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Abstract: Oral melanoma (OM) is the most common malignant oral tumour among dogs and shares
similarities with human mucosal melanoma (HMM), validating the role of canine species as an
immunocompetent model for cancer research. In both humans and dogs, the prognosis is poor and
radiotherapy (RT) represents a cornerstone in the management of this tumour, either as an adjuvant
or a palliative treatment. In this study, by means of RNA-seq, the effect of RT weekly fractionated
in 9 Gray (Gy), up to a total dose of 36 Gy (4 weeks), was evaluated in eight dogs affected by OM.
Furthermore, possible transcriptomic differences in blood and biopsies that might be associated
with a longer overall survival (OS) were investigated. The immune response, glycosylation, cell
adhesion, and cell cycle were the most affected pathways by RT, while tumour microenvironment
(TME) composition and canonical and non-canonical WNT pathways appeared to be modulated in
association with OS. Taking these results as a whole, this study improved our understanding of the
local and systemic effect of RT, reinforcing the pivotal role of anti-tumour immunity in the control of
canine oral melanoma (COM).

Keywords: melanoma; radiotherapy; RNA-seq; dog; temozolomide

1. Introduction

Malignant melanoma is a relatively common cancer of canines, with a high local
invasiveness and metastatic propensity, accounting for about 100,000 diagnoses/year in the
USA. It most frequently occurs in the oral cavity (COM), hairy skin (cutaneous melanoma),
nailbed epithelium, and footpad (subungual and acral melanoma), as well as in ocular
tissue (uveal melanoma). The mean age of canines at the diagnosis of malignant melanoma
is 11.6 years. Certain canine breeds are more likely to develop melanoma, e.g., Poodles,
Beauce Shepherds, Rottweilers, Schnauzers, Scottish Terriers, and Labrador Retrievers;
furthermore, black-coated breeds are usually over-represented when compared to white-
coated ones. The presence of a protective hair coat suggests that UV does not play a
significant role in melanocytic melanoma [1–4].

Genes 2024, 15, 1065. https://doi.org/10.3390/genes15081065 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes15081065
https://doi.org/10.3390/genes15081065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-0015-3800
https://orcid.org/0000-0002-2424-7484
https://orcid.org/0000-0003-2903-9390
https://orcid.org/0000-0002-4537-4386
https://orcid.org/0000-0002-3637-5643
https://orcid.org/0000-0002-1595-4347
https://doi.org/10.3390/genes15081065
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes15081065?type=check_update&version=1


Genes 2024, 15, 1065 2 of 19

As said, COM is the most common oral malignancy in dogs; the most frequent local-
ization is the gingiva, but it can be found in the lip, tongue, and palate. It can be heavily
pigmented or amelanotic, ulcerated, and necrotic. Overall, it is an aggressive malignant
tumour, locally invasive and highly metastatic, with regional lymph nodes and lungs as
preferential metastatic sites [5]. The prognosis is poor, with a median survival time of
roughly 65 days in the absence of therapy [6]. As to therapy, the primary conventional
treatment is a wide-margin surgery resection, combined (adjuvant) or not (palliative) with
radiation therapy (RT), to locally control the tumour. However, such a therapeutic approach
is much less successful for metastatic disease [5–7]. The use of conventional anticancer
drugs is still controversial. For example, platinum compounds and melphalan, adminis-
tered alone or as adjuvant chemotherapeutics following surgery or RT, show low response
rates and did not improve survival times [6,8]. Similarly, unclear and underwhelming
results are reported in humans, too [6]. Temozolomide (TEM) deserves a separate discus-
sion. This orally available DNA alkylating prodrug is believed to be a radiosensitizer, and
it represents the gold standard for the treatment of human glioblastoma and metastatic
melanoma [9–12]. In canines, TEM shows some anti-tumour activity against melanoma
and glioma [13,14]. As classical clinical management approaches are challenging, various
immunotherapy strategies such as vaccination (Oncept™, a bacterial plasmid DNA vaccine
against human tyrosinase) and monoclonal antibodies (e.g., targeting programmed cell
death-1, PD-1) have been used in the therapy of COM. However, controversial or not yet
definitive results have been observed. Hence, additional research on the feasibility of
different immunotherapy approaches in COM is needed [6,15,16].

Rodent (murine) models classically represent the gold standard for preclinical research
in cancer biology and therapeutics; however, they possess some relevant shortcomings
and limitations [2,3,8,17–19]. Therefore, the need for additional animal models has be-
come of increasing interest within the scientific community. To address this issue, the
term ‘comparative oncology’, i.e., the study of naturally occurring cancers in animals as
models for human disease, was coined and such a concept represents one of the clearest
examples of the “One Health” approach to diseases [8,20,21]. After thirty years, it is a
well-established concept that pets, and particularly canines, represent a unique sponta-
neous animal model for human cancer research [8,17–19,22]. COM is among the most
common canine malignancies, and today it is considered a clinically faithful animal model
for HMM [1–4,8,18,19,23,24]. At present, there is still a lack of understanding of HMM
at the molecular level [25], and understanding the molecular landscapes of cancer is of
paramount importance to facilitate early diagnoses and prognoses, develop and optimize
effective therapeutic strategies, and improve the patient outcome [19,25–27]. As a conse-
quence, obtaining additional information about COM molecular biology and therapy is
currently needed and encouraged [8,19,22,28].

In comparative oncology, genomics underwent rapid growth in the past twenty years,
particularly with the completion of the first drafts of human and canine genomes in 2003
and 2005, respectively [21,29,30]. Despite the size difference (the canine genome is ~20%
smaller than the human one), human and canine genomes are highly homologous (~85%);
furthermore (and interestingly), a higher homology exists among the human top 100 genes
most frequently mutated in cancer [31]. At present, more complete assemblies of human
and canine genomes have been released by the human Genome Reference Consortium and
the International Consortium of Canine Genome Sequencing (Dog10K) [32,33].

