
1

Divide and Save: Splitting Workload
Among Containers in an Edge Device

to Save Energy and Time
Aria Khoshsirat, Giovanni Perin, and Michele Rossi

Department of Information Engineering (DEI)
University of Padova (Padova, Italy)

Emails: aria.khoshsirat@unipd.it, giovanni.perin.1@unipd.it, michele.rossi@unipd.it

Abstract—The increasing demand for edge computing is lead-
ing to a rise in energy consumption from edge devices, which
can have significant environmental and financial implications.
To address this, in this paper we present a novel method to
enhance the energy efficiency while speeding up computations
by distributing the workload among multiple containers in an
edge device. Experiments are conducted on two Nvidia Jetson
edge boards, the TX2 and the AGX Orin, exploring how
using a different number of containers can affect the energy
consumption and the computational time for an inference task. To
demonstrate the effectiveness of our splitting approach, a video
object detection task is conducted using an embedded version of
the state-of-the-art YOLO algorithm, quantifying the energy and
the time savings achieved compared to doing the computations
on a single container. The proposed method can help mitigate
the environmental and economic consequences of high energy
consumption in edge computing, by providing a more sustainable
approach to managing the workload of edge devices.

Index Terms—Energy Efficiency, Inference Time, Edge Com-
puting, Containers, Object Detection

I. INTRODUCTION

Multi-access edge computing (MEC) is a rapidly grow-
ing field that entails performing computational tasks at the
network’s edge, closer to the data source. This approach,
other than inherently lowering the total communication and
computation latency, provides other benefits, such as im-
proving security and privacy. However, as the demand for
edge computing services increases, it becomes increasingly
important to address the issue of the joint optimization of
energy efficiency and computational time. In this paper, we
refer to energy efficiency as to the ability of executing a
computational unit of a task (CPU cycles) using the least
amount of energy possible. This is crucial for two main
reasons. First, edge computing devices are often powered by
batteries or have limited power supplies. Energy efficiency is
thus key to ensure their operation for long periods of time
and for making their computations feasible, even with the
limited amount of energy available. Second, as the number of
edge devices increases, the overall energy consumption of the
edge computing system increases accordingly. This can lead
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to a significant environmental footprint and to unsustainable
economic costs for the service providers.

In this paper, we investigate how splitting a computing
task into multiple containers within the same Nvidia Jetson
device impacts the energy drained and the execution time.
Instances of the popular deep learning-based algorithm “You
only look once” (YOLO) [1] are used, employing YOLOv4-
tiny [2], which is suitable for execution on energy and memory
constrained hardware. According to a recent survey [3], MEC
schedulers decide, other than container placement and migra-
tion, how incoming tasks should be allocated to containers.
This paper provides useful insights on how to optimally
allocate splittable tasks into multiple containers from an
energy and execution time perspective. As such, it is indirectly
related to the concept of split computing [4], i.e., the division
of a neural network (NN) model into a head and a tail,
to be executed on different devices (and, thus, on different
containers). Notably, however, split-computing introduces time
dependencies, as the head has to be executed before the tail.
The application chosen in this paper, namely, YOLO, does
not require keeping temporal dependencies into account since
frames are processed independently of one another. For now,
we leave the problem of time dependencies for future studies.
To summarize, the main contributions of this work are:

• We provide a new approach to improve energy efficiency
and decrease the computational time of edge computing
by splitting the computations among multiple containers.

• Testbed results of our experiments are shown, performed
on two commercial edge devices of the series Nvidia
Jetson, namely, the TX2 and the AGX Orin. They provide
evidence of the effectiveness of our method in reducing
both energy consumption and processing time.

• We obtain simple convex models for the energy consump-
tion and inference time of commercial edge devices as a
function of the number of containers used to split the
task. Such models can be used to effectively schedule
the computation of workload in a MEC server.

We believe this paper will be helpful for researchers, practi-
tioners, and policymakers who are interested in the energy and
time optimization of MEC platforms.

The remainder of this paper is organized as follows: The
related work is briefly reviewed in Section II. In Section III, we
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present some background on YOLO and Docker containers.
The experimental setup is explained in Section IV. The method
is detailed in Section V, while the results are given together
with the discussion in Section VI. Finally, conclusions and
future research lines are discussed in Section VII.

