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Abstract

Empirical studies have uncovered an inverted-U relationship between

product-market competition and innovation. This is inconsistent with

the original Schumpeterian Model, where greater competition always

reduces the pro�tability of innovation and thus the incentives to inno-

vate. We show that the model can predict the inverted-U, if the in-

novators' talent is heterogenous, and asymmetrically observable. When

competition is low and pro�tability is high, talented innovators are credit

constrained, since untalented innovators are eager to mimic them. As

competition increases and pro�tability decreases, untalented innovators

become less eager to mimic, and talented innovators can invest more.

This generates the increasing part of the relationship. When competi-

tion is high and pro�tability is low, credit constraints disappear, and

the relationship is decreasing. Our theory generates additional speci�c
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predictions that are well born out by the existing evidence.

Keywords: Innovation, Competition, Schumpeterian Model of Growth,

Asymmetric Information

JEL Codes: O30, E44

Several empirical studies have uncovered an inverted-U relationship be-

tween product-market competition and innovation.1 This �nding is incon-

sistent with the original Schumpeterian model (Aghion and Howitt (1992)),

where stronger competition always reduces the incentives to innovate because

it reduces post-innovation rents (the so-called �Schumpeterian e�ect�). To ad-

dress this inconsistency, Aghion, Bloom, Blundell, Gri�th, and Howitt (2005)

have modi�ed the original model to allow for innovation by established �rms,

who also care about pre-innovation rents. These �rms are crucial to explaining

the increasing part of the inverted-U, because it is only for them that compe-

tition may strengthen the incentives to innovate (by decreasing pre-innovation

rents more than it decreases post-innovation rents).

While the mechanism in Aghion, Bloom, Blundell, Gri�th, and Howitt

(2005) is intuitive and easy to believe, we suspect that it may not fully ac-

count for the existence of an inverted-U. On the one hand, a vast majority of

innovations are actually realised by either new entrants, or by established �rms

innovating on entirely new product lines - for both of which competition in the

target market should primarily a�ect post-innovation rents, as in the original

Schumpeterian model.2 This casts a doubt on whether the increasing part of

the inverted-U can entirely be explained by the actions of �rms focused on
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pre-innovation rents. On the other hand, some evidence of a positive relation-

ship between competition and innovation has also been found for start-ups,3

which again are less likely to �t the notion of �rms focused on pre-innovation

rents.

In this paper, we show that the Schumpeterian model can predict the

inverted U even under the original assumption that innovators focus on post-

innovation rents. Only two, reasonable ingredients must be added to that

e�ect: heterogeneous talent of innovators, and asymmetric information on tal-

ent. We start from a standard version of the model with overlapping genera-

tions and a fringe of competitive producers (as in Aghion and Howitt (2009)),

and allow for innovators to be of two types (talented and untalented), and

for this to be the innovators' private information. We construct a separating

equilibrium in which the talented innovators signal themselves to investors by

contributing their entire wage in equity, and by limiting the amount they bor-

row.4 We study the comparative statics of this equilibrium, and show that

the relationship between the strength of competition and the probability of

innovation is �rst increasing and then decreasing.

More in detail, our mechanism works as follow. At low levels of competi-

tion, when post-innovation rents are high, the talented innovators would like

to invest a lot. However, they cannot borrow enough at favourable conditions,

since the untalented innovators are eager to mimic them (given the high prof-

itability of innovation). They then invest less than optimal. As competition

increases and post-innovation rents decrease, the untalented innovators become

less eager to mimic. As this happens, the amount that the talented innovators

2



can borrow at favourable conditions increases, leading them to invest more.

This explains the increasing part of the curve. We call this e�ect the selection

e�ect, because it leads to a higher weight of the talented innovators in overall

investment. At high levels of competition, when post-innovation rents are low,

the talented innovators would like to invest only a modest amount. Moreover,

they can borrow a lot at favourable conditions, since the untalented agents

are not eager to mimic them. They then invest their optimal amount, which

by the Schumpeterian e�ect is decreasing in the strength of competition. This

generates the decreasing part of the curve.

One attractive feature of our model is that it rests on reasonable assump-

tions. We have already argued that innovators focused on post-innovation

rents are an empirically relevant group. In addition, talent heterogeneity

and asymmetric information are recognised features of the market for inno-

vation �nancing. Hubbard (1998) and Brown and Petersen (2009) argue that

asymmetric information is likely to be a particularly severe problem for R&D-

intensive �rms. This is not just because of the inherent di�culty to evaluate

frontier research, but also because innovative �rms are reluctant to reveal their

ideas to investors, reducing the quality of the signal they can make about po-

tential projects (Lerner and Hall (2010), p. 614). Lerner and Hall (2010) and

Kerr and Nanda (2015) both list asymmetric information on the quality of

projects as one of several key sources of frictions in the market for innovation

�nancing. Not only are talent heterogeneity and asymmetric information rea-

sonable assumptions: it is also the case that the credit constraints that these

frictions generate are important enough to explain macro patterns such as the
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inverted-U. For example, Brown and Petersen (2009) argue that most of the

unprecedented 1990s R&D boom can be explained with a relaxation of the

credit constraints of young R&D intensive �rms.

To provide corroborating evidence in support of our mechanism, we show

that the equilibrium we characterise has speci�c features which match the

evidence well. First, the increasing relationship between competition and in-

novation should be more pronounced in industries where credit constraints are

more prevalent. This prediction �ts the �nding in Aghion, Bloom, Blundell,

Gri�th, and Howitt (2004), who show that the inverted-U shifts to the right

if one focuses on �rms which are more under debt-pressure. Second, credit

constraints should be more severe in industries where pro�ts are higher (either

because competition is lower, or for other reasons). Indeed, several papers in

the �nance literature have documented a positive relationship between credit

constraints and return on equity. Interestingly, Li (2011) shows that this re-

lationship is particularly important among R&D intensive �rms, where our

mechanism is also likely to be particularly important.

This paper contributes to Schumpeterian growth theory (see Aghion, Ak-

cigit, and Howitt (2014), for a survey). It complements the main existing

explanation for the inverted-U relationship between competition and inno-

vation (Aghion, Bloom, Blundell, Gri�th, and Howitt (2005)),5 by showing

that Schumpeterian theory is consistent with the inverted-U under a broader

(and as discussed above, more empirically relevant) set of assumptions. Other

theoretical explanations of the inverted-U focus squarely on issues of indus-

try organization and dynamics, leaving virtually no role for �nancial factors.6

4



Conversely, our model puts asymmetric information in �nancial markets at

its front and center. This simple, realistic addition to an otherwise standard

model allows us to generate the �inverted-U� pattern through an intuitive

mechanism.

A number of other papers in the Schumpeterian tradition have placed �-

nancial features at center stage. These articles di�er from ours in their as-

sumptions (usually and most importantly, the nature of the �nancial frictions

they consider), as well as their subject matters and applications. For example,

Diallo and Koch (2018) investigate the relationship between economic growth

and bank concentration. Malamud and Zucchi (2016) study corporate cash

management when �rms face exogenous �nancing costs. Sunaga (2018) ex-

tends the standard model to deal with moral hazard in �nancial markets and

monitoring by intermediaries.7 Bryce Campodonico, Bonfatti, and Pisano

(2016) and Plehn-Dujowich (2009) develop Schumpterian growth models with

adverse selection in �nancing, but use them to study optimal tax policy and

to quantify the reduction in the rate of growth stemming from the presence of

�nancial frictions, respectively. Finally, Ates and Sa�e (2013) study a general

equilibrium endogenous growth model in which �nancial intermediaries screen

the quality of projects from a heterogeneous population of entrepreneurs. None

of these papers concerns itself with the relationship between an industry's de-

gree of competition and its R&D outcomes, which is the main focus of the

present essay.

Finally, the paper also relates to the burgeoning literature on the macroe-

conomic implications of �nancial frictions (see Brunnermeier, Eisenbach, and
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Sannikov (2013)), and more speci�cally the branch analyzing their e�ects on

countries' economic development (see Levine (2005)).

The paper is organised as follows. In Section I we present the baseline

model. Section II introduces imperfect information in �nancial markets, and

derives the inverted-U relationship between competition and innovation. Sec-

tion III discusses the empirical validity of two predictions that are speci�c to

our model. Finally, Section IV concludes.

I BASELINE MODEL

The baseline model is a standard Schumpeterian model with overlapping

generations and a fringe of competitive producers (as in Aghion and Howitt

(2009), pp. 130-32 and 90-91), which we generalise to allow for heterogeneous

talent of innovators. A �nal good is produced competitively using labour and

a continuum of intermediate goods, according to production function

Yt = L1−α
ˆ 1

0

A1−α
it Xα

it, (I.1)

where Xit is input of the latest version of intermediate i, and Ait is its pro-

ductivity. Each intermediate is produced and sold by a monopolist, who can

produce one unit of the intermediate at the cost of one unit of the �nal good.

However, in each industry, there is also a fringe of competitive �rms that can

produce the intermediate at cost of 1/κi units of the �nal good per unit pro-

duced. The parameter κi ∈ [α, 1] measures the strength of competition faced

by the monopolist. As will be clear below, κi = α denotes the case of no com-
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petition, while κi = 1 denotes the case of perfect competition. For simplicity,

all industries have the same initial level of productivity, At−1 ≡
´ 1
0
Ait−1di.

8

Agents live for two periods, are risk neutral, and have a discount factor

equal to one. There are two equally-sized cohorts alive in each period, the

young and the old. The young work in the �nal good sector, where they

earn a wage. Before turning old, one of them per industry (the �innovator

�) tries to invent a new version of the intermediate good which is γ > 1

times more productive than the previous version. If successful, she invests in

the production of the new version, which she sells as the monopolist when

she turns old in the next period. If unsuccessful, a young agent is chosen

at random to invest in the production of the previous version, and to sell it

as the monopolist when he turns old. As for the old agents, there is one of

them in each industry who is the current monopolist, while all others are idle

consumers.

There are borrowers and lenders in this model. Borrowers include young

agents undertaking an investment - be it innovation or production - which they

cannot fund through the wage they have earned. The lenders are all young

agents, who may want to use part of the wage they have earned to consume

when they are old. While production is a risk-free activity, innovators only

pay back if successful. Then, the �nancing of innovation is the only interesting

part of the �nancial market. We assume that the maximum supply of credit

(the total wage bill) is greater than demand, so that the risk-free interest rate

is equal to the discount rate (zero).

