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Università di Padova Dipartimento di Matematica “Tullio Levi-Civita”

Via Trieste 63, 35121 Padova, Italy

Marta Zoppello
Politecnico di Torino, Dipartimento di Scienze Matematiche

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Dedicated to James Montaldi

Abstract. The connection between the dynamics in relative periodic orbits
of vector fields with noncompact symmetry groups and periodic control for the

class of control systems on Lie groups known as ‘(robotic) locomotion systems’

is well known, and has led to the identification of (geometric) phases. We
take an approach which is complementary to the existing ones, advocating the

relevance—for trajectory generation in these control systems—of the quali-
tative properties of the dynamics in relative periodic orbits. There are two

particularly important features. One is that motions in relative periodic orbits

of noncompact groups can only be of two types: either they are quasi-periodic,
or they leave any compact set as t → ±∞ (‘drifting motions’). Moreover, in

a given group, one of the two behaviours may be predominant. The second

is that motions in a relative periodic orbit exhibit ‘spiralling’, ‘meandering’
behaviours, which are routinely detected in numerical integrations. Since a

quantitative description of meandering behaviours for drifting motions appears

to be missing, we provide it here for a class of Lie groups that includes those of
interest in locomotion (semidirect products of a compact group and a normal
vector space). We illustrate these ideas on some examples (a kinematic car

robot, a planar swimmer).

1. Introduction.

1.1. Aim of the paper. This paper deals with trajectory generation for a class of
driftless control systems on Lie groups known as (robotic) locomotion systems, from
a dynamical system perspective.

The configuration space M of these systems is the product of an n-dimensional
Lie group G, called the position or group space, and of an m-dimensional manifold
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S which is assumed to be parallelizable (e.g., an open set in an Euclidean space, or
the product of one such set and a torus) called the shape space. If G is a matrix Lie
group, then the governing equations for a given control t 7→ s(t) ∈ S have the form

ġ = g

m∑
i=1

ṡi(t)Ai(s(t)) , g ∈ G , (1)

with maps Ai : S → g, the Lie algebra of G (here, in writing ṡi, it is understood
that an identification of TS with S × Rm has been chosen).

Systems of this type emerge in the locomotion of various types of robotics and
living organisms. The literature on the subject is too extensive to be exhaustively
accounted for, so we limit ourselves to a very limited (perhaps even almost random)
choice which includes, besides some classics, some works which we perceive, at least
under some respect, as closer to ours [43, 40, 42, 31, 38, 32, 13, 7, 34, 44]. The
mathematical study of the control of these systems was initiated in the 1970’s in
the context of control systems on Lie groups [9, 30]. These control problems are also
related to the theory of mechanical systems controlled through moving constraints,
which was initiated around 1980 [4, 35] (see also [3] and references therein), where
the control is achieved by assigning the evolution of some of the coordinates—here
the shape s ∈ S. The literature on the controllability of systems of type (1) is very
broad as well, so we limit ourselves to quote, in addition to the above pioneering
works, the textbooks [10, 1, 6] where comprehensive informations can be found.
Many of these studies do not take into account a cost functional, and following
them we do the same here; indeed, for many locomotion systems, including the
examples reported in this paper, the first question that arises is their controllability
regardelss the presence of a cost functional—namely if, given an initial and a final
configuration, it is possible to find a control which drives the system between them.

Special attention has been devoted to control through periodic shape changes,
which in this context are called gaits (see e.g. [31, 28]). Each T -periodic gait
defines an element γ ∈ G such that each initial position g0 ∈ G is changed, after
the execution of the gait, to g0γ. The group element γ is called the phase, or the
geometric phase, associated to the considered gait [37, 31]. Its geometric origin—as
holonomy of the connection A—has been clarified and emphasized, see e.g. [37, 31,
6]. A certain attention has been given to the search of classes of ‘elementary’ gaits,
that may produce a variety of planned motions [31], and to gaits optimization [5].
Geometric techniques to compute the phases are developed e.g. in [11].

Here, we take a somewhat different, complementary approach. Trajectory gener-
ation through periodic shape changes for system (1) is linked to reconstruction from
a reduced periodic orbit of a G-invariant dynamical system on a trivial principal
bundle M̄ ×G→ M̄ , with the action of G on M̄ ×G given by left translations on
the factor G. (See e.g. [26, 28] for general introductions to equivariant dynamics).
Indeed, assuming again that G is a matrix group, any such system has the form

˙̄m = X̄(m̄) , ġ = gA(m̄) (m̄, g) ∈ M̄ ×G (2)

with some map A : M̄ → g and some vector field X̄ on M̄ . If the ‘reduced’ system
given by the vector field X̄ on M̄ has a periodic orbit t 7→ m̄(t), then the set of all
points in M̄ ×G that project onto it, which is diffeomorphic to S1 ×G, is called a
relative periodic orbit of system (2).

The dynamics in a relative periodic orbit is determined by the ‘reconstruction
equation’ ġ = gA(m̄(t)), which is exactly of the form (1) if one takes M̄ = TS =
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S × Rm 3 (s, ṡ) and A(s, ṡ) =
∑m
i=1 ṡiAi(s). The difference between the two cases

is that in the control case the periodic map t 7→ m̄(t) is assigned by the controller,
but clearly, all results that apply to a relative periodic orbit apply to equation (1)
with a periodic control as well. This analogy is well known in the control theory
community. Nevertheless, it seems to us that the qualitative informations on control
problems that may be drawn from this analogy have not yet been fully identified
and exploited.

The description of the dynamics in a relative periodic orbit of an equivariant
vector field is due to Krupa and Field [24, 33, 25] for compact groups and to Ash-
win and Melbourne [2] for noncompact groups (for further developments and some
applications see also [29, 17, 15, 22, 18, 19] and references therein). Their results
show that, in the case of a noncompact group, which is the one of interest in control
theory, orbits in a relative periodic orbits may be of two types: either they remain
inside a compact set, and in that case are quasi-periodic with a certain number k+1
of frequencies (namely, conjugate to a linear flow on Tk+1), with 0 ≤ k ≤ rank(G),
or they ‘drift’ away leaving any compact set as t→ ±∞.

There are two features of the reconstruction process that, in our opinion, are
relevant to trajectory generation, and are the focus of the present article.

The first is the fact that, for a given noncompact group, one of the two
behaviours—either quasi-periodicity or drifting—may, in a sense that can be made
precise, be “predominant” [2, 22]. For instance, among the groups that typically
arise in the control of locomotion systems, quasi-periodicity is predominant for
SE(2) while drifting is predominant for SE(3). This may be relevant for trajectory
generation with periodic controls: if the group is such that the predominant behavior
is quasi-periodicity, then the choice of the periodic gait acquires an important role,
because generic gaits will not produce a drift.

The second is the fact that motions in a relative periodic orbit exhibit ‘spi-
ralling’, or ‘meandering’, behaviours. These behaviours are revealed in numerical
integrations and have been investigated in a number of works, particularly ori-
ented towards infinite dimensional systems and having many applications (see e.g.
[2, 22, 23, 21, 20, 14] and references therein). In the case of quasiperiodic motions,
the origin of these behaviours is clarified by the reconstruction procedure of Krupa
and Field: one frequency is due to the periodicity of the gait in shape space, while
the remaining k are produced by the action of a compact abelian subgroup of G,
isomorphic to a torus. Instead, the group-theoretical origin of these behaviours does
not seem to have been clarified in the case of drifting motions, perhaps because con-
sidered more or less self-evident in examples. We shall thus begin such an analysis
here, by considering a class of Lie groups that contains the groups of interest in
locomotion.

