability for rare large fluctuations might dominate first-
passage processes, leading to unexpected phenomena.
While BnG behavior found numerous experimental [2H20]
and molecular dynamics [2IH23] confirmations, at odds
with expectation theoretical analyses showed that typical
Gaussian searches turn out to be more effective than non-
Gaussian ones [24H26]. In a companion paper [27], where
full references about the available theoretical models for
BnG diffusion are provided, we give a detailed account of
this basic issue, showing that for the large class of subor-
dination processes [28], 29] the typical time scale for one
searcher to reach the target — e.g. the mean first pas-
sage time (MFPT) — is indeed shorter in Gaussian than
in non-Gaussian motion.

In the last years, however, an upsurge of studies and
commentaries [30H4T] has pointed out that in many situ-
ations such as fast activation processes in chemistry and
cellular responses in biology, the relevant timescale is ac-
tually not the time spent by a given single searcher to
reach the target, but rather the time at which the first
few searchers, out of many, perform this task. A paradig-
matic example is human reproduction, in which a single
sperm cell out of M ~ 108 finds and fertilizes the egg.
The computation of this time scale is a typical extreme
statistics problem that justifies the presence of redun-
dancy in some biological processes but that, so far, has
been mainly studied for normal Brownian motion.

In this Letter, we investigate the role that BnG motion,
and in general the class of subordination processes may
have on the extreme targeting problems. In particular,

by focusing on the diffusing diffusivity (DD) model [42],
and polydisperse polymer ensembles — equilibrium grand
canonical [43] [44] and quenched [45] — we show that the
extreme-MFPT for non-Gaussian diffusion may become
orders of magnitude shorter than the Gaussian one. This
finding reveals a drastically different scenario with re-
spect to the ordinary MFPT problem, identifying ex-
treme targeting as a natural setting in which the non-
Gaussianity makes a substantial difference.

Before going into the details of the calculations let us
provide a qualitative argument for our findings. As we
articulate in Ref. [27], models for BnG diffusion display
an excess of probability both in the central part and in
the tails, when compared with a Gaussian PDF of the
same width (see Fig. . The excess of probability in
the central part of the PDF, associated with a slower
diffusion, is shown in [27] to be responsible for the lower
effectiveness of non-Gaussian searches in ordinary target-
ing problems, when one looks at the typical time scale for
a particle to reach the target. At a glance, this conclu-
sion [24H26] frustrates expectations [2] of novel phenom-
ena in diffusion-limited reactions driven instead by the
“tail effect”. Yet, if one considers the class of problems
in which reactions are activated by the first (or the first
few) successful searchers among many, the corresponding
targeting time scale, the extreme-MFPT, is governed by
rare trajectories which are the few among the many to
follow a quasi-geodesic path to the target [31] [41]. Here
we argue that through the “tail effect” non-Gaussianity
adds to these rare events the possibility for the searcher
to diffuse faster (see Fig. and hence it impacts dra-
matically the extreme-MFPT, as we detail below.

Let us first briefly recall the theoretical context behind
the extreme-MFPT problem. Given M > 1 independent
(i.e. non-interacting) searchers, each with its own ran-
dom arrival time 7;, the arrival time of the fastest one is



defined as Ty = min [{m, 72, - ,7ar}]. (More generally
one can consider T} ps, namely the time at which the k-
fastest searches have reached the target [40] 41]; clearly,
Ty = Tipm.) We now include a possible heterogeneity
for the diffusing particles, assuming that their diffusion
coeflicients are characterized either by a discrete steady-
state probability mass function p}(D,) (n = 1,2,...)
or continuous PDF pj (D), with average E[D] = D,,.
Since the searchers are independent, the statistics of
Ty can be computed from the one of a single parti-
cle. Denoting by 0 < P(1; > t) < 1 the one-particle
survival probability, and by Sp, (¢) the survival proba-
bility of a generic particle with diffusion coefficient D,,,
the probability associated with the extreme statistics is
P(Ty > t) = [IX, P(r; > t) = [1,, (Sp, (t))™", where,
by the law of large numbers, M,, = M p},(D,,) is the
number of searchers with diffusion coefficient D,,. The
extreme-MFPT, E[Ty] = [;° dt P(T; > t) is thus