A monopolist faces iso-elastic demand Pit = α (At−1L/Xit)
1−α, given which
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her optimal price is 1/α.9 However, facing competition from the fringe, the

monopolist is forced to charge 1/κi ≤ 1/α instead. Plugging back in the

demand function, we �nd the optimal Xit, which can then be multiplied by

pro�t per unit, (1− κi) /κi, to �nd total pro�ts. There are (normalised by

initial productivity)

π (κi) =
1− κi
κi

(κiα)
1

1−α L (I.2)

in an industry that has not innovated, and γπ (κi) in an industry that has. It

is easy to show that π is decreasing in κi ∈ [α, 1]: intuitively, the stronger is

competition, the lower are the monopolist's pro�ts.

Substituting optimal Xit in the production function, di�erentiating with

respect to L, and dividing by At−1, we �nd the normalised wage,

w = (1− α) (κα)
α

1−α , (I.3)

where κ ≡
´ 1
α
κidi is average level of competition in the economy.

Innovators can be of two types, a high type (H) and a low type (L). If an

innovator of type J ∈ {H,L} invests a normalised amount z in research, she

is successful with probability aJµ (z), where µ is an increasing and concave

function satisfying standard conditions, and aH > aL. In each generation,

there is an equal share of high types and low types.

For now, we assume that an innovator's type is perfectly observable to

everyone. Then, competing lenders demand interest rate 1/[aJµ (z)]− 1 from
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type J , given which the innovator's net present value is

npvJi (z) = aJµ (z)

[
γπ (κi)−

1

aJµ (z)
(z − e)

]
− e

= aJµ (z) γπ (κi)− z, (I.4)

where e is her normalised equity contribution. With perfect information, the

innovator's net present value does not depend on her choice of �nancing, since

the expected cost of both equity and external �nancing is equal to the risk-free

interest rate.

Let ẑJi denote optimal, perfect-information investment by type J in indus-

try i. This is the level of investment that maximises the npvJi (z) function, and

is thus implicitly de�ned by condition

aJµ′
(
ẑJi
)
γπ (κi) = 1. (I.5)

Condition I.5 clari�es that there are two (and only two) reasons why z

may vary across industries. First, industries may di�er in the type of their

innovators, and, ceteris paribus, the high types always invest more than the

low types. For example, if industry i only di�ers from industry j for having

an innovator of the high type, then the two industries will invest ẑHi and ẑLj ,

and it will be ẑHi > ẑLi . Second, industries may di�er in terms of the strength

of competition within them. For example, if i and j only di�er in the fact that

κi > κj, then it will be ẑJi < ẑJj : investment in the more competitive industry

will be lower. The latter is the well-known Schumpeterian e�ect of competition

on innovation: by reducing the pro�tability of innovation, stronger competition
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reduces the incentives to innovate. Because the Schumpeterian e�ect is the

only e�ect existing at all levels of competition, the original Schumpeterian

model predicts a monotonically decreasing relationship between competition

and innovation.

Figure 1 illustrates. We will use the functional form and parameters used

in this �gure (and reported at the bottom of the �gure) as a running example

in the remainder of the paper. The three panels only di�er in the value of

κi, which is increasing from top to bottom as reported on the left of the

�gure. By our choice of α, κi is required to range between 0.4 and 1. Panel

(a) then represents the extreme of no competition (the successful innovator is

a true monopolist), while the second and third panels progressively increase

competition. The npvJi (z) functions are represented by the thin solid curves

(all other curves should be ignored for now). Investment choices under perfect

information, ẑHi and ẑHi , maximise these functions, and the related payo�s are

represented by solid circles. In all panels, the high types invest more than the

low types, as illustrated by ẑHi being to the right of ẑLi . The Schumpeterian

e�ect is clearly visible from the �gure: as we move from panel (a) through to

panel (c), due to increasing competitions, the npvJi (z) functions rotate inwards,

and investment by both types decreases.

II ASYMMETRIC INFORMATION IN

FINANCIAL MARKETS

We now assume that the innovator's type is the innovator's private infor-

mation. Lenders must then determine the interest rate based solely on the

10



subset of information which is observable, that is the size of the proposed in-

vestment (z) and equity contribution (e). In this section, we describe, in an

intuitive way, a speci�c separating equilibrium, which happens to exist when

parameters are as in our running example (the one drawn in Figure 1). In

the Appendix, we formally derive the separating equilibrium (Section A1), we

identify the parameter space such that the equilibrium exists (A2), and we

show that, in that parameter space, the equilibrium has an attractive feature:

its outcome is the only one that can �reasonably� realise in a Perfect Bayesian

Equilibrium that survives a standard re�nement criterion (A3).

II.1 DESCRIPTION OF THE EQUILIBRIUM

Refer again to our running example (Figure 3.1). To describe the equilibrium,

we �x competition at the level of panel (a). Later, we will conduct comparative

statics by increasing competition to the levels in panels (b) and (c).

Recall that, with perfect information, the high and low types invest ẑHi

and ẑLi respectively. It is easy to show that, with imperfect information, the

low types must continue to invest ẑLi at a separating equilibrium, contributing

any e ≤ ẑLi in equity.10 However, the high types may now be forced to invest

less than in the perfect-information case.

To see why, consider one reasonable scenario in which the high types would

be able to invest ẑHi : suppose that the lenders believed that anyone o�ering

to contribute their entire labour income in equity (w) are high types. Such a

belief would allow the high types to borrow ẑHi −w at their perfect-information

rate, which would mean that they are able to �nance any level of investment
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at the risk-free interest rate (in expectations). Then, their net present value

would still be npvHi (z), and they would choose to invest ẑHi as with perfect

information. However for this to be an equilibrium, the low types should not

want to mimic the high types. But in the example of panel (a), the low types

would indeed want to mimic the high types.

To see why, note that by contributing w in equity, and borrowing z − w

at the high types' perfect-information rate, the low types would receive net

present value

ñpvLi (z) ≡ aLµ(z)

[
γπ (κi)−

1

aHµ(z)
(z − w)

]
− w

= aLµ(z)γπ (κi)−
aL

aH
(z − w)− w, (II.1)

that is the dashed line in the �gure. This line is higher than npvLi (z) in

the range where it is de�ned, because by mimicking the high types the low

types can pay less than the risk-free interest rate (in expectations) on external

borrowing. Then, investment gives them a higher payo� than under perfect

information. Given this higher payo�, it is optimal for them to mimic the high

types and propose to invest ẑHi , even though this also requires to propose to

contribute w in equity. In terms of the �gure, this can be seen from the fact

that it is ñpvLi
(
ẑHi
)
> npvLi

(
ẑLi
)
. Since the low types would �nd it optimal

to mimic the high types, this cannot be a separating equilibrium.

If not ẑHi , what amount can the high types invest at a separating equi-

librium? Suppose that the lenders had di�erent beliefs: that even those con-

tributing w in equity, when they invest more than zsepi , can be high or low

12



zw

zsepi

npvHi (z)•
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Figure 1: Illustration of the separating equilibrium. The three panels only di�er by the
size of κi, which increases from top to bottom as indicated to the left of the �gure. The
functional form and other parameters used are: α = 0.4; L = 100; κ = 0.7; µ (z) = 0.22

√
z;

aH = 1; aL = 0.4.
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types with equal probability.11 Given these beliefs, the high types must now

pay a higher-than-fair interest rate to invest more than zsepi , because they

would be pooled together with the low types. In terms of the �gure, their net

present value is not npvHi (z) anymore, but rather the broken solid line. This

di�ers from npvHi (z) to the right of zsepi , where it equals

n̂pvHi (z) ≡ aHµ(z)

[
γπ (κi)−

1

aµ(z)
(z − w)

]
− w

= aHµ(z)γπ (κi)−
aH

a
(z − w)− w, (II.2)

where a = (aH +aL)/2. In words, to the right of zsepi , the high types must pay

the �fair� interest rate of an hypothetical average agent, 1/aµ (z).

Given their new net present value function, the high types choose to invest

zsepi . They are credit constrained, in the sense that a friction of the credit

market (the non observability of talent) forces them to borrow only zsepi − w,

which is less than they would ideally do (ẑHi −w). Crucially, the low types no

longer want to mimic the high types, since the latter's conservative choice of

leverage makes mimicking no more attractive then investing ẑLi . In terms of

the �gure, it is ñpvLi (zsepi ) = npvLi
(
ẑLi
)
(of course, zsepi was chosen precisely to

satisfy this indi�erence condition). Thus, by contributing their entire income

in equity and by choosing to invest less than optimal, the high types are able

to signal themselves as talented innovators to the uninformed lenders.

What we have just described is a separating Perfect Bayesian Equilibrium,

since both types pay their perfect information interest rate, innovators invest

optimally given the lenders' beliefs, and beliefs are correct in equilibrium. The
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payo�s corresponding to the investment choices at this separating equilibrium,

ẑLi and zsepi , are represented by empty circles in Figure 1.

II.2 KEY COMPARATIVE STATICS

We now come to the central result of the paper, which is to show that, at

the separating equilibrium just described, the relationship between product-

market competition, κi, and the ex-ante probability of innovation,

µi =
1

2
aHµ (zsepi ) +

1

2
aLµ

(
ẑLi
)
,

is �rst increasing and then decreasing.

Consider again the example of Figure 1. We begin by increasing the

strength of competition from the level in panel (a) to the level in panel (b).

As discussed above, the curves representing npvLi (z) and npvHi (z) rotate in-

wards. Then, investment by the low types, which is the same as in the perfect

information case (ẑLi ), still decreases by the Schumpeterian e�ect. However

investment by the high types (zsepi ) now increases, as is clearly visible from

the �gure.

To make sense of this, note that at this equilibrium the investment decisions

of the high types are not driven by incentives, but rather by credit constraints.

Then, the Schumpeterian e�ect does not apply, and what matters is the e�ect

of competition on credit constraints. Our key result is that stronger compe-

tition reduces credit constraints, thus allowing the high types to invest more.