II. RELATED WORK

Recent work has modeled the energy consumption of neural
network models over Nvidia Jetson hardware [5]–[8]. Specif-
ically, in [5], the authors develop a framework to measure the
energy consumption of specific layers of a convolutional neu-
ral network (CNN) on a Jetson TX1. Papers [6] and [7] instead
profile the energy consumption of Jetsons TX2 and Nano,
providing an optimized set of parameters to increase energy
efficiency. In our previous work [8], we profiled Jetsons TX2
and Xavier, also providing models to estimate their energy
consumptions based on the neural network layers features.
In [9], the authors compare containers, virtual machines and
multi-thread computing on a parallel benchmark. They show
that the overhead of using Docker containers is very small
compared to virtual machines.

To the best of our knowledge, our paper is the first providing
an energy and latency profiling of task splitting on Jetson
devices. Notably, this is of great interest for a number of
applications concerning container allocation and migration [3]
and energy efficiency [10] at the network’s edge. In [11], the
authors develop a Kubernetes-based [12] container scheduler
that takes into account the problem of energy minimization.
A similar problem involving container migration in an urban
vehicular context is treated in [13], with the objective of
minimizing the MEC carbon footprint. However, both these
papers consider the tasks as unsplittable monolithic entities. In
the present work, we show that splitting tasks among multiple
containers, when possible, is beneficial both in terms of energy
consumption and computational time.

III. APPLICATION BACKGROUND

A. YOLO

YOLO [1] is a state-of-the-art object detection algorithm
that is widely used in computer vision applications. This
algorithm is based on a deep CNN architecture and can
detect objects within an image or a video frame in real-time.
One of the key advantages of YOLO is its ability to detect
multiple objects within a single forward pass of the network,
as opposed to traditional object detection methods that require
multiple runs. This allows the model to achieve a faster
detection rate and a higher accuracy compared to previous
algorithms. Additionally, YOLO’s architecture allows for easy
integration with other computer vision tasks such as object
tracking and semantic segmentation. YOLO has shown good
performance in various applications such as self-driving cars,
surveillance and augmented reality (AR) systems. However,
its performance is sensitive to the quality of the training
dataset and the architecture design. Therefore, researchers have
proposed improvements and variants to the original algorithm
to improve it. In this paper, as a case study, we consider an

TABLE I: Device hardware specifications

Jetson TX2 Jetson AGX Orin

CPU Quad-core ARM Cortex-A57
+ Dual-core Denver 2∗ 12-core Arm Cortex-A78

GPU 256-core NVIDIA Pascal 2048-core NVIDIA Ampere

Memory 8 GB 128-bit LPDDR4 32GB 256-bit LPDDR5

Performance 1.33 TFLOPs 200 TOPS

∗Denver cores are turned off by default for consistency

object detection task on video data using the YOLOv4-Tiny [2]
algorithm. YOLOv4-tiny is based on YOLOv4 [14] with
the objective of making the YOLO neural network structure
simpler (fewer parameters), which makes it suitable for mobile
and embedded devices with power and memory constraints.

B. Docker Containers

To create containers we have used Docker [15]. A Docker
container is a lightweight executable package including ev-
erything that is needed to run a piece of software, including
the code, a runtime, system tools, libraries, and settings.
Containers provide a consistent way to package and distribute
software, making it easier to deploy and run applications
on different environments. Containers are isolated from one
another and from the host system, so they can run without
conflicts, even when multiple containers run on the same host.
Containers are based on Docker images, which are snapshots
of a container’s file system at a specific point in time. It is
possible to limit the CPU resources of a Docker container,
which is usually done to control the amount of resources
the host uses to execute it. This may be used to enforce a
fair distribution of computing resources among the different
running containers and processes. The “--cpus” runtime option
allows us to specify the number of CPU cores that the
container can use. For instance, the command ”docker run
--cpus=2 Yolo-Container” limits the created container to use
only 2 CPU cores.

IV. EXPERIMENTAL SETUP

For the experiments of this work, we employed two Nvidia
edge devices: Jetson TX2 and Jetson AGX Orin. The Jetson
TX2 is a previous generation cost-effective edge device with
a powerful GPU and CPU, which can run complex algorithms
and process large amounts of data at the edge. The Jetson
AGX Orin, on the other hand, is a newer and more powerful
platform with a higher number of CPU cores and more
memory, making it ideal for running more demanding tasks.
Both platforms support a wide range of neural networks and
machine learning frameworks, making them versatile tools for
research and industry applications alike. Table I shows the
hardware specifications of these devices. Note that for our
experiments we have only used 4 ARM CPU cores on the
Jetson TX2 since the Denver cores are disabled by default in
the device due to incompatible performance.

