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Abstract 

The fluency with which we plan and execute actions has been demonstrated to increase our sense 

of agency (SoA). However, the exact mechanisms how fluency influences SoA are still poorly 

understood. It is an open question whether this effect is primarily driven by fluency of stimulus 

processing, response preparation or by processes following response execution. In the current 

study we aim at addressing this question by measuring event-related potentials reflecting pre- and 

post-response mechanisms and relate them to intentional binding, a measure of implicit SoA. To 

manipulate the fluency of action we asked participants to perform actions that were congruent or 

incongruent with a visual target (a finger movement). Participants’ actions triggered an auditory 

outcome. To measure the intentional binding effect we asked participants to estimate the time 

between the executed actions and the ensuing auditory effects. We found that congruent actions 

generated a larger intentional binding effect (i.e. stronger time compression between actions and 

effects) and this positively correlated with a late P300 evoked during the processing of congruent 

stimuli. At the action selection level, we found a larger central pre-response positivity for 

incongruent condition as relates to interference effects. Finally, post response mechanisms elicited 

a larger central negativity for incongruent responses presumably related to uncertainty. We 

provide new evidence on the determinants of intentional binding driven by the fluency of action, 

by showing that both pre and post-response mechanisms are crucial in the generation of the 

feelings of agency. Importantly, stimulus processing and response preparation ERPs seem to be 

more selectively modulated by congruency-effects given specific brain-behavioral correlations. 
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1. Introduction 

Any action that we perform carries consequences. The feeling of control over action 

consequences is referred to as sense of agency (SoA) (David, Newen, & Vogeley, 2008; Haggard 

& Tsakiris, 2009). It has been shown that the SoA depends on the fluency of action, that is, 

the SoA arises prospectively, prior the action effects and it is boosted in situations where 

people act in accordance with their intentions, when no discrepancy occurs at the action 

selection level (Chambon & Haggard, 2012; Chambon, Sidarus, & Haggard, 2014; Sidarus & 

Haggard, 2016). In a previous behavioral study (Vastano et al., 2017) we showed that an implicit 

measure of SoA, known as intentional binding effect (a perceived time compression between the 

voluntary action and its consequent effect) is modulated by action selection processes. We 

demonstrated that the congruency between observed supraliminal primes and executed actions 

(action-congruency effect) boosted the intentional binding effect, while a conscious conflict at the 

action selection level reduced it. Our previous results, therefore, indicated a tight relationship 

between action-congruency and the intentional binding. However, whether this relationship is 

primarily related to fluency in stimulus processing, response selection or processes following 

response execution is still poorly understood.  

Although several studies have been conducted to identify electrophysiological correlates of the 

intentional binding effect (Gentsch & Schütz-Bosbach, 2011; Goldberg, Busch, & Meer, 2017; 

Hughes, Desantis, & Waszak, 2013a; Jo, Wittmann, Hinterberger, & Schmidt, 2014; Kühn et al., 

2011), they primarily focused on the processing of action outcomes. For instance, studies that used 

electroencephalography (EEG) showed that inferential and predictive mechanisms during 

voluntary actions induce a suppression of the N100 over central electrodes for self-generated and 

congruently predicted as compared with externally-generated action outcomes (Gentsch & 

Schütz-Bosbach, 2011; Hughes et al., 2013a; Hughes, Desantis, & Waszak, 2013b; Poonian, 

Mcfadyen, Ogden, & Cunnington, 2015). Similarly, another ERP response has been shown to 

depend on the contiguity of self-generated outcomes. The feedback-Correct Related Positivity 

(fCRP) is a positive-going ERP response elicited to positive/correct outcomes around 250 ms after 

the stimulus onset over frontal-central electrodes. This fCRP is larger for self-generated as 

compared to externally-generated feedbacks (Bednark & Franz, 2014).   

Beyond this focus on the processing of action outcomes, a recent EEG study investigated the effect 

of action preparation on the SoA. In this study explicit judgments of agency were modulated using 

subliminal action-primes (Sidarus, Vuorre, & Haggard, 2017). The authors showed that an 

unconscious influence, for instance the incompatibility between subliminal primes and performed 

actions reduced the explicit SoA. This behavioral effect was associated with early (~ 100 ms) 
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negative ERPs such as the correct related negativity (CRN), that it has been interpreted as 

reflecting either uncertainty about correct actions or post-response conflict monitoring processes 

(Grützmann, Riesel, Klawohn, Kathmann, & Endrass, 2014; Kwapil, Barrantes-Vidal, & Silvia, 

2008; Pailing & Segalowitz, 2004). However, other types of stimuli, like supraliminal primes, 

might exert strong conflict effects during action selection and lead to different ERPs modulations 

associated with stimulus processing and preparatory action phase. To date, there is no evidence of 

neural correlates associated with the impact of a conscious conflict during action preparation and 

execution on the intentional binding.   

 In the present study, we investigate whether intentional binding is primarily driven by 

fluency induced by stimulus processing and response preparation or rather by processes following 

response execution. We are interested in elucidating how pre- and post-action processes, rather 

than processing of action outcomes, influence the intentional binding. Our aim was, therefore, to 

investigate the neural correlates of the fluency of action (manipulating the action-congruency 

effect) on the intentional binding by analyzing the perceived influence of a supraliminal action-

prime that would facilitate or interfere with action selection processes. To this end we used an 

imitation-inhibition task, a type of ideomotor compatibility paradigm (Brass, Bekkering, 

Wohlschläger, & Prinz, 2000; Brass, Bekkering, & Prinz, 2001; Brass, Derrfuss, & von Cramon, 

2005). According to the ideomotor theory (Greenwald, 1972) the high similarity between the 

observed action and the required one induces a strong response tendency, and so the observed 

stimulus strongly overlaps with the anticipated effect of the planned action (see also the 

dimensional overlap model by (Kornblum, Hasbroucq, & Osman, 1990). In the context of our 

study, the direct activation of a motor representation should have a strong impact on agency. This 

might be reflected in changes at the level of anticipations of the effect and changes in motor 

preparation. 

 We recorded EEG signals while participants performed the imitation-inhibition task in 

combination with a time estimation task (which allows us to measure intentional binding). 

Participants were instructed to lift their index or middle finger in response to a number, while 

simultaneously observing either congruent or incongruent finger movements of a mirrored right-

hand. Their action caused an auditory effect after a variable interval. At the end of each trial, 

participants estimated the time between their action and the ensuing effect. We computed 

stimulus-locked ERPs associated with stimulus processing and response-locked ERPs associated 

with motor preparation and post response action monitoring. In order to fully disclose the spatio-

temporal dynamics of the fluency of action on intentional binding we used a data-driven approach. 

We investigated differences in the entire spatio-temporal space with the threshold-free cluster-
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enhancement technique (see method section). Finally, to investigate the relationship between 

behavioral and electrophysiological measures we perform correlation analyses between ERPs and 

the related behavioral effects (intentional binding measures). 