This is because stronger competition discourages the mimickers: it makes in-

vestment less attractive for everyone, but particularly so for agents who are
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considering to invest more than they would normally do. Formally, recall that

zsepi is what the high types must invest to make a genuine and a mimicking

low type equally well o�. But a fall in π (κi) penalises the mimicker more than

the genuine agent, since the mimicker invests more (zsepi > ẑLi ) and has thus

a higher probability of innovating. To restore equality of payo�s, zsepi must

then increase. In terms of �gure 1, if we �xed zsepi at the level of panel (a) and

decreased π (κi) to the level of panel (b), then the value ñpvLi (zsepi ) would fall

more than npvLi
(
ẑLi
)
. For the two to remain equal, a higher zsepi is required.

In other words, stronger competition, by creating a tougher operating en-

vironment, leads to a better selection of innovators, in the sense that the high

types can invest more and a greater share of available funds is allocated to

them. We call this the selection e�ect of competition on innovation.

Now suppose that κi increases further, to the level in panel (c). While

investment by the low types continues to decrease by the Schumpeterian e�ect,

investment by the high types continues to increase by the selection e�ect, to

the point that it is now equal to the perfect information level ẑHi . Now, the

high types are no longer credit constrained, because strong competition has

made ẑHi low enough relative to what they can borrow. It follows that the

Schumpeterian e�ect kicks back in for the high types as well, and any further

increase in competition must now decrease investment by both types.

This example suggests that, at the separating equilibrium described in the

previous section, and across industries where the innovator is of a high type,

one should �nd an increasing and then decreasing relationship between the

strength of competition and innovation. This result is formally stated in
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Proposition 1. Consider any two industries i and j where the innovator is

a high type, and such that competition is stronger in j than in i, κi < κj. At

the separating equilibrium described above, there exists κ̂ ∈ (α, 1) such that,

if α ≤ κi < κj ≤ κ̂, industry j has a higher probability of innovating than

industry i, while if κ̂ ≤ κi < κj ≤ 1, industry j has a lower probability of

innovating than industry i.

Proof. Note that ñpvLi (z) is concave, and reaches a maximum at ẑHi . Let

zsepi = min arg

{
aLµ(zsepi )γπ (κi)−

aL

aH
(zsepi − w)− w = aLµ

(
ẑLi
)
γπ (κi)− ẑLi

}
.

(II.3)

or, if such z does not exist, then zsepi = ẑHi . There are two possible cases:

zsepi < ẑHi or zsepi = ẑHi . Suppose zsepi < ẑHi , and consider an increase in κi.

The total di�erential of the equation in curly brackets in (II.3) is

aLµ′(zsepi )γπ (κi) dz
sep
i + aLµ(zsepi )γπ′ (κi) dκi −

aL

aH
dzsepi = aLµ

(
ẑLi
)
γπ′ (κi) dκi,

(II.4)

which can be re-arranged into

dzsepi

dκi
= aH

µ
(
ẑLi
)
− µ (zsepi )

aHµ′(zsepi )γπ (κi)− 1
γπ′ (κi) > 0.

Since zsepi is continuously increasing in κi, while ẑ
H
i is continuously decreasing

and 0 ← ẑHi as κi → 1, there exists κ̂ ∈ (α, 1) such that, for κi < κ̂, it

is zsepi < ẑHi , while for κi ≥ κ̂ it is zsepi = ẑHi . In the latter range, it is

dzsepi /dκi = dẑHi /dκi < 0. The result follows immediately. Note that κ̂ must
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be the same across industries, since κi is the only parameter that varies across

industries.

Proposition 1 �nds, for industries where the innovator is of a high type,

an increasing and then decreasing relationship between competition and inno-

vation. The region α ≤ κi < κ̂ is where the high types invest zsepi (panels a

and b in our example), while the region κ̂ ≤ κi ≤ 1 is where they invest ẑHi

(panel c). The threshold κ̂ is de�ned as the unique level of competition such

that zsepi = ẑHi .

One shortcoming of Proposition 1 is that it only �nds an increasing and

then decreasing relationship between competition and innovation across indus-

tries where the innovator is of a high type, while the relationship is decreasing

across all other industries. This does not answer our initial question about the

relationship between κi and µi, the ex-ante probability of innovation. Looking

further into this, it is immediate to see that such relationship will be decreas-

ing in the region κ̂ ≤ κi ≤ 1, where both ẑHi and ẑLi are decreasing in κi by

the Schumpeterian e�ect. On the other, we are now going to show that the

relationship between κi and µi will be increasing in the region α ≤ κi < κ̂,

at least for κi close enough to κ̂. So, at least in a subset of [α, 1], the model

predicts an increasing and then decreasing relationship between competition

and the ex-ante probability of innovation.

This is shown formally in:

Proposition 2. Consider any two industries i and j such that competition is

stronger in j than in i, κi < κj. At the separating equilibrium described above,

there exists κ̃ ∈ (α, κ̂) such that, if κ̃ < κi < κj ≤ κ̂, industry j has a higher
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ex-ante probability of innovating than industry i, while for κ̂i ≤ κi < κj ≤ 1,

industry j has a lower ex-ante probability of innovating than industry i.

Proof. Suppose zsepi < ẑHi . It is

dµi
dκi

=
1

2
aHµ′ (zsepi )

dzsepi

dκi
+

1

2
aLµ′

(
ẑLi
) ẑLi
dκi

.

The total derivative dzsepi /dκi was derived in (II.3), while dẑ
L
i /dκi can be found

by taking the total di�erential of (I.5) and re-arranging,

µ′′(ẑLi )γπ (κi) dẑ
L
i + µ′(ẑLi )γπ′ (κi) dκi = 0

dẑLi
dκi

= −µ
′(ẑLi )π′ (κi)

µ′′(ẑLi )π (κi)
< 0.

Replacing dzsepi /dκi and dẑLi /dκi into the expression for dµi/dκi, imposing

dµi/dκi > 0, and re-arranging we obtain

1

αHµ′ (zsepi ) γπ (κi)− 1
>

aL
[
µ′
(
ẑHi
)]2

[−µ′′ (ẑLi )] γπ (κi) [aH ]2 µ′ (zsepi ) [µ (zsepi )− µ (ẑLi )]
.

As κi → κ̂, it is zsepi → ẑHi . As this happens, the LHS of the last inequality

approaches in�nity, while the RHS remains �nite. Then, there exists κ̃ ∈ (α, κ̂)

such that, for κi ∈ (κ̃, κ̂), it is dµi/dκi > 0, while for κi > κ̂ it is dµi/dκi <

0. The result follows immediately. Note that κ̃ must be the same across

industries, since κi is the only parameter that varies across industries.

To make sense of the increasing part of the curve, recall that this is driven

by industries where the innovator is of a high type: in those industries, zsepi

must increase as κi increases, to restore equality of payo�s between a genuine
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and a mimicking low type (given that the latter su�ers more from a fall in

pro�ts). But as κi approaches κ̂ and zsep approaches ẑ
H
i , which is the maximum

of the mimicker's net present value function, the gain to the mimicker from

an increase in zsepi monotonically decreases to zero. It follows that, as κi

approaches κ̂, the increase in zsepi that follows from an increase in κi must

grow unboundedly, as greater and greater increases are required to compensate

the mimicker. In contrast, in industries where the innovator is of a low type,

the decrease in ẑLi is always �nite. In other words, as κi approaches κ̂, the

selection e�ect must always be stronger than the Schumpeterian e�ect. This

also suggests that the relationship between κi and µi should be convex as

we approach its peak from the left, an intuition which is con�rmed by the

computational exercise in the next section.

We have derived a speci�c separating in which the relationship between

competition and innovation has an inverted-U shape. But when exactly will

this equilibrium esist, and how many other plausible equilibria are there? In

the Appendix, we show that our separating equilibrium exists as long as the

wage is neither too high (or else the talented innovators would not need to

borrow) nor too low (or else they would need to borrow so much, that they

would opt for being pooled with the untalented innovators). Moreover, we ar-

gue that, in this parameter sub-space, our equilibrium outcome is the only one

that can �reasonably� realise in a Perfect Bayesian Equilibrium that survives

a standard re�nement procedure.

We conclude this section by discussing two simplifying tricks that we have

used in this paper. First, the standard Schumpeterian growth model described
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in Section I is an in�nite-horizon model with an overlapping generation struc-

ture, and yet the signalling game described in Section II is a static game. This

combination is only possible under a carefully selected set of assumptions. For

example, had we assumed that an innovator can invest more than once, or

that she cares about future innovators who are also more likely to succeed if

the current innovator succeeds,12 then the signalling game would have become

more complicated, as the current innovator would have had to consider the

future impact of her investment decisions. Second, we have only considered

investment at a hypothetical period t in which initial productivity is the same

across industries. But already in period t+ 1, as some industries innovate and

others do not, this assumption would necessarily be invalid. Credit constraints

would vary across industries, even keeping talent and competition constant.

While our model can easily accommodate this additional dimension of hetero-

geneity (as we show in Section III), a full analysis would need to keep track

of how credit constraints evolve over time. The role of these simpli�cations is

obvious: they allow us to describe in a clearer way a mechanism that would

exist even in more complicated settings.

II.3 COMPUTATIONAL EXERCISE

One limitation of Proposition 2 is that it concerns itself exclusively with values

of κi close to κ̂. A computational exercise for our running example will show

that our model is able to generate the inverted-U pattern for all values of

κi ∈ (α, 1). Moreover, the cross-industry di�erences in innovation rates (across

industries characterized by di�erent levels of competition) are both statistically
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and economically signi�cant.

Panel (a) of Figure II. 3 plots the ex-ante probability of innovation for

the entire economy, µi, for all feasible values of κi (which by our choice of α

must range between 0.4 and 1).13 We see that the resulting function is indeed

increasing and then decreasing, for all feasible values of κi. As expected, the

curve is convex to the left of the peak, since the marginal e�ect of an increase in

κi on z
sep
i becomes in�nitely large as we approach the peak. Consistently with

our earlier discussion, the peak is reached for a level of competition between

0.5 and 0.6 (that is between panel b and c of Figure 1). More in detail, the

ex-ante probability of innovation increases from 0.08 for κi = 0.40 to 0.10 for

κi = 0.54, and then decreases to 0.00 as κi grows towards 1.00.

Once we have computed the predicted probabilities of innovation for both

high and low types, we can simulate industry-level patenting behavior, ag-

gregating over a large number of industries for each level of competition, in

order to generate a syntetic dataset that can be used to run Poisson regres-

sions similar to those in Aghion et al. (2005). Panel (b) of Figure II. 3 shows

the results of this exercise. In blue and on the background, we plot the his-

togram resulting from 10,000 runs of the model. We then regress the number

of patents over our measure of competition, as well as this latter coe�cient's

square. The resulting regression curve is plotted in red over the histogram,

and clearly displays the inverted-U shape found by the empirical literature.