Radiation therapy is one of the most common approaches to cancer treatment. Either
alone or in combination with other therapeutic options (e.g., surgery, anticancer drugs), RT
is used in at least two-thirds of cancer treatment regimens, and approximately half of all
cancer patients worldwide have undergone RT [34–36]. Furthermore, RT is an important
curative option to control uncomplicated loco-regional or unresectable/locally advanced
tumours, including HMM and COM, too [13,37–39]. The RT dogma “One-Size-Fits-All”
assumes that every patient has the same opportunity to benefit from RT [35]. However,
with such an approach, RT effectiveness is limited by the maximum dose tolerated by



Genes 2024, 15, 1065 3 of 19

adjacent normal tissues, which may result in radiotoxicity [34,36]. Nowadays, the major
goal of RT is to maximize cancer cell killing by using dosage regimens that adjacent
healthy tissues can tolerate, with minor radiation injury [36]. To achieve this goal, radiation
sensitizers (i.e., drugs responsive to ionizing radiation and enhancing RT effectiveness such
as TEM and gemcitabine) have been used in the RT–drug combined treatment of human
and canine glioblastoma and metastatic melanoma [9–11,13,14,40]. All this allowed RT to
evolve from the aforementioned dogma to a more dynamic and patient-tailored therapeutic
approach [34,36,41,42].

The sequencing of human and canine genomes paved the way for the era of precision
or personalized medicine (PM), whose motto is “the right treatment for the right patient
at the right time” [43]. In such a context, next-generation sequencing (NGS) methodolo-
gies (i.e., genomics, transcriptomics, epigenomics) are increasingly used in oncology to
speed up cancer early diagnoses, discover therapeutic targets, and predict the patient
outcome, ultimately improving the PM approach to cancer [44–47]. Conversely, and
surprisingly enough, NGS has not yet similarly affected RT [35]. Thus, the concept of
personalized radiation therapy, to guide exclusive RT and/or combination therapy, has
emerged and has been encouraged in recent years [44,48,49]. By using NGS datasets, radia-
tion oncologists could identify biomarkers (e.g., gene expression profiles) useful to classify
radio-sensitive/resistant tumours and/or tumour-surrounding normal tissues before the
treatment [36,44,50]. Gene signatures, useful to identify radiosensitive patients and predict
the diagnosis, prognosis, or response to RT, have been developed and validated in some
human tumours, e.g., glioblastoma and breast and colorectal cancer cells. To achieve this
goal, most studies used candidate gene biomarkers or functional assays of DNA damage
repair to predict radiosensitivity. However, few genetic biomarkers are being used to tailor
human cancer RT [48–50].

To the best of our knowledge, there is still no effective radiosensitive gene signature
for COM; only one paper matching whole exome and transcriptome sequencing to identify
the possible causes of RT and adjuvant chemotherapy failure has been published so far [51].
Therefore, in this study, we utilized an NGS approach (i.e., RNA-seq) to evaluate the
transcriptomic landscape of COM in buccal biopsies before and after RT, and its association
with the disease outcome.

In addition, there is an increasing demand for molecular tools to provide clinically
valuable information about patient outcomes and successful delivery of PM [52]. In such
a context, peripheral blood testing is an alternative approach to invasive needle-based
biopsy sampling, especially for tumours that are anatomically difficult to be sampled
(such as HMM and COM). Blood sampling is also routinely performed in the clinic and
is affordable [52–54]. As to COM, to our knowledge, there are no biomarkers in routine
clinical use to monitor the canine response to RT; hence, we also investigated the usefulness
of a peripheral blood transcriptome as a suitable surrogate tissue for COM.

2. Materials and Methods
2.1. Animal Recruitment, Clinico-Pathological Features, Therapy, and Sample Acquisition

This study included client-owned dogs affected by COM and presented at the Centro
Oncologico Veterinario (Sasso Marconi, Bologna, Italy). For each dog, data collected
included sex, age, breed, tumour localization, and size as well as tumour-node metastasis
(TNM) staging, according to WHO classification [23].

For all cases, all owners signed written informed consent for the use of the biological
samples for research purposes. Approval by an ethics committee was not required, since
the research did not influence any diagnostic or therapeutic decision.

During surgery, dogs underwent a surgical biopsy (TruCut or Punch), and the speci-
men (T0) was divided into two aliquots: The first one (~100 mg; T0) was placed in Eppen-
dorf tubes filled with 1.8 mL RNAlater™ Stabilizing Solution (Life Technologies, Foster
City, CA, USA) and conserved at −20 ◦C until the analysis. The second aliquot was
formalin-fixed (10% buffered formalin) and paraffin-embedded for routine histological and
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immunohistochemical investigations. A second biopsy (T1) was collected at the end of the
hypofractionated RT; once placed in an RNA stabilizing solution, it was kept at −20 ◦C
until RNA extraction. Simultaneously, blood samples (in duplicate) were withdrawn in
PAXgene tubes (Qiagen, Milan, Italy) as per the manufacturer’s instructions. These were
at first stored overnight at room temperature and then conserved at −20 ◦C until RNA
isolation. Tissue and blood sampling procedures were kept consistent for all the samples
and were obtained by the same hospital personnel.

The diagnosis of COM was made on hematoxylin and eosin-stained slides by adopting
previously proposed criteria, which include the mitotic index (MI), the melanin abundance,
and the nuclear atypia grading [55–57]. Confirmatory immunohistochemical investigations
were made by using antibodies raised against Melan-A (MEL-A) and PNL-2 melanocytic
markers as well as Ki-67 (the latter for prognostic purposes) [23,55–57]. Only cases diag-
nosed as COM were taken into consideration.

As to the chosen therapeutic approach, only dogs receiving RT and adjuvant chemother-
apy with TEM were included in this study. Dogs were irradiated weekly with fractions
of 9 Gray (Gy), up to a total dose of 36 Gy (4 weeks). Two weeks after the completion of
hypofractionated RT, dogs received adjuvant chemotherapy with TEM, i.e., 100 mg/m2

orally administered once a day and for 5 consecutive days.
To assess the possible relationships between RNA-seq outputs, the treatment protocol,

and the patient outcome, the OS, which is a gold standard endpoint in oncology [58], was
considered. Specifically, according to the oncologist, a mortality threshold value of 6 months
(before/after) was applied to divide the clinical cases into two subgroups. Therefore, all
dogs were scrupulously followed up with and the disease outcome was recorded.

