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. Introduction 

The concept of distance between linear time-invariant (LTI) sys- 

ems is important in systems and control theory. For example, it 

s used to measure the robustness of a given system with respect 

o a property, e.g., controllability or stability. In the input-output 

etting, the gap metric [4,11,37] defines a distance between LTI sys- 

ems. An equivalent metric (i.e., inducing the same topology) is the 

raph metric [27,28] . The computation of the gap metric [10] was 

hown to be equivalent to the solution of an optimization prob- 

em involving (right) coprime factorizations of the systems. An- 

ther metric called the Vinnicombe metric, or the ν-gap [29,30] , 

s used for stability analysis. 

It can provide a more stringent test for robustness with respect 

o the gap metric and it is easier to compute since it involves the 

omputation of the winding number of a rational function. 

Both the gap metric and the Vinnicombe metric are imple- 

ented in the Matlab function gapmetric [9] . More distances as- 

ociated with input-output maps are the L 2 gap, which is cheap 

o compute since it involves only a norm computation but is not 

seful in the context of robust stability [30] , and the Sasane–Ball 

etric [1] which extends the notion of gap to linear systems hav- 

ng nonzero initial conditions. 

The work by Ball and Sasane connects the classical gap metric 

ith the behavioral approach to system theory [20,33] introduced 
� This work was not supported by any organization. 
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y J. C. Willems. In the behavioral framework, LTI systems are de- 

ned as sets of trajectories, without distinction between input and 

utput variables. The behavioral approach motivated the study of 

he connection between the classical gap metric defined for input- 

utput maps and the distance between behaviors [1,2,19,23,25] . In 

articular, [25] extends four of the previously mentioned metrics 

the classical gap metric [37] , the L 2 metric [30] , the Sasane–Ball 

etric [1] and the Vinnicombe metric [29,30] ) from the classical 

nput-output setting to the behavioral setting by using a rational 

ehavioral representation [12,34] . 

The recent work in Padoan et al. [19] , on the other hand, pro-

oses a trajectory-based idea of distance for finite length behav- 

ors by showing its connection with the classical concept of gap . 

ts computation is easy and is based on the singular value decom- 

osition of the Hankel matrix built from an observed trajectory. 

e remark that all these distances are restricted to the subset of 

ontrollable behaviors. The controllability assumption is removed 

n Padoan et al. [19] by assuming a rank condition on the Han- 

el matrix generated by the system trajectory [15] . A definition of 

istance between behaviors without restrictions is motivated by a 

odel reduction problem in the behavioral setting [21] . 

The goal of this paper is to define a new metric in the behav- 

oral setting that is intuitive, computationally cheap, and applies 

o an arbitrary LTI system (unstable, uncontrollable, etc.). Such a 

etric is useful in distance problems, e.g., the distance to uncon- 

rollability, where systems representations are used in the defi- 

ition of distance (see Fazzi et al. [6] for details). Therefore, in 

his paper, we define a distance independent of the choice of the 

ystem representation. Inspired by the previous works, we pro- 

ose an adaptation of the concept of principal angles, and we 
Association. This is an open access article under the CC BY license 
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efine different distance measures as functions of the principal 

ngles. 

. Preliminaries and problem statement 

.1. Behavioral system theory 

In the behavioral setting [20] , LTI systems are defined as sets of 

rajectories. This allows for stating and defining system properties 

n terms of the observed trajectories of the system. 

An LTI dynamical system with q variables, B 

q , is characterized 

y a set of integer invariants [32] : q is the number of variables, m

s the number of inputs, p is the number of outputs, � the lag, and

 the order. These integers are a property of the system and do 

ot depend on the choice of representation. The complexity of the 

ystem is defined as the pair (m, n ) — (number of inputs, order). 

We denote by B| L the behavior B restricted to the interval [1 , L ] ,

hat is we truncate all trajectories to time L . By restricting the be-

avior to time L , we can write its dimension (as a vector space) in

erms of the complexity [16] : 

im B| L = n + mL. 

.2. Structured matrices 

Given a linear time-invariant system, there are different ways 

f representing its behavior. The notation w ∈ B| L means that w is 

 L -samples long trajectory of the system. A length- T trajectory w 

atisfies a difference equation: 

(R ) = { w | R 0 w (t) + R 1 σw (t) + . . . + R l σ
l w (t) = 0 } , (1)

or all t = 1 , . . . , T − l, where R (σ ) ∈ R 

p×q [ σ ] is a matrix polyno-

ial of degree � , usually called kernel representation, and σ is the 

hift operator σw (t) = w (t + 1) . 