 We predict a larger intentional binding effect for the congruent compared with the 

incongruent and baseline conditions, as previously showed (Vastano et al., 2017). At the neural 

level, we expect to find modulation of ERPs as a function of the action-congruency effect. One 

likely candidate is the P300 component. Previous studies have provided evidence of a larger P300 

amplitude for the congruent (where the observed action is consistent with the intended one) 

relative to the incongruent condition (Deschrijver, Wiersema, & Brass, 2017). In addition, it has 

been also shown that the P300 is larger for congruent compared with incongruent conditions in 

other stimulus-response compatibility paradigms (Polich, 2007; Ragot & Fiori, 1994; Sebanz, 

Knoblich, Prinz, & Wascher, 2006; Zhou, Zhang, Li, Tan, & Han, 2004) due to a higher cognitive 

load in incongruent conditions reducing attentional resources needed for generating the P300 

component.  

On the basis of this previous evidence we expect larger P300 amplitude for the congruent relative 

to the incongruent condition. In addition, we expect to find a positive correlation between the 

P300 and the intentional binding effect for the congruent condition (when the observed target is 

consistent with the motor plan). This might provide evidence of a tight relationship between the 

P300 modulation and implicit SoA during stimulus processing and pre-response mechanisms. We 

also expect to find modulations of ERPs evoked during the response period. Previous studies on 

motor conflict have shown fronto-central negativities both during the pre-response (e.g Readiness 

Potential) and post-response (e.g. CRN) periods. These responses have been associated with motor 

preparation (Jo et al., 2014; Libet, Gleason, Wright, & Pearl, 1983; Shibasaki & Hallett, 2006; 

Waszak et al., 2005) and decision uncertainty (Grützmann et al., 2014; Kwapil et al., 2008; Pailing 

& Segalowitz, 2004), respectively. On the basis of these previous studies we expect that the 

conscious conflict at the action selection level (such as in the incongruent condition) will induce 

larger pre- and post-response fronto-central negativities relative to when conflict is not present 

(congruent and baseline conditions). We finally predict that pre-response rather than post-action 

ERP components would be strongly related to intentional binding, given the pivotal role of the 

fluency at early action selection level on the SoA (Chambon & Haggard, 2012).   

2. Materials and Method 

2.1 Participants 
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 We report how we determined our sample size, all data exclusions (if any), all 

inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior to 

data analysis, all manipulations, and all measures in the study.  

Twenty-eight healthy volunteers (8 males, mean age: 23.25 years, SD: 2.5 years) were enrolled 

for the study. An a-priori sensitivity power analysis (G*Power 3 software; (Faul, Erdfelder, Lang, 

& Buchner, 2007) revealed that our sample size is large enough to detect a significant behavioral 

effect for the Congruency factor (Vastano et al. 2017) in a repeated-measure ANOVA 

(rmANOVA) corresponding to either a large effect size f  =  0.4 (Cohen, 1988), with a statistical 

power (1–β) of  .95 or a medium effect size f  =  0.25  with a statistical power of  .8  (given α = 

.05, a correlation between repeated measures of 0.5, number of groups = 1, number of 

measurements = 3). All participants were right-handed, with normal or corrected to normal vision 

and no history of psychiatric or neurological disorders. All testing procedures were approved by 

local ethical committee of Ghent University and conducted in accordance with the Declaration of 

Helsinki. All participants gave written informed consent and were financially compensated for 

their participation. 

2.2 Stimuli and Procedure 

 We used the same stimuli and procedure as in our previous work (Vastano et al. 2017). 

Participants were seated at a distance of 60 cm from a 24’’ computer monitor (resolution: 1920 × 

1080; refresh rate: 60 Hz). Experimental stimuli consisted of a sequence of images (300 × 200 

pixels) of a mirrored right-hand of an actor performing lifting finger movements. The first image 

showed the hand in resting position for 1000 ms and was followed by two images lasting 16.67 

ms in which the finger lifting movements (index or middle finger) and a number (1 or 2 that 

appeared between the two fingers) were shown in parallel. The last image of the sequence showed 

the finger in the end position, which stayed on the screen until the generated action effect (a pure 

tone at 1000 Hz). The finger movements could result in a match or in a mismatch with the number 

showed (1: index finger and 2: middle finger in congruent trials; or 1: middle finger and 2: index 

finger in incongruent trials), or just the number (no movements) was shown (1 or 2 in baseline 

trials). At beginning of each trial a sentence “place your fingers” appeared on the screen and the 

participants were instructed to position their right index and middle finger on the “G” and “H” 

keys of a Mac keyboard with numeric keypad (MB110Z/B) by holding down the buttons. After a 

fixation cross (of a duration randomly varying between 1000 and 1600 ms in steps of 200 ms) the 

image sequence started, and the participants had to lift their index or middle finger as fast as 

possible in response to the number (1: index finger and 2: middle finger) while observing 
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congruent or incongruent fingers movements (Fig. 1). If no response was given within a time 

window of 1400 ms, the next trial was presented, and the missed trial was recovered at the end of 

the experimental block. After their key release and a variable interval (300, 400, or 500 ms) the 

auditory stimulus was delivered for 300 ms by means of headphones. After hearing the auditory 

stimulus (with a slight variable interval between 300 and 800 ms), a Visual Analogue Scale (VAS) 

appeared and we asked participants to estimate the interval between their action (key release) and 

the ensuing auditory effect1, by positioning the mouse pointer along the VAS from 100 ms to 900 

ms (with markers indicating 200-ms intervals), they had a maximum of 5000 ms to give the 

answer. Finally, after a variable inter-trial interval ranging from 1000 to 3000 ms (in steps of 1000 

ms) next trial started. Participants were told that the interval between their action and the tone was 

always chosen randomly in the range between 100 ms and 900 ms. The experiment consisted of 

240 randomized trials: 80 trials for each condition (congruent, incongruent and baseline), each of 

which was composed by 26-28 trials for each interval (300, 400, and 500 ms). The experiment 

was divided in 4 little blocks of 60 trials each (20 trials in each congruent, incongruent and 

baseline) to allow participants to rest between blocks. Before the experiment there was a short 

training phase (21 trials). Furthermore, participants were trained to discriminate between 100 or 

900 ms (the endpoints of the VAS scale used in the interval-time estimation task). They listened 

two tones separated by 100 or 900 ms, at the end of each trial we asked them to indicate if the 

time elapsed between the two tones were 100 or 900 ms. They received a feedback (correct or 

incorrect response). A number of 30 randomized trials (15 for each interval) were presented with 

a variable inter-trial interval ranging from 1500 to 2500 ms. The task was implemented in E-prime 

2.0 Professional software (Psychology Software Tools, Pittsburgh, PA). The duration of the 

whole experiment was about 80 min. The stimuli we used and the script to run the 

experimental task are available from our project repository on the Open Science 

Framework (https://osf.io/49t23). 

<Fig.1 here> Figure 1. Experimental paradigm. Time line of the trials. Participants responded according to a 

number (1 or 2) presented between the index and middle finger. They were instructed to lift the index finger if the 

number was 1 and the middle finger if the number was 2. After their movement with a random interval (300, 400 or 

500 ms) followed a tone (action outcome). At the end of each trial participants judged on a visual scale the time 

elapsed between their action and the tone. Congruent trials are the ones where the number corresponded with the 

                                                           
1 We used a time estimation task widely used in several studies to measure the intentional binding effect (Caspar, Cleeremans, & 

Haggard, 2015; Cravo, Claessens, & Baldo, 2009; Engbert, Wohlschläger, Thomas, & Haggard, 2007; Kühn, Brass, & Haggard, 

2013; Wen, Yamashita, & Asama, 2015) because of the impossibility to combine the classical procedure which involves the 

Libet clock (Haggard, Clark, & Kalogeras, 2002) with our task which requires to attend visual stimuli. In fact, the Libet clock 

procedure requires participants to watch a clock face with a clock-hand rotating and to react at the time that they chose. 