An analysis of the p-values con�rms the signi�cance of all coe�cients at the

0.01 level.

This exercise suggests that, even though in theory we do not exactly �nd
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(a)

(b)

Figure 2: panel (a) plots the economy-wide, ex-ante probability of innovation µi. Panel
(b) reports the realised number of innovations when the model is run 10,000 times per each
level of κi (blue bars) and a quadratic Poisson regression curve of this data (red line). The
functional forms and parameters used are the same used in Figure 1.

23



an inverted-U relationship between competition and innovation (but rather

an increasing and convex, and then decreasing and concave relationship),14

the �nding of an inverted-U by the empirical literature is consistent with the

data-generating process being driven by our mechanism.

III ADDITIONAL RESULTS

We have shown that a Schumpeterian model allowing for heterogeneous

talent of innovators and asymmetric information can predict the inverted-U,

even under the original assumption of innovators focused on post-innovation

rents. To provide corroborating evidence in support of our mechanism, we

show in this section that the equilibrium we characterise has speci�c features

which match the evidence well.

First, if our mechanism was important to explain the inverted-U relation-

ship between product-market competition and innovation, then we should ex-

pect that, in industries in which credit constraints are more prevalent, the

increasing part of the relationship should hold for a larger range of levels of

competition. In other words, the peak of the inverted-U should be located

more to the right. To see this formally, consider a general version of the model

in which initial productivity, Ait−1, is allowed to vary across industries.15 As

we will show, credit constraints are more prevalent in high-productivity indus-

tries, and the peak of their inverted-U is located more to the right.

Consider �rst the case of perfect information. Very little changes relative

to the baseline model. This is because pro�ts are also linearly increasing in
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Ait−1, so that, in high-productivity industries, a higher cost of investment is

exactly o�set by higher pro�ts.16 Mathematically, the npvJi (z) functions are

still as in equation (I.4), and optimal investment levels are unchanged. In

terms of our example, the thin solid lines of Figure 1 are unchanged, and so

are their maxima. Of course, high-productivity industries will invest more in

absolute terms, ceteris paribus. In our example, suppose industries 1 and 2

both have an innovator of the high type, and face competition κi = 0.4 as in

the �rst panel of Figure 1. Without loss of generality, assume A1t−1 > A2t−1.

It is ẑH1 = ẐH
1 /A1t−1 = ẐH

2 /A2t−1 = ẑH2 under perfect information, which

immediately implies ẐH
1 > ẐH

2 .

Consider now the case of imperfect information. Only credit-constrained

industries are worth examining, since all other industries behave as under

perfect information. credit-constrained industries are those endowed with an

innovator of the high type, and located on the increasing part of the inverted-

U. Across these industries, normalised investment zsepi is lower lower when

Ait−1 is higher, and credit constraints ẑHi − z
sep
i are tighter. This is because

the normalised wage wi (now with a subscript) is lower, and so is the amount

of normalised equity that the innovator is able to contribute.17 Intuitively,

the same wage buys less innovation in high-productivity industries than in

low-productivity ones. For example, consider again industries 1 and 2, which

are now credit constrained by virtue of the fact that they have a low level of

competition. It is w1 < w2, which implies zsep1 < zsep2 and thus ẑH1 − z
sep
1 >

ẑH2 − z
sep
2 . This can be seen using panel (a) of Figure 1 in conjunction with

equation (II.1). A fall in wi leaves the npvJi (z) curves and ẑJi unchanged,
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however it shifts the origin of curve ñpvLi (z) to the right, and the entire curve

up. Then, condition npvLi
(
ẑLi
)

= ñpvLi (zsepi ) must be reached for a lower value

of zsepi .

So, credit constraints are more prevalent in high-productivity industries.

But the peak of their inverted-U must then be located more to the right.

For suppose that competition in industries 1 and 2 was at the level that puts

industry 2 at its peak (that is the minimum level such that zsep2 = ẑH2 ). It would

be zsep1 < ẑH1 at this point, which would imply that investment in industry 1

is still increasing in competition.

To illustrate the empirical implications of this, we repeat the computational

exercise of Section II. 3 but allowing for two di�erent levels of initial industry

productivity. Industries can then be divided into two groups, high-productivity

and low-productivity. At any level of competition, credit constraints are more

prevalent in the �rst group, both at the extensive and at the intensive margin.18

In Figure 3, we reproduce the inverted-U calculated in Figure II. 3, and overlay

this with the same curve calculated separately for high- and low-productivity

industries. As expected, the peak of the inverted-U is located more to the right

for high-productivity industries. Their inverted-U is initially lower, to re�ect

the fact that tighter credit constraints are associated with lower normalised

investment.

These results are consistent with a �nding in Aghion, Bloom, Blundell,

Gri�th, and Howitt (2004).19 They identify the 40% of �rms subject to higher

debt-pressure, and plot their inverted-U separately.20 Consistently with our

results, they �nd that their peak is located more to the right (see their �gures
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Figure 3: the peak of high-productivity industries is located more to the right. The
functional form and parameters used are the same used in Figure 1. In addition, we allow
for two di�erent levels of initial industry productivity, AHit−1 and ALit−1. These are equally
likely to occur in the population of industries (so, At−1 =

(
AHit−1 +ALit−1

)
/2), and are such

that At−1/A
H
it−1 = 0.82 and At−1/A

L
it−1 = 1.13.

27



6.6a and 6.6b). They also �nd that their curve is higher than for other �rms,

which seems at �rst inconsistent with our results. However, they use a citation-

weighted patent count as a measure of innovation, while we use the simple

patent count. To the extent that the patents of high-productivity industries

are more likely to be cited than other patents (as would seem reasonable,

given that these are more sophisticated industries that attract larger R&D

investments), a trivial extension of our model would also predict a higher

inverted-U for high-productivity industries.

A second prediction that is speci�c to our model is that in credit-constrained

industries, expected pro�tability should be positively correlated with credit

constraints. Our main comparative statics has provided an example of this,

by showing that stronger competition, which is associated with lower expected

pro�ts, leads to weaker credit constraints in credit-constrained industries. To

provide other examples, one could allow for cross-industry variation in the

overall quality of projects (the scale of aH and aL, call this a) or in the oppor-

tunity for technological upgrading (γ). Lower a or γ, which are both associated

with lower expected pro�ts, would again make the npvJi (z) curves to rotate

inwards, leading to a higher zsepi and a lower ẑHi − zsepi (weaker credit con-

straints).

This prediction is consistent with a �nding in the �nance literature accord-

ing to which �rms with the largest returns on equity are also those which face

the tighter credit constraints (see Li (2011) for a review).21 Our interpretation

of this �nding is that industries with high returns are particularly attractive

to �lemons�, exacerbating the adverse selection problem and making it harder
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for high-quality projects to be �nanced. Interestingly, Li (2011) �nds that the

positive relationship between returns and credit constraints is much stronger

among R&D-intensive �rms than among non-R&D intensive �rms. This is

consistent with our interpretation, since it is precisely in R&D-intensive in-

dustries that you would expect asymmetric information to be a major issue.

IV CONCLUSIONS

We have shown that a Schumpeterian model allowing for heterogeneous

talent of innovators and asymmetric information can predict the inverted-

U relationship between competition and innovation, even under the original

assumption of innovators focused on post-innovation rents. When competition

is low and innovation is highly pro�table, investment in innovation is likely to

be governed by credit constraints. Then, an increase in competition may

lead to a positive selection e�ect, increasing the rate of innovation even as it

reduces the post-innovation rents. When competition is high, however, the

low pro�tability of innovation makes it less likely for credit constraints to be

important. Then, the negative impact of an increase in competition on post-

innovation rents should also result in less innovation.

The main contribution of our paper is to show that an inverted-U relation-

ship between product market competition and innovation may also emerge

amongst �rms focused on post-innovation rents. Given the great importance

of these �rms in the innovation process, this seems a desirable addition to our

theoretical understanding of the inverted-U. In addition, our model has two

speci�c predictions. First, the positive relationship between competition and
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innovation should be more pronounced in industries where credit constraints

are more prevalent. Second, the average level of credit constraints in credit-

constrained industries should be decreasing in any factor (such as stronger

product market competition) that decreases expected pro�tability. We have

argued that these predictions are consistent with, and provide an original in-

terpretation of, existing evidence in the growth and �nance literature.

One key policy implication of our work is that, at least for low levels of

competition, fostering competition is a substitute for reducing asymmetric in-

formation in �nancial markets. Since the government is unlikely to develop an

informational advantage over private investors in the market for innovation, its

e�orts should focus on fostering competition. The alternative explanation of

how an inverted-U between innovation and competition relationship occurs, by

Aghion, Bloom, Blundell, Gri�th, and Howitt (2005), is based on the dynam-

ics of step by step innovation, and relies on the varying incentives of innovators

based on how far advanced they are relative to others. These dynamics are

also unlikely to be structurally a�ected by government policy. Hence, both ex-

planations drive toward a similar conclusion: policy should foster competition

up to a point, and in particular in industries that exhibit certain properties.

However, there is a clear advantage for policy to focus on asymmetric infor-

mation rather than di�erences in technological advancement. Di�erences in

technological advancement are practically hard to observe and must rely on

unsatisfactory proxies such as patenting e�ort. Asymmetric information, on

the other hand, leads to clear volatiliy in innovation outcomes in industries as

a whole. By measuring whether that volatility become attenuated as a result
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of its policy e�orts, the government can have a reasonable sense of whether its

policy e�orts are working.
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APPENDIX

In this Appendix, we �rst formally derive the separating equilibrium dis-

cussed in the main text (Section A1). We then identify the parameter sub-

space where the separating equilibrium exists (A2), and challenge the robust-

ness of the equilibrium to a standard re�nement procedure (A3). We conclude

by providing more details on the computational exercise of Section II. 3 (A4).

A1. DERIVATION OF THE EQUILIBRIUM

This section is organised as follows. We begin, in Theorem 1, by showing

that, if ẑHi |κi=α ≤ w, the two types must invest ẑHi and ẑLi in any Perfect

Bayesian Equilibrium (PBE). Based on this result, Theorems 2-3 focus on the

case 0 < w < ẑHi |κi=α.