2.2. RNA Isolation from Biopsies and Blood Samples

RNA from biopsies was isolated using the TRIzol reagent (Life Technologies, Milan,
Italy) and subsequently purified using the RNeasy Mini kit (Qiagen, Milan, Italy) as per
the manufacturer’s instructions. RNA from blood samples was isolated following the
protocol of the PAXgene blood RNA kit (PreAnalytics/Qiagen, Milan, Italy). A DNase
treatment was performed on the column for quality assurance before RNA was eluted
from the filter. RNA concentration was determined using the NanoDrop ND-1000 UV-Vis
spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, USA), and its quality
was measured by the 2100 Bioanalyzer and the RNA 6000 Nano kit (Agilent Technologies,
Santa Clara, CA, USA). Only RNA samples with an RNA integrity number (RIN) ≥ 7 were
selected for the RNA-seq library preparation. The isolated RNA was stored at −80 ◦C until
further use.

2.3. RNA-Seq Library Preparation and Sequencing

Using 1 (blood samples) or 0.5 µg (biopsies) of total RNA as input, mRNA was enriched
using the NEB magnetic mRNA isolation kit (New England BioLabs, Ipswich, MA, USA);
hence, RNA-seq libraries were prepared using the NEBNext Ultra RNA Library Prep Kit
from Illumina (New England BioLabs, Ipswich, MA, USA) as per the manufacturer’s
specifications. The prepared libraries were purified with Agencourt Ampure XP beads
(Beckman Coulter, Brea, CA, USA). Individual libraries were multiplexed together in a
6-library pool. The pooled libraries were sequenced on 50-cycle runs using an Illumina
Hiseq2500 platform (Genomix4Life, Caserta, Italy).

2.4. Differential Expression Analysis and Functional Analysis

Raw reads underwent quality control with FastQC software (v.0.11.9; [59]) and low-
quality reads and adapters were removed using Trimmomatic (v.0.36; [60]).

Trimmed reads were pseudoaligned to the reference canine transcriptome (ROS_Cfam_1.0,
Ensembl release 111) using Kallisto (v.0.48.0; [61]). Transcripts were imported in Rstudio (R
version 4.3.0) and collapsed to genes using the tximport package (v.1.30.0; [62]) retrieving the
annotations from Ensembl through the R interface biomaRt (v.2.58.0; [63]).
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The following steps of the differential gene expression (DGE) analysis were carried
out using the edgeR package (v.4.0.3; [64]). The data were organized in four different
datasets, the first two comparing T1 vs. T0 for each tissue, using a paired design, and
the other two taking into consideration the OS of each subject and setting the contrast
between the group with long and short survival time (LONG: >6 months, comprising
3 dogs; SHORT: <6 months, comprising 5 dogs). For these last two comparisons, one tissue
at a time was considered and only samples belonging to T0 were analyzed. All the datasets
were processed with the same approach as reported below. First, genes with very low
expression levels were removed (filterByExpr), and the remaining ones were normalized
using the calcNormFactors function according to the trimmed mean of M-values (TMM).

After common and tagwise dispersion estimation (estimateDisp), negative binomial
generalized linear models were fitted (glmFit), and differentially expressed genes (DEGs)
were identified using the likelihood ratio-test (glmLRT) setting these contrasts: blood T1
vs. T0 (B_T1vsT0), tumour T1 vs. T0 (T_T1vsT0), blood LONG vs. SHORT (B_OS), and
tumour LONG vs. SHORT (T_OS). Differentially expressed genes were defined as those
with a Benjamini–Hochberg adjusted p-value (BHp) < 0.05 and log2 fold change (lfc) > 0.58
or <−0.58 from each dataset.

Moreover, the gseGO function from the clusterProfiler package (v.4.10.0; [65]) was
applied to perform the Gene Set Enrichment Analysis (GSEA). A list of genes produced
by the glmLRT function was used to create the input file for this computational analysis,
pre-ranking all genes according to their BHp using “1-BHp” and “-(1-BHp)” to include the
direction of their expression in the analysis (up- or downregulation, respectively).

2.5. Spearman’s Correlation

All DEGs found to be modulated in LONG vs. SHORT comparison in biopsies
were submitted to a Spearman nonparametric correlation analysis to check for possible
correlation between transcriptional expression (log2 counts per million, logCPMs, after
filtering and TMM normalization) and OS (days).

2.6. Statistical Analysis

Except for RNA-seq data, the statistical analysis was made using the GraphPad Prism
software (version 9.5.1, San Diego, CA, USA).

3. Results
3.1. Clinico-Pathological Features

In a period of time between 1 September 2014 and 31 March 2016, a total of nineteen
presumed COM samples were collected. Following a routine TNM staging, the assessment
of MI, the presence of melanin pigment, the grading of nuclear atypia, and the immuno-
histochemical positivity for Melan-A, PNL-2, and Ki-67, a cohort of twelve confirmed
COM-affected dogs were initially considered for this study. All the recruited dogs received
RT and adjuvant chemotherapy. Following the adoption of this more stringent criteria
to standardize the caseload, including the use of TEM as adjuvant chemotherapy, the
number of eligible COM was reduced to eight, specifically, two mixed breeds, two Golden
Retrievers, one miniature Schnauzer, one miniature Spitz, one Labrador, and one Italian
Hound. Five were males, three were females, and two spayed subjects were considered,
one for each sex; the age ranged between 8 and 15 years, and the weight was between 6 and
38 kg. A detailed description of clinical and morphological/immunophenotypical features
is reported in Tables S1 and S2, while examples of a positive/negative presence of melanin
pigment as well as of MEL-A-, PNL-2-, and ki-67-positive immunohistochemical reactions
are reported in Figures S1 and S2. Furthermore, an illustrative picture showing the clinical
effects of RT + TEM is shown in Figure S3.
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3.2. Differential Expression Analysis and Functional Analysis

For each sample, considering both biopsies and blood, a mean of 35,090,610 raw
reads were obtained and more than 24 million reads (24,754,070 reads on average) were
pseudoaligned to the reference transcriptome (Tables S3 and S4).