By writing (1) in extended form as 

R 0 , R 1 , . . . , R � ) 

⎛ 

⎜ ⎜ ⎝ 

w (1) w (2) . . . . . 
. 

w (2) w (3) . . . 
. . . 

. . . . . 
. 

w (� + 1) w (� + 2) w (T ) 

⎞ 

⎟ ⎟ ⎠ 

= 0 , (2) 

we observe the arising of a Hankel matrix H � +1 (w ) (the subscript 

enotes the number of rows) generated by the entries of the tra- 

ectory w . A classical result in the behavioral setting, also known as 

undamental lemma [35] , states that, under suitable assumptions, 

he finite-length behavior B L can be generated by one observed 

rajectory only by considering linear combinations of the columns 

f the Hankel matrix H � +1 (w ) : 

emma 1. Given a behavior B 

q of order n , let w ∈ B 

q 
T 

. Assume w =
u, y ) is an input-output partition of the variables. If 

1) B 

q is controllable, 

2) the input component u is persistently exciting of order L + n 1 , for

a certain 1 ≤ L ≤ T , 

then B 

q 
L 

= image H L (w ) 

It has been recently shown in Markovsky and Dörfler [15] that 

he assumptions in Lemma 1 can be replaced by a rank condition 

n the Hankel matrix H L (w ) : this is important since it allows ex-

ending the same result to systems that are not necessarily control- 

able. However, a trajectory-based definition of distance has been 

lready proposed in Padoan et al. [19] , so we plan to use a differ-

nt structured matrix associated with the full behavior B 

q 
. 
L 

1 u is persistently exciting of order L if the Hankel matrix H L (u ) is full row rank. 

2

By writing (2) in a different way, we get the following result 

rom Fazzi and Markovsky [5] : 

emma 2. Given a behavior B L expressed by its kernel representation 

 L = ker R (σ ) , let R 1 (σ ) , . . . , R p (σ ) be the rows of R (σ ) . Then we

ave 

| L = ker T L (R ) = ker 

⎡ 

⎣ 

T L (R 

1 ) 
. . . 

T L (R 

p ) 

⎤ 

⎦ , for L ≥ � + 1 , 

here � is the degree of R (σ ) and T L (R 1 ) , . . . , T L (R p ) are generalized

oeplitz matrices with L block columns 

 L (R 

i ) = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

R 

i 
0 R 

i 
1 . . . R 

i 
� 

R 

i 
0 R 

i 
1 . . . R 

i 
� 

. . . 
. . . 

. . . 

R 

i 
0 R 

i 
1 . . . R 

i 
� 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (3) 

or i = 1 , . . . , p. 

The previous result holds true for any linear time-invariant sys- 

em. Moreover, the kernel representation does not change with the 

ength of the trajectory, even if the Toeplitz matrix T L (R ) does. But 

he kernel representation R (σ ) is not unique. The goal is to define 

 distance measure that does not depend on the particular choice 

or the kernel representation. 

.3. Problem statement 

As already stated, the kernel representation R (σ ) is not unique, 

ut it is well known that an equivalent kernel representation can 

e obtained by pre-multiplication by a unimodular matrix U(σ ) , 

hat is a square matrix polynomial whose determinant is a nonzero 

onstant. First of all, we will work with minimal kernel represen- 

ations. 

emark 3. Kernel representations are matrix polynomials having q 

olumns and (at least) p rows. If the number of rows is exactly p, 

he kernel representation is minimal, that is its rows are linearly 

ndependent on the ring of (scalar) polynomials. Every kernel rep- 

esentation can be reduced to a minimal one by applying suitable 

ransformations on its rows, therefore we can assume all the ker- 

el representations to be minimal without loss of generality. 

We observe that the pre-multiplication by an arbitrary unimod- 

lar matrix U(σ ) can, in general, change the degree of R (σ ) , that is

eg(U(σ ) R (σ )) > deg(R (σ )) . However, by considering Hankel ma- 

rices with � + 1 rows (we recall that the lag � is an invariant in-

eger for the system) and their left kernel(s), we can also assume 

hat all the kernel representations have the same (minimum) de- 

ree � . 

emark 4. By constraining the degree of all the kernel represen- 

ations to be minimum, we need to restrict the class of equiv- 

lent representations. The unimodular matrix polynomial has, in 

his case, a special form. It is a (square) invertible matrix whose 

ntries are scalar. 