Therefore, it would have been impossible to ask participants to attend to the clock hand rotating and to react to the visual stimuli 

at the same time. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://osf.io/49t23


8 
 

background movement, Incongruent trials are the ones where number and movment did not match and Baseline trials 

are represented by numbers only. 

 

2.3 Electrophysiological Recording and Preprocessing 

EEG data were recorded from 64 electrodes placed according to the extended 10-20 EEG-system 

using an elastic cap and the Biosemi ActiveTwo system. To measure vertical and horizontal eye 

movements, bipolar electrodes were placed above and below the left eye, and on the outer canthi 

of both eyes. EEG signals were referenced online to the CMS-DRL ground and sampled at 1.024 

Hz. Electrode offsets were kept between −25 and 25 μV at all electrodes. 

EEG signals were band-pass filtered between .25 and 45 Hz and processed and analyzed by using 

MATLAB-based custom scripts and EEGLAB toolbox (Delorme, Fernsler, Serby, & Makeig, 

2006). An automatic rejection of noisy EEG channels was performed on continuous data and 

confirmed by visual inspection. The channel rejection procedure was performed by using the 

“clean_channels” function in EEGLAB, which removed channels that shared less than 50% of the 

variance with their robust estimate (computed on the basis of a 100-points random sample 

consensus procedure on 16 surrounding channels) for more than 33.3% of the total recording 

time). The resulting contaminated channels were interpolated using spherical splines (Perrin, 

Pernier, Bertrand, & Echallier, 1989) . Overall, only five electrodes (F6, FC6, T7, P2, and Iz) were 

interpolated across eight different participants. Continuous EEG data were then re-referenced off-

line to the average of all of the electrodes and segmented into epochs of 3 s (0.5 s before the 

appearance of the first image). We included in the analyses only trials with correct behavioral 

responses (imitation-inhibition task). Successively, stereotypical artifacts, such as blinks, 

heartbeat, eye movements and muscle tension, were removed by Independent Component 

Analysis (ICA). 

Finally we segmented stimulus-locked epochs between - 200 to 500 ms with a baseline correction 

of 200 ms before the stimulus onset (Target epochs) as well as response-locked epochs between -

600 to 300 ms with a baseline correction of 200 ms (-600 to -400 ms before response onset) (Pre-

response epochs), and between -100 to 500 with a baseline correction of 100 ms (Post-response 

epochs). We then performed an automatic detection and rejection of artifactual and/or outlier EEG 

data epochs by applying different methods (see (Delorme & Makeig, 2004), based on criteria that 

were determined through preliminary inspections and tests aimed at optimizing artifact rejection 

in our sample: ±100 μV for the standard extreme values thresholding; current drifts > 50 μV with 

a correlation > 0.6 for the linear trend test; SD > 7 and 3 (across epochs and channels, respectively) 
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for the improbability and kurtosis tests. Epochs violating any of these criteria were excluded from 

further analyses. Three separate grand average waveforms (Baseline, Congruent and Incongruent) 

for each Target, Pre-response and Post-response epoch were then constructed. The mean number 

of trials per participant (with ranges in parentheses) that contributed to each grand average was: 

Target (Baseline: 65 (38-78), Congruent: 65 (38-77), Incongruent: 57 (36-75)); Pre-response 

(Baseline: 63 (35-79), Congruent: 65 (39-76), Incongruent: 56 (36-73)); Post-response (Baseline: 

64 (37-78), Congruent: 64 (38-77), Incongruent: 56 (36-73)).  The raw data of our participants 

(with anonymous ID) and the scripts for EEG analysis are available from our project 

repository on the Open Science Framework (https://osf.io/49t23). 

2.4 Statistical analysis 

The behavioral and ERP datasets for statistical analysis are available from our project 

repository on the Open Science Framework (https://osf.io/49t23). We performed one-way 

repeated measure analysis of variance (rmANOVA) on the time-judgment errors (i.e., the 

difference between the estimated intervals and the actual intervals), with Congruency (3 levels: 

baseline, congruent and incongruent) as factor. For each participant and condition, observations 

more than 2 SDs away from the mean were excluded from the analysis. Additional one-way 

rmANOVAs was conducted on RTs and Error rates in the imitation-inhibition task with 

Congruency (3 levels: baseline, congruent and incongruent) as factor. Significant effects found in 

the rmANOVA were followed by Newman-Keuls-corrected post hoc tests. Alpha level was fixed 

at 0.05 for all statistical tests.  

For each epoch of analysis, differences in ERPs across experimental conditions (Baseline, 

Congruent, Incongruent) were tested for statistical significance using a mass-univariate approach 

based on the threshold-free cluster-enhancement (TFCE) method, which optimizes the detection 

of both diffuse, low amplitude effects and localized, high amplitude ones while correcting for 

multiple comparisons with non-parametric permutation tests (Smith & Nichols, 2009). This 

method was applied by taking into account all the 64 channels and all the time points composing 

the epochs of interest. In brief, for each time point and channel, an rmANOVA was performed, 

yielding (in the case of the Target epoch) ≈46,000 F values (717 time points * 64 channels). These 

F values were then TFCE-transformed and corrected for multiple comparisons with permutation 

tests (2500 resampling). Post-hoc pairwise t-tests were also performed with the same approach to 

clarify the pattern of differences for significant effects.  

TFCE-corrected mass-univariate brain-behavior correlation analyses were also performed 

between the participants’ raw pairwise differences in ERPs (Incongruent-Congruent, Congruent-
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Baseline, Incongruent-Baseline) for each time-channel data point and the same differences in the 

intentional binding measures (participants’ judgment errors). For the sake of robustness, we will 

limit the description of the significant correlations to those involving ERP effect that were 

significant at the mass univariate ERP analyses, that is, to the ERP components that were both 

significantly modulated by the experimental conditions and, in turn, significantly modulated 

participants’ behavioral performance (intentional binding measures); in other words, we will 

describe the results of intersection analyses between the mass-univariate ERP significant results 

and the mass-univariate brain-behavior significant correlations. Moreover, we will not describe 

significant correlations that involve less than ten consecutive time-points (i.e., significant effects 

lasting <10 ms) and less than three contiguous channels.   

No part of the study procedures and analysis was pre-registered prior to the research being 

conducted. 

3. Results 

3.1 Behavioral results 

Imitation-inhibition task 

The ANOVA on Error rates revealed a significant effect of Congruency (F(2,54) = 35.53; p < 0.001; 

η2p = 0.57), with more errors in incongruent condition (Mean = 12.5%, SD = 10%) as compared 

to congruent (Mean = 1.6%, SD = 2.2%) and baseline (Mean = 2.9%, SD = 2.5%) conditions (all 

ps < 0.001).  