Specifically, we shall consider the case in which G is the semidirect product of a
compact subgroup G∗ and of a normal subgroup V isomorphic to a vector space,1

which contains SE(n). In such a case, the reduction can be performed in two
stages, first under the normal subgroup V and then after the compact subgroup
G∗. We will show that it is possible to consistently define as frequencies of the
G-relative periodic orbit the frequencies of the G∗-relative periodic orbit, to which
the theory of Krupa and Field applies. In particular, we show that the frequencies
defined in this way coincide with those of the G-relative periodic orbit whenever

1Equivalently, the semidirect product of a compact group G∗ and of a vector space V on which
G∗ acts by linear maps.
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the latter carries quasi-periodic motions. When instead the G-relative periodic
orbit carries unbounded motions, then the action of G∗ on V due to the semidirect
product structure of the group translates the quasi-periodicity in G∗ into spiralling,
or meandering, patterns of the motion in the group G. The case of more general
groups will be considered elsewhere.

We will illustrate these ideas on simple locomotion systems—a car robot and a
microswimmer—for which G is SE(2), SE(2)× S1, SE(3).

1.2. Structure of the paper. Section 2 is devoted to the qualitative properties
of the dynamics in relative periodic orbits. We describe some known results, and
present our new treatment of the frequencies of drifting motions for a class of
semidirect products.

Section 3 is devoted to locomotion control systems. We focus on the case of
periodic controls and its link with the dynamics in relative periodic orbits. We
also give a detailed description of some properties of the phase for these systems.
The material here is essentially known, but the presentation has some elements of
novelty.

Section 4 is devoted to the examples. A short section of Conclusions follows.
In the Appendix we give a proof of the reconstruction result for quasi-periodic

motions, which may help understanding the origin of the frequencies of the recon-
structed motions.

2. The dynamics in a relative periodic orbit.

2.1. Dynamical systems with symmetry. Consider a free and proper action
Ψ : G ×M → M of a Lie group G on a manifold M . A vector field X on M is
equivariant under the action Ψ if

X = Ψ∗gX ∀ g ∈ G .

For general information on equivariant dynamics see e.g. [36, 26, 15, 28]. It is well
known that the quotient manifold M̄ := M/G is a smooth manifold, the canonical
projection π : M → M̄ is a smooth submersion, and π : M → M̄ is a principal
G-bundle. We will assume that this bundle is trivial, so we may identify M with
M̄ ×G 3 (m̄, g). From now on, thus, we take

M = M̄ ×G

and the action Ψ of G on M̄ ×G is by left translations in the factor G, Ψh(m̄, g) =
(m̄, hg).

A vector field X on M = M̄ ×G which is equivariant under the action Ψ has the
structure

X(m̄, g) =
(
X̄(m̄), TeLg · ξ(m̄)

)
with X̄ a vector field on M̄ and ξ : M̄ → g a smooth map. (As usual, g or lie(G)
denotes the Lie algebra of G and Lg : G → G denotes the left translation by g in
G, namely Lgh = gh for all h ∈ G). Thus, its dynamics is given by the system of
differential equations

˙̄m = X̄(m̄) , ġ = TeLg · ξ(m̄) (3)

on M̄ ×G. The first equation is the reduced equation and the second is the recon-
struction equation. If G is a matrix group, the latter takes the form ġ = g ξ(m̄)
with ξ(m̄) now a matrix in g ⊂ L(n), the space of all n× n real matrices.
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Assume that, for a given point m0 = (m̄0, g0) in M̄ × G, the integral curve
t 7→ m̄(t) of the reduced equation with initial datum m̄(0) = π(m0) = m̄0 is known.
The determination of the solution t 7→ m(t) of system (3) with initial datum m0

reduces to the determination of the solution of the reconstruction equation

ġ(t) = TeLg(t) · ξ(m̄(t)) (4)

with initial datum g0.
The qualitative properties of the solutions of the reconstruction equation (4) have

been studied in the case of relative equilibria (t 7→ m̄(t) is constant) and of relative
periodic orbits (t 7→ m̄(t) is periodic). We are interested in the latter case.

2.2. Relative periodic orbits. Assume that the reduced equation ˙̄m = X̄(m̄) in
M̄ has a periodic solution t 7→ m̄(t) of minimal period T > 0. Let R̄ := m̄(R) ⊂ M̄
be its image. Then, the preimage

P := π−1(R̄) = R̄×G

of R̄ under the projection π : M̄×G→ M̄ , π(m̄, g) = m̄, is called a relative periodic
orbit.

Consider an integral curve t 7→ (m̄(t),G(t)) ∈ P of (3) with initial datum
(m̄0, e) ∈ P . Such an integral curve intersects the G-orbit through (m̄0, e) at every
period T , at the points (m̄0,G(pT )), p ∈ Z. The phase of the relative periodic orbit
P (relative to the point m̄0) is the group element

γ := G(T )

(other names are geometric phase, shift, monodromy). By the periodicity of the
reduced motion and the G-invariance of the system, G(pT ) = γp and the integral
curve intersects the G-orbit {m̄0} ×G ⊂ P at the points (m̄0, γ

p), p ∈ Z.

Figure 1. The phase

For any g ∈ G, the subgroup of G generated by g is the closed, abelian subgroup
H(g) of G defined as

H(g) :=
{
gp : p ∈ Z

}
,

where the bar denotes the topological closure. If G is not compact, then the recon-
struction theory of [33, 25, 2] shows that the qualitative properties of the integral
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curves of X in the relative periodic orbit depend to a large extent on whether the
subgroup H(γ) generated by the phase γ is compact or not:2

i. If H(γ) is compact, then the flow of X in P is quasi-periodic with k + 1
frequencies for some k ≤ rank(G) + 1.

ii. If H(γ) is not compact, then the integral curves of X leave any compact subset
of P as t→ ±∞ [2, 15].

We call ‘quasi-periodic’ the motions in case i. and ‘drifting’ those in case ii. Greater
details on them are given in the next two Sections.

Remark 1. The phase defined above depends on the choice of the initial point
(m̄0, e). The integral curve of (3) with initial datum (m̄0, g0) is t 7→ (m̄(t), g0G(t))
and has phase g0G(T )g−1

0 . Given any t0 6= 0, the X-orbit of (m̄(t0), e) intersects
the G-orbit π−1(m̄(t0)) at the points G(t0 + pT ) = G(t0)G(T )p, and has phase
G(t0)G(T )G(t0)−1. Thus, properly speaking, the phase of a relative periodic orbit
is a conjugacy class of G. All the relevant properties of the phases are common to
all phases in a conjugacy class.

2.3. Quasi-periodic motions. In case i., the relative periodic orbit is foliated by
‘invariant tori’ Tg, g ∈ G. These are X-invariant submanifolds diffeomorphic to
Tk+1 = S1 × Tk 3 (〈α0〉, 〈α〉),3 and the restriction of the dynamics to each one of
them is conjugate to the linear flow(

t, (〈α0〉, 〈α〉)
)
7→ (〈α0 + ω0t〉, 〈α+ ωt〉) (5)

on S1 × Tk. Here, ω0 = 2π/T is the frequency of the reduced periodic orbit and
ω = (ω1, . . . , ωk) ∈ Rk is a vector determined by the phase. Thus, all motions
in P have the same frequencies ω0, . . . , ωk. For completeness, we give a precise
statement and a proof of this fact in the Appendix, even though under a simplifying
assumption. The proof fully explains the origin of the frequencies ω1, . . . , ωk, but
to make the article independent of it, we quickly introduce these frequencies here.