Although these devices have powerful GPUs, we have
used only the CPU for our experiments. This is because
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Fig. 1: Plots showing the variation in inference time and energy consumption as the number of CPU cores allocated to a single
container is increased, on Jetson TX2 and Jetson AGX Orin edge devices.

CPU cores can be readily divided among containers, whereas
a container’s allocation in terms of GPU resources cannot
be easily enforced. In fact, without any restriction on GPU
usage, containers end up competing for the majority of GPU
resources, making it challenging for the GPU scheduler to
operate efficiently. For more than two containers on the TX2
and four containers on the AGX Orin, this leads to irregular
and slow computation. It is worth noting that in an edge device
that has multiple GPUs, the method outlined in this paper can
still be applied by assigning each GPU to a specific (different)
container, with no conflicts.

For measuring the power of these devices, we have used
the built-in power monitoring sensors included in both Nvidia
boards. Such sensor can be read with a sampling time of about
10 milliseconds, which is accurate enough for our experiments.
The energy consumption is then calculated by taking the sum
of the power readings multiplied by the time period between
subsequent power samples.

The base experiment that is evaluated in this paper consists
of the application of object detection on a 30-second-long
video, using YOLOv4-Tiny. Notably, through experimentation
with object detection on videos with differing formats, we
found that the number of frames in a video has the greatest
impact on the energy and time needed for YOLO inference.
Other characteristics of a video, such as the frame size, the
bitrate, or even the number of objects per frame, have minimal
effect on the time and energy, and thus can be neglected.

As an initial step to demonstrate a baseline, we performed
the task on each device using one container with a varying
number of CPU cores available to it. Fig. 1 shows the time
and energy of performing the object detection task for the
full 30-second video, as a function of the number of CPUs
allotted to the container. This is a real number and in our
experiment is varied from 0.1 (ten percent of one CPU core)
to the number of cores available on the device. On the Jetson
TX2, we observe that using four CPU cores only results in

a slight improvement in time and energy efficiency when
compared to using three cores. Doing the same experiment on
the AGX Orin device exhibits a similar behavior; employing
more than two CPU cores minimizes efficiency. This led us to
conjecture that increasing the utilization of the CPU cores for
computations and parallelizing the workload, could enhance
the efficiency of the computations on edge devices.

V. METHODOLOGY

This study aims to propose a method to decrease the energy
consumption and computational time of an inference task,
namely, the object detection task introduced in the previous
section, on edge devices. To achieve this, the following meth-
ods are used:

1) Data splitting: The test data, in our case the whole input
video, is split into equal size segments. The splitting is
done along the time dimension of the video, resulting
in the same number of frames for each segment, to be
used as input for the object detection task.

2) Creating containers: We subsequently generate a num-
ber of containers matching the number of data segments,
with each container running an instance of the YOLO
model to perform the inference.

3) Dividing computational resources: The processing
units, i.e., the CPU cores, are evenly split among the
containers. Each container receives a share of the max-
imum processing capacity of the device, depending on
the number of containers that are created.

4) Parallelization: The inference is carried out on all the
containers simultaneously, each accessing its designated
segment of input data and using the available process-
ing units. The results from all the containers are then
combined and presented to the user.

To show the impact of utilizing multiple containers in
parallel, we conducted experiments by varying the number
of segmented sections and corresponding containers. Then,



Fig. 2: Different experiment scenarios for Jetson TX2 (green)
and Jetson AGX Orin (blue) devices. The processing units
are equally split between the containers in each device. The
input video is also split into equal segments along the temporal
dimension, resulting in each container processing an equal
number of frames.

the inference time and the energy drained in each scenario
were recorded. We evaluated the performance of the proposed
method on both Jetson TX2 and AGX Orin devices and we
repeated the experiments multiple times to ensure the accuracy
of the results. As the confidence interval for the measured
data of the multiple runs is less than 1%, we have opted not
to display it in the plots. The number of containers and split
segments used in our experiments was limited by the memory
capacity and processing power of each edge device, with a
maximum of six containers on the Jetson TX2 and twelve
containers on the AGX Orin. Fig. 2 depicts the process.

VI. EMPIRICAL RESULTS AND ANALYSIS

In the following plots, as a benchmark, we consider the
case of a single container running YOLO, i.e., a single
container, with no data splitting, and all CPU cores (four CPU
cores for TX2 and twelve for Orin). All performance metrics
(average power, energy and processing time) are normalized
with respect to those in the benchmark scenario.