The ANOVA on RTs revealed a significant effect of Congruency (F(2,54) = 108.93; p < 0.001; η2p 

=0.80), with faster RTs in the congruent condition (Mean = 427 ms; SD = 63 ms) than incongruent 

(Mean = 493 ms; SD = 78 ms) and baseline (Mean = 475 ms; SD = 70 ms) conditions (ps < 0.001), 

which in turn did not differ from each other.  

Intentional binding (time-judgement errors) 

Finally, the ANOVA on the time-judgment errors revealed a significant effect of Congruency 

(F(2,54) = 3.18; p < 0.05; η2p = 0.11). Incongruent condition (Mean = −62 ms; SD = 74 ms) led to 

significantly greater interval estimates, and consequently to reduced intentional binding, as 

compared to congruent condition (Mean = −72 ms; SD = 81 ms) (p = 0.04), while a marginally 

significant difference was observed between congruent and baseline conditions (Mean = −61 ms; 

SD = 80 ms) (p = 0.06).  
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3.2 Electrophysiological Results and ERP-Behavior Correlation   

3.2.1 Target ERPs 

The mass univariate analysis of the main effect of Condition revealed a number of significant 

differences (critical F(2, 54) = 3.57). Based on their distinct spatio-temporal characteristics these 

ERP differences were grouped into four main clusters, as detailed below (see Fig. 2).  

<Fig. 2 here> Figure 2. Electrophysiological results, Target epoch. Raster diagram showing significant 

differences across ERPs elicited by the three experimental conditions according to the TFCE permutation test (see 

text). Channels are represented on the y axis and time points on the x axis (in ms relative to the target onset). 

Rectangles in warm colors indicate channels/time points showing significant condition-dependent ERP differences 

corrected for multiple comparisons. The color bar on the right indicates F values. Green rectangles indicate 

electrodes/time points showing no significant differences. 

The first significant ERP effect was observed between 130 and 160 ms and concerned an early 

positive ERP component distributed over occipito-parietal electrodes. We observe increased 

(more positive) amplitudes for both Congruent and Incongruent relative to the Baseline condition 

(Fig. 3A, B). Based on its spatio-temporal pattern, this ERP effect can be described as a stronger 

visual P100 component for non-Baseline conditions. Concurrently with this we observe an 

increased (more negative) ERP amplitude for both Congruent and Incongruent relative to the 

Baseline condition over frontal electrodes. (Fig. 3A, C). 

<Fig 3 here> Figure 3. Electrophysiological results, Target epoch, P100 effect. The topoplot in (A) shows the 

scalp distribution of the F values for the main effect of congruency on ERP amplitudes corresponding to the time 

point when the P100 effect revealed by the TFCE permutation test was maximal (148 ms, also see the dotted 

vertical line in plots depicted in panels B and C). Channels belonging to spatio-temporal cluster showing significant 

effects are depicted as black squares. (B, C) The plots show the ERPs for the three experimental conditions 

averaged across channels showing maximal effects: POz, PO3, and PO4 for (B) and AFz, AF3, and AF4 for (C). 

 

The second significant ERP effect was observed between 180 and 210 ms and concerned a 

negative ERP component distributed over left and right occipito-temporal electrodes. We observe 

increased (more negative) amplitudes for both Congruent and Incongruent relative to the Baseline 

condition (Fig 4A, B). Based on its spatio-temporal pattern, this ERP effect can be described as a 

stronger N200 component for non-Baseline conditions. Concurrently with this we observe an 

increased (more positive) ERP amplitude for both Congruent and Incongruent relative to the 

Baseline condition over fronto-central electrodes (Fig 4A, C).  

<Fig 4 here> Figure 4. Electrophysiological results, Target epoch, N200 effect. The topoplot in (A) shows the 

scalp distribution of the F values for the main effect of congruency on ERP amplitudes corresponding to the time 

point when the N200 effect revealed by the TFCE permutation test was maximal (201 ms, see the dotted vertical line 

in plots depicted in panels B and C). Channels belonging to spatio-temporal cluster showing significant effects are 

depicted as black squares. (B, C) The plots show the ERPs for the three experimental conditions averaged across 

channels showing maximal effects: P10, P8, PO9 and P7 for (B) and FCz, FC1, and FC2 for (C). 
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Interestingly, the third significant ERP effect was observed between 250 and 350 ms peaking 

around 300 ms over centro-parietal electrodes. We observe increased (more positive) amplitudes 

for both Congruent and Incongruent relative to the Baseline condition (Fig. 5A). The spatio-

temporal pattern of this ERP suggest that belong to a typical P300 component. In addition, we 

observe a cluster of activities with increased amplitude for the Congruent relative to the 

Incongruent condition between 300 and 350 ms (Fig. 5B). The amplitude of this P300 effect was 

the highest for the Congruent condition, it was followed by the Incongruent condition, and finally 

by the Baseline condition. Concurrently with this we observe an increased (more negative) ERP 

amplitude for both Congruent and Incongruent relative to the Baseline condition left and right 

temporal channels  (Fig. 5A, C). 

<Fig 5 here> Figure 5. Electrophysiological results, Target epoch, P300 effect. The topoplot in (A) shows the 

scalp distribution of the F values for the main effect of congruency on ERP amplitudes corresponding to the time 

point when the P300 effect revealed by the TFCE permutation test was maximal (306 ms, , see the dotted vertical 

line in plots depicted in panels B and C). Channels belonging to spatio-temporal cluster showing significant effects 

are depicted as black squares. (B, C) The plots show the ERPs for the three experimental conditions averaged across 

channels showing maximal effects: CPz, CP1, and CP2 for (B) and P10, P8, PO9 and P7 for (C). The dotted line 

indicate the time point when the significant difference between Congruent and Incongruent trials was maximal.  

 

A fourth significant ERP effect was observed in a later time widow starting around 400 ms and 

likely represents the persistence of the P300 effect. As before, we observe increased (more 

positive) amplitudes for both the Congruent and Incongruent relative to the Baseline condition 

(Fig 6A, B). Concurrently with this we observed increased (more negative) ERP amplitudes for 

both the Congruent and Incongruent relative to the Baseline condition over temporal electrodes. 

The mass-univariate correlation analysis revealed that differences between the Congruent and the 

Baseline condition in this late P300 were positively correlated with the Behavioral differences 

(intentional binding measures) between the Congruent and the Baseline condition between 370 

and 430 ms. No significant correlations were observed for the Incongruent-Baseline differences 

(Fig. 6C, D). Importantly, a Steiger’s Z test for the comparison between correlations revealed that 

the peak brain-behavior correlation for the difference Congruent-Baseline was significantly 

different from the difference Incongruent-Baseline (Z = 2.17, p = .030), showing that the brain-

behavior correlation was specific for the Congruent condition rather than a non-Baseline effect. 