To keep things simple, assume that there exists an element η in the Lie algebra
g of G such that

γ = exp(Tη) (6)

(this certainly happens if the exponential map of G is surjective, as in the case of
SE(n)). This element generates the closed, abelian, connected subgroup

K(η) :=
{

exp(tη) : t ∈ R
}

(7)

of G, where the bar denotes the topological closure. Being closed, the subgroup
K(η) is a Lie subgroup of G. Clearly H(γ) ⊆ K(η), and it is not difficult to see
that K(η) is compact if and only if H(γ) is compact. (One implication is obvious.
For the other, note that the curve t 7→ exp(tη) intersects K(η) at the times qT ,
q ∈ Z, and use the compactness of H(γ) and of the intervals [(q − 1)T, qT ]).

Therefore, if H(γ) is compact, then K(η) is a torus of G of some dimension
k, 0 ≤ k ≤ rank(G). We will denote by lie(K(η)), eK(η), expK(η) etc. the Lie

algebra, the identity element, the exponential map etc. of K(η) (and we will use
below a similar notation for other groups). Choosing a basis of lie(K(η)) formed by
vectors ξ1, . . . , ξk which after multiplication by 2π generate ker(expK(η)) (namely,

2A compact, connected, abelian subgroup of a Lie group G is called a torus of G, and is
diffeomorphic to Tk for some k. The maximal dimension of its tori is the rank of a Lie group.

Thus, for instance, SE(2) and SE(3) have both rank one.
3For x ∈ R, we write 〈x〉 to mean x (mod2π).
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expK(η)(ξ) = eK(η) if and only if ξ =
∑
j 2πcjξ

j with all cj ∈ Z) gives a diffeo-

morphism 〈α〉 7→ expK(η)

(∑k
i=1 αiξ

i
)

of Tk to K(η). The frequencies ω1, . . . , ωk of

motions (5) are the components of the Lie algebra vector η in the chosen basis:

η =

k∑
i=1

ωiξi . (8)

Clearly, motions in P exhibit spiralling, or ‘meandering’, paths produced by the
embedding in P of the spirals (5) in Tk+1. (The embedding is built in the Appendix).

Remark 2. (i) If only p < k+1 of the frequencies are nonresonant (namely, linearly
independent over Q), then the closure of each motion (5) is a p-dimensional torus.
In such a situation, the construction described above could be repeated with K(η)
replaced by a torus of dimension p− 1 (see [2, 15] and, for an analogous case, [18]).
In this way, p-dimensional ‘invariant tori’ Tg are constructed that are minimal sets
for the flow of X.

(ii) The choice of the ‘logarithm’ η of the phase is unique up to an element of
ker(expK(η)). Even though this choice does not affect the phase, it may change the

dimension of K(η) (an example will be met in Section 4.3).
(iii) Even if the dimension of K(η) is kept fixed, the indeterminacy of η and of the

basis of lie(K(η)) implies that the frequency vector ω = (ω1, . . . , ωk) is determined
up to an automorphism of Zk (a linear transformation with integer entries and
determinant ±1).

2.4. Frequencies of drifting motions for certain semidirect products. The
description of drifting motions in a relative periodic orbit R̄×G is less detailed than
that of quasi-periodic motions. As already mentioned, their G-component leaves
any compact set of G as t → ±∞ (and this is basically their known dynamical
characterization).

To show that this is indeed the case note that, if H(γ) is not compact, then
certainly the points G(nT ) = γn leave any preassigned compact subset of G for n
tending to at least one between ±∞. Assume, e.g., that this happens for n→ +∞.
Since the action of G on itself by left translations is proper, the map f : G×G→
G×G, (g, h) 7→ (gh, h) is proper. If the points γ−n, n > 0, remain inside a compact
subset of G, then the subset f−1({(e, γ−n) : n ∈ Z+}) = {(γn, γ−n) : n ∈ Z+} of
G×G is compact, against the hypothesis that the γn’s leave any compact set in G.

The possibility of defining frequencies and spiralling for drifting motions does not
seem to have been considered before (even though frequencies make, at least im-
plicitly, their appearance in some examples involving SE(2) or other simple groups
[2, 22]). We leave a general analysis of this topic for a future work and, as a first
step in this direction, we restrict our attention to a family of Lie groups including
SE(n) and other common groups in locomotion.

Specifically, in this Section we assume that G is the semidirect product of a
compact subgroup G∗ and of a (normal) vector subgroup V :

G = G∗ n V

(a “vector subgroup” of a Lie group is a closed subgroup isomorphic to a vector
space). As a manifold, G is diffeomorphic to G∗ × V , but the group multiplication
is

(g∗, u)(h∗, v) = (g∗h∗, uφg∗(v))
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where φ : G∗×V → V is a (left) action of G∗ on V such that, for each g∗ ∈ G∗, φg∗
is an automorphism of V . We will identify G with the product G∗ × V and write
any element g ∈ G as (g∗, u) with unique g∗ ∈ G and u ∈ V . Correspondingly, we
will identify the phase space M = M̄ ×G 3 (m̄, g) with

M0 := M̄ ×G∗ × V

so that the action of G on M becomes the action of G∗ × V on M0 given by

Ψ(g∗,u)(m̄, h∗, v) =
(
m̄, Lg∗h∗, (Lu ◦ φg∗)(v)

)
.

The Lie algebra g of G, as a vector space, is the direct sum of the Lie algebras
lie(G∗) of G∗ and lie(V ) of V , and any ξ ∈ g can thus be uniquely written as
(ξ∗, ξV ) with ξ∗ ∈ lie(G∗) and ξV ∈ lie(V ). We will denote by eG, e∗ and eV the
identity elements of G, G∗ and V , and similarly write expG, expG∗

, expV etc.
In order to define frequencies for the drifting motions we use the fact that, for

a semidirect product, the reduction procedure under G can be performed in two
stages: first under the normal subgroup V , then under G∗. Indeed, it is immediate
to check that a G-invariant vector field X on M0 3 (m̄, g∗, u) has the form

˙̄m = X̄(m̄) , ġ∗ = TeLg∗ · ξ∗(m̄) , u̇ = Te(Lu ◦ φg∗) · ξV (m̄) (9)

with X̄ a vector field on M̄ and, for any m̄ ∈ M̄ , ξ∗(m̄) ∈ lie(G∗) and ξV (m̄) ∈
lie(V ). In agreement with the fact that V is normal, the quotient G/V is a group
isomorphic to G∗ and the quotient projection G → G∗ is a Lie group homomor-
phism. Hence, taking the quotient under V gives a “first-reduced” system on the
phase space M1 := M̄ × G∗, with quotient map π1 : M0 → M1 given by the pro-
jection π1(m̄, g∗, u) = (m̄, g∗). The first-reduced vector field X̄1 on M̄ × G∗, as a
differential equation, is

˙̄m = X̄(m̄) , ġ∗ = TeLg∗ · ξ∗(m̄)

and is G∗-invariant. Its reduction under the action (g∗, (m̄, h∗)) = (m̄, Lg∗h∗) of
G∗ on M1 gives the vector field X̄ on M̄ , and coincides with the reduction of the
full system from M0 to M2 := M̄ under the action of G. If π2 : M1 → M2 and
π : M0 → M2 are the projections associated to these two other quotients, then
π = π2 ◦ π1.

Consider now a reduced periodic orbit R̄ ⊂ M2 of period T . Reconstructing it
with the full G-action gives a G-relative periodic orbit P0 = π−1(R̄) ⊂ M0 with
a certain phase γ = (γ∗, γV ) ∈ G. Since γn+1 =

(
γn+1
∗ , γV (φγ∗(γV )n)V

)
for all

n ≥ 1, the compactness of the subgroup H(γ) := {γn : n ∈ Z} of G generated by γ
depends jointly on the two components γ∗ ∈ G∗ and γV ∈ V of the phase; for H(γ)
to be noncompact it is obviously necessary that γV 6= eV , but this is not sufficient;
for some examples, see Sections 2.5 and 4. On the other hand, reconstructing R̄
with the action of G∗ produces a G∗-relative periodic orbit P1 = π−1

2 (R̄) ⊂M1.