Theorem 2 de�nes the threshold κ, it establishes its properties as a function

of w, and it then shows that, if κ ≤ κi ≤ 1, the two types must again invest

ẑHi and ẑLi in any PBE. Based on this result, the theorem further restricts the

focus to the case case α ≤ κ < κ.

Theorem 3 begins by formally de�ning the separating equilibrium described

in Section II (points a-d). Subsequently (points 1-3), it de�nes the threshold

κ, and shows that the separating equilibrium exists if and only if κ ≤ κi < κ.

Second, it shows that if w ≤ w < ẑHi |κi=α, it is always z
sep
i = ẑHi in the area

where the separating equilibrium exists.

Theorem 1. If ẑHi |κi=α ≤ w, in any Perfect Bayesian Equilibrium (PBE),

the two types invest respectively ẑHi and ẑLi , any combination of equity and

external �nancing being possible.
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Proof. Since the opportunity cost of equity �nancing is zero, the high types

are always able to invest ẑHi using only personal wealth, and the minimum

rate they can be o�ered on external �nancing is 1/
[
aHµ(z)

]
, the high types

would never select a research e�ort di�erent from ẑHi . Furthermore, they would

never take on external �nancing at a rate greater than 1/
[
aHµ(z)

]
. This last

fact implies that a pooling equilibrium does not exist. As shown in footnote

10, at any separating equilibrium, the low types must select ẑLi . Then, there

only exists a separating equilibrium in which the two types invest ẑHi and

ẑLi respectively. If an innovator borrows any money at such equilibrium, this

must be at a rate 1/
[
aHµ

(
ẑHi
)]

for the high types and 1/[aLµ
(
ẑLi
)
] for the

low types. Then, the innovator is indi�erent as to the amount borrowed, and

it is possible to construct an equilibrium with any combination of equity and

external �nancing.

Theorem 2. If 0 < w < ẑHi |κi=α, let

κ ≡ arg
[
ẑHi = w

]
,

a threshold that continuously decreases from 1 to α as w increases from 0 to

ẑHi |κi=α. Then, if κ ≤ κi ≤ 1, in any PBE, the two types invest respectively

ẑHi and ẑLi , any combination of equity and external �nancing being possible.

Proof. The properties of κ as a function of w follow from the fact that ẑHi is

equal to ẑHi |κi=α for κi = α, is continuously decreasing in κ, and is equal to

0 for for κi = 1. Then, for w = 0, it must be κ = 1; κ must be continuously
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decreasing in w; and for w = ẑHi |κi=α, it must be κ = α. The rest of the

theorem can be shown in the same way as Theorem 1.

Theorem 3. If 0 < w < ẑHi |κi=α and α ≤ κi < κ, consider the following

situation:

a. Lenders believe that those who contribute w in equity and invest z ∈

(w, zsepi ] are high types, where zsepi is the minimum z > w such that

ñpvLi (z) = npvLi (ẑLi ), (IV.1)

or, if such z does not exist, then zsepi = ẑHi . They also believe that those

who contribute w in equity and invest z > zsepi are high and low types

with equal probability. Finally, they believe that everybody else are low

types.

b. Lenders o�er rate 1/
[
aHµ(z)

]
to the �rst group, rate 1/ [aµ(z)] to the

second, and rate 1/[aLµ(z)] to the third.

c. The low types invest ẑLi (any combination of equity and external �nancing

being possible).

d. The high types invest zsepi (contributing w in equity).

Then, there exists w and w, with 0 < w < w < ẑHi |κi=α, such that:

1. If w ≤ w < ẑHi |κi=α, situation a-d is a PBE. It is zsepi = ẑHi .

40



2. If w ≤ w < w, situation a-d is a PBE. There exists κ̂ ∈ (α, κ) such that

it is zsepi < ẑHi for κi ∈ [α, κ̂), and zsepi = ẑHi for κi ∈ [κ̂, κ).

3. If 0 < w < w, point 2 is still true, except that there exists κ ∈ (α, κ̂)

such that situation a-d is not a PBE if κi ∈ [α, κ).

Proof. I. (Preliminary step). Situation a-d is a PBE if and only if

npvHi (zsepi ) ≥ n̂pvHi (z) ∀z > zsepi . (IV.2)

To show this, we proceed in two sub-steps. I.i. If condition IV.2 does not

hold, then situation a-d is not a PBE. This follows from the fact that the high

types have a pro�table deviation, since they can contribute w in equity and

invest some z > zsepi , and obtain a higher payo�. I.ii. If condition (IV.2)

holds, situation a-d is a PBE. This follows from the fact that the following

three facts hold true. First, for every action that borrowers could play, the

lenders' action is optimal given their beliefs. Second, for actions that borrowers

play in equilibrium, the lenders' beliefs are correct. Third, borrowers do not

have a pro�table deviation. To see the last point, let %J represent type J 's

preferences, and let
(
zJ , eJ

)
represent type J 's investment pro�le (where eJ

denotes the innovator's equity contribution). Consider �rst the high types.

Their equilibrium action, (zsepi , w), gives payo� npvHi (zsepi ). We want to show

that (zsepi , w) %H (z, e) for any feasible (z, e). This follows from the fact that, if

z < zsepi , the high types can at best obtain payo� npvHi (z). But z < zsepi ≤ ẑHi

implies npvHi (z) < npvHi (zsepi ). If z = zsep, the only way in which (z, e) may

di�er from (zsepi , w) is if e < w. But by deviating in this way, the high types are
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identi�ed as low types, and receive payo� npvHi (zsepi )−
(
aH/aL − 1

)
[z − e] <

npvHi (zsepi ). Finally, if z > zsep, the high types can at best obtain payo�

n̂pvHi (z), but it is n̂pvHi (z) ≤ npvHi (zsepi ) by condition (IV.2). Next, consider

the low types. Their equilibrium action, (ẑLi , e
H), where eH ∈

[
0, ẑLi

]
, gives

payo� npvLi (ẑLi ). We want to show that (ẑLi , e
H) %L (z, e) for any feasible

(z, e). This follows from the fact that, if e < w, or if z ≤ w, or if both

conditions hold, the low types obtain payo� npvLi (z) ≤ npvLi (ẑLi ). If e = w,

and z ∈ (w, zsepi ], the low types obtain payo� ñpvLi (z), and, by de�nition of

zsepi , ñpvLi (z) < npvLi (ẑLi ). If e = w, and z > zsepi , the low types receive payo�

n̂pvLi (z). But condition (IV.2) must hold for z. Multiplying both sides of it

by aL/aH , we obtain

aLµ(ẑsepi )γπ (κi)−
aL

aH
ẑsepi ≥ aLµ(z)γπ − aL

a
[z − w]− aL

aH
w,

which subtracting
[
1−

(
aL/aH

)]
w from both sides becomes ñpvLi (ẑsepi ) ≥

n̂pvLi (z), or, by the de�nition of zsepi , npvLi
(
ẑLi
)
≥ n̂pvLi (z).

II. (Preliminary step). There exist w and w, with ẑLi |κi=α < w <

w < ẑHi |κi=α, such that, if κi = α, it is zsepi < ẑHi if w < w, zsepi = ẑHi

otherwise; and condition (IV.2) holds if and only if w ≥ w. We

show these two points in two separate sub-steps. II.i. There exists w, with

ẑLi |κi=α < w < ẑHi |κi=α, such that, if κi = α, it is zsepi < ẑHi if w < w,

zsepi = ẑHi otherwise. Suppose κi = α. Recall the de�nition of zsepi , provided

at part a) of the Theorem. Note that the function ñpvLi (z) is decreasing in w.

Given w < ẑHi |κi=α and κi = α, by Lemma 2, it is w < ẑHi . Then, the function

ñpvLi (z) (which is only de�ned for z > w), is concave, reaches a maximum
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at ẑHi > w, and turns negative for z large enough. As for npvLi (ẑLi ), it is

positive and constant in both w and z. It is easy to see that, if w = ẑLi , it

is ñpvL(ẑLi ) = npvLi (ẑLi ), implying ñpvL(ẑHi ) > npvLi (ẑLi ). Furthermore, for

w → ẑHi , it is ñpvL(ẑHi ) → npvLi (ẑHi ) < npvLi (ẑLi ). Then, there exists w,

with ẑLi |κi=α < w < ẑHi |κi=α, such that, if w < w, equation (IV.1) admits two

solutions zsepi and zsepi , with 0 < zsepi < ẑHi < zsepi < ∞; if w = w, it admits

only one solution zsepi = ẑHi ; and if w > w, it admits no solutions (which,

by de�nition, still implies zsepi = ẑHi ). It is also the case that it is zsepi = ẑLi

for w = ẑLi , and z
sep
i > w and increasing in w for w ∈

[
ẑLi , w

)
. II.ii. There

exists w, with ẑLi |κi=α < w < w, such that, if κi = α, condition (IV.2) holds

if and only if w ≥ w. Suppose κi = α. The function n̂pvHi (z) is concave and

maximum for ẑpooli = arg [aµ′ (z) γπ (κi) = 1], and ẑpooli ∈
(
ẑLi , ẑ

H
i

)
. Then, from

results in Step II.i, there exists ŵ ∈
(
ẑLi , w

)
such that zsepi ≥ ẑpooli i� w ≥ ŵ. In

such a case, a su�cient condition for (IV.2) to hold is npvHi (zsepi ) ≥ n̂pvHi (zsepi ),

which is always true. If w < ŵ, a necessary and su�cient condition for (IV.2)

to hold is

npvHi (zsepi ) ≥ n̂pvHi (ẑpooli ). (IV.3)

There exists w, with ẑLi |κi=α < w < ŵ such that (IV.3) holds i� w ∈ [w, ŵ).