 

<Fig 6 here> Figure 6. Electrophysiological results, Target epoch, late P300 effect. The topoplot in (A) 

shows the scalp distribution of the F values for the main effect of congruency on ERP amplitudes corresponding to 

the time point when the late central effect revealed by the TFCE permutation test was maximal (414 ms, also see the 

dotted vertical line in plots depicted in panels B). Channels belonging to spatio-temporal cluster showing significant 
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effects are depicted as black squares. The plot in (B) shows the ERPs for the three experimental conditions averaged 

across CPz, CP1, and CP2 channels. The scatterplot in (C) shows the significant brain-behavior correlation between 

the Congruent vs. Baseline behavioral effect (y axis) and the corresponding ERP effect extracted from the centro-

parietal channel (CP2) and time point (420 ms) showing the maximal effect (x axis). The scatterplot in (D) shows 

the non-significant brain-behavior correlation between the Incongruent vs. Baseline behavioral effect and the 

corresponding ERP effect extracted from the same channel and time point used in (C). 

 

3.2.2 Pre-response ERPs  

The mass univariate analysis of the main effect of Condition revealed a number of significant 

differences (critical F(2, 54) = 3.64) near the time of the response. Based on their distinct spatio-

temporal characteristics these ERP differences were grouped into three main clusters, as detailed 

below (see Fig. 7).  

<Fig 7 here> Figure 7. Electrophysiological results, Pre-response epoch.  Raster diagram showing significant 

differences across ERPs elicited by the three experimental conditions according to the TFCE permutation test (see 

text). Channels are represented on the y axis and time points on the x axis (in ms relative to the response). 

Rectangles in warm colors indicate channels/time points showing significant condition-dependent ERP differences 

corrected for multiple comparisons. The colorbar on the right indicates F values. Green rectangles indicate 

electrodes/time points showing no significant differences. 

 

A significant ERP effect was observed around 350 ms before the response and corresponded to a 

pre-response positivity distributed over centro-parietal electrodes. We observe an early and larger 

response for Incongruent relative to both the Congruent and Baseline conditions, an effect that 

was sustained until the response time (Fig. 8A, B). The mass-univariate correlation analysis 

revealed that ERP differences between the Incongruent and the Congruent condition were 

negatively correlated with the Behavioral differences (intentional binding measures) between the 

Incongruent and the Congruent condition around 270 ms before the response and between 150 

and 30 ms before the response, while the brain behavior correlations involving the Incongruent-

Baseline and Congruent-Baseline differences were not significant (Fig. 8C, D). Opposite 

correlations were found for the Incongruent-dependent negativity over left anterior-frontal 

electrodes in similar time windows.  

 

<Fig 8 here> Figure 8. Electrophysiological results, Pre-response epoch, pre-response positivity effect.  The 

topoplot in (A) shows the scalp distribution of the F values for the main effect of congruency on ERP amplitudes 

corresponding to the time point when the early centro-parietal positivity effect revealed by the TFCE permutation 

test was maximal (-336 ms, see the dotted vertical line in plots depicted in panels B). Channels belonging to spatio-

temporal cluster showing significant effects are depicted as black squares. The plot in (B) shows the ERPs for the 

three experimental conditions averaged across CPz, CP1, and CP2 channels. Note that the effect lasted until around 

the time of the response. The scatterplot in (C) shows the significant brain-behavior correlation between the 

Incongruent vs. Congruent behavioral effect (y axis) and the corresponding ERP effect (x axis) extracted from the 
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centro-parietal channel (CPz) and time point (-140 ms) showing the maximal effect. The scatterplot in (D) shows 

the non-significant brain-behavior correlation between both the Incongruent vs. Baseline and the Congruent vs. 

Baseline behavioral effects and the corresponding ERP effects extracted from the same channel and time point used 

in (C). 

 

At the same time, 280 ms before the response the ERP effects spread over frontal electrodes and, 

gradually, all over the scalp, with a complex spatio-temporal pattern. Specifically, more anterior 

electrodes showed a sustained negativity while parietal electrodes showed a sustained positivity 

between 200 and 100 ms before the response.  These responses were significantly greater for the 

Incongruent as compared to both the Baseline and Congruent conditions, and also greater for the 

Baseline as compared to the Congruent condition (Fig. 9 A-C). 

 

 

<Fig 9 here> Figure 9. Electrophysiological results, Pre-response epoch, anterior negativity. The topoplot 

in (A) shows the scalp distribution of the F values for the the main effect of congruency on ERP amplitudes 

corresponding to the time point when the anterior negativity effect revealed by the TFCE permutation test was 

maximal (-147 ms). Channels belonging to spatio-temporal cluster showing significant effects are depicted as black 

squares. The plots in (B, C) show the ERPs for the three experimental conditions averaged across channels showing 

maximal effects: P1 and P3 for (B) and F3 and AF3 for (C). The dotted line indicate the time point when the 

significant difference across condition was maximal. 

 

3.2.3 Post-response ERPs 

The mass univariate analysis of the main effect of Condition revealed a number of significant 

differences (critical F(2, 54) = 3.64) that were continuous in time after the response. Based on their 

distinct spatio-temporal characteristics ERP differences were grouped into three main clusters, as 

detailed below (see Fig. 10). 

 

<Fig 10 here> Figure 10. Electrophysiological results, Post-response epoch.  Raster diagram showing 

significant differences across ERPs elicited by the three experimental conditions according to the TFCE 

permutation test (see text). Channels are represented on the y axis and time points on the x axis (in ms relative to 

the response). Rectangles in warm colors indicate channels/time points showing significant condition-dependent 

ERP differences corrected for multiple comparisons. The colorbar on the right indicates F values. Green rectangles 

indicate electrodes/time points showing no significant differences.  

 

A significant ERP effect was observed between -30 and 30 ms around the response time and 

concerned a positive ERP distributed over centro-parietal electrodes. These responses were the 

largest (more positive) for the Congruent condition, followed by the baseline condition and finally 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15 
 

by the Incongruent condition. (Fig. 11A, B). Concurrent ERP responses over frontal electrodes 

mirrored this pattern of results (Fig. 11A, C). 

 

<Fig 11 here> Figure 11. Electrophysiological results, Post-response epoch, peri-response effect. The 

topoplot in (A) shows the scalp distribution of the F values for the significant differences across ERPs elicited by 

the three experimental conditions corresponding to the time of the response (0 ms, also see the dotted vertical line in 

plots depicted in panels B). Channels belonging to spatio-temporal cluster showing significant effects are depicted 

as black squares. The plots in (B, C) show the ERPs for the three experimental conditions averaged across channels 

showing maximal effects: CPz, CP1 and CP2 for (B) and F7, FT7 and FC5 for (C).  

 

A second significant ERP effect was observed between 40 and 70 ms and was characterized by a 

widespread distribution over the scalp with a single spatial cluster of significant electrodes. We 

observe increased negative ERP responses for Incongruent as compared with both Congruent and 

Baseline conditions over central sites (Fig. 12A, B). In addition, the mass-univariate correlation 

analysis revealed that all the three ERP amplitude differences (Incongruent-Congruent, 

Incongruent– Baseline, and Congruent–Baseline) over CPz and CP1 were positively correlated 

with the corresponding behavioral effects (intentional binding measures) (Fig. 12C-E). At the 

same time, ERP differences were observed over anterior channels with more negative ERP 

amplitudes for both Congruent and Incongruent as compared to the Baseline condition. The mass-

univariate correlation analysis revealed that all the three ERP effects differences (Incongruent–

Congruent, Incongruent–Baseline, and Congruent–Baseline) over left fronto-temporal electrodes 

were negatively related to the corresponding behavioral effects (intentional binding measures). 