The goal is to define a distance between two behaviors B 

1 
L (R 1 ) 

nd B 

2 
L 
(R 2 ) which does not change by premultiplying R 1 and R 2 by

nvertible matrices (see Remark 4 ). More formally: 

roblem 5. Given two finite-length behaviors B 

1 
L (R 1 ) , B 

2 
L (R 2 ) , de-

ne a distance which satisfies the following property: 

dist(B 

1 
L (R 

1 ) , B 

2 
L (R 

2 )) 

= dist(B 

1 
L (�1 R 

1 ) , B 

2 
L (�2 R 

2 )) ∀ �1 , �2 ∈ R 

p×p . (4) 
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. Motivating application 

The distance to uncontrollability problem in the behavioral set- 

ing has been already studied and analyzed in Markovsky et al. 

17] for SISO systems and in Fazzi et al. [6] for MIMO systems. 

his problem was stated as a distance to singularity for the kernel 

epresentation R (σ ) . Once we split the set of variables into inputs 

nd outputs, w = (u, y ) , the key idea is to partition accordingly the

ernel representation as R (σ ) = [ P (σ ) , Q(σ )] . This distance prob-

em was shown, then, to be equivalent to a distance to common 

ivisibility for the two (matrix) polynomials P (σ ) , Q(σ ) appearing 

n this input-output representation. And it was solved numerically 

ith the gradient system methodology proposed in Fazzi et al. [7] , 

uglielmi and Markovsky [14] for scalar polynomials and in Fazzi 

t al. [8] for matrix polynomials. The considered polynomial dis- 

ance was the classical norm of the difference between the poly- 

omial coefficients. 

But the distance between polynomial coefficients is represen- 

ation invariant in the SISO case only. When we deal with MIMO 

ystems, we need to fix a particular kernel representation to get a 

ell-posed definition of distance. To solve this issue, we are going 

o propose an alternative definition of distance which still depends 

n the kernel representations of the systems, but it has the same 

alue for each equivalent kernel representation: 

ist(R 

1 (σ ) , R 

2 (σ )) 

= dist(�1 R 

1 (σ ) , �2 R 

2 (σ )) ∀ �1 , �2 ∈ R 

p×p 

We observe that controllability is a classical example of a prop- 

rty that is usually defined in terms of system trajectories (see, e.g., 

arkovsky et al. [16 , Section 7.5]), but its test relies on the system

ernel representation. There are no trajectory-based characteriza- 

ions of distance to uncontrollability, up to our knowledge. 

emark 6. There are differences in the distance measures to un- 

ontrollability between the SISO Markovsky et al. [17 , Section 3] 

nd the MIMO Fazzi et al. [6 , Section II] cases. Distance measures 

or SISO systems are representation invariant (see Section 4.1 ), 

hile the same is not true in the MIMO case. This motivates the 

ntroduction of the proposed distance. 

. Principal angles between behaviors 

The principal angles are an extension of the classical angle be- 

ween two lines, and they are some quantities that are invariant 

nder isometric transformations. The distance we are going to pro- 

ose is based on the principal angles between the subspaces gen- 

rated by the Toeplitz matrices representing the two behaviors, as 

hown in Lemma 2 . The choice of the principal angles is motivated 

y the following 

heorem 7 ( [36, Theorem 2] ) . Any notion of distance between k -

imensional subspaces in R 

n that depends only on the relative posi- 

ions of the subspaces, i.e., it is invariant under any rotation, must be 

 function of their principal angles. 

Moreover, by looking at Edelman et al. [3 , Section 4.3], several 

istance measures in terms of the principal angles are proposed, so 

t is also possible to choose the one which best fits the considered 

roblem. Because of Lemma 1 and the rank condition on the Han- 

el matrix [15] , behaviors can be seen as low-order subspaces in 

 bigger vector space, that is as points on a Grassmann manifold 

26] . Therefore, suitable choices could be the arc-length distance 

ist = ‖ θ‖ 2 (this is the geodesic distance [31] ) or the classical pro-

ection distance [13] (which is the choice adopted in Padoan et al. 

19] ). 

The computation of such angles between the two Toeplitz ma- 

rices follows the algorithm in Golub and Van Loan [13 , Chapter 
3

2]. This is based on two simple steps: the (tiny) QR factorization 

f the two matrices and the computation of a singular value de- 

omposition. We list the main steps for the computation of the 

ngles and the associated distance in the following: 

1) Compute the tiny QR decomposition of the two matrices 

T L 1 (R 1 ) 
T = Q 1 T 1 

T L 2 (R 2 ) 
T = Q 2 T 2 

2) Compute the singular values � of the matrix Q 

T 
1 

Q 2 

3) θ = arccos �

4) Compute the distance as a function of θ . 