Concerning the comparison between T1 and T0 to assess the transcriptional effect
of RT, 8 and 109 DEGs were identified in tumour biopsies and blood samples, respec-
tively (Table S5). DEGs for which a reference gene name was available are reported in
Tables 1 and 2. Forty-eight GO terms were found to be enriched for T_T1vsT0, and 14
for B_T1vsT0 (Table S6). As it is possible to appreciate from Figure 1, in tumour sam-
ples, the GO terms related to the cell cycle (GO:0007049; GO:0045786), DNA replication
(GO:0006260; GO:0006275), and DNA damage response (GO:0006974) were mostly affected
by RT. Such modulation is supported by genes found to be differentially expressed, like
Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A; lfcT_T1vsT0 = 1.03), DEAD-Box Helicase
43 (DDX43; lfcT_T1vsT0 = −6.15), Centromere Protein K (CENPK; lfcT_T1vsT0 = −1.25), and
Metallothionein 1E (MT1E; lfcT_T1vsT0 = 1.05).

Table 1. Genes modulated by radiotherapy in biopsies (T) (T1 vs. T0). Only the DEGs for which a
reference gene name was available are listed. Ensembl gene ID, gene name, gene description, log2
fold change (lfc), log2 counts per million (logCPMs), and Benjamini–Hochberg adjusted p-value
(BHp) are reported for all the DEGs.

Ensembl Gene ID Gene Name Gene Description lfc logCPM BHp

ENSCAFG00845016275 GNGT1 G protein subunit γ
transducin 1 −1.88 5.07 0.01

ENSCAFG00845030209 SLCO2A1
solute carrier organic

anion transporter family
member 2A1

2.79 3.23 0.01

ENSCAFG00845011968 DDX43 DEAD-box helicase 43 −6.15 0.54 0.03
ENSCAFG00845009606 1 (CDKN1A) 2 1.03 5.43 0.03
ENSCAFG00845027527 1 (LOC612587) 2 4.63 1.32 0.03
ENSCAFG00845009602 CENPK centromere protein K −1.25 3.51 0.03
ENSCAFG00845003828 MT1E metallothionein 1E 1.05 6.40 0.03

ENSCAFG00845015023 1 (C20H3orf14) 2 −2.13 0.85 0.03
1 Novel gene; 2 UniProtKB Gene Name Symbol.

Table 2. Genes modulated by radiotherapy in blood samples (B) (T1 vs. T0). Only the DEGs for
which a reference gene name was available are listed. Ensembl gene ID, gene name, gene description,
log2 fold change (lfc), log2 counts per million (logCPMs), and Benjamini–Hochberg adjusted p-value
(BHp) are reported.

Ensembl Gene ID Gene Name Gene Description lfc logCPM BHp

ENSCAFG00845008674 ADAMTS2 ADAM metallopeptidase with
thrombospondin type 1 motif 2 3.09 1.78 0.001

ENSCAFG00845007491 PROK2 prokineticin 2 −1.77 6.79 0.023
ENSCAFG00845016746 XKRX XK related X-linked −1.35 −0.59 0.003
ENSCAFG00845005455 SLC28A3 solute carrier family 28 member 3 −1.26 4.00 0.002
ENSCAFG00845026869 AMIGO2 adhesion molecule with Ig-like domain 2 −1.24 −0.90 0.038
ENSCAFG00845001908 KANK1 KN motif and ankyrin repeat domains 1 −1.21 −0.27 0.001
ENSCAFG00845008460 TNFAIP6 TNF α-induced protein 6 −1.17 1.25 0.008
ENSCAFG00845008349 CD72 CD72 molecule −1.14 0.70 0.027
ENSCAFG00845016972 MYBPC2 myosin binding protein C2 −1.13 −0.58 0.012
ENSCAFG00845015333 COL4A4 collagen type IV α 4 chain −1.10 −0.50 0.029
ENSCAFG00845028251 MYO18B myosin XVIIIB 1.08 0.85 0.023
ENSCAFG00845015341 DLGAP3 DLG-associated protein 3 −1.06 1.19 0.000
ENSCAFG00845008907 CRIP3 cysteine-rich protein 3 −1.05 −0.22 0.018

ENSCAFG00845028917 1 (LOC119864113) 2 −1.02 0.53 0.044
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Table 2. Cont.

Ensembl Gene ID Gene Name Gene Description lfc logCPM BHp

ENSCAFG00845002458 LAYN layilin 1.02 1.32 0.030
ENSCAFG00845028881 1 (LOC119864112) 2 −1.01 7.64 0.000
ENSCAFG00845030285 STAB1 stabilin 1 1.00 2.46 0.003
ENSCAFG00845003394 MLXIPL MLX interacting protein-like 0.99 −0.70 0.033
ENSCAFG00845014560 AASS aminoadipate–semialdehyde synthase −0.98 3.14 0.045

ENSCAFG00845030320 SLAMF1 signalling lymphocytic activation
molecule family member 1 −0.98 2.49 0.008

ENSCAFG00845001649 NIM1K NIM1 serine/threonine protein kinase −0.94 0.87 0.007
ENSCAFG00845015409 CABLES1 Cdk5 and Abl enzyme substrate 1 −0.93 0.42 0.012
ENSCAFG00845004274 IL21R interleukin 21 receptor −0.92 3.23 0.042
ENSCAFG00845006782 CRISP2 cysteine-rich secretory protein 3 −0.91 3.11 0.006
ENSCAFG00845015621 PSD3 Pleckstrin and Sec7 domain containing 3 −0.90 3.88 0.000
ENSCAFG00845029249 LEF1 lymphoid enhancer binding factor 1 −0.90 5.77 0.025
ENSCAFG00845014724 GCH1 GTP cyclohydrolase 1 −0.90 2.19 0.038
ENSCAFG00845007930 CCR7 C-C motif chemokine receptor 7 −0.89 4.80 0.005

ENSCAFG00845000734 SLC23A1 marginal zone B and B1 cell-specific
protein 0.86 4.00 0.000

ENSCAFG00845008805 SCML4 Scm polycomb group protein-like 4 −0.86 2.37 0.000
ENSCAFG00845028411 TFDP2 transcription factor Dp−2 −0.85 6.51 0.004