Lemma 2.1. The phase of P1 coincides with the G∗-component of the phase of P .

Proof. From the fact that the vector field X is π1-related to the vector field X1 in P1

it follows that π1◦ΦXT = ΦX̄1

T ◦π1 and therefore ΦX̄1

T (m̄0, e∗) = ΦX̄1

T ◦π1(m̄0, e∗, eV ) =
π1 ◦ ΦXT (m̄0, e∗, eV ) = π1(m̄0, γ∗, w) = (m̄0, γ∗).

Thus, if γ = (γ∗, γV ) is the phase of P , γ∗ is the phase of P1. Since G∗ is compact,
the subgroup H∗(γ∗) := {γn∗ : n ∈ Z} of G∗ generated by γ∗ is compact. Therefore,
the dynamics in P1 is quasiperiodic, and has a set of frequencies (ω0, ω) ∈ R× Rk,
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for some 0 ≤ k ≤ rank(G∗), with ω0 = 2π/T and a vector ω ∈ Rk which is unique
up to an automorphism of Zk.

Definition 2.2. Under the hypotheses of this section, we define as frequencies of
the G-relative periodic orbit P the frequencies of the G∗-relative periodic orbit P1.

This definition applies to both compact and noncompact subgroups H(γ) ⊂ G,
namely to both quasi-periodic and drifting motions in the G-relative periodic orbit
P . Even though the case of interest is that of drifting motions, we note that, in the
case of quasi-periodic motions, this definition leads to the right frequencies.

Proposition 1. In the hypotheses of this section, assume that H(γ) is compact.
Then, the reconstruction procedures described in Section 2.3 for the G-action and
for the G∗-action can be performed so as to produce the same frequencies.

Proof. We use a few elementary facts about Lie groups, which can be found in any
textbook (e.g. [8, 16]).

Under the current hypotheses, as a manifold, G can be identified with G∗ × V
and, as a vector space, lie(G) := g is isomorphic to lie(G∗)⊕ lie(V ). We thus write
g = (g∗, gV ) ∈ G∗×V the elements of G and ξ = (ξ∗, ξV ) ∈ lie(G∗)× lie(V ) those of
lie(G) := g. Let p1 : G∗ × V → G∗, p1(g∗, u) = g∗, be the projection onto the first
factor. Because of the semidirect product structure of G = G∗ n V , as a map from
G to G∗ the projection p1 is a Lie group homomorphism. Therefore, its differential
TeGp1 : lie(G∗) × lie(V ) → lie(G∗), (ξ∗, ξV ) 7→ ξ∗, as a map from lie(G) to lie(G∗),
is a Lie algebra homomorphism. Hence, p1 ◦ expG = expG∗

◦TeGp1.
If γ = (γ∗, γV ) is the phase of P then, as already noticed, γ∗ is the phase of

P1. Pick up an η = (η∗, ηV ) ∈ lie(G) such that γ = expG(Tη). Then, γ∗ =
p1 ◦ expG(η) = expG∗

(η∗).

Consider now the two subgroups K := expG(Rη) of G and K∗ := expG∗
(Rη∗) of

G∗, which are both tori. From the relationship between p1 and Tep1, using also the
compactness of K and the continuity of p1, it follows that

K∗ = p1(K) .

Hence dimK∗ ≤ dimK. We now show that dimK∗ = dimK.
Let k = dimK. Since p1 : K → K∗ is a group homomorphism, lie(K∗) =

Tep1(lie(K)). SinceK is a k-dimensional torus, its Lie algebra has a basis {ξ1, . . . , ξk}
which generates ker(expK). Write, as above, ξi = (ξi∗, ξ

i
V ). The vectors ξi∗ = Tep1 ·ξi

belong to lie(K∗) and so, if they are linearly independent, dimK∗ = k. If they

are not linearly independent then, possibly after a reordering, ξk∗ =
∑k−1
i=1 ciξ

i
∗

with ci ∈ R. Hence ξk −
∑k−1
i=1 ciξ

i = (0, w) ∈ lie(K) with some nonzero (in
view of the linear independence of ξ1, . . . , ξk) vector w ∈ lie(V ). Note now that
expK(t(0, w)) = (eG∗ , expV (tw)) for all t ∈ R and thus

expK(R(0, w)) = {eG∗} × expV (Rw) .

But this is impossible because expK(R(0, w)), being a closed subgroup of the com-

pact group K, is compact, while expV (Rw) is noncompact because the vector
subgroup V contains no nontrivial compact subgroups. Thus, by contradiction,
dim(K∗) = dim(K). Moreover, {ξ1

∗ , . . . , ξ
k
∗} is a basis of lie(K∗) that exponentiate

to the identity.
As explained in Section 2.3, the choice of the basis {ξ1, . . . , ξk} of lie(K) and

of the ‘logarithm’ η =
∑
i ωiξ

i of the phase γ = (γ∗, γV ) leads to the frequencies
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ω0, ω1, . . . , ωk of the G-relative periodic orbit P . In the basis {ξ1
∗ , . . . , ξ

k
∗} of lie(K∗),

the phase γ∗ of the G∗-relative periodic orbit P1 has ‘logarithm’ η∗ = Tep1 · η =∑
i ωiξ

i which leads to the same frequencies.

Definition 2.2 allows to attach a set of k + 1 frequencies to drifting motions,
with some 0 ≤ k ≤ rank(G∗). One of these frequencies comes from the reduced
period, while the remaining k are produced from the reconstruction procedure of the
reduced periodic orbit with the action of G∗. In the identification (as a manifold)
of the G-relative periodic orbit P with R̄ × G∗ × V , (ω0, ω) are the frequencies of
the projections of motions to the R̄×G∗ factor of P , which are quasi-periodic.

However, due to the semidirect product structure of the group, which couples
the V -component of motions to their G∗-component, the frequencies may affect also
the evolution of the V -component of motions, producing meandering behaviours.
In practice, the observability of these frequencies and meandering depends on the
possibility of identifying the components R̄×G∗ and V of the relative periodic orbit
in the system’s phase space. We will illustrate this situation in the examples—from
control theory—of Section 4.

Remark 3. (i) While the quasiperiodicity or drifting of a motion is determined by
both components of the phase in G∗ and V , its frequencies—as defined here—are
determined only by the former.

(ii) The analysis of the frequencies of unbounded motions made here applies as
well to relative equilibria of noncompact groups.

2.5. The effect of the group on the prevalence of quasi-periodicity or
drifting. Ashwin and Melbourne in [2] make the interesting remark that, in a
given group G, there may be a ‘preferred’ behaviour between quasi-periodicity and
drifting, which is due to a prevalence of elements g ∈ G that generate either a
compact or a noncompact subgroup (see also, for the case of SE(n), [22]). In fact,
G decomposes as the union of the two disjoint subsets

GQP := {g ∈ G : H(g) is compact}
GD := {g ∈ G : H(g) is not compact}

and, if one of them is significantly ‘larger’ than the other, then the corresponding
dynamical behaviour may be expected to be preferred. In [2], this fact is charac-
terized at the Lie algebra level, but we prefer to work in G.

Specifically, [2] points out that the two subsets

gQP := {η ∈ g : K(η) is compact}
gD := {η ∈ g : K(η) is not compact}

(where K(η) is defined as in (7)) of the Lie algebra g are semialgebraic sets (namely,
closed sets defined by polynomial equations and inequalities). We recall that a semi-
algebraic subset A of a vector space E contains a dense subset which is a submanifold
of E, and whose dimension (codimension) defines the dimension (codimension) of
A.