To fix the ideas, we define dist(R 1 , R 2 ) = ‖ θ‖ 2 , but other func-

ions of the principal angles can be fair alternative distances (see 

delman et al. [3 , Section 4.3]). 

emark 8. The considered matrices need to have more rows than 

olumns to get a non-trivial solution (not all the singular values of 

he orthogonal matrix, that is the cosines of the angles, equal to 1). 

his is why we transposed the Toeplitz matrices in the first step. 

or the same reason, we need to consider a tiny QR decomposition 

nstead of a full one. 

The Toeplitz matrices and their QR decompositions actually still 

epend on the particular kernel representation. The problem of 

efining a representation invariant measure of distance (accord- 

ng to the previous angle-based definition) is equivalent to the fact 

hat the matrix Q in the QR decomposition does not change by re- 

lacing R with �R in the kernel representation. We show how to 

ake it possible in the following sections, by analyzing separately 

he SISO and the MIMO case. 

.1. The SISO case 

In the SISO case, a kernel representation of a system has the 

eneral form R (z) = [ q (z) , p(z)] , where p(z) , q (z) are two scalar

olynomials. The number of outputs p equals 1, therefore �1 and 

2 in (4) are scalars. Given two SISO behaviors B 1 (R 1 ) , B 2 (R 2 ) hav- 

ng the same order, we consider two different equivalent kernel 

epresentations for each of them, 

R i (z) = [ q i (z) , p i (z)] i = 1 , 2 

i R i (z) = [�i q i (z) , �i p i (z)] �i ∈ R , i = 1 , 2 . (5) 

The problem is to understand when dist(R 1 (z) , R 2 (z)) = 

ist(�1 R 1 (z) , �2 R 2 (z)) ∀ �1 , �2 . 

We need the following result: 

emma 9. Given a matrix A and its QR factorization A = QT , mul-

iplying A (on the right) by an upper triangular matrix S does not 

hange the matrix Q in the QR factorization. 

roof. AS = QT S = Q(T S) . Since S is upper triangular, the matrix

 S is the upper triangular factor in the QR decomposition of AS. �

The multiplication of all the coefficients in kernel representa- 

ion by � changes the Toeplitz matrix from T L (R ) to T L (�R ) such

hat 

T L (�R ) = diag(�) T L (R ) ⇒ 

 L (�R ) T = T L (R ) T diag(�) T = T L (R ) T diag(�) (6) 

emark 10. Since �, as well as all the coefficients, are scalar, in 

he SISO case we do not care about left and right multiplications. 

By combining Lemma 9 and (6) , the matrix Q does not change 

n the QR factorization by changing the kernel representation. That 

s, in the SISO case, the choices for the distance measure (depend- 

ng on the principal angles) and the behaviors representations au- 

omatically give a representation invariant distance. 
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Algorithm 1: Block QR decomposition. 

Data : A (matrix to be decomposed), r (size of square blocks 

on the diagonal of rectangular factor) 

Result : Q (orthogonal), T (block upper triangular) such that 

A = QT 

begin 

1 Get the number of block columns � 

2 for i = 1 : � do 

3 Let C be the i -th block column of A 

4 Compute C = XZ (tiny QR factorization) 

5 Set as ˆ X the first r rows of X 

6 Compute the SVD 

ˆ X = W DV T 

7 Set Y = X + 

(
W V T 

0 

)

8 Compute Y = US (tiny QR factorization) 

9 Set Q i = I − 2 U U 

T , 

T i = Q i ∗ A, ˆ Q i = 

(
I 0 

0 Q i 

)

10 Delete from A the first r columns and the first r rows 

11 for j = 1 : � do 

Q = Q ∗ ˆ Q j 

12 Q = Q(: , 1 : r� ) , T = T (1 : r�, 1 : r� ) 

Fig. 1. Illustrative example of a block upper triangular factor in a block QR decom- 

position. The dimension of the blocks is 2 × 2 . 

5

l

a

s

[  

m

e

t

.2. The MIMO case 

In the MIMO case, a kernel representation R (σ ) = [ Q(σ ) , P (σ )]

s, in general, a matrix polynomial (a polynomial with matrix co- 

fficients). Changing kernel representation, according to Remark 4 , 

eans pre-multiplying by a p × p invertible matrix. We wonder if 

he same results of Section 4.1 hold true also in this case, but the

nswer is negative, in general. 

Given a matrix polynomial R (σ ) , we observe that its pre- 

ultiplication by � changes the corresponding transposed Toeplitz 

atrix as follows: 

 L (�R ) T = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

R 

T 
0 �

T 

R 

T 
1 �

T R 

T 
0 �

T 

. . . 
. . . 