Lastly, we observed increased positive posterior ERP responses for both Congruent and 

Incongruent as compared to the Baseline condition. 

 

<Fig 12 here> Figure 12. Electrophysiological results, Post-response epoch, early centro-parietal effect. 

The topoplot in (A) shows the scalp distribution of the F values for the significant differences across ERPs elicited 

by the three experimental conditions corresponding to the time point when the early centro-parietal effect revealed 

by the TFCE permutation test was maximal (63 ms). Channels belonging to spatio-temporal cluster showing 

significant effects are depicted as black squares. The plot in (B) shows the ERPs for the three experimental 

conditions averaged across CPz and CP1 channels. The scatterplot in (C) shows the significant brain-behavior 

correlation between the Incongruent vs. Congruent behavioral effect (y axis) and the corresponding ERP effect (x 

axis) extracted from the centro-parietal channels (CPz) and time point (50 ms) showing the maximal effect (see the 

vertical dotted line in b). The scatterplots in (D) and (E) show, respectively, the significant brain-behavior 

correlation between the Incongruent vs. Baseline and the Congruent vs. Baseline behavioral effects and the 

corresponding ERP effects extracted from the same channel and time point used in (C). 
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The last significant ERP effect was observed in a time widow starting from 160 ms and lasting 

until the end of the epoch. Generally, this effect was characterized by similar scalp topography 

and ERP amplitudes as compared with the effects described in the previous paragraph and could 

be considered as their continuation.  

4. Discussion 

In the present study we aimed at investigating electrophysiological correlates of the fluency of 

action and how they were related to intentional binding. It is important to note that we refer to 

the fluency of action selection and not to the fluency between actions and outcomes. 

Therefore, we primarily focused on response preparation and execution processes prior the 

sensory consequences of the actions. We recorded EEG signals while participants performed an 

imitation-inhibition task in combination with a time estimation task. Participants performed an 

action (key release) and in parallel they observed an actor performing their same movement 

(congruent condition), or an opposite movement (incongruent condition) or no movement 

(baseline condition). Their action produced an effect (auditory effect), and we asked them to judge 

the intervals between their action and the ensuing effect. In line with our previous behavioral 

findings (Vastano et al., 2017) we replicated a larger intentional binding effect for Congruent 

relative to Incongruent trials. Consistent with a fluency account of SoA (Valerian Chambon & 

Haggard, 2012; Valérian Chambon et al., 2014; Wenke, Fleming, & Haggard, 2010) our results 

demonstrate the relevance of a correspondence between intention and action and, thus, of a 

coherent integration of action representations for the experience of agency. In order to investigate 

the impact of conscious processing of stimulus-congruency and response-fluency on the 

intentional binding we focused on EEG components associated with target and response 

processing, respectively. 

4.1 Target processing and SoA 

Components that showed a difference between the two movements conditions and baseline:  

The stimulus display elicited two early brain responses (i.e. a P100 and a N200) most likely related 

to attention and processing of biological motion. The first component was observed between 130-

160 ms on bilateral occipito-parietal electrodes. The amplitude of this visual P100 response was 

larger for both congruent and incongruent compared with Baseline trials. This effect seems to 

reflect a stronger visual processing for trials where an imperative stimulus (in both Congruent and 

Incongruent trials) was presented as compared with trials where no finger movement was 

presented (Baseline condition). This interpretation is line with previous ERP studies that show 
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enhanced P100 response for stimuli bearing a distinctive feature (such as a specific color) that 

grab the attention of participants (see for instance (Zhang & Luck, 2009)). 

A second negative ERP response was observed between 180 and 210 ms over bilateral occipito-

temporal sites. The amplitude of this response was higher for both congruent and incongruent 

compared with Baseline trials. Previous studies have shown that the observation of human forms 

and biological motion evokes a negative response peaking around 170–200 ms post-stimulus onset 

maximal over posterior occipito-temporal electrodes (Hirai, Fukushima, & Hiraki, 2003; Hirai, 

Senju, Fukushima, & Hiraki, 2005; Krakowski et al., 2011; White, Fawcett, & Newman, 2014). 

In line with this evidence, in our study the observation of finger movement (in both Congruent 

and Incongruent trials) induced a larger N200 response irrespectively if they were congruent or 

incongruent with the imperative cue, thus suggesting that this response is selective for biological 

motion processing.   

Finally and more interestingly, we observe later components related to high-level cognitive 

processes.   

The results showed first a centro-parietal positive ERP response that peaked around 300 ms. The 

amplitude of this P300 response was larger for both congruent and incongruent compared with 

baseline trials. This P300 effect seems to represent a surprise effect or mismatch detection process 

reminiscent of evoked  P300-like responses for deviant stimuli (Polich, 2007). The surprise effect 

on the P300 amplitude has been located at the anterior cingulate cortex and is interpreted as a 

disruption of attentional resources by unexpected stimuli appearing among standard stimuli 

(Huster, Westerhausen, Pantev, & Konrad, 2010; Polich, 2007). The central distribution and short 

latency of our P300 fit the description of this effect. Our Baseline stimuli are unexpected events 

because, contrary to the other conditions (the Congruent and the Incongruent) no motion was 

displayed. In addition, from the total of trials, the Baseline trials were less probable than the trials 

showing finger movements (Congruent and Incongruent trials summed together). 

Component revealing a difference between congruent and incongruent trials:  

Importantly, a later but similar ERP response was found in this spatial configuration between 300-

350 ms. This response was also larger for both Congruent and Incongruent compared with 

Baseline trials, but crucially we observe a larger response for the Congruent compared with 

Incongruent and Baseline trials. Previous studies in social cognitive neuroscience have suggested 

a link between P300 and self-other distinction processes (Deschrijver, Wiersema, & Brass, 2015; 

Deschrijver et al., 2017; Holeckova, Fischer, Giard, Delpuech, & Morlet, 2006; Longo, Musil, & 

Haggard, 2012). A previous study on the imitation-inhibition task showed a larger P300 amplitude 
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for the Congruent relative to Incongruent and Baseline trials and was interpreted in terms of self-

other distinction (Deschrijver et al., 2017). The authors suggested that a self-other distinction 

mechanism was required to distinguish the intended from the externally triggered motor plans, 

with the congruency effects reflecting conflict between two motor plans. Our findings of enhanced 

responses for the Congruent relative to the Incongruent and Baseline conditions for this late P300 

are in agreement with these previous findings. However, we note some distinctions regarding the 

current and this previous study. Our data-driven approach aimed at investigating differences in 

the entire spatio-temporal domain instead of focusing in selected a priori time windows. Despite 

the different approaches, our results converge with the results of Deschrijver et al. (2017), with 

larger responses for Congruent trials. The P300 described there, would correspond to our 

component that here we labeled as a late P300 (300-350 ms), since statistical differences in 

Deschrijver et al. (2017) were found in a time-window ranging from 310 to 430 ms. Although 

these results can be interpreted in terms of self-other distinction processes we might also consider 

other important interpretations.   