ENSCAFG00845028315 B3GALNT1 β-1,3-N-acetylgalactosaminyltransferase 1
(globoside blood group) 0.84 2.31 0.025

ENSCAFG00845009720 TXK TXK tyrosine kinase −0.84 2.33 0.044

ENSCAFG00845021928 TEX14 testis-expressed 14, intercellular bridge
forming factor 0.82 −0.08 0.007

ENSCAFG00845005503 JAM3 junctional adhesion molecule 3 −0.81 1.22 0.045

ENSCAFG00845028387 TOX thymocyte selection-associated
high-mobility group box −0.81 2.46 0.021

ENSCAFG00845017349 GPR84 G protein-coupled receptor 84 0.80 2.69 0.038
ENSCAFG00845008004 KLF10 KLF transcription factor 10 0.79 6.22 0.016
ENSCAFG00845008786 P2RY2 purinergic receptor P2Y2 0.78 5.28 0.002
ENSCAFG00845002694 G0S2 G0/G1 switch 2 0.78 3.73 0.011

ENSCAFG00845018861 1 (DSTN) 2 destrin, actin depolymerizing factor −0.75 1.83 0.000
ENSCAFG00845021223 AQP3 aquaporin 3 (Gill blood group) 0.74 4.34 0.013
ENSCAFG00845014621 SOCS3 suppressor of cytokine signalling 3 −0.72 3.24 0.038

ENSCAFG00845018321 ATP10A ATPase phospholipid transporting 10A
(putative) −0.72 3.17 0.002

ENSCAFG00845016371 RGS10 regulator of G protein signalling 10 −0.70 4.31 0.001
ENSCAFG00845021432 GNAZ G protein subunit α z −0.70 2.51 0.005
ENSCAFG00845023493 TSPAN5 tetraspanin 5 −0.69 3.71 0.047
ENSCAFG00845005802 VASH1 vasohibin 1 −0.68 2.33 0.039

ENSCAFG00845019977 KCNMB4 potassium calcium-activated channel
subfamily M regulatory β subunit 4 −0.68 1.49 0.006

ENSCAFG00845025551 1 (ATP13A4) 2 ATPase 13A4 −0.66 2.48 0.007

ENSCAFG00845004641 SPOCK2 SPARC (osteonectin)-, cwcv-, and
kazal-like domains proteoglycan 2 −0.64 6.09 0.025

ENSCAFG00845016402 1 (GNG11) 2 G protein subunit γ 11 −0.63 5.82 0.010
ENSCAFG00845009033 1 (CCL14) 2 C-C motif chemokine ligand 14 −0.63 3.34 0.017
ENSCAFG00845000866 1 (C4H1orf198) 2 chromosome 4 C1orf198 homolog −0.63 3.29 0.023
ENSCAFG00845008023 PSEN2 presenilin 2 −0.62 3.05 0.001
ENSCAFG00845012374 EHD3 EH domain containing 3 −0.60 4.48 0.031
ENSCAFG00845025918 MYL9 myosin light chain 9 −0.60 5.95 0.028

ENSCAFG00845012329 APC2 APC regulator of WNT signalling
pathway 2 0.59 1.30 0.011

ENSCAFG00845026987 ITGB5 integrin subunit β 5 −0.59 3.04 0.008

1 Novel gene; 2 UniProtKB Gene Name Symbol.
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Figure 1. A ridgeplot of the 25 most significant terms as results of GSEA comparing tumour T1 vs.
T0. The colour gradient is related to the level of significance, adjusted with the Benjamini–Hochberg
method.

Some of the most interesting GO terms modulated after RT in blood samples (Figure 2)
were related to glycosylation (GO:0006487, GO:0070085), translation (GO:0006412), cell ad-
hesion (GO:0007155), and wound healing (GO:0042060). Looking more in detail into the list
of DEGs, several transcripts possibly linked to the immune microenvironment and radiosen-
sitivity were noticed, e.g., C-C Motif Chemokine Receptor 7 (CCR7; lfcB_T1vsT0 = −0.89), the
Interleukin 21 Receptor (IL21R; lfcB_T1vsT0 = −0.92), the Thymocyte Selection-Associated
High-Mobility Group Box (TOX; lfcB_T1vsT0 = −0.81), Layilin (LAYN; lfcB_T1vsT0 = 1.01),
Lymphoid Enhancer Binding Factor 1 (LEF1; lfcB_T1vsT0 = −0.9), Purinergic Receptor P2Y2
(P2RY2; lfcB_T1vsT0 = 0.78), MLX Interacting Protein-Like (MLXIPL; lfcB_T1vsT0 = 0.99), Sup-
pressor of Cytokine Signaling 3 (SOCS3; lfcB_T1vsT0 = −0.72), and KLF Transcription Factor
10 (KLF10; lfcB_T1vsT0 = 0.79). In support of GSEA results, it is important to also mention
some genes involved in cell adhesion, e.g., Integrin Subunit β 5 (ITGB5; lfcB_T1vsT0 = −0.59)
and Junctional Adhesion Molecule 3 (JAM3; lfcB_T1vsT0 = −0.81).
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In order to discern potential transcriptional features of COM specimens that might be
suggestive of a prognosis at baseline, LONG vs. SHORT comparisons were considered. In
this respect, T0 samples were only analyzed to avoid any biases due to the therapeutic inter-
vention. No terms were enriched either in blood or biopsies. Nevertheless, it was possible
to identify 18 and 4 DEGs according to the OS in tumour and blood tissue, respectively
(Table S5). The list of DEGs for which a reference gene name was available is reported
in Tables 3 and 4. As to tumour samples, interesting upregulated genes were Keratin 76
(KRT76; lfcT_OS = 8.59); Integrin Subunit α 8 (ITGA8; lfcT_OS = 5.64); Microfibril-Associated
Protein 5 (MFAP5; lfcT_OS = 4.52); Sushi, von Willebrand Factor Type A, EGF, and Pen-
traxin Domain Containing 1 (SVEP1; lfcT_OS = 3.71); and Sclerostin Domain Containing 1
(SOSTDC1; lfcT_OS = 4.66). Among the downregulated ones, worthy of mention is the mod-
ulation of Matrix Metallopeptidase 13 (MMP13; lfcT_OS = −4.29) and Wnt Family Member
5B (WNT5B; lfcT_OS = −2.74). Concerning blood samples, we highlight the upregulation of
Transketolase-Like 1 (TKTL1; lfcB_OS = 3.04).