R 

T 
� �

T 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

R̄ 

T 
0 

R̄ 

T 
1 R̄ 

T 
0 

. . . 
. . . 

R̄ 

T 
� 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎝ 

�T 

. . . 

�T 

⎞ 

⎟ ⎠ 

= T L (R ) T diag(�) T (7) 

The key point is now the structure of the matrix diag(�T ) : 

f �T is upper triangular, diag(�T ) is upper triangular too, and 

he same result from Section 4.1 (based on Lemma 9 ) still 

olds true. But this is not general, though. If �T is not up- 

er triangular, Lemma 9 cannot be applied and the orthogo- 

al matrix in the QR decomposition changes by switching kernel 

epresentation. 

To deal with this issue, we can use a block QR decomposi- 

ion which takes into account the dimension of the matrix � and 

omputes a block-upper triangular matrix in the QR decomposi- 

ion. This means that the diagonal coefficients of such a matrix are 

p × p blocks (of the same dimension of �T ). Doing so, we expect 

imilar invariance properties as the ones observed in Section 4.1 . 

ut such decomposition is not available in standard software 

ackages, so its computation needs to be implemented in an 

lgorithm. 

The idea for this block factorization comes from the extension 

f the classical Householder method [18,22,24] . We summarize in 

lgorithm 1 the code from [18] . 

By applying Algorithm 1 , the orthogonal factor Q still preserves 

ts properties (in the classical sense), but the structure of the trian- 

ular factor T is a bit different from the classical one, since its di- 

gonal elements are r × r matrices (see Fig. 1 for an example with 

 = 2 ). 

We can state now the following result: 

emma 11. Given a matrix A and its block QR factorization A = QT ,

ultiplying A (on the right) by a block upper triangular matrix does 

ot change the orthogonal factor Q in the block QR factorization. 

roof. It can be checked that multiplying two block upper trian- 

ular matrices gives a matrix with the same structure. Hence, if S

s a block upper triangular matrix, AS = (QT ) S = Q(T S) . Since T is

lock upper triangular, the matrix T S is the block upper triangular 

actor in the block QR decomposition of AS. �

To conclude, by applying this block factorization, we leave un- 

hanged the orthogonal matrix Q in the QR factorization. The com- 

utation of the principal angles, the choice for the behavior repre- 

entation and Lemma 11 allow having a representation invariant 

easure of distance. 
4 
. Numerical examples 

We show some numerical examples with MIMO systems to il- 

ustrate the previous results. 

We consider first the distance between a controllable system 

nd the closest uncontrollable one. This problem was stated and 

olved numerically by a local optimization approach in Fazzi et al. 

6] . The problem in Fazzi et al. [6] was solved as an approxi-

ate polynomials common factor computation, hence the consid- 

red (representation-based) distance depends on the coefficients of 

he polynomials. The proposed method, on the other hand, is in- 
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ariant on the choice of the representation (despite its computa- 

ion requiring a representation). 

Therefore, differently from Padoan et al. [19] , both these dis- 

ances are representation based. The classical definition of control- 

ability in the behavioral setting is the possibility of linking any 

wo system trajectories, up to a delay of time. It can be checked 

y a rank-test on the system representation. Therefore, a distance 

easure based on the representations is advisable. 

We consider a MIMO system with two inputs and two outputs, 

y generating two matrix polynomials (of degree 2) which form its 

ernel representation [ Q c (z) , P c (z)] = R c (z) . We look for the clos-

st uncontrollable system R u (z) = [ Q u (z) , P u (z)] by an approximate

ommon factor between Q c (z) and P c (z) (see Fazzi et al. [6] for the

etails). We compute then the two distances 

1) distance between polynomials coefficients: d PQ = √ ‖ P c − P u ‖ 2 F 
+ ‖ Q c − Q u ‖ 2 F 

2) distance defined by principal angles (see Section 4 ): 

dist(R c , R u ) = ‖ θ‖ 2 

 c (z) = 

(
−2 0 

0 2 

)
z 2 + 

(
2 −3 

3 0 

)
z + 

(
−5 0 

−3 1 

)

P c (z) = 

(
1 0 

0 1 

)
z 2 + 

(
−2 −1 

5 1 

)
z + 

(
0 −2 

2 −5 

)
(8) 