This can be shown in two steps. First, note that expression npvHi (zsepi ) −

n̂pvHi (ẑpooli ) is continuously increasing in w for w ∈ (0, w). To see this, start

from condition ñpvL(zsepi ) = npvLi (ẑLi ). Multiplying both sides by aH/aL and
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re-arranging, this can re-written as

aHµ(zsepi )γπ (κi)− zsepi = aHµ(ẑLi )γπ (κi)−
aH

aL
ẑLi +

aH − aL

aH
w, (IV.4)

where the LHS is equal to npvHi (zsepi ). Then, expression npvHi (zsepi )−n̂pvHi (ẑpooli )

can be written as

aHµ(ẑLi )γπ (κi)−
aH

aL
ẑLi +

aH − aL

aL
w −

[
aHµ(ẑpooli )γπ (κi)−

aH

a
ẑpooli +

aH − a
a

w

]
,

(IV.5)

which is increasing in w (note that ẑpooli does not depend on w). Second, note

that expression npvHi (zsepi ) − n̂pvHi (ẑpooli ) is negative for w = ẑLi , positive for

w = ŵ. The latter follows from earlier discussion; to see the former, recall

that, by Step II.i, it is zsepi = ẑLi for w = ẑLi . Then, it is

n̂pvHi (ẑpooli ) > n̂pvHi (zsepi ) = n̂pvHi (w) = npvHi (w) = npvHi (zsepi ).

III. Point 2 in the Theorem. Suppose w ≤ w < w. III.i. If κi ∈ [α, κ),

situation a-d constitutes a PBE. From Lemma 2, it is κ ∈ (α, 1). If κi = α, by

Step II, condition (IV.2) holds. But the condition also holds for κi ∈ (α, κ),

which by Step I proves the result. To see this, consider two cases. First, if

zsepi ≥ ẑpooli for κi = α, then such inequality also holds for κi ∈ (α, κ). This

is because, ẑpooli is decreasing in κ, while zsepi is either increasing or equal to

ẑHi > ẑpooli . But zsepi > ẑpooli implies that a su�cient condition for (IV.2) to

hold is npvHi (zsepi ) ≥ n̂pvHi (zsepi ), which is always true. Second, if zsepi < ẑpooli
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for κi = α, there exists κ̌ such that this inequality also holds for κi ∈ (α, κ̌),

while it is zsepi ≥ ẑpooli for κi ∈ (κ̌, κ). This follows from the fact that zpooli

is decreasing in κi, while z
sep
i is increasing and reaches ẑHi > ẑpooli for some

κi < κ. In the �rst region, that condition (IV.2) follows from the fact that it

does so for κi = α, and expression (IV.5) is increasing in κi. In the second

region, it follows from the fact that a su�cient condition for (IV.2) to hold

is npvHi (zsepi ) ≥ n̂pvHi (zsepi ), which is always true. III.ii. If κi ∈ [α, κ), there

exists κ̂ ∈ (α, κ) such that it is zsepi < ẑHi for κi ∈ [α, κ̂), and zsepi = ẑHi

for κi ∈ [κ̂, κ). Given κi < κ, by Lemma 2, it is w < ẑHi . The function

ñpvLi (z) (which is only de�ned for z > w) is concave in z, reaches a maximum

at ẑHi > w, and turns negative for z large enough. At the same time, given

w < w and w ≥ w > ẑLi , by step II.i, if κi = α, equation (IV.1) admits

two solutions zsepi and zsepi , with 0 < w < zsepi < ẑHi < zsepi < ∞. But

note that ẑHi is decreasing in κi and, as shown in the proof to Proposition 1,

zsepi is increasing and ñpvL (zsepi ) − npvL
(
ẑLi
)
is decreasing in κi (this can be

seen by re-arranging equation II.4). Furthermore, for κ → κ, it is w ← ẑHi ,

which by a result in step II.i implies that ñpvL (zsepi )−npvL
(
ẑLi
)
converges to

ñpvL
(
ẑHi
)
− npvL

(
ẑLi
)
< 0. The result follows.

IV. Point 1 in the Theorem. Suppose w ≤ w < ẑHi |κi=α. Step III.i

still holds, with the simpli�cation that, given w > w > ŵ, by a result in Step

II.ii, for κi = α, we only need to consider the case zsepi > ẑpooli . Step III.iii

also still holds. Finally, given w ≥ w, by Step II, if κi = α, it is zsepi = ẑHi .

Furthermore, by step III.i, npvLi
(
ẑLi
)
−ñpvLi

(
ẑHi
)
is decreasing in κi. It follows

that it is zsepi = ẑHi for all κi ∈ [α, κ).
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V. Point 3 in the Theorem. Suppose 0 < w < w. Steps III.ii and III.iii

still hold. By Step II, if κi = α, condition (IV.2) does not hold. Furthermore,

given w < w < ŵ, by a result in Step II.ii, if κi = α, it is zsepi < ẑpooli . There

exists κ̌ ∈ (α, κ̂) such that the last inequality also holds for κi ∈ (α, κ̌), while it

is zsepi ≥ ẑpooli for κi ∈ (κ̌, κ). This follows from the fact that zpooli is decreasing

in κ, while zsepi is increasing and equal to ẑHi > ẑpooli for κi = κ̂. There then

exists κ ∈ (α, κ̌) such that condition (IV.2) does not hold for κi ∈ [α, κ), while

it holds for κi ≥ κ. This follows from the fact that the condition does not

hold for κi = α, that expression (IV.5) is increasing in κi, and that condition

(IV.2) holds for zsepi ≥ ẑpooli . It follows that, by Step I, situation a-d is not

a PBE if κi ∈ [α, κ). Otherwise, Step III.i still applies, replacing α with κ

everywhere.

A2. EXISTENCE OF THE EQUILIBRIUM

Figure 4 represents the (κi, κ, α) parameter space, by plotting κi on the vertical

axis and w = (1− α) (κα)
α

1−α on the horizontal axis. Our comparative statics

in this paper has consisted of increasing κi, for given w. However, we have

tacitly focused on a central case (w < w < w in the �gure), while the remaining

cases must also be considered.

The term ẑHi |κi=α represents optimal investment by the high types when

the monopolist faces e�ectively no competition (it can charge price 1/α). It

is the highest amount that the high types may ever want to invest. Then,

if w ≥ ẑHi |κi=α, the high types can always �nance their optimal investment

purely out of equity contributions.22 The last statement must also be true if
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κi

α
w

1

κ

ẑHi |κi=α

κ̂
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κ

w

Figure 4: the striped area is where the separating equilibrium exists; the grey,
shaded area is where the model can predict an inverted-U.

0 < w < ẑHi |κi=α and κi is high enough, since a high κi pushes ẑ
H
i down to

zero, so that it is w ≥ ẑHi . This second case is represented by the area κi ≥ κ

in the �gure, where κ is the unique value of κi such that w = ẑHi , and is

intuitively decreasing in w. In both cases, the separating equilibrium does not

exist, if anything because the high types would never contribute w in equity.

We show in Section A1 above that, in a PBE, innovators always invest ẑJi in

this area.

Consider next the area 0 < w < ẑHi |κi=α, κ < κ. The separating equilib-

rium must also not exist if both w and κi are very low, that is in the area

0 < w < w, α ≤ κi < κ in Figure 4, (the threshold w and κ are derived

in Section A1 above). To see why, note that ẑHi is much greater than w in

this case. It follows that ẑHi must also be much greater than zsepi , or else the

high types would be leveraging a lot at the separating equilibrium, and the

low types would want to mimic them. In other words, there must be a large
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discrepancy between the high types' optimal investment, and the maximum

they can invest by borrowing at their fair rate. But then the high types will

prefer to pay an adverse selection premium, borrow more, and invest more.

This point can be illustrated using the �rst panel of Figure 1: if w was very

low, the maximum of the high types' net present value would not be zsepi , but

rather a local maximum to the right of it.

In summary, the separating equilibrium does not exist outside of the striped

area in Figure 4. We show in Section A1 above that, in the striped area, it

always exists. Note that this area does not perfectly overlap with the area

where the model can predict an inverted-U relationship between competition

and innovation in industries where the innovators is of a high type (the shaded

area). This is for two reasons. First, in the area w ≥ w, κi < κ, even if the

separating equilibrium exists, the threshold κ̂ does not, so that Propositions 1

and 2 do not hold. Intuitively, at such high wages, the high types can always

invest ẑHi at the separating equilibrium, so that only the decreasing part of

the relationship obtains. Second, in the area 0 < w < w, consider industries i

and j such that κ̂ ≤ κi < κj ≤ 1. Suppose further that κi < κ ≤ κj ≤ 1, or

κ ≤ κi < κj ≤ 1. While strictly speaking Propositions 1 and 2 do not apply

to industry j, or i and j, since these industries cannot be at the separating

equilibrium, their equilibrium investment must still be ẑHi and ẑLi . So, it must

still be true that innovation is higher in industry i than in industry j, and the

logic of Proposition 1 and 2 carries through.
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A3. EQUILIBRIUM REFINEMENT

In this section, we show that our equilibrium outcome is one of only two that

can realise in a PBE that survives a standard re�nement procedure. We begin

in Section A3.1 by describing this in intuitive terms. The technical analysis is

contained in Section A3.2.

A3.1 OVERVIEW

We re�ne beliefs using a standard, dominance-based criterion (see Mas-Colell,

Whinston, and Green (1995), p. 469). Let action a = (z, e) be dominated for

type J , if there exists another action a′ that gives them a strictly higher payo�,

for any belief that the lenders might have in equilibrium. The re�nement

criterion requires that if an action is dominated for one type, but not for the

other, then lenders must attach zero probability to the event that the former

type undertakes that action (see below for details). We investigate the set of

all possible PBE that survive this re�nement in the area of existence of our

separating equilibrium (the striped area in Figure 4).

This analysis leads to two main results. First, the re�nement exactly dic-

tates the beliefs that must be associated with certain actions. Most impor-

tantly, lenders must believe that only the high types would take actions of

the type (z ∈ [ẑi, z
sep
i ) , w) and (z ∈ [zsepi , ži) , w), where zsepi ≥ ẑHi denotes the

second point at which the mimicker's payo�, ñpvLi (z), cuts through the payo�

of the genuine low types,23 and ẑi ∈ [w, zsepi ) and ži > zsepi . This is because

these actions are dominated for the low types - any action
(
ẑLi , e ≤ ẑLi

)
gives

them a higher payo�, no matter what lenders believe in equilibrium - but not
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for the high types. The beliefs in our separating equilibrium must be changed

slightly for the equilibrium to survive the re�nement, however the equilibrium

outcome does not change.24

Second, the above-described requirement on beliefs implies that the PBE

must be a separating equilibrium in which the high types contribute w in

equity, and invest either zsepi or zsepi . Intuitively, these beliefs make it subop-

timal for the high types to take any other action in a separating equilibrium.