It is elementary to translate these facts to G if—as we do assume—the exponen-
tial map exp : g → G is surjective. If g = exp(η), then as already noticed H(g) is
compact if and only if K(η) is compact. Therefore,

GQP = exp(gQP) , GD = exp(gD) .
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If the group G is not a matrix group, then GQP and GD cannot be regarded as
semialgebric sets. However, since the exponential map is a local diffeomorphism,
each of the two sets GQP and GD contains a maximal submanifold (the image of
the maximal submanifold of gQP and gD) which is dense in it, whose dimension
equals the dimension of gQP and gD. We may thus define dimGQP := dim gQP and
dimGD := dim gD. And it may happen that, in a given group, the dimension of
either GQP or GD exceeds the other.

It is instructive, in this regard, to compare SE(n), namely the semidirect product
SO(n)nRn, to the direct product SO(n)×Rn. These two Lie groups have the same
differentiable structure as manifolds, but different group structures, with products
(R, r)(S, s) = (RS, r+Rs) in the former and (R, r)(S, s) = (RS, r+s) in the latter.

• In G = SE(n), codimGQP = 0 and codimGD = 1 if n is even, the opposite if n
is odd ([2, 22]).

• In G = SO(n) × Rn, instead, the prevailing behaviour is always drifting. In
fact, (R, r)n = (Rn, nr) and H((R, r)) is compact if and only if r = 0. Thus,
GD = SO(n) × {r 6= 0} is an open submanifold of SO(n) × Rn while its
complement SO(n)× {0} is a submanifold of dimension n(n− 1)/2. It follows
that codimGD = 0 and codimGQP = n.

At least at the Lie group or Lie algebraic level, therefore, it may happen that
one of the two behaviours—quasiperiodicity or drifting—is generic and the other
exceptional. In such a situation, unless peculiarities of the dynamics select phases
that belong to the exceptional subset of the Lie group, the prevalent behaviour is a
priori expected to take place.

3. Phases and frequencies in robotic locomotion.

3.1. Control systems for robotic locomotion. The class of locomotion control
systems that we consider is formed by control systems of the form

ṡ(t) = u(t) , ġ(t) =

m∑
i=1

Xi(s(t), g(t))ui(t) ,

where: (1) The configuration space is the product M = S×G 3 (s, g) of a connected
n-dimensional Lie group G and of an m-dimensional manifold S, which is assumed
to be parallelizable (so that TS ≈ S × Rn and it is meaningful to consider the
components ui of its tangent vectors). (2) The u’s are the controls. (3) The vector
fields X1, . . . , Xm on G are assumed to be (for each fixed s) left-invariant, so that
Xi(s, g) = TeLg · Ai(s) with smooth maps Ai : S → g, i = 1, . . . ,m. Thus, a
locomotion control system is given by

ṡ = u , ġ =

m∑
i=1

TeLg ·Ai(s)ui (s, g) ∈ S ×G . (10)

The points of S are often interpretable as ‘shapes’ of the system, and the elements
of G as its ‘configurations’ or ‘positions’. For instance, for a planar system formed
by two articulated rigid rods immersed in a viscous fluid, such as the ‘scallop’
considered in [40], the configuration space G is SE(2) (position and orientation of
one rod) while the shape space S is S1 (mutual orientation of the two rods).

In view of the first equation (10), the controls t 7→ u(t) ∈ Rm assign the veloci-
ties of the shape changes as a function of time. General theorems on non-smooth
ordinary differential equations (see e.g. [1]) ensure that, given any measurable
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map u : R → Rn, any t0 ∈ R and any (s0, g0) ∈ S × G, there is a unique map
(s, g) : I → S × G which is defined on a maximal interval I that contains t0, is
absolutely continuous,4 satisfies (s(t0), g(t0)) = (s0, g0) and satisfies (10) at almost
any t ∈ I. Furthermore, this map depends in an absolutely continuous way on t0
and smoothly on (s0, g0).

One may prefer to regard the curve R 3 t 7→ s(t) ∈ S, rather than its derivative,
as the control—and we will do this way. Since any absolutely continuous map is
almost everywhere differentiable with a measurable derivative, the previous results
imply that, given any absolutely continuous curve R 3 t 7→ s(t) ∈ G, any t0 ∈ R
and any g0 ∈ G, there exists a unique map t 7→ g(t) ∈ G which is defined in a
maximal interval I 3 t0, satisfies g(t0) = g0, is absolutely continuous and satisfies

ġ(t) = TeLg(t) ·
m∑
i=1

Ai(s(t))ṡi(t) (11)

at almost all t ∈ I. Furthermore, this map (that we will call the solution of the
control system (11) with initial datum g0 at time t0 relative to the given control
t 7→ s(t)) depends in an absolutely continuous way on t0 and is smooth in g0.

We will assume that all solutions of (11) exist for all times. Thus, for any
absolutely continuous control ŝ : R → S there is an absolutely continuous nonau-
tonomous flow map

Φŝ : R× R×G→ G , (t0, t, g0) 7→ Φŝt,t0(g0) (12)

such that Φŝt,t0(g0) is the value at time t of the solution of (11) with initial datum
g0 at time t0 relative to the control ŝ. By the left-invariance of (11),

Φŝt,0(g0) = g0Φŝt,0(e) ∀t ∈ R , g0 ∈ G .

Furthermore, Φŝt2,t1◦Φ
ŝ
t1,t0 = Φŝt2,t0 for all t0, t1, t2 ∈ R. It follows that Φŝt,t0 : G→ G

is a diffeomorphism with inverse Φŝt0,t for all t0, t ∈ R.

Remark 4. The configuration space M = S × G can be interpreted as the total
space of a trivial principal bundle with base S, fiber G and projection π : S×G→ S,
π(s, g) = s. Correspondingly, the map

A : TS → g , A(s, ṡ) =

m∑
i=1

Ai(s)ṡi (13)

can be regarded as a principal connection on this principal bundle. This interpreta-
tion has been emphasized, e.g., in [42, 37, 31]. We will not need this interpretation,
but we will use this terminology.

3.2. Phases and dynamics for periodic controls. We are interested in periodic
controls. For any s0 ∈ S and T > 0, let LTs0 be the space of all absolutely continuous
(parametrized) curves ` : R → S which are periodic with minimal period T and
satisfy `(0) = `(T ) = s0. We call these curves T -periodic gaits with basepoint s0.
Next, we define the space Ls0 of gaits of any period with basepoint s0, the space
LT of gaits of period T with any basepoint, and the space L of all gaits in S:

Ls0 :=
⋃
T>0

LTs0 , LT :=
⋃
s0∈S

LTs0 , L :=
⋃
s0∈S

Ls0 =
⋃
T>0

LT .

4We assume that a Riemannian metric has been chosen on S ×G, so as to give a meaning to
the absolute continuity of curves in S ×G.
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Note that we do not require the restriction to the interval [0, T ) of a T -periodic
gait to be injective. Therefore, the image of a gait may have self-intersection points
(Figure 2.b), may contain closed subgaits ran more than once (Figure 2.c), and
may even be a non-closed curve ran twice in opposite directions (Figure 2.d). (The
reason for not requiring injectivity is for the concatenation of gaits to be a gait, see
below).

Figure 2. Images of gaits

To any gait ` ∈ L we associate its nonautonomous flow map Φ` as in (12).
Clearly, if ` ∈ LT , then Φ`t+T,t0+T = Φ`t,t0 for all t0, t.

Definition 3.1. The phase map for the control problem (11) is the map γ : L → G
which to any gait ` ∈ LT of period T > 0 associates the group element γ(`) :=
Φ`T,0(e).