E[T] :/Ooodt exp (sz;g,(pn) lnSDn(t)> . (1)

Here and below, are the substitutions Y.+~ [dD,
D,, — D understood if p}, is a PDF instead of a prob-
ability mass function. Note that by choosing p}, (D) =
5(D — D,y ), Eq. recovers the ordinary approach, ap-
propriate for a Gaussian diffusion in which all particles
share the same diffusion coefficient D,,. Despite the hy-
pothesis of independent searchers enormously simplify
the computation of P(Tps > t), the full explicit ex-
pression of Sp, () is often unknown and approximations
are needed. The assumption M > 1 suggests that the
computation of P(Th; > t) can be approximated by the
short-time behavior of Sp, (t), where Sp, (t) ~ 1. This
is usually done by solving explicitly the boundary prob-
lem of the associated Fokker-Planck equation and tak-
ing the small time approximation of the corresponding
survival probability [31} B2, 46] 47]. For several target-
ing processes with varying space dimensions, boundaries,
and shape of the target (if small enough), most results
have been shown to fall into a universal category of ex-
treme events statistics. This is due to the fact that the
most effective rare trajectories almost follow a geodesic
path to the target [31) [41] of length ¢, which is a straight
line in a homogeneous and isotropic environment. It is
thus paradigmatic to address the one-dimensional case
for which
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Figure 1. Comparison between Gaussian and non-Gaussian
PDF's for subordination processes. The two PDFs share the
same mean and standard deviation but the non-Gaussian one
has an excess probability both in the tails and in the center
part. The non-Gaussian PDF is obtained from the FSP model
with p = 0.99 (See text).

For large M this integral can be approximated [30] as
E[Ty\] ~ fgo dt = to, with ¢ solution of

It is convenient at this point to define

£2
Tay = 5D (5)

which represents the characteristic time for a particle
with an average diffusion coefficient D,, to travel over
the distance ¢. As outlined in the Supplemental Material
(SM), taking p}, (D) = 6(D — Day) in Eq. () yields the
standard Gaussian result [30, 48-50]

E[Tu)/Taw 2751 1/2 M) (Gaussian),  (6)

which highlights how a large number of searchers M re-
duces the extreme-MFPT with respect to the typical time
taken by a particle to diffuse over the distance £.

Let us now focus on classes of subordination processes
X (t) displaying BnG diffusion. These can be introduced
via the stochastic differential equation

dX(t) = \/2D(t) dB(dt), (7)

where B(t) is a Wiener process (Brownian motion)
and D(t) describes the fluctuations in time of the dif-
fusion coefficient. By defining the subordinator as
S(t) = 2f0t dt' D), Eq. can be reformulated
in the random path or subordination representation

.dX(t) = dB(dS) [42, BIH53]. Depending on the statis-

tical properties of D(t), and hence of the subordina-
tor S(t), several stochastic processes can be described



by Eq. (7). For example, if D(t) = Y?2(t) and Y (¢)
is a dy—dimensional Ornstein-Uhlenbeck process (dy =
1,2,3,...), we have the DD model [42]. In the context of
financial markets, under the name of stochastic volatility
models they are used to correct the Black-Scholes theory
for non-Gaussian effects [54], 55]. Another possibility [51-
53] is D(t) = D1 /N“(t), with & > 0 and N(¢t) > 1 a
birth-death process (N only changes by +1) [56]. In this
case Eq. describes the motion of the center of mass of
polymers of size N exchanging monomers with a chemo-
stat [43], 44], namely grand canonical polymers (GCP),
and D is the diffusion coefficient of a single monomer in
solution. Taking o = 1 one has the Rouse approximation,
whereas for the Zimm model o« = v [57], v being equal to
1/2 for ideal, and 0.588... for self-avoiding chains [43].
This model introduces the concept of critical fluctuations
in the diffusion coefficients, inherited by those of the poly-
mer size N(t) close to the critical point [43] [44].