Previous studies have suggested that the P300 component might reflect a measure of mental 

workload. These studies have shown decreased amplitude and latency of the P300 for tasks with 

high difficulty (for a review see (Kok, 2001), such as in paradigms involving stimulus-response 

incompatibility (Ragot & Fiori, 1994; Sebanz et al., 2006), complex conceptual operations 

(García-Larrea & Cézanne-Bert, 1998; Ullspererg, Metz, & Gille, 1988), and response complexity 

(Ragot & Fiori, 1994; Ragot & Renault, 1981). These studies suggest that smaller P300 amplitudes 

for difficult conditions might represent a reduction of attentional resources due to high cognitive 

load (Kok, 2001; Polich, 2007). More importantly, studies on stimulus-response compatibility, 

like our paradigm, showed a larger P300 amplitude on trials where the target was congruent 

relative to incongruent with the performed action (Deschrijver et al., 2017; Ragot & Fiori, 1994; 

Sebanz et al., 2006). Our results converge with this evidence and is supported by the fact that 

congruent trials were responded faster and were less prone to errors (that is, have a low cognitive 

load) as compared with baseline and incongruent trials. Interestingly, we found that ERP 

differences for the late P300 (420 ms) between the Congruent and the Baseline condition were 

positively correlated with the same Behavioral differences (Congruent - Baseline intentional 

binding measures). Thus, participants with larger differences (Congruent - Baseline) in the late 

P300 have also larger differences (Congruent-Baseline) in judgment errors, and thus stronger 

differences in implicit SoA. This is a specific effect for the Congruent condition since the other 

brain-behavior correlation involving the Incongruent condition was non-significant and 

significantly smaller.  
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 These findings suggest that a perceived stimulus that reduces the cognitive load by 

facilitating the performance impacts positively the SoA through a P300 effect. This interpretation 

is reinforced by the positive correlation between the difference in P300 amplitude and the 

difference in intentional binding (congruent dependent effect). In addition, we suggest that this 

late P300 might represent an electrophysiological marker associated with SoA: for tasks where 

observed targets do not interfere with the to-be performed actions, and thus have reduced cognitive 

load, we can expect larger late P300 amplitudes reflecting stronger intentional binding effects. To 

our knowledge, this is the first study showing a link between a supraliminal target processing and 

the intentional binding. Our results put forward the pivotal role of conscious elaboration of the 

external environment on response preparation impacting the subsequent, more cognitive, SoA.   

An alternative explanation that also fits our results, is that a high late P300 amplitude in the 

Congruent condition might result from higher motivational significance of the stimulus and paid 

attention. In order to perform the time estimation task we speculate that participants might have 

focused on the contingencies between the target and action outcome. In this scenario, the 

Congruent trials represent relevant and positive stimuli that can involve higher attentional 

resources. Thus, congruent trials represent a positive significance and capture more attention for 

the execution of the secondary task. In line with these ideas, it has been shown that the P300 

reflects the phasic activity of the neuromodulatory locus coeruleus (LC)-norepinephrine system 

(NE) (Nieuwenhuis, Aston-Jones, & Cohen, 2005). LC phasic response is driven by salient stimuli 

and task-relevant decisional processes that in turn facilitate the performance, as also shown for 

the P300 response. Although here we cannot provide a direct link between LC phasic response 

and P300, we speculate that congruent trials enhanced the LC phasic activity producing higher 

P300 amplitude and a better performance as reflected by faster RTs and higher accuracy for these 

trials.  

Overall, the reduced cognitive load and the high motivational significance of a congruent 

supraliminal perceived stimulus would induce participants to perceive positively the target-action-

outcome link signaling a larger P300 effect associated with a stronger SoA.     

4.2 Pre-response effects and SoA 

Responses to the stimulus displays were associated with positive pre-response ERP activities that 

covered centro-parietal electrodes. The amplitude of these ERP responses were larger for 

Incongruent compared with Congruent and Baseline trials and was sustained from 350 ms before 

the response until the moment of the response. A centro-parietal positive ERP previous to a 

movement was originally described by Deecke et al.1969 as a motor potential occurring before 
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movement onset and reflecting processes related to voluntary self-triggered movement initiation 

(Deecke, Scheid, & Kornhuber, 1969). Our study show some convergence with this notion in the 

sense that our task required voluntary actions. However, these actions were triggered by an 

external stimulus (a target number) and were associated with conflictive (incongruent trials) and 

non-conflictive (congruent and baseline trials) situations. A more recent study (Lucci, Berchicci, 

Spinelli, & Di Russo, 2014) compared compatible and incompatible movements: drawing 

simultaneously with both hands a circle or a vertical line and drawing simultaneously a circle with 

the left hand and a vertical line with the right hand or vice versa, respectively. The authors showed 

a larger central positivity for incompatible relative to compatible movements two seconds before 

the movement until movement onset. A source analysis identified the lateral premotor cortex 

(PMAd; BA 6) of both hemispheres as a cortical source of the central positivity for incompatible 

movements. The authors concluded that incompatible and anti-phase movements that generated 

the pre-movement central positivity activated a well-known “interference network” which 

engages different motor areas, such as the premotor cortex, the bilateral supplementary motor area 

(SMA), the cingulate motor area (CMA), and the bilateral parietal cortex (Ehrsson, Kuhtz-

Buschbeck, Forssberg, Gerloff, & Hummel, 2002; Sadato, Yonekura, Waki, Yamada, & Ishii, 

1997). This evidence supports the notion that the larger positive pre-response ERP activities (at 

Cz) for the Incongruent condition relative to the Congruent and Baseline ones in our paradigm are 

associated with the complexity of motor preparation and interference processes for Incongruent 

trials. Interestingly, we also observe that pre-response ERP differences (around 270 ms before the 

response) between the Incongruent and the Congruent condition were negatively correlated with 

the Behavioral differences (intentional binding measures) between the Incongruent and the 

Congruent condition. Thus, participants with larger differences (Incongruent-Congruent) in this 

pre-response central-positivity have smaller differences (Incongruent-Congruent) in time-

judgment errors. We believe that this result is driven by the incongruent condition and interference 

processes. In other words, when the congruency-effect is reduced the motor interference pre-

response increases generating higher pre-response positivity. We conclude that pre-movement 

interference processes typical of incongruent trials has a negative impact on the intentional 

binding effect. The electrophysiological marker of this effect is represented by higher pre-

response central positivity.  

We also found a frontal negativity with an increased ERP response for Incongruent relative to 

Congruent trials around 280 ms before the response at frontal electrodes (Fig. 9C). This result is 

reminiscent of the effects found for the readiness potential (RP) in a previous study of the 

imitation-inhibition paradigm (Deschrijver et al., 2017). We think that this ERP effect reflects 
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motor preparation processes: in the Congruent condition the facilitation of the participant’s 

responses results in less negativity ERPs compared with the Incongruent condition where action 

selection is interfered. 