It can be checked that P c (z) and Q c (z) have no common roots,

ence the system associated with R c = [ Q c , P c ] is controllable. The

epresentation of the closest uncontrollable system (computed by 

he algorithm in Fazzi et al. [8] ) is (the following coefficients are 

ounded to the third decimal digit) 

 u (z) = 

(−1 . 276 −0 . 536 

0 . 657 1 . 398 

)
z 2 + 

(
2 . 125 −2 . 973 

3 . 206 −0 . 142 

)
z 

+ 

(−5 . 078 0 . 007 

−2 . 990 1 . 042 

)
(9) 

P u (z) = 

(
0 . 462 0 . 280 

−0 . 175 1 . 207 

)
z 2 + 

(−2 . 089 −0 . 843 

4 . 875 1 . 117 

)
z 

+ 

(−0 . 010 −2 . 019 

1 . 954 −5 . 042 

)
(9) 

We have d PQ = 1 . 483 and dist(R c , R u ) = 0 . 598 . What happens

y switching to equivalent representations for both (8) and (9) ? 

onsider 

R̄ c = 

(
1 1 

1 2 

)
R c = 

(
1 1 

1 2 

)
[ Q c , P c ] = [ ̄Q c , P̄ c ] 

¯
 u = 

(
1 2 

2 1 

)
R u = 

(
1 2 

2 1 

)
[ Q u , P u ] = [ ̄Q u , P̄ u ] (10) 

R̄ c and R̄ u represent the same systems (the same trajectories 

atisfy the associated difference equations). Hence, it would be 

ice if the computed value of distance does not change with the 

epresentation. However, this is true only for the distance proposed 

n the paper because the polynomial coefficients are completely 

ifferent. Indeed we have d P̄ ̄Q = 19 . 623 and dist( ̄R c , R̄ u ) = 0 . 598 . 

emark 12. The value d P̄ ̄Q only shows that the value of the dis- 

ance between the coefficients changes with the system represen- 

ation. It is not the distance of R̄ c to the closest uncontrollable 

ystem. Despite R c and R̄ c representing the same system, the al- 

orithm in Fazzi et al. [8] optimizes with respect to the starting 

olynomials (hence the need to fix a representation). Equivalent 

epresentations lead to different solutions. 
5 
The invariance property of the proposed distance can be further 

hecked on equivalent representations of random systems, gener- 

ted as follows: 

q = 4 ;
m 1 = 2 ;
m 2 = 2 ;
l1 = 1 ;
l2 = 1 ;
T = 100 ;
p1 = q − m 1 ;
p2 = q − m 2 ;
n 1 = l1 ∗ p1 ;
n 2 = l2 ∗ p2 ;
sys 1 = drss (n 1 , p1 , m 1) ;
sys 2 = drss (n 2 , p2 , m 2) ;
u 1 = randn (T , m 1) ;
y 1 = lsim (sys 1 , u 1) ;
w 1 = [ u 1 y 1] ;
u 2 = randn (T , m 2) ;
y 2 = lsim (sys 2 , u 2) ;
w 2 = [ u 2 y 2] ;
R 1 = nul l (bl khank (w 1 , l 1 + 1 , T − l1) ′ ) ′ 

R 2 = nul l (bl khank (w 2 , l 2 + 1 , T − l2) ′ ) ′ 

P 1 = randn (p1 , p1) ;
R 3 = P 1 ∗ R 1 ;
P 2 = randn (p2 , p2) ;
R 4 = P 2 ∗ R 2 ;

By using the factorization in Algorithm 1 , the principal angles 

ive dist(R 1 , R 2) = dist(R 3 , R 4) = dist(R 1 , R 4) = dist(R 3 , R 2) . This is

ecause the principal angles do not change by switching between 

quivalent representations. 

. Conclusion 

Working in the behavioral setting, where linear time-invariant 

ystems are defined as sets of trajectories, we proposed a new def- 

nition of distance measure based on the principal angles associ- 

ted with some structured matrices representing finite-length be- 

aviors. The proposed definition of distance is based on the sys- 

em kernel representation; such a representation is nonunique, but 

 suitable matrix factorization allows to return the same distance 

easure for each equivalent representation. 

We remark that we only defined a distance measure. Such a 

easure can be used to develop algorithms that compute the nu- 

erical solution of some (representation invariant) distance prob- 

ems. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgment 

The research leading to these results has received funding 

rom: the Catalan Institution for Research and Advanced Stud- 



A. Fazzi and I. Markovsky European Journal of Control 74 (2023) 100832 

i

p

S

U

l

R

 

 

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

es (ICREA), the Fond for Scientific Research Vlaanderen (FWO) 

rojects G090117N and G033822N; and the Fonds de la Recherche 

cientifique FNRS–FWO EOS Project 30468160. 