They also rule out the existence of a pooling equilibrium, for the same reason

why our separating equilibrium exists: given the possibility to invest zsepi and

be identi�ed as high types, the high types prefer this to another action that

would pool them together with the low types, even if that other action would

allow them to invest more. Of course, this logic only works inside the area

of existence of the separating equilibrium, where w (and thus zsepi ) is high

enough.

To invest zsepi gives the high types exactly the same payo� as to invest

zsepi . Furthermore, the two thresholds behave in an exactly symmetric fashion.

Then, zsepi is decreasing in κi. It follows that the main result of the paper needs

to be quali�ed, since across industries where the innovator is of a high type,

and invests zsepi , the model still predicts a monotonic, decreasing relationship

between competition and innovation. Of course, such a relationship is not

due to the Schumpeterian e�ect, but to the e�ect of competition on credit

constraints.

We think that, on balance, these results are good news for our theory.

Most crucially, our key equilibrium outcome, zsepi , is one of only two which
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may realise in a re�ned PBE. And, while the existence of zsepi as an alternative

equilibrium outcome makes it in principle harder for the model to predict

an inverted-U, one may reasonably question whether such outcome will ever

be observed. After all, while zsepi and zsepi give exactly the same payo�s to

both lenders and borrowers, zsepi always implies a lower debt, and thus a lower

expected size of default. If there was any additional cost from default, which

increased with the size of the default, then zsepi would always be the preferred

choice.

A3.2 TECHNICAL ANALYSIS

We closely follow the discussion in Mas-Colell, Whinston, and Green (1995),

p. 469. We use to the second (and second-weakest) form of domination-based

re�nement discussed in the textbook (Eq. 13.AA.2). Let J ∈ J = {H, J}

denote the type of the innovator. Let a ∈ A = {(z, e) : z ≥ 0, 0 ≤ e ≤ z}

denote the choice of investment and equity contribution made by the innovator.

Let π (J |a) denote the probability that lenders assign to the innovator being of

type J , conditional on observing action a ∈ A, and let r ∈ R = {r : r ≥ 1} be

the interest rate that they require. Let u (a, r, J) denote the expected payo�

to an innovator of type J .

We will say that action a is strictly dominated for type J if there exists

another action a′ with

min
r∈[1/[aHµ(z′)],1/[aLµ(z′)]]

u (a′, r, J) > max
r∈[1/[aHµ(z)],1/[aLµ(z)]]

u (a, r, J) . (IV.6)
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De�ne the set J
∗

(a) ⊆ J as

J
∗

(a) = {J : there is no a′ ∈ A satisfying (IV.6)} .

Our de�nition of a PBE with reasonable beliefs is as follows:

De�nition 1. A PBE has reasonable beliefs if for all a ∈ A with J
∗

(a) 6= ∅,

µ (J |a) > 0 only if J ∈ J∗ (a).

In other words, if an action is dominated for type J , and for type J only,

then beliefs are said to be reasonable if and only if lenders attach a zero

probability to the event that someone taking action a is of type J .

We are now ready to present our re�nement result:

Theorem 4. If 0 < w < ẑHi |κi=α and κ < κi < κ, let zsepi and zsepi be the

minimum and maximum z > w such that

ñpvLi (z) = npvLi (ẑLi ), (IV.7)

or, if such z is unique or does not exist, then zsepi = zsepi = ẑHi . Then, any

PBE that has reasonable beliefs in the sense of De�nition 1 is a separating

equilibrium where the low types invest ẑLi (any contribution of equity and ex-

ternal �nancing being possible), and the high types invest either zsepi or zsepi

(contributing w in equity).

Proof. There exist ẑi ∈ [w, zsepi ) and ži > zsepi such that, at any PBE that has

reasonable beliefs in the sense of De�nition 1, for any a = (z, w) such that

z ∈ (ẑi, z
sep
i ) ∪ (zsepi , ži), lenders must believe µ (L|a) = 0. To see this, note
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that there exists a′ =
(
ẑLi , e

)
, with e ≤ ẑLi , such that

min
r∈[1/[aHµ(ẑLi )],1/[aLµ(ẑLi )]]

u (a′, r, L) =npvLi
(
ẑLi
)
> (IV.8)

ñpvLi (zi) = max
r∈[1/[aHµ(zi)],1/[aLµ(zi)]]

u (a, r, L) ,

(IV.9)

where the inequality follows from the de�nition of zsepi and zsepi .

A PBE that has reasonable beliefs in the sense of De�nition 1 cannot be a

pooling equilibrium. To see this, proceed by contradiction. Suppose the PBE

was a pooling equilibrium, and let
(
zpooli , epooli

)
be the action taken by both

types in equilibrium. Distinguish two cases. If zpooli > zsepi , then the payo� to

the high types would be

aHµ
(
zpooli

)
γπ (κi)−

aH

a

(
zpooli − epooli

)
− epooli ≤ aHµ

(
zpooli

)
γπ (κi)−

aH

a

(
zpooli − w

)
− w

= n̂pvHi (zpooli )

< npvHi (zsepi − ε),

where ε is a small enough number. The last inequality follows from Theorem

3 and from continuity: since situation a-d is a PBE in this parameter sub-

space, it must be npvHi (zsepi ) ≥ n̂pvHi (z), and thus npvHi (zsepi − ε) ≥ n̂pvHi (z),

∀z > zsepi (where the strict inequality follows from the fact that we have as-

sumed κ > κ instead of κ ≥ κ). So, the high types could increase their payo�

by choosing (zsepi − ε, w). If zpooli = zsepi , then the payo� to the high types
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would be

aHµ
(
zpooli

)
γπ (κi)−

aH

a

(
zpooli − epooli

)
− epooli < npvHi (zsepi − ε),

where the inequality follows from continuity, given ε is low enough. Again,

the high types could increase their payo� by choosing (zsepi − ε, w). Finally, if

0 ≤ zpooli < zsepi , then the payo� to the high types would be

aHµ
(
zpooli

)
γπ (κi)−

aH

a

(
zpooli − epooli

)
− epooli ≤ aHµ

(
zpooli

)
γπ (κi)− zpooli

= npvHi (zpooli )

< npvHi (zsepi − ε),

where the second inequality follows from the fact that 0 ≤ zpooli < zsepi −ε ≤ ẑHi

for ε low enough. Once again, the high types could increase their payo� by

choosing (zsepi − ε, w).

Let a = (z, e) be such that either z ∈ {zsepi , zsepi } and e < w, or z ∈

(zsepi , zsepi ) and ei ≤ w. Then, at any separating equilibrium, it must be

π (H|a) < 1. To see this, proceed by contradiction. Suppose it was π (H|a) =

1. Then, the low types could take action a, obtaining payo� ñpvLi (z) +

aH−aL
aH

(w − e) > npvLi
(
ẑLi
)
. But since, by footnote 10, the low types must

be taking action
(
ẑLi , e

L
i

)
(with eLi ≤ ẑLi ) in a separating equilibrium, obtain-

ing payo� npvLi
(
ẑLi
)
, they would have a pro�table deviation, contradicting the

notion that this is a PBE.

The Theorem now follows. To see this, note that it was shown in footnote

10 that, in a separating equilibrium, the low types must be taking action
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(
ẑLi , e

)
, with e ≤ ẑLi . As for the high types, they could not take an action

(z, e) such that either z ∈ {zsepi , zsepi } and e < w, or z ∈ (zsepi , zsepi ) and e ≤ w,

since if they did, by step III, the lenders' beliefs would be incorrect. At the

same time, they could not take an action such that z < zsepi , since their payo�

would at best be npvHi (z), and it would always be possible to �nd ε > 0

small enough so that z < zsepi − ε. Since npvHi (z) < npvHi (zsepi − ε), the high

types could then increase their payo� by choosing (zsepi − ε, w). Finally, by

a symmetric logic, the high types could not be choosing an action such that

z > zsepi . It follows that the high types must either take action (zsepi , w) in a

PBE, or action (zsepi , w).

A4. DETAILS ON THE COMPUTATIONAL EXERCISE

To generate panel (b) of Figure II. 3, using MATLAB, we �rst create a large

matrix by taking 121 evenly spaced values of κi, going from α = 0.4 to 1,

and then stacking this vector 10, 000 times.25 Each of the elements of the

resulting matrix can be interpreted as one industry. Having κi as well as α,

we can easily compute the average level of competition, κ, and pro�ts, as

de�ned by equation (I.2).26 We assign one innovator's type to each industry

using standard pseudo-random draws, where the probability of each of the two

possible outcomes is �xed at 0.5.

We then want to compute the probability of successful innovation for each

industry, which is characterized by a competition level-innovator's type pair.

In doing so, we assume the speci�c equilibrium con�guration described in the

paper. This makes working with low-types straightforward, as they always
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choose ẑLi , which we can compute using condition (I.5). We have computed

pro�ts already, so we need to pick values for aL and for γ, as well as a functional

form for µ. We choose aL = 0.4 and γ = 1.1; as for µ, our choice of functional

form is guided by the following considerations:

• As stated in the paper, µ is increasing and concave;

• we want it to be tractable and invertible, since we'll need to work with

its inverse in order to compute ẑLi ; and

• throughout this computational exercise, we need to stay in the region of

the parameter space where our model generates an inverted-U pattern.27

We thus choose µ(z) = 0.22
√
z.28 Once we have ẑLi for each low type

industry, it's easy to compute the desired probabilities as aLµ(ẑLi ).

Dealing with high-type innovators is trickier, as they will choose ẑHi or zsepi ,

following the logic described in Section I. For each high-type industry, then,

we e�ectively need to model the behavior of both high and low type innovators.

We thus start by computing ẑLi and npvLi (ẑLi ), then we compute ẑHi using the

same methodology (that is, condition (I.5), this time with aH = 1). We then

check for which high-type industries ñpvLi (z) (computed using equation (II.1))

goes above npvLi (ẑLi ). For these industries, we pick zsepi as the equilibrium

level of investment. If instead ñpvLi (z) < npvLi (ẑLi ) for all z ≥ 0, we pick ẑHi .

Finally, we use the formula aHµ(.) to compute the equilibrium probability of

successful innovation.