Table 3. Genes modulated in biopsies (T) considering the overall survival (LONG vs. SHORT). Only
the DEGs for which a reference gene name was available are listed. Ensembl gene ID, gene name,
gene description, log2 fold change (lfc), log2 counts per million (logCPMs), and Benjamini–Hochberg
adjusted p-value (BHp) are reported.

Ensembl Gene ID Gene Name Gene Description lfc logCPM BHp

ENSCAFG00845023887 KRT76 keratin 76 8.59 8.08 0.002
ENSCAFG00845014426 ITGA8 integrin subunit α 8 5.64 6.34 0.002
ENSCAFG00845000761 MMP13 matrix metallopeptidase 13 −4.29 6.51 0.009
ENSCAFG00845010154 PI16 peptidase inhibitor 16 8.03 5.88 0.009
ENSCAFG00845004266 APOA1 apolipoprotein A1 6.36 3.63 0.009
ENSCAFG00845029417 MFAP5 microfibril-associated protein 5 4.52 5.26 0.014

ENSCAFG00845013295 SVEP1
sushi, von Willebrand factor type A,

EGF, and pentraxin domain
containing 1

3.71 5.28 0.019

ENSCAFG00845023760 ELF5 E74-like ETS transcription factor 5 4.37 2.07 0.019
ENSCAFG00845028592 ANKRD55 ankyrin repeat domain 55 5.82 3.03 0.022
ENSCAFG00845005444 CDSN corneodesmosin 8.82 5.25 0.023
ENSCAFG00845005605 SOSTDC1 sclerostin domain containing 1 4.66 3.25 0.023
ENSCAFG00845029513 WNT5B Wnt family member 5B −2.74 4.04 0.026
ENSCAFG00845001685 UOX urate oxidase 3.98 3.37 0.026
ENSCAFG00845017608 PLA2G4F phospholipase A2 group IVF 3.78 0.59 0.028

ENSCAFG00845025826 1 (RPTN) 2 repetin 7.33 4.39 0.028

ENSCAFG00845029411 GDPD2
glycerophosphodiester

phosphodiesterase domain
containing 2

4.15 2.21 0.028

1 Novel gene; 2 UniProtKB Gene Name Symbol.

Table 4. Genes modulated in blood samples (B) considering the overall survival (LONG vs. SHORT).
Only the DEGs for which a reference gene name was available are listed. Ensembl gene ID, gene name,
gene description, log2 fold change (lfc), log2 counts per million (logCPMs), and Benjamini–Hochberg
adjusted p-value (BHp) are reported.

Ensembl Gene ID Gene Name Gene Description lfc logCPM BHp

ENSCAFG00845013314 1 (LOC111098753) 2 −7.80 −0.68 0.000004
ENSCAFG00845027442 TKTL1 Transketolase-like 1 3.04 0.32 0.000004
ENSCAFG00845026120 H4C4 H4 clustered histone 4 −7.35 −1.10 0.03

1 Novel gene; 2 UniProtKB Gene Name Symbol.
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3.3. Spearman’s Correlation

The Spearman’s test was applied to investigate the possible correlation between the
expression of DEGs regulated in T_OS and OS (Table 5). The expression of MMP13, WNT5B,
SVEP1, and phospholipase A2 group IVF (PLA2G4F) was significantly correlated with the
OS. As shown in Figure S4, the first and the last two genes of the abovementioned list
appear to be positively and negatively correlated with the OS, respectively.

Table 5. Table summarizing the correlation coefficients (r) and the p-values (p) of Spearman’s
correlation analysis between transcriptional expression level (logCPM) of DEGs in T_OS comparison
and OS (days). The p-values reported in bold are the significant ones.

Ensembl Gene ID Gene Name Gene Description r p

ENSCAFG00845023887 KRT76 keratin 76 0.57 0.15
ENSCAFG00845014426 ITGA8 integrin subunit α 8 0.33 0.43
ENSCAFG00845000761 MMP13 matrix metallopeptidase 13 −0.79 0.03
ENSCAFG00845010154 PI16 peptidase inhibitor 16 0.33 0.43
ENSCAFG00845004266 APOA1 apolipoprotein A1 0.52 0.20
ENSCAFG00845029417 MFAP5 microfibril-associated protein 5 0.64 0.10

ENSCAFG00845013295 SVEP1 sushi, von Willebrand factor type A, EGF,
and pentraxin domain containing 1 0.98 0.0004

ENSCAFG00845023760 ELF5 E74-like ETS transcription factor 5 0.62 0.12
ENSCAFG00845028592 ANKRD55 ankyrin repeat domain 55 0.45 0.27
ENSCAFG00845005444 CDSN corneodesmosin 0.57 0.15
ENSCAFG00845005605 SOSTDC1 sclerostin domain containing 1 0.64 0.10
ENSCAFG00845029513 WNT5B Wnt family member 5B −0.86 0.01
ENSCAFG00845001685 UOX urate oxidase 0.48 0.24
ENSCAFG00845017608 PLA2G4F phospholipase A2 group IVF 0.79 0.03
ENSCAFG00845025826 RPTN repetin 0.36 0.39

ENSCAFG00845029411 GDPD2 glycerophosphodiester phosphodiesterase
domain containing 2 0.55 0.17

ENSCAFG00845022756 Novel gene 1 0.38 0.36
ENSCAFG00845001333 Novel gene 2 0.55 0.17

1 Uniprot protein name annotation: Ubiquitin–ribosomal protein eS31 fusion protein; 2 Uniprot protein name
annotation: Elongation factor 1-α.