Equation (11) has the same form as the reconstruction equation (4) in a relative
periodic orbit of an equivariant vector field on TS × G, but with two differences.
One is that, at variance with reduced periodic orbits, control gaits may have self-
intersections; in such a case the phase can be defined through an obvious compo-
sition process. The other is that solutions of (11) need not be smooth. Thus, all
conclusions of Section 2 and of the Appendix apply to equation (11), with the only
difference that the conjugation to quasi-periodic motions is absolutely continuous
rather than smooth. With this caveat, we have that, given a gait ` ∈ L:

i. If the subgroup H(γ(`)) is compact, then t 7→
(
(`(t), `′(t)),Φ`t,0(e)

)
is a quasi-

periodic curve with k+1 frequencies, for some 0 ≤ k ≤ rank(G). Its component
t 7→ Φ`t,0(e) is contained in a compact subset of G.

ii. If the subgroup H(γ(`)) is not compact, then t 7→
(
(`(t), `′(t)),Φ`t,0(e)

)
is a

drifting curve. Its component t 7→ Φ`t,0(e) leaves any compact subset of G as
t→ ±∞.

In case i., the frequencies ω0, ω1, . . . , ωk can be computed as explained in Section
2.3. If G is the semidirect product of a compact group and of a vector space, as
explained in Section 2.4, frequencies can be attached to drifting motions as well.

From a trajectory generation perspective, one might be interested in determining
which gaits have phases that belong to GD or GQP, namely, in determining the sets
γ(L) ∩ GD, γ(LT ) ∩ GD etc. A first information comes from the knowledge of GD

and GQP themselves, particularly if one of the two is prevalent. On top of that,
in any given system, the specificities of the connection A that appears in equation
(11) may play a role—in particular, the phase map might not be surjective, and
only subsets of the two sets GD and GQP might be reached.

In conclusion we note that, in practice, there is a difference between the control
problem and the dynamics in a relative periodic orbit. In a control problem the
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interest is on the motion t 7→ Φ`t,0(e) ∈ G, which takes place in the group G, not

on the motion t 7→
(
(`(t), `′(t)),Φ`t,0(e)

)
which is the analogous of the motion in

a relative periodic orbit. Therefore, what is actually observed in a control system
is the analogous of the projection to G of the motion in the relative periodic orbit
R̄ × G, and the projected motion may loose one frequency. We will illustrate this
fact in the examples of Section 4.

3.3. Gaits’ concatenation, gaits’ reparametrization, and phases. We point
out now two properties of phases of locomotion systems.

1. Gaits concatenation. The space Ls0 of all gaits based at a point s0 can
be equipped with a product (“concatenation”) defined as follows: if `1 ∈ LT1

s0 and

`2 ∈ LT2
s0 , then `1 ? `2 is the (T1 + T2)-periodic curve defined by

`1 ? `2(t) :=

{
`1(t) if 0 ≤ t mod(T1 + T2) ≤ T1

`2(t) if T1 ≤ t mod(T1 + T2) ≤ T1 + T2 .

If, as we will always assume, `1 and `2 have different images, then `1 ? `2 ∈ LT1+T2
s0 .

(If they have the same image, then T1 + T2 is not the minimal period of `1 ? `2).
Obviously:

Proposition 2. γ(`1 ? `2) = γ(`1)γ(`2) for all `1, `2 ∈ Ls0 .

This has the consequence that, if GQP is not a subgroup of G, it may happen that
γ(`1 ? `2) ∈ GD even if γ(`1), γ(`2) ∈ GQP. Thus, it may be possible to build gaits
that produce drifting motions by concatenating gaits that, individually, produce
quasiperiodic motions. The opposite may happen to the products of gaits whose
phase is in GD (which is never a subgroup, because e /∈ GD).

For a generic group G, there are no explicit algorithms to design the individual
gaits `1 and `2 so as to produce a desired phase γ(`1?`2). However, this is elementary
for G = SE(2) and SE(3). If we regard SE(n) as SO(n)nRn 3 (R, r) with product
(R, r)(S, s) = (RS, r + Rs) and write γ = (γ∗, γV ) with γ∗ ∈ SO(n) and γV ∈ Rn
(see Section 2.2), then

γ(`1 ? `2)∗ = γ(`1)∗γ(`2)∗ , γ(`1 ? `2)V = γ(`1)V + γ(`1)∗γ(`2)V .

When n = 2, if each γ(`i)∗ is a rotation of angle θi, then γ(`1 ? `2)∗ is a rotation
of angle θ1 + θ2. When n = 3, the axis and angle of the rotation γ(`1 ? `2)∗ can be
read off those of γ(`1)∗ and γ(`2)∗ using e.g. quaternions.

2. Gaits reparametrization. Second, for locomotion systems, the linearity in
ṡ of the connection (13) has the consequence that the phase of a control gait is
independent of its time-parametrization. This follows from the following known
fact, whose proof is immediate (see also [12], which however considers only time-
reparametrizations of class C1).

Lemma 3.2. Consider an interval I ⊆ R and let g : I → G be the solution with
initial datum g0 at time t0 of equation (10) with a certain absolutely continuous map

s : I → S. Consider an interval Ĩ ⊆ R and a homeomorphism τ : Ĩ → I which is
absolutely continuous together with its inverse. Then, g̃ := g ◦ τ is the solution of
equation (10) with the map s replaced by s ◦ τ and initial datum g0 at time τ−1(t0).
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Given T, T̃ > 0 and t̃0 ∈ R, consider an absolutely continuous homeomorphism
τ0 : [t̃0, t̃0 + T̃ ]→ [0, T ] and lift it to a map τ : R→ R by defining

τ(t+ p T̃ ) := τ0(t) + p T ∀ t ∈ [t̃0, t̃0 + T̃ ] , p ∈ Z ,

which is an absolutely continuous homeomorphism as well. Clearly, if ` ∈ LTs0 , then
˜̀ := ` ◦ τ ∈ LT̃s̃0 with base point s̃0 = `(τ(0)).

Proposition 3. For any absolutely continuous homeomorphism τ : R → R of the
type just introduced there exists gτ ∈ G such that, for all ` ∈ LT , γ(`◦τ) = gτγ(`)g−1

τ

if τ is orientation preserving and γ(`◦τ) = gτγ(`)−1g−1
τ if τ is orientation reversing.

Proof. Let ˜̀ = ` ◦ τ . By Lemma 3.2, Φ
˜̀

t̃,t̃0
= Φ`

τ(t̃),τ(t̃0)
for all t̃, t̃0 ∈ R. Therefore,

using the periodicity of ˜̀ and the link between the two nonautonomous flows,

γ(˜̀) = Φ
˜̀

T̃ ,0
(e) = Φ

˜̀

T̃ ,T̃+t̃0
◦ Φ

˜̀

T̃+t̃0,t̃0
◦ Φ

˜̀

t̃0,0
(e) = Φ

˜̀

0,t̃0
◦ Φ`

τ(T̃+t̃0),τ(t̃0)
◦ Φ

˜̀

t̃0,0
(e) .

Hence, by equivariance, γ(˜̀) = Φ
˜̀

t̃0,0
(e) Φ`

τ(T̃+t̃0),τ(t̃0)
(e) Φ

˜̀

0,t̃0
(e)

= gτ Φ`
τ(T̃+t̃0),τ(t̃0)

(e) g−1
τ with gτ = Φ

˜̀

t̃0,0
(e). The proof is now concluded observing

that Φ`
τ(T̃+t̃0),τ(t̃0)

(e) = Φ`T,0(e) if τ preserves the orientation and Φ`
τ(T̃+t̃0),τ(t̃0)

(e) =

Φ`0,T (e) = Φ`T,0(e)−1 if it reverses the orientation.