4.3 Post-response effects and SoA 

Responses to the stimulus displays were associated with negative post-response ERP activities 

that covered centro-parietal electrodes during the time of the response until 70 ms later. The 

amplitude of these ERP responses were larger for Incongruent compared with Congruent and 

Baseline trials (early centro-parietal effect - Fig.12). Although a bit more central than usual the 

observed topography and timing suggest the presence of a correct-related negativity-like (CRN-

like) potential. The CRN is a fronto-central ERP response that appear within a short time window 

of 100 ms after a correct response (Coles, Scheffers, & Holroyd, 2001; Vidal, Hasbroucq, 

Grapperon, & Bonnet, 2000). The CRN is said to reflect response evaluation processes, in 

particular for uncertainty about correct response and post-response conflict monitoring 

(Grützmann et al., 2014; Kwapil et al., 2008; Pailing & Segalowitz, 2004). In our paradigm the 

Incongruent condition might have induced uncertainty in the response due to conflicting 

information from the observed stimulus. This uncertainty might have elicited an increased 

negative CRN-like response for Incongruent compared with Baseline and Congruent conditions.  

While our primary focus was on motor preparation and action execution mechanisms, rather than 

on processing of action effects, we can also consider an alternative explanation related to the 

expectation of the outcomes. Participants’ response was always followed by an auditory outcome 

to which participants are asked to respond to complete the secondary time estimation task, and 

therefore highly expected. The auditory outcome was delivered after participants’ response (300 

ms later at the shortest interval). In this context, one possibility is that post-response ERP activities 

(early centro-parietal effect) can also reflect stimulus anticipation processes. Our analysis showed 

that slow negative ERPs unfolded in time at central electrodes with more negative responses for 

the Incongruent condition and continue to be negative for all of the three conditions until the end 

of the epoch. Slow negative potentials (at central electrodes) preceding stimulus onset have been 

shown to be related to anticipation processes, such as anticipation of probes, and affective and 

informative stimuli (van Boxtel & Böcker, 2004). The contingent negative variation (CNV) is a 

negative potential recorded on the vertex that appears before an imperative expected stimulus at 

which participants need to react (Walter, Coorper, Aldrige, McCallium, & Winter, 1964). The 

CNV has been also linked to arousal, motivation, and information processing (Tecce, 1972). Since 

in our paradigm responses were always followed by the auditory outcome, these stimuli could be 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 
 

expected by the participants in order to perform the secondary time-estimation task, with more 

anticipation for Incongruent trials, given their conflictual characteristic.   

Finally, differences in post-response ERPs activities (early centro-parietal effect) were 

correlated with intentional binding effects. We found positive correlations between all the three 

ERP differences (Incongruent-Congruent, Incongruent–Baseline, and Congruent–Baseline) and 

the corresponding behavioral effects (intentional binding measures) (Fig. 12). Thus, participants 

with larger differences in this negative ERP have also larger differences in judgment errors, and 

thus stronger differences in implicit SoA. Since these correlations were unspecific to conditions, 

these results suggest that the central post-response ERP effects might indeed reflect expectation 

processes common to all conditions.  

5. Conclusions and future directions 

In this study we were interested in understanding whether intentional binding is primarily driven 

by fluency induced by stimulus processing and response preparation or by processes following 

response execution. We provide evidence that both pre and post-response mechanisms are 

important in the generation of the intentional binding. However, stimulus processing and pre-

response mechanisms are the only ones showing specific brain-behavioral correlations.  

 To summarize, congruent with our predictions, we found that the fluency in action 

preparation has an influence on the intentional binding at the stimulus processing level, as shown 

by the late P300 modulated by the congruency-effect. The implicit SoA is therefore modulated by 

processes occurring also during the early stimulus processing stages, and it is boosted in situations 

where no interference occurs reducing the cognitive load. This conclusion is also based on the 

correlational result between the late P300 and intentional binding specific for congruent 

conditions.   

 In concordance with previous fluency account of agency (Valerian Chambon & Haggard, 

2012; Sidarus, Vuorre, Metcalfe, & Haggard, 2017) we found an effect of congruency also at the 

stage of action selection. Pre-response ERP activities (centro-parietal positivity) were enhanced 

for Incongruent trials, and possibly signal motor interference processes. A negative correlation 

confirmed this interpretation by showing higher centro-parietal positivity for reduced congruency-

effects in the intentional binding (incongruent-dependent effect).   

 Finally, the post-response ERPs also showed a larger ERP response (a central negativity) 

for Incongruent trials, an affect that seems to be associated with response uncertainty, however 

we fail to find a significant correlation selective for an incongruent-dependent effect. But we found 

that this post-response central negativity was positively correlated with the correspondent 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



23 
 

intentional binding effect in all the three conditions, presumably providing evidence for action-

outcomes anticipation processes.   

 Altogether, our study sheds new light regarding the neural correlates of the implicit SoA 

modulated by the action-congruency effects (using a supraliminal action-prime), as related to 

fluency of action.   

A final observation that needs to be pointed out is that we used intentional binding that 

represents only an implicit measure of agency and the simple causal relationship between 

actions and effects has an influence on this mechanism (Buehner, 2012; Buehner & 

Humphreys, 2009). However it has been shown that causality between events is not enough 

to generate the intentional binding effect, a strong effect requires that events in the external 

environment have to be recognized as consequences of one’s action (Buehner 2015; Cravo, 

Claessens, & Baldo, 2009; Engbert, Wohlschläger & Haggard, 2008). Although we do not 

test explicit judgments of agency, previous studies on explicit measures and fluency of 

actions show similar results to ours, that is the explicit sense of agency is reinforced when 

there is not discrepancy at the action selection level (Chambon & Haggard, 2012; Chambon, 

Sidarus, & Haggard, 2014; Sidarus & Haggard, 2016), this leads to the assumption that the 

fluency of action selection similarly affects explicit judgments of agency and the intentional 

binding effect. Our results, therefore, fit within agency mechanisms, adds to the existing 

literature on agency and opens new avenues for understanding how human behavior relates 

to the feelings of agency under conflict situations generated during preparatory and post-

action stages.   

 Nevertheless, future studies may address new questions on the topic of agency during 

incongruent situations and dysfluent mechanisms. For example, one could argue that when 

acting incongruently with an external stimulus there is more voluntariness that reinforces 

the subjective experience of being in control and as a consequence feeling more agency. This 

is because participants may experience to act in opposition to a stimulus or event to achieve 

an effect. Similarly, studies on effort showed that actions involving physical effort to cause 

an effect enhanced intentional binding, increasing the perception of self as intentional agents 

compared with actions without effort (Demanet, Muhle-Karbe, Lynn, Blotenberg & Brass, 

2013; Preston & Wegner, 2007; 2009).  Differently, our study together with other studies on 

fluency of action selection (Chambon & Haggard, 2012; Chambon, Sidarus, & Haggard, 

2014; Sidarus & Haggard, 2016) show less agency and poorer performance for conditions 

where there is a higher cognitive load during action planning (incongruent conditions). We 

believe that on the action selection level participants may not experience to act consciously 
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in opposition to an external event to generate outcomes, especially if these latter are equally 

predicted across conditions, like in our task. Our participants may experience mainly 

interference and uncertainty during action planning that reduces the subjective experience 

of being in control. Our aim was limited to understand neural correlates of intentional 

binding during the fluency of action selection. However, the use of different approaches to 

manipulate action-congruency and conflict based on different levels of action awareness may 

lead to different results. Therefore new studies are needed to advance knowledge on brain 

mechanisms of agency when external events for which we are aware impact the facilitation 

of obtaining expected effects and as a consequence the belief of being an agent.   
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