4. Discussion
4.1. Transcriptomic Effect of RT on Blood and Tumour Samples

RT represents a cornerstone in the management of COM for local tumour control,
through a direct action on cancer cells and immunomodulatory effects. Such an anticancer
immune response could be within or outside the radiation field. Nevertheless, this abscopal
activity is often incomplete and inefficient without the use of an adjuvant therapy. Canine
melanoma as well as osteosarcoma are immunogenic tumours, and could represent priceless
models to define possible strategies to amplify the effect of specific anticancer treatments.
Just these pieces of evidence pushed us to explore more in-depth how RT could modulate
the COM microenvironment and, consequently, increase the patients’ sensitivity to any
adjuvant chemotherapies like TEM or to immunotherapies [66–68].

Starting from comparing T1 and T0 in biopsies, we could appreciate one of the well-
known effects associated with RT. Indeed, radiation causes DNA damage and consequently
affects the cell cycle [66]. In the present study, such an effect was confirmed by these specific
enriched terms. Moreover, CDKN1A, coding for p21 protein, was found to be upregulated.
Specifically, this gene is transcriptionally modulated by p53 in response to DNA damage
guiding G1 cell cycle arrest [69].

Furthermore, the treatment downregulated DDX43 and CENPK. The former gene is
a DEAD-box RNA-helicase family member associated with adverse clinico-pathological
characteristics in breast cancer and lung adenocarcinoma [70–72]. Likewise, CENPK is a
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kinetochore protein and its overexpression in hepatocellular carcinoma promotes prolifera-
tion and in ovarian cancer is associated with a poor prognosis [73,74].

Interestingly, MT1E was positively modulated by RT. Metallothioneins are proteins
playing a major role in metal ion homeostasis and detoxification. In cancer, they can act
as antioxidants, protecting cells from free radicals generated by mutagens, antineoplastic
drugs, and radiation [75]. Furthermore, its expression is regulated by methylation in
melanoma, being a potential tumour suppressor gene [76].

After exploring the effect of RT on the cell cycle in the tumour tissue, in blood samples,
it was possible to investigate other aspects of this therapeutic approach. The enrichment of
glycosylation-related terms after RT aligns with what is reported in the literature. Indeed,
it has been shown that ionizing radiation causes changes in protein glycosylation; in
particular, such a post-translational modification could influence cell adhesion [77,78]. In
this case, vasculature and more specifically the endothelium–monocyte interaction could
play a pivotal role in the response to RT [78].

It is already known how the TME controls the growth and progression of cancerous
tissue; therefore, the impact of RT on vascularization and immune cells could influence the
prognosis and the effect of adjuvant treatments. One of the main immune subset popula-
tions targeted by RT are CD8+ T cells, and these often contribute to the abovementioned
abscopal effect [79]. In line with this, in the present study, several genes possibly involved
in CD8+ function and differentiation were modulated by RT, e.g., P2RY2, LAYN, and
MKXIPL. Specifically, the first one is a receptor activated by ATP released passively from
dead cells and acting as a pro-inflammatory signal. We could speculate that RT, causing
the death of cancerous cells, leads to an ATP-driven and purigenic receptor-dependent
accumulation of CD11c + CD11b + Ly6Chi tumour-infiltrating leukocytes. These cells
appear to be particularly efficient at presenting tumour antigens to CD8+ T cells, according
to what was previously reported by Ma et al. [80,81]. In human melanoma, LAYN is one
of the most enriched genes among the phenotypically exhausted yet clonally expanded
tumour-infiltrating lymphocytes. The deletion of this gene causes enhanced tumour growth
and the coded protein facilitates the effector capability of cytotoxic T cells, pointing out that
the amount and the specific type of CD8+ T cells present in a cancerous tissue contribute to
the patient’s immune response to cancer. However, in contrast with our findings, it seems
to not be present in peripheral blood cells [82]. In support of these data, and in line with a
possible higher infiltration of CD8+ T cells, MLXIPL was also upregulated by RT, despite
its low constitutive expression level. This gene has a multifaceted role depending on the
type of tumour and in prostate cancer, its expression is induced by T cell infiltration [83].
Furthermore, an additional sign of the modulation of CD8+ population function comes
from the downregulation of IL21R, LEF1, TOX, and CCR7 genes [84–86].

Other genes modulated by RT in blood samples and worthy to be cited are SOCS3 and
KLF10. The first one, found to be inhibited in the present work, is supposed to play a role
in radioresistance; indeed, the silencing of this gene affects radioresistance in glioblastoma
cell lines [87]. Intriguingly, it is inducible by different interleukins (e.g., IL-21) through
the JAK/STAT pathway, on which it acts as a negative feedback regulator [88]. KLF10,
upregulated by RT, acts as a tumour suppressor gene in several cancers through the TGF-β
signalling pathway [89]. Furthermore, like SOCS3, it is considered a possible marker
of radiosensitivity in pancreatic adenocarcinoma, transcriptionally suppressing the UV
radiation resistance-associated gene (UVRAG) and modulating apoptosis, DNA repair, and
autophagy [90].

Another aspect that emerged from our analysis is the impact on cell adhesion molecules.
The JAM3 and ITGB5 genes were downregulated by RT and the adhesion-related pathways
were enriched, too. In a former study, ITGB5 was found to be differentially expressed in the
NCI-60 cancer cell panel, thus suggesting that adhesion molecules could have a major role in
radiosensitivity [91]. The mRNA levels of JAM3 are higher in metastatic malignant melanomas
and its expression is correlated with invasive properties and metastatic potential either in
fibrosarcoma or melanoma and also in bladder cancer cell lines [92–95]. Additionally, it has
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been demonstrated that the occurrence of lung metastasis of melanoma could be partially
mediated by the interaction between jam-b (JAM2) and jam-c (JAM3) [96]. Finally, JAM3
is negatively associated with CD8+ cell infiltration in bladder cancer samples [95], while
integrins significantly correlate with immune cell infiltration in skin cutaneous melanoma [97],
bringing our discussion back to antineoplastic immunity, the leitmotif of these results.