This implies that, unless a gait contains closed subgaits (as in Figure 2.c), its
phase is a property of its (oriented) image alone.

3.4. Example: The scallop theorem. An extreme case is that of a gait of period
T whose image is an arc of a non-closed curve which is ran twice, first in a direction,
then in the other, as in Figure 2.d.

It is well known (Purcell’s “scallop theorem” [40]) that the phase of any such gait
is trivial, namely, it is the group identity. Within our setting, the proof of this fact
is immediate. We may reparametrize time so that the gait satisfies `(t) = `(T − t)
for all t ∈ [0, T ]. Thus, if τ(t) = T − t, ` ◦ τ = ` and hence, by Lemma 3.2,
Φ`T,T/2 = Φ`◦τT,T/2 = Φ`0,T/2 = (Φ`T/2,0)−1 so that γ(`) = Φ`T,T/2 ◦ Φ`T/2,0(e) = e; the

conclusion now follows from Proposition 3.
Hence, if the shape space S is one-dimensional and diffeomorphic to R, then

the phase map γ maps S onto the group identity. Non-trivial phases are instead
possible if the shape space is diffeomorphic to a circle S1. The consequences of these
facts on the self-propulsion of micro swimmers have been extensively discussed by
Purcell himself [40].

Remark 5. There is an extensive literature on the scallop theorem, which has
been reconsidered from a variety of perspectives. The statement and proof above
seem to us to be exactly in the spirit of Purcell’s ideas (who did not formalize his
theorem): the gaits which are ran twice formalize the “reciprocal motions” of [40]
and the time reparametrization formalizes Purcell’s statement that “Time, in fact,
makes no difference—only configuration”.

4. Examples from locomotion systems. We provide now some examples, cho-
sen from locomotion systems, to illustrate the theory and the considerations of the
previous sections. We focus mostly on the simple but typical case of G = SE(2),
but we very shortly consider also the cases of SE(2) × S1 and SE(3). All these
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groups have the semidirect product structure of Section 3.3, and we may speak of
frequencies of drifting motions in the sense specified there.

Reconstruction for SE(2)-invariant systems appear in various works, see partic-
ularly [22, 21], and the results in Section 4.1 are known, except for the introduction
of the frequencies of unbounded motions.

4.1. Phases and frequencies in SE(2). We regard SE(2) as the semidirect prod-
uct S1 nR2 3 (〈α〉, r) with product

(〈α〉, r).(〈β〉, s) =
(
〈α+ β〉, r +Rαs

)
.

Here S1 = R/(2πZ) and, for any real x, 〈x〉 = x (mod2π) andRx =

(
cosx − sinx
sinx cosx

)
.

The group identity is e = (〈0〉, 0) ∈ S1 × R2 and the inverse of an element (〈α〉, r)
is (〈−α〉,−R−αr). Correspondingly, the Lie algebra se(2) is identified with R⊕R2

and the S1-component of the exponential map exp : R ⊕ R2 → S1 × R2 is that of
S1. Thus,

exp(θ̇, ṙ) =
(
〈θ̇〉, ?

)
∀(θ̇, ṙ) ∈ R⊕ R2 ; (14)

the expression of the R2-component of exp, here denoted ?, is not important for us
because, as pointed out before, the frequencies in the relative periodic orbits are
independent of it. In this identification, a basis of R = s1 which, after multiplication
by 2π, generates ker(expS1) is formed by the number 1.

As already mentioned, the generic behaviour for SE(2) is quasi-periodicity [2, 22].
In detail, (〈α〉, r)n =

(
〈nα〉,

∑n
k=0Rkαr

)
for all n > 0, and a similar formula for

n < 0. Therefore, if 〈α〉 = 0 and r 6= 0 then the R2-component of (〈α〉, r)n
moves along a straight line, and H(〈α〉, r) is not compact. In all other cases such
a component moves on a circle (if 〈α〉 6= 0, r 6= 0) or is a point (if 〈α〉 = 0, r = 0),
and H(〈α〉, r) is compact. Hence,

SE(2)D = {〈0〉} × (R2 \ {0}) , SE(2)QP = {(〈0〉, 0)} ∪
(
(S1 \ {〈0〉})× R2

)
.

Note that SE(2)D is a two-dimensional submanifold of SE(2) while SE(2)QP is
the union of a point and of a three-dimensional submanifold. Thus, SE(2)D has
codimension one and SE(2)QP has codimension zero.

Consider now a locomotion system with group SE(2) 3 (〈θ〉, r = (x, y)) and

an m-dimensional shape space S, m ≥ 1. If η = (θ̇, ṙ) ∈ R ⊕ R2 = se(2) then

T(〈0〉,0)L(θ,v) · η = (θ̇, Rθ ṙ). Therefore, if for every i = 1, . . . ,m we write

Ai(s) =:
(
A∗i (s), A

V
i (s)

)
∈ R× R2

(where the “∗” and the “V ” have the meaning of Section 2.3, with now G∗ = S1

and V = R2), then equation (11) takes the form

θ̇(t) =

m∑
i=1

A∗i (s(t))ṡi(t) , ṙ(t) =

m∑
i=1

Rθ(t)A
V
i (s(t))ṡi(t) . (15)

These equations have the structure (9) of semidirect products, with that for θ
being the ‘first reduced’ equation in S1. Correspondingly, they allow to determine
the phase of a gait with two consecutive integrations. Specifically, if for any ` ∈ LT
we define

θ`(t) :=

m∑
i=1

∫ t

0

A∗i (`(τ))`′i(τ)dτ
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then γ(`) = (γ`∗, γ
`
V ) with

γ`∗ =
〈
θ`(T )

〉
, γ`V =

m∑
i=1

∫ T

0

Rθ`(t)A
V
i (`(t))`′i(t)dt .

Hence (see also [22, 21]):

Proposition 4. γ(`) ∈ SE(2)D if and only if

θ`(T ) = 0 (mod2π) and γ`V 6= 0 .

We now consider the frequencies of motions in the relative periodic orbit. As
discussed in Section 2.4, they are the frequencies produced by reconstructing the
gait with the action of S1, namely, with the first equation (15). Since S1 has
rank one, motions may have at most two frequencies, one of which is the frequency
ω0 = 2π

T of the control gait. The other frequency, if present, is determined by the

S1-component γ`∗ = 〈θ`(T )〉 of the phase. According to (14) we have γ`∗ = exp(Tη`∗)

with, for instance, η`∗ = θ`(T )
T , or else η`∗ = θ`(T )+2πq

T = θ`(T )
T + qω0 with any q ∈ Z.

The first choice leads to the second frequency

ω1 =
θ`(T )

T
.

Thus:

1. In a drifting motion 〈θ`(T )〉 = 0 and we may choose η`∗ = 0. Motions have the
single frequency ω0. This means that the projection of the motion in R̄ × S1

is periodic with the period T of the gait. Note that if θ`(T ) = 2πq for some
q 6= 0, then t 7→ θ(t) increments itself of an integer multiple of 2π in each gait’s
period.

2. Quasi-periodic motions are met in two cases:

2.1. 〈θ`(T )〉 = 0, γ`V = 0. This is the trivial case where the phase is the
identity. Choosing η`∗ = 0 does not produce a second frequency. Here too,
the projection of motions in R̄× S1 is T -periodic.

2.2. If 〈θ`(T )〉 6= 0 (and either γ`V 6= 0 or γ`V = 0) then motions are quasi-

periodic with the two frequencies ω0 and ω1. If ω1/ω0 = θ`(T )
2π is irrational,

then the projection of the motion in R̄ × S1 fills it densely; otherwise, it
is periodic.