Distinctive properties of the stochastic process D(t)
are its stationary distribution p},, and the autocorre-
lation time 7. For the DD model 7 is a free parame-
ter; in the GCP model 7 is determined by the reaction
rate constants of the birth-death process and it diverges
at criticality (critical slowing down). Consider a situ-
ation in which the diffusion coefficients of the hetero-
geneous particles are initially distributed according to
ph. For time ¢ < 7 each diffusing particle retains its
initial diffusion coefficient, and the behavior of the sys-
tem is described by a statistical average over p},. In
the literature, such a superposition of statistics has been
named super-statistics (SS) [2, 17, 58, 59]. During the SS
regime, px(x,t|xg) presents non-Gaussian features like
those reported in Fig. On the other hand, as t > 7,
the probability of the scaled subordinator S(t)/t concen-
trates around its average value 2D,,, the central part
of px(x,t|xy) becomes Gaussian, and as time passes by
non-Gaussianity is relegated to lesser and lesser prob-
able fluctuations. This regime is thus associated with
a large deviation (LD) principle [60], and the extreme-
MFPT tends to the behavior in Eq. @ The comparison
between 7 and E[Th] determines whether the extreme
search involves or not BnG features: The analysis of the
extreme-MFPT within the SS (LD) approximation is ap-
plicable to situations where E[Ty] < 7 (E[Ta] > 7).

In the SM it is reported the steady-state PDF p}, (D)
for the DD model in arbitrary dimension dy. Within the
SS approximation, we show that

E[Ta]/Tav pS1 dy/(InM)? (DD model).  (8)

Note that the 1/In(M) dependence of Eq. () is here
replaced by 1/(In(M))2. On the contrary, if E[Ty] > 7
Eq. @ applies. We thus appreciate that the extra proba-
bility for rare large fluctuations associated with the non-
Gaussian tails of the DD model in the SS regime drasti-
cally reduces the extreme MFPT with respect to Gaus-
sian searches performed with the average diffusion coef-
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Figure 2. Extreme-MFPT for the DD model (orange or

gray in grayscale version) and the Gaussian one (black) vs
M. Note that the ratio E[Ta]/Tav does not depend on ¢ and
D,,. Symbols refer to numerical simulations, while solid lines
are theoretical estimations from Egs. (S8) (black) and (S16)
(orange or gray in grayscale version) of the SM . Simulations
are with dy = 1 and for different values of 7 (details are
reported in the SM). Inset: Crossover between the SS and
the LD regime, attained upon changing 7 at fixed M.

ficient. Such a reduction is particularly visible in Fig.
for 7 = 1, where the relation E[T)/] < 7 is satisfied for
the whole range of M and simulations of the DD model
are nicely in agreement with the full theoretical estimate
for the SS regime reported in Eq. (S16) of the SM. When
7 = 0.1, as M decreases a crossover occurs from the SS
regime ~ (In M)? to the LD one ~ In M. This is high-
lighted also in the inset of Fig.[2| by keeping M fixed and
varying 7.

The SS regime for the GCP model has a simple, practi-
cal experimental implementation: A polydisperse sample
produced in a step-growth polymerization [6I]. Whereas
for GCPs the polymerization/depolymerization process
continuously occurs over time while system and chemo-
stat exchange monomers, in the polydisperse case poly-
merization terminates after the initial outgrowth and the
sample constantly remains in the SS regime with D a
static random variable. Taking for simplicity chains with
exactly one reaction center in the end, one can equiva-
lently address the SS regime of GCPs considering a het-
erogeneous sample distributed according to the Flory-
Schulz size distribution [45] p3 (n) = (1 —p) p"~!, where
0 < p <1 is the polymerization extent. We will refer
to this as Flory-Schulz polydisperse (FSP) model. As
p — 17, the average polymer size E[N] = 1/(1 — p) di-
verges and the system becomes critical [43] 44 [52]. Cor-
respondingly, D,, tends to zero and 7,, diverges. The



analysis reported in the SM for Rouse polymers yields

E[T] ~ (1-p) In(1 - p)
M (1-p)>1

Tay ~ 2pIn((1—p) M)