Fig. 3a and Fig. 3b respectively show the normalized
inference time and energy consumed for an increasing number
of containers used to execute the object detection task, as
explained in Section V. For the Jetson TX2, when running the
task on two containers, each using two of the four cores and
processing half of the video frames in parallel, we observe
a 19% reduction in the inference time (Fig.3a) and a 10%
reduction in the energy consumption (Fig. 3b) compared to
the benchmark. Increasing the number of containers to four
reduced the time further by 25% and the energy by 15%. As
the number of containers increases beyond four, the system
performance degrades in terms of both time and energy. We
believe that when the number of containers is increased beyond
the number of available CPU cores on the Jetson TX2, it
becomes challenging for the CPU scheduler to allocate the
CPU cores effectively, worsening the performance.

On the AGX Orin, which is a more powerful and energy-
efficient edge device, splitting the computations between two
and four containers respectively results in reductions of 43%
and 62% in inference time, and in 25% and 40% reductions
in energy consumption, as compared to utilizing a single

container. Additionally, increasing the number of containers
to twelve on the Orin results in the most efficient scenario
for the considered video object detection task. This leads to
reductions of about 70% in the inference time and 43% in the
energy consumption. However, time and energy curves flatten
beyond four containers: since memory resources are used to
open new containers, limiting to four can be a good choice.

By analyzing the average power of the devices in each
scenario, we get a deeper understanding of how the processing
resources are employed in each case. Fig. 3c shows the average
power for an increasing number of containers. We see that
splitting the resources and the data among multiple containers
leads to a power increase. For the TX2, from one to four
containers, we measured a 13% increase in the average power,
while, for the AGX Orin, the increase is about 84% for
twelve containers. This increased average power reflects a
better utilization of the available processing resources (CPU
cores) on the edge device, which translates into a higher energy
efficiency.

Model fitting is also performed for each of the performance
metrics (time, power, and energy). The inferred formulae are
given in Table II. These fitted models (Fig. 3) can be beneficial
for estimating the savings when applying our method, based
on a given reference value (“Ref.” in Tab. II). In our case the
reference value corresponds to the metrics for the benchmark
scenario.

We believe that presenting energy and time metrics, in addi-
tion to the average power for the different scenarios, provides
valuable insights for understanding fundamental trade-offs in
edge computing systems. These trade-offs are particularly
useful in cases where there are constraints on power or energy
usage for the devices. It is also worth noting that the approach
outlined in this paper can be extended to other similar tasks
and models, not just the video object detection tasks using
YOLO-v4Tiny as used in our experiments. We also applied
the proposed splitting method to a simple CNN inference task.
Splitting the input data (images) between containers led to
similar improvements.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a simple methodology to
distribute the workload among multiple containers within an
edge device. Experiments were conducted on Nvidia Jetson
TX2 and AGX Orin boards to analyze the effects on energy
consumption and computational time of splitting data and
assigning them to multiple containers, while always using
all the CPU cores available. Our experimental results show
that this procedure yields significant reductions in energy
consumption and computational time for an inference task on
both devices. Notably, this approach is simple and easy to
implement, making it a practical solution for edge computing
systems employing embedded limited-memory devices.

We remark that the data for the object detection task that
was considered in this paper could easily be split into a number
of segments by neither negatively impacting the performance
nor the accuracy of the model’s inference. This descends from
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Fig. 3: Normalized energy consumption, computation time and average power to execute the object detection task on Jetson
TX2 and AGX Orin devices in different scenarios. In every scenario, we use a specific number of containers, each having an
equal amount of divided data and processing units.

TABLE II: Reference values and fitted models (x means number of containers).

TX2 AGX Orin
Ref. Model Ref. Model

Time 325 s 0.026x2 − 0.21x+ 1.17 54 s 0.33 + 1.77e−0.98x

Energy 942 J 0.015x2 − 0.12x+ 1.10 700 J 0.59 + 1.14e−1.03x

Power 2.9 W −0.016x2 + 0.12x+ 0.90 13 W 1.85− 1.24e−0.38x

the way in which YOLO works, i.e., processing video frames
independently of one another. Our presented approach is thus
only applicable when the task can be split into independent
subtasks. One possible direction for future work could be
to investigate the applicability of our method to other types
of tasks and models, such as tasks involving data with time
correlation or that can only be split into dependent subtasks.
Additionally, it would be interesting to explore the use of
our splitting approach in a distributed edge computing setting,
where multiple devices collaborate to perform a task. Finally,
our method, as well as the results presented in this paper, can
be used in the design of energy-efficient job schedulers that
split input data, obtaining the optimal number of containers
in an online fashion in order to enhance the energy efficiency
and reduce the processing time of the edge system.
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