Once we've computed the probability of successful innovation for each in-

dustry, we use it as a parameter of a binomial distribution, in order to simulate
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real world patenting behavior and generate a synthetic dataset. The resulting

histogram, obtained by collecting into bins corresponding to the 121 values of

κi all the patents secured by both high and low types, is plotted in blue in

panel (b) of Figure II. 3.

We also use this synthetic dataset to generate the red curve overlayed onto

the histogram. To do so, we follow the methodology used in Aghion, Bloom,

Blundell, Gri�th, and Howitt (2005) as closely as our synthetic dataset allows

us to. Speci�cally, we compute a Poisson regression of the total number of

patents on a constant (β0), our vector of κi, and a vector containing κ
2
i for each

i.29 Let the vector containing all κi be indicated as K, the vector containing κ2i

as K2, and the corresponding regression coe�cients as β1 and β2, respectively.

The red curve is then computed as:

exp(β̂0 + β̂1K + β̂2K
2).
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Notes

1The pattern has been observed in the US (Scherer (1967); but see Hashmi (2013) for

contradicting results), the UK (Aghion, Bloom, Blundell, Gri�th, and Howitt (2005)),

Japan (Michiyuki and Shunsuke (2013)), the Netherlands (Polder and Veldhuizen (2012)),

Sweden (but only for speci�c measures of competition: see Tingvall and Karpaty (2011)),

France (but only for large �rms: see Askenazy, Cahn, and Irac (2013)), and Switzerland

(Peneder and Woerter (2014)), and for the pharmaceutical industry in a panel of 26 countries

studied by Qian (2007).

2Akcigit and Kerr (2018) estimate a Shumpeterian model with multi-product incumbents

and new entrants, using US data. They �nd that incumbents innovating on new product lines

together with new entrants account for more than 80% of aggregate productivity growth.

They argue that this �nding is consistent with the empirical literature surveyed in Foster

and Krizan (2001). The fact that established �rms who do not reap pre-innovation rents

face much the same incentives to innovate as new entrants is recognised by the literature,

see for example Aghion, Harris, Howitt, and Vickers (2001), p. 469).

3See for example Schoonhoven and Lyman (1990) and Katila and Shane (2005).

4 The general idea of "skin in the game as a screening device" has emerged repeatedly

in the academic Finance literature. Applications to the �eld of entrepreneurship - and its

�nancing - go all the way back to Leland and Pyle (1977); more recent contributions include

Kaplan and Stromberg (2004), Skeie (2007), and Conti and Rothaermel (2013), among

others. DeMarzo and Du�e (1999) and DeMarzo (2005) provide examples of this principle

in the context of security design.

5For subsequent modi�cations of their model, see Askenazy, Cahn, and Irac (2013) and

Hashmi (2013).

6Some of these papers focus on �rms innovating on products they currently produce, thus

sharing the same empirical limitations as Aghion, Bloom, Blundell, Gri�th, and Howitt

(2005)) (see Chernyshev (2016) and Rauch (2008)). Other papers rely on ad-hoc modi�ca-

tions of the standard model: Mukoyama (2003) needs imitators to play an important role

alongside innovators; Scott (2009) requires �rms to have a di�erent perception of compe-
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tition at di�erent levels of competition; and Onori (2015) requires external learning from

innovation to be more important than internal learning.

7In a related contribution, Chiu, Meh, and Wright (2017) develop a model in which

�entrepreneurs� get new ideas randomly and without paying any R&D costs, but search

frictions and the presence of �nancial intermediaries in�uence the process of technological

tranfer. That is, their focus is on the allocation of these new blueprints to the agents who

have the most talent for developing them and bringing them to market.

8This assumption, also made by Aghion and Howitt (2009), simpli�es the model by ruling

out that credit constraints are weaker in industries where initial productivity, and thus the

size of investment, is lower. Please refer to Section III for the discussion of a more general

version of the model in which this assumption is dropped.

9This demand function can be found by taking the �rst derivative of I.1 with respect to

Xit.

10To see this, suppose the low types invested z 6= ẑLi . Since this is a separating equilibrium,

the low types would have to be asked an expected interest rate equal to the risk-free rate,

and their payo� would have to be npvLi (z). But, by choosing ẑLi , they could have not been

asked a higher expected rate (in equilibrium), and they would have thus obtained at least

npvLi (ẑLi ) > npvLi (zL). It follows that z is not the low types' optimal choice: a contradiction.

11More precisely, lenders believe that those contributing w in equity are high types if they

invest an amount lower than or equal to zsepi , and high or low types with equal probability

if they invest more than zsepi . Additionally, they believe that those contributing less than

w in equity are low types.

12For example, the future innovator could be someone who inherits the current innovator's

talent, and whose payo�s are important to the current innovator (e.g. a descendant or

employee whom the current innovator coaches). Then, her current innovator would worry

about the reputation she establishes in period 1.

13We refer to Appendix A4 for a complete description of the methodology used.

14It is our understanding that the convexity to the immediate left of the peak, and the

concavity to its right, are a general feature of the model, but we haven't shown that in a
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formal proposition.

15We assume Ait−1 to be uncorrelated with talent, and with the level of competition.

16Recall that pro�ts are found by substituting the (constant) optimal price in the demand

faced by the monopolist, Pit = α (Ait−1L/Xit−1)
1−α

, by solving for the equilibrium quantity

Xit−1, and by multiplying this by the (constant) pro�t per unit. Since Xit−1 is linear in

Ait−1, so are pro�ts. Normalised pro�ts are then as in equation (I.2), and do not depend

on Ait−1.

17Since the wage is determined in the economy-wide labour market, it is a linear function

of average (as opposed to industry-speci�c) productivity. The normalised wage is then

wi = wAt−1/Ait−1.

18We have shown that if industries 1 and 2 are both credit constrained, then credit

constraints are tighter in 1 (intensive margin). It is also possible that 1 is credit constrained

while 2 is not, but not the opposite (extensive margin).

19We are grateful to an anonymous referee for pointing this out to us.

20They identify these �rms as those with the highest debt-payments-to-cash-�ow (D/C)

ratio. In our model, the D/C ratio is (ẐHi −W )/NPV Hi
(
ẑHi
)

= (ẑHi −W/Ait−1)/npvHi
(
ẑHi
)

for non credit-constrained industries, and (zsepi −W/Ait−1)/npvHi (zsepi ) for credit-constrained

ones. While the former is increasing in Ait−1 (since ẑHi is unchanged), the latter can be

increasing or decreasing (since zsepi decreases). So, our high-productivity industries are not

necessarily those with the higher D/C ratio. This is counterintuitive, as you would expect in-

dustries that require greater investment to feature both a higher D/C ratio and tighter credit

constraints. This undesirable feature of the model is the result of simplifying assumptions.

With a uni�ed labour market, a higher Ait−1 only makes it more expensive to innovate,

without increasing the innovator's capacity to contribute (in other words, it only reduces

wi). This results in much tighter credit constraints, and may result in a lower D/C ratio.

However if the wage was partially related to industry productivity, then credit constraints

would still be tighter in high-productivity industries (and the peak of their inverted-U would

still be located more to the right), and so would be the D/C ratio. To see this, consider

an extreme case in which the wage increases almost linearly with Ait−1, so that wi is only
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marginally lower in high-productivity industries. Then, credit constraints ẑHi − z
sep
i would

still be (marginally) tighter (since ẑHi is unchanged and zsepi still decreases), and the D/C

ratio would be higher (since zsepi decreases only marginally).

21In the context of our model, the return on equity is ROELi = npvHi
(
ẑL
)
/w for the

low types (given a risk free interest rate equal to zero), and ROEHi = npvHi (zsepi ) /w for

the high types. It is easy to show that these are decreasing in κi. For the low types,

it is dROELi /dκi = (1/w) aLµ
(
ẑL
)
γπ′ (κi) dκi < 0. For the high types, it must be

d
[
npvHi (zsepi )

]
/dκi < 0, for suppose it was d

[
npvHi (zsepi )

]
/dκi ≥ 0: multiplying by aL/aH

and subtracting (1 − aL/aH)w on both sides, one would obtain d
[
ñpv

L
(zsepi )

]
/dκi > 0,

which is in contradiction with the fact that, by de�nition of zsepi it must be d
[
ñpv

L
(zsepi )

]
/dκi =

d
[
npvL

(
ẑLi
)]
/dκi = dROELi /dκi, and dROE

L
i /dκi < 0.

22This case must be considered, as there always exist admissible values of the other pa-

rameters of the model, γ and aJ , and admissible forms of the function µ (.), such that

ẑHi |κi=α ≤ w.
23The existence of such point can be gauged from the top panel of Figure 1. The function

ñpv
L
i (z) is a parabola reaching its maximum at ẑHi . It must then cut through the horizontal

line passing through npvLi
(
ẑLi
)
twice, to the left and to the right of ẑHi .

24Beliefs must be changed in the following way. First, lenders must believe that those

taking actions of the type (z ∈ [zsepi , ži) , w) must be high types. Second, they must believe

the same for those taking actions of the type (z ∈ (ẑi, z
sep
i ) , w − ε) or (z ∈ (zsepi , ži) , w − η),

where ε and η are small enough numbers. No other belief must be changed. Since to invest

zsepi gives the high types exactly the same payo� as to invest zsepi , it is easy to see that the

outcome of the equilibrium does not change.

25The value of α is chosen in order to be broadly consistent with the labor share of income

as recorded in the U.S. in postwar years.

26To compute pro�ts we also need to assign a value to L and we choose L = 100.

27This is discussed in Appendix A2. What's particularly relevant for us at this stage is

that the wage, w, needs to be between w and w. The wage can be computed using equation
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I.3. We can also compute closed-form solutions for both w and w, namely,

w =
1

1− aL

aH

[aLµ(ẑHi )γπ(κi)−
aL

aH
ẑHi − npvLi (ẑHi )],

where i is such that κi = α, and

w =
1

aH

aL
− aH

a

[aHµ(ẑpooli )γπ(κi)−
aH

a
ẑpooli − aH

aL
(aLµ(ẑLi )γπ(κi)− ẑLi ],

where again i is such that κi = α and a = (aH + aL)/2.

28Of course, 0.22
√
z goes to in�nity as z grows, so there might be a concern of the

resulting probabilities of successful innovation being larger than one. This doesn't happen

in our simulations, where the probabilities are in fact rather small, and always smaller than

0.18.

29As in Aghion, Bloom, Blundell, Gri�th, and Howitt (2005), these vectors are demeaned.
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