This project was partially supported by the Italian Ministry of 

niversity and Research under the PRIN’17 project “Data-driven 

earning of constrained control systems”, contract no. 2017J89ARP. 

eferences 

[1] J.A . Ball, A .J. Sasane, Equivalence of behavioral distance and the gap metric,
Syst. Control Lett. 55 (2006) 214–222 . 

[2] W. Bian, M. French, H.K. Pillai, An intrinsic behavioral approach to the gap met-

ric, SIAM J. Control Optim. 47 (2008) 1939–1960 . 
[3] A . Edelman, T.A . Arias, S.T. Smith, The geometry of algorithms with orthogo- 

nality constraints, SIAM J. Matrix Anal. Appl. 20 (1998) 303–353 . 
[4] A.K. El-Sakkary, The gap metric: robustness of stabilization of feedback sys- 

tems, IEEE Trans. Autom. Control AC-30 (1985) 240–247 . 
[5] A. Fazzi, I. Markovsky, Addition and intersection of linear time-invariant be- 

haviors, 2022. https://arxiv.org/abs/2107.01588 . 
[6] A. Fazzi, N. Guglielmi, I. Markovsky, Computing common factors of matrix 

polynomials with applications in system and control theory, in: Proc. of the 

IEEE Conf. on Decision and Control, Nice, France, 2019, pp. 7721–7726, doi: 10. 
1109/CDC40024.2019.9030137 . 

[7] A. Fazzi, N. Guglielmi, I. Markovsky, An ODE based method for computing the 
approximate greatest common divisor of polynomials, Numer. Algorithms 81 

(2019) 719–740, doi: 10.1007/s11075- 018- 0569- 0 . 
[8] A. Fazzi, N. Guglielmi, I. Markovsky, Generalized algorithms for the approxi- 

mate matrix polynomial GCD of reducing data uncertainties with application 

to MIMO system and control, J. Comput. Appl. Math. 393 (2021), doi: 10.1016/j. 
cam.2021.113499 . 

[9] gapmetric, https://www.it.mathworks.com/help/robust/ref/lti.gapmetric.html . 
Accessed: 2022-07-16. 

[10] T.T. Georgiou, On the computation of the gap metric, Syst. Control Lett. 11 
(1988) 253–257 . 

[11] T.T. Georgiou, M.C. Smith, Optimal robustness in the gap metric, IEEE Trans. 

Autom. Control 35 (1990) 673–686 . 
12] S. Gottimukkala, S. Fiaz, H.L. Trentelman, Equivalence of rational representa- 

tions of behaviors, Syst. Control Lett. 60 (2011) 119–127 . 
[13] G. Golub, C. Van Loan, Matrix Computation, third ed., Johns Hopkins University 

Press, Baltimore, Maryland, 1996 . 
[14] N. Guglielmi, I. Markovsky, An ODE based method for computing the dis- 

tance of co-prime polynomials to common divisibility, SIAM J. Numer. Anal. 

55 (2017) 1456–1482, doi: 10.1137/15M1018265 . 
[15] I. Markovsky, F. Dörfler, Identifiability in the behavioral setting, IEEE Trans. Au- 

tom. Control (2023), doi: 10.1109/TAC.2022.3209954 . 
[16] I. Markovsky, J.C. Willems, S. Van Huffel, B. De Moor, Exact and Approximate 

Modeling of Linear Systems: A Behavioral Approach, SIAM, 2006, doi: 10.1137/ 
1.9780898718263 . 
6 
[17] I. Markovsky, A. Fazzi, N. Guglielmi, et al., Applications of polynomial common 
factor computation in signal processing, in: Y. Deville, et al. (Eds.), Latent Vari- 

able Analysis and Signal Separation, Lecture Notes in Computer Science, vol. 
10891, Springer, 2018, pp. 99–106, doi: 10.1007/978- 3- 319- 93764- 9 _ 10 . 

[18] H. Murakami, An implementation of the block householder method, IPSJ Digit. 
Courier 2 (2006) 298–317, doi: 10.2197/ipsjdc.2.298 . 

[19] A. Padoan, J. Coulson, H.J. van Waarde, J. Lygeros, F. Dörfler, Behavioral un- 
certainty quantification for data-driven control, in: Proc. of the IEEE Conf. 

on Decision and Control, Cancun, Mexico, 2022, doi: 10.1109/CDC51059.2022. 

9993002 . 
20] J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory, 

Texts in Applied Mathematics, vol. 26, Springer New York, New York, NY, 1998, 
doi: 10.1007/978- 1- 4757- 2953- 5 . 

21] B. Roorda, S. Weiland, Optimal angle reduction - a behavioral approach to lin- 
ear system approximation, Linear Algebra Appl. 337 (2001) 189–235 . 