(FSP model),
9)

where, in consistency with our approximations, we have
assumed a sufficiently large number of searchers such that
M > (1 —p)~L. In the LD regime, the extreme MFPT
of GCPs is again described by Eq. @ Comparison of
Eq. @D with Eq. @ reveals that while Gaussian searches
take an infinite time to be accomplished as the system ap-
proaches criticality and 7., diverges, non-Gaussian ones
are still realized within a finite time. This means that
wild fluctuations in the polymer size induce such heavy
tail effect in px (z,t|z) to keep the extreme-MFPT fi-
nite, eluding the critical slowing down for this kind of
search. One might argue that since this analysis applies
to the center of mass of the polymer which is an im-
material point in space, is of limited practical relevance.
However, our results indicate that the instances which
reach the target under non-Gaussian heterogeneous con-
ditions are precisely those fast diffusers responsible for
the “tail effect”. These are the polymers with a small
size, for which the Rouse time of the chain [57] is very
small, and hence their center-of-mass dynamical time-
scale corresponds to that of any monomer unit acting in
practice as ligand. We may add that this example shows
that heterogeneity supplements to extreme-searches the
concept of fitness: In a heterogeneous sample not only
the geodesic path to the target is followed in extreme
searches, but the successful searcher happens to belong
to the fittest subset (in our case, the fastest, small-size
polymers). In analogy with the previous plots, simula-
tions in Fig. [3] confirm our analytical predictions for the
FSP model.

It is interesting to point out that, at variance with
the DD model, the extreme-MFPT for the polydis-
perse polymers displays the same 1/In(M) dependence
of the Gaussian case. This is to be ascribed to the
sharp large-value cutoff at D,, = D; of the ph(D,)
distribution.  To clarify this point, we have ana-
lyzed a class of generalized gamma distributions [62]
PH(D)pSecexp[—(A(v,n)D/Day)"], with the parameter
7 characterizing different tail behaviors. The same pro-
cedure used for the other models gives

(n+1)

E[Tm]/Tav a1 [D(v,n)/ In(M)]

(10)
where the full expression of the coefficient D(n, v) is pro-
vided in the SM. On the one hand, for n = 1 (exponential
tail) we recover the DD result, namely 1/(In(M))%. On
the other hand, in the limit 7 — oo for which the tail of
P (D) drops sharply approaching the step function decay
of the FSP model, we recover the 1/In(M) dependence.
The result in Eq. shows explicitly that: a) There is
no universal behavior in M when we move outside of the
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Figure 3. Extreme-MFPT for FSP model (cyan or gray

in grayscale version). In analogy to Fig. [2] symbols refer to
numerical simulations, while solid lines are theoretical esti-
mations from Egs. (S8) (black) and (S23) (cyan or gray in
grayscale version) of the SM. Inset: behavior with respect to
p at fixed M; the solid line indicates the theoretical trend
from Eq. (]E[) Simulation details are reported in the SM.

Gaussian regime; b) For random diffusivity model it is
the tail of the diffusivity distribution that decides such a
trend.

The origin of non-Gaussianity that we have addressed
is amenable to the heterogeneity of the ensemble of dif-
fusers and/or of the environment [63]. Such heterogene-
ity implies both an excess of probability in the central
part and in the tails of the displacements distribution,
when compared with the Gaussian one [27]. We have
shown that a higher probability for few, faster diffusers
(“tail effect”) influences extreme searches, pointing out
that a redundant information stored in diverse searchers
strongly enhances the fast targeting of the first few in-
stances. Non-Gaussianity is both disadvantageous [27]
and advantageous. It is disadvantageous when the acti-
vation of a biological function needs a large percentage of
ligands to bind receptors; it is advantageous when only a
few searchers, among many, are required to reach the tar-
get. The latter is the typical situation in which diffusing
particles are carriers of information, like in human repro-
duction. For this kind of search, diversity appears to be
an efficient strategy to be recognized in evolutionary ex-
amples, and exploited in the design of efficient deliveries.
A straightforward setup for experimental confirmation of
our results is that of polydisperse polymers.

More broadly, we expect this investigation to open
prospects in understanding the role of heterogeneity in
diffusion transport phenomena, for instance in models
where the BnG behavior has been discovered [2HI9], and
likewise in the world of anomalous processes where the
mean squared displacement grows non-linearly in time.
Indeed, recent single-particle tracking experiments in



crowded environments — such as those of biological cells
— show that heterogeneity manifests itself not only in the
variability of transport coefficients [64], but also in fluc-
tuations of the anomalous diffusion exponent [65H75].
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