4.2. Transcriptomic Differences Associated with Overall Survival Time

To identify potential biomarkers of aggressiveness, which could be related to OS, the
transcriptome of subjects with long vs. short OS was compared. Some hints suggest that
TME is probably one of the main factors affecting the OS. As a matter of fact, it comprises
immune and stromal cells, the extracellular matrix, and blood and lymphatic vessels, and
plays a critical role in survival and therapeutic response [98]. Two possible markers of
cancer-associated fibroblasts (CAFs), MFAP5 and SVEP1, were upregulated in biopsies, and
the expression of the last one was positively correlated with a longer OS. Cancer-associated
fibroblasts belong to an abundant and heterogeneous cell population of tumour stroma pos-
sessing several pro-tumour and tumour-suppressing functions, according to a specific cell
subpopulation. In skin cancers, CAFs express different markers and in advanced melanoma,
they could be involved in resistance to immunotherapy and BRAF inhibitors [98–100]. In a
former study, MFAP5 and SVEP1 have been related to a subset of CAFs with a strong extra-
cellular matrix signature in a mouse model of MMTV-PyMT (mouse mammary tumour
virus–polyoma middle tumour antigen) [101]. The first gene (MFAP5) is a microfibril-
associated glycoprotein involved in the deposition of elastic microfibrils. Its dysregulation
seems to assume different meanings according to the compartment of the tumour involved
(epithelial or stromal part) and the tumour type taken into consideration. Overexpression in
the epithelial counterpart of this gene in head and neck squamous cell carcinoma, ovarian,
and breast cancer is related to a worse prognosis [102–104]. Moreover, in ovarian cancer,
there is a stromal upregulation of its coded protein (microfibrillar-associated protein 5),
being associated with poor survival [105]. However, contradictory results have been pub-
lished, too: a significant reduction in MFAP5/mfap5 was noticed in the stroma of prostate
cancer, invasive colonic cancer, and gallbladder adenocarcinoma [106–108]. On the other
hand, SVEP1 is an adhesion molecule. In hepatocellular carcinoma, its downregulation
leads to a poor prognosis and early recurrence, correlating negatively with cancer stem cell
markers (i.e., CD44, CD133) [109,110]. In line with this evidence, in intrahepatic cholangio-
carcinoma the level of SVEP1 dramatically decreases in tumour tissue if compared with the
adjacent one, thus correlating with abnormal neovascularization [111]. In the present study,
the expression of this gene was positively correlated with OS (p < 0.0004), thus confirming
the studies cited above. On the other hand, an upregulation of SVEP1 in CAFs compared
to normal fibroblasts, and its involvement in chemoresistance to gemcitabine and cisplatin,
has been recently described in urothelial bladder cancer [112]. Nevertheless, it should
be emphasized that the present study considered entire tumour samples including both
parenchyma and stroma; thus, it is not possible to attribute these transcriptomic changes
specifically to one of the two compartments. To propose a definite conclusion, a more
in-depth analysis on a homogeneous cell population should be performed.

Also, other genes associated with metastasis and cancer progression were differentially
regulated in tumour tissue, i.e., MMP13, WNT5B, and SOSTDC1. Long OS was negatively
correlated with MMP13 and WNT5B, an interstitial collagenase and a WNT ligand, re-
spectively. In line with this, in several human cancers including melanoma, MMP13 is
associated with metastasis and poor survival. Intriguingly, in melanoma cell lines this
gene enhances invasiveness and proliferation, surprisingly limiting vasculogenic mimicry
through the degradation of vascular endothelial cadherin (VE-cadherin or cadherin-5),
probably leading to the release of β-catenin in the cytoplasm and nucleus [113–115]. Also,
WNT5B may decrease VE-cadherin expression, having a pro-metastatic role and causing
functional and transcriptional changes in lymphatic endothelial cells in oral squamous cell
carcinoma (OSCC) and melanoma [116,117]. In addition, its expression correlates with OS
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in osteosarcoma, hepatocellular carcinoma, and breast cancer [118–120]. An antagonist of
the WNT/b-catenin pathway, i.e., SOSTDC1, was upregulated. SOSTDC1 restrains the
proliferative ability by promoting the apoptotic rate in acute myeloid leukemia [121]. Its
downregulation is related to a poor prognosis in several cancer types, e.g., breast and gastric
cancer [122]. Overall, this could let us speculate that the canonical and non-canonical WNT
pathways could be involved in determining the OS in COM.

In the biopsies belonging to the group with longer OS, it is interesting to highlight the
upregulation of genes like KRT76 and ITGA8. The first one, encoding for a structural protein
and in agreement with other authors’ opinion, is the most significantly downregulated gene
in human OSCC, strongly correlating with a poor prognosis [123]; moreover, it possesses
an immunomodulatory role, too [124]. On the other hand, according to the published
literature, the level of expression of ITGA8 is considered to be closely related to metastasis
in skin cutaneous melanoma and also correlated with CD8+ infiltration [97]. This gene
belongs to the integrin family of transmembrane cell surface receptors, and it is retained
to be involved in the process of carcinogenesis in different and sometimes opposite ways,
according also to the type of cancer. In ER-positive breast and bladder cancers, it seems
to be regulated by methylation, and its consequent lower expression is associated with
adverse OS [125].

Finally, taking into consideration the results related to OS in blood samples, TKTL1
was induced in subjects with longer OS. This gene codes for a homodimeric transketolase,
generally overexpressed in cancer cells for the acquisition of a glycolytic phenotype (the
Warburg effect); in melanoma, it was proved to be regulated by methylation in vitro [126].
However, apparently in contrast with what emerged in our study, in which a higher
expression of TKTL1 seemed to be associated with longer OS, this gene could be considered
a marker of a poor prognosis in different types of cancers [127].

5. Conclusions

Drawing some of the main lines of the discussion, it was possible to speculate a
possible role of TME in COM progression and response to RT, starting from the modulation
of the immune response after the ionizing treatment and up to the role of different TME
populations in OS. Noteworthily, the glycosylation, cell adhesion, and cell cycle also
appeared to be involved in the response to RT, while the canonical and non-canonical WNT
pathways could be essential factors in determining OS. In any case, it is fundamental to
highlight that the hypotheses of this study are based on a limited number of subjects, even
if characterized by a homogeneous therapeutic approach. Evaluations on a wider dataset
of samples should be performed to confirm these results and other types of analyses could
be considered to corroborate them. For example, the involvement of different immune
populations and the expression peculiarities of normal/cancerous melanocytes and the
stroma could be examined, taking into consideration the mutational burden of each tumour.
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