22] F. Rotella, I. Zambettakis, Block householder transformation for parallel qr fac- 

torization, Appl. Math. Lett. 12 (1999) 29–34 . 
23] A.J. Sasane, Distance between behaviours, Int. J. Control 76 (2003) 1214–1223 . 

24] R. Schreiber, B. Parlett, Block reflectors: theory and computation, SIAM J. Nu- 
mer. Anal. 25 (1) (1988) 189–205, doi: 10.1137/0725014 . 

25] H.L. Trentelman, S.V. Gottimukkala, Distance between behaviors and rational 
representations, SIAM J. Control Optim. 51 (2013) 4211–4241 . 

26] K. Usevich, I. Markovsky, Optimization on a Grassmann manifold with appli- 

cation to system identification, Automatica 50 (2014) 1656–1662, doi: 10.1016/ 
j.automatica.2014.04.010 . 

27] M. Vidyasagar, The graph metric for unstable plants and robustness estimates 
for feedback stability, IEEE Trans. Autom. Control AC-29 (1984) 403–418 . 

28] M. Vidyasagar, H. Schneider, B.A. Francis, Algebraic and topological aspects of 
feedback stabilization, IEEE Trans. Autom. Control 27 (1982) 880–894 . 

29] G. Vinnicombe, Frequency domain uncertainty and the graph topology, IEEE 

Trans. Autom. Control 38 (1993) 1371–1383 . 
30] G. Vinnicombe, Uncertainty and Feedback: H ∞ Loop-Shaping and the ν-Gap 

Metric, Imperial College Press, London, 2001 . 
31] X. Wang, Z. Li, D. Tao, Subspaces indexing model on Grassmann manifold for 

image search, IEEE Trans. Image Process 20 (2011) 2627–2635 . 
32] J.C. Willems, From time series to linear system—Part I. Finite dimensional lin- 

ear time invariant systems, Automatica 22 (1986) 561–580 . 

33] J.C. Willems, The behavioral approach to open and interconnected systems: 
modeling by tearing, zooming, and linking, Control Syst. Mag. 27 (2007) 46–99 . 

34] J.C. Willems, Y. Yamamoto, Behaviors defined by rational functions, Linear Al- 
gebra Appl. 425 (2007) 226–241 . 

35] J.C. Willems, P. Rapisarda, I. Markovsky, B. De Moor, A note on persistency of 
excitation, Syst. Control Lett. 54 (4) (2005) 325–329 . 

36] K. Ye, L.H. Lim, Schubert varieties and distances between subspaces of different 

dimensions, SIAM J. Mat. Anal. Appl. 37 (2016) 1176–1197 . 
37] G. Zames, A. El-Sakkary, Uncertainty in unstable systems: the gap metric, IFAC 

Proc. Vol. 14 (2) (1981) 149–152, doi: 10.1016/S1474-6670(17)63475-X . 8th IFAC 
World Congress on Control Science and Technology for the Progress of Society, 

Kyoto, Japan, 24–28 August 1981 

http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0001
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0002
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0003
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0004
https://arxiv.org/abs/2107.01588
https://doi.org/10.1109/CDC40024.2019.9030137
https://doi.org/10.1007/s11075-018-0569-0
https://doi.org/10.1016/j.cam.2021.113499
https://www.it.mathworks.com/help/robust/ref/lti.gapmetric.html
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0008
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0009
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0010
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0011
https://doi.org/10.1137/15M1018265
https://doi.org/10.1109/TAC.2022.3209954
https://doi.org/10.1137/1.9780898718263
https://doi.org/10.1007/978-3-319-93764-9_10
https://doi.org/10.2197/ipsjdc.2.298
https://doi.org/10.1109/CDC51059.2022.9993002
https://doi.org/10.1007/978-1-4757-2953-5
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0019
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0020
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0021
https://doi.org/10.1137/0725014
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0023
https://doi.org/10.1016/j.automatica.2014.04.010
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0025
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0026
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0027
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0028
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0029
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0030
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0031
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0032
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0033
http://refhub.elsevier.com/S0947-3580(23)00061-4/sbref0034
https://doi.org/10.1016/S1474-6670(17)63475-X

	Distance problems in the behavioral setting
	1 Introduction
	2 Preliminaries and problem statement
	2.1 Behavioral system theory
	2.2 Structured matrices
	2.3 Problem statement

	3 Motivating application
	4 Principal angles between behaviors
	4.1 The SISO case
	4.2 The MIMO case

	5 Numerical examples
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References


