Comparison of dosimetric results obtained with different software for the cyclotron produced ⁴⁷Sc labeling a DOTA-folate radiopharmaceutical

<u>De Dominicis L.^{1,2}, De Nardo L.^{2,3}, Meléndez-Alafort L.⁴, Pupillo G.¹, Mou L.¹</u>

¹Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro (INFN-LNL), Legnaro. ²Università degli Studi di Padova, Dipartimento di Fisica e Astronomia, Padova. ³INFN-Sezione di Padova, Padova.

⁴Istituto Oncologico Veneto IOV-IRCCS, Padova.

lucia.de.dominicis@lnl.infn.it

Introduction

⁴⁷ Sc decay characteristics				
Half-life (d)	γ-emission (SPECT imaging)	β-emission (small- medium sized tumor treatment)		
	Energy [keV] (I [%])	Energy [keV] (I [%])		
3.3492	159.381 (68.3)	142.6 (68.4) 203.9 (31.6)		

47**Sc** is a promising radionuclide for the development of new theranostic radiopharmaceuticals thanks to its decay characteristics. Its production at cyclotrons, via the ^{nat}V(p,x)⁴⁷Sc nuclear reaction, is possible but co-produced Sc-contaminants should be considered since they may increase the exposure of a patient to the ionizing radiation.

> Main co-produced Sc-contaminants characteristics y-emission **β**-emission Half-life (d) Radioisotope Energy [keV] (I [%]) Energy [keV] (I [%]) 082 526 (100)

The radiation dose to a patient, due to ⁴⁷Sc and its contaminants, after the administration of a **DOTA-folate conjugate cm10** [1] labeled with cyclotron produced ⁴⁷Sc can be evaluated using some organ level dosimetry software, namely MIRDCalc 1.1 and IDACDose 2.1 [2,3]. The number of disintegrations, required as input by those software, are calculated scaling to humans the biodistribution studies carried out on mice [1].

⁴⁶ Sc	83.79	889.277 (99.9840)	111.8 (99.9964)
⁴⁸ Sc	1.82125	1037.522 (100) 1212 120 (100)	142.6 (9.88) 203.9 (90.12)

Organs absorbed doses

The absorbed dose for each organ returned by MIRDCalc 1.1 software or IDACDose 2.1 software are compared to the OLINDA 2.1.1 absorbed doses [4] by considering the relative differences.

Phantom models

MIRDCalc 1.1 and IDACDose 2.1 are both based on an anatomically realistic voxel phantom [5, 6] while the OLINDA 2.1.1 software uses a Non-Uniform Rational B-Splines (NURBS) phantom model [7].

The strongest accordance between the absorbed doses obtained with MIRDCalc 1.1 and IDACDose 2.1 software can be explained with the similar phantom model implemented which is different from the one used in OLINDA 2.1.1.

However, the three software are perfectly in agreement in the case of the kidney which is the organ receiving the highest absorbed dose.

Effective doses

For the ⁴⁷Sc production via the natV(p,x) nuclear reaction, the optimal irradiation conditions to maximize the amount of ⁴⁷Sc produced while minimizing the contaminants are 80 h as irradiation time and 35-19 MeV as energy interval [8]. In this energy interval ⁴⁸Sc is not produced so the total effective dose to a patient is only given by ⁴⁷Sc and ⁴⁶Sc.

While the total effective doses obtained with the three software increase with time due to the long ⁴⁶Sc half-life, the RadioNuclidic Purity (RNP) of ⁴⁷Sc decreases for the same reason.

References

- Müller C., et al. [2014] J Nucl Med 55: 1658-1664.
- Kesner A., et al. [2018] J Nucl Med 59(1): 473.
- Andersson M., et al. [2017] EJNMMI Research 7: 88.
- Stabin M. G., et al. [2005] J Nucl Med 46: 1023-1027.