As already pointed out, even if the frequency ω1 arises in the reconstruction of the
S1-component of the motion, it may affect also the evolution of the R2-component.
Moreover, the motion t 7→ (θ(t), r(t)) in the group might loose one frequency.

We now illustrate this situation on two control systems with shape spaces S
of dimensions two and three, respectively. (If S is one-dimensional, and simply
connected, then by the scallop theorem SE(2)D is always empty).

Remark 6. In cases 1. and 2.1, choosing η`∗ = 2πq with q ∈ Z gives ω1 = qω0;
hence, the number of independent frequencies remain 1, consistently with the fact
that the projection of motions in R̄× S1 is periodic.

4.2. A car robot. We consider here a simplified model of a car that moves on a
horizontal plane. This is a slightly modified version of a model studied in [39] and
reconsidered in other works, e.g. in the textbook [10] (for the differences see section
4.3). The car is formed by three articulated rigid bodies: the rear and front wheels
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attached to the car’s frame—say, a rod of length λ that connects the center C1 of
the front wheel to the center C2 of the rear wheel. The wheels are modelled as rigid
disks of equal radius aλ with some a < 1/2, which are free to rotate about their
horizontal axes and are constrained to touch the plane and stand vertically. The
front wheel is also free to rotate about its vertical axis, which allows to steer the
car. See figure 3 (where for convenience the car is depicted more like a bike).

Figure 3. The car robot

The configuration manifold of this (holonomically constrained, so far) mechanical
system is M = S1 × R2 × S1 × S1 × S1 3 (θ, (x, y), ψ1, ψ2, φ), where (x, y) are the
coordinates of the projection in the plane of a chosen point of the frame, say the
center C2 of the rear wheel, the angle θ fixes the orientation of the frame in the plane,
ψ1 and ψ2 are rotation angles of the front and rear wheels about their horizontal
axes, respectively, and φ is the steering angle of the front wheel. (To simplify the
notation, we now specify that angles are to be taken mod 2π only where this might
cause ambiguities).

The system is also subjected to the non-holonomic constraint that the two wheels
cannot slide on the plane, so that the velocities of their contact points with the plane
are zero. These conditions are

ẋ− aλψ̇2 cos θ = 0 , ẏ − aλψ̇2 sin θ = 0 ,

ẋ− λθ̇ sin θ − aλψ̇1 cos(θ + φ) = 0 , ẏ + λθ̇ cos θ − aλψ̇1 sin(θ + φ) = 0

and define a distribution on M of constant rank 2. All the fibers of this distribution,
but those on points with φ = ±π2 ,5 can be parametrized with (ψ̇2, φ̇) ∈ R2 as

θ̇ = aψ̇2 tanφ , ẋ = aλψ̇2 cos θ , ẏ = aλψ̇2 sin θ , ψ̇1 =
ψ̇2

cosφ
. (16)

Assume now that the controller can assign the rotation angle ψ2 of the rear
wheel and the steering angle φ of the front wheel; in order to keep the two controls
independent, we assume that the steering angle can only assume values |φ| < π

2
(see the previous footnote). Equations (16) can be viewed as a robotic locomotion
system with group G = SE(2)× S1, the direct product of SE(2) 3 (θ, x, y) and of

5 If φ = ±π
2

, then the rear wheel must have zero rotation speed ψ̇2. There is also a global

parametrization of all the fibers of the distribution with (ψ̇1, φ̇) ∈ R2, which reflects the fact

that the rotation speed of the front wheel is free when φ = ±π
2

. This parametrization could be

advantageously used if the drive wheel were the front one, as in [39] (who however neglects the
rotation of the rear wheel).
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S1 3 ψ1, and shape space S = S1 × (−π2 ,
π
2 ) 3 (ψ2, φ). The product in SE(2)× S1

is (θ, r, ψ1) · (θ′, r′, ψ′1) = (〈θ+ θ′〉, r+Rθr
′, ψ1 +ψ′1). If we identify the Lie algebra

with R×R2×R, then the connection of the locomotion system (16) has components

Aψ2(ψ2, φ) =
(
a tanφ , (aλ, 0) , 1/cosφ

)
, Aφ(ψ2, φ) = 0 . (17)

In the notation of (15), A∗ψ2
= (a tanφ, 1/ cosφ) and AVψ2

= (aλ, 0). The vanishing of

the φ-component of the connection reflects the fact that equations (16) are invariant

under translations of φ̇; nevertheless, the connection depends on the angle φ.

4.3. The car robot with G = SE(2). Ref. [39] considers a slightly different
model, in which the drive wheel is the front one. Moreover, ref. [39] ignores the
rotational configuration of the rear wheel (as if, e.g., the rear wheel was replaced by
a point touching the plane) and focuses on the motion of the frame of the car, which
is parametrized by (θ, x, y) ∈ SE(2). We can do something similar here, ignoring
the rotational configuration of the front wheel, namely the angle ψ1 (as if the front
wheel were replaced by a knife’s blade), because the connection (17) is independent
of that angle. In this way we obtain a locomotion system (11) given by the first
three equations (16), namely

θ̇ = aψ̇2 tanφ , ẋ = aλψ̇2 cos θ , ẏ = aλψ̇2 sin θ , (18)

on the group G = SE(2) 3 (θ, x, y), with shape space S = S1 ×
(
− π

2 ,
π
2

)
3 (ψ2, φ)

and connection Aψ2(ψ2, φ) =
(
a tanφ , (1, 0)

)
, Aφ = 0.

From Proposition 4 it follows that a gait ` = (ψ`2, φ
`) ∈ LT leads to a drifting

phase in SE(2) if and only if〈
θ`(T )

〉
= 0 and

∫ T

0

(
ψ̇`2(t) cos(θ`(t))

ψ̇`2(t) sin(θ`(t))

)
dt 6=

(
0
0

)
(19)

with

θ`(t) = a

∫ t

0

ψ̇`2(τ) tan(φ`(τ))dτ .

Thus, a necessary condition for a gait ` to generate drifting motions is that it takes
the spatial orientation t 7→ 〈θ(t)〉 of the car’s frame back to its initial value. If any
such gait is not too special—so that the second condition (19) is satisfied—then it
does actually generate a drifting phase.

We now discuss a few examples. Note that it follows from Lemma 3.2 that, if
the controls are such that the drive wheel does not reverse or stop its spinning, it
is always possible—with a reparametrization of time—to reduce to a constant ψ̇2,
and even to ψ̇2 = 1. We thus consider only 2π-periodic gaits with

ψ`2(t) = 〈t〉

and specify the gait giving φ` alone. Even though the drifting behaviour is not
generic, it is easy to design gaits that produce it. For instance:

0. A trivial example of a gait that satisfies both conditions (19) is given by φ`(t) =
0 for all t: by (19), the car runs straight forward.

1. Any absolutely continuous, odd, 2π-periodic function φ` : R → (−π2 ,
π
2 ) gives

a gait with θ`(T ) = 0.
2. Suitably designed periodic functions φ` : R → (−π2 ,

π
2 ) are needed to produce

drifting phases with θ`(T ) = 2πq, q ∈ Z \ {0}.
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Figure 4. Four trajectories of a point of the car’s frame in the
(x, y)-plane. The gaits have ψ̇`2 = 1 and φ` as shown in the insets.
The coordinates in the insets’ plots are time (horizontal) and φ`

(vertical). In all cases λ = 2.5, a = 0.4 and the initial configuration
of the car is (θ0, x0, y0) = (π/4, 0, 0). The value of θ`(T ) is 0 in (a),
2π in (b), approximately 0.262π in (c) and approximately 0.727π
in (d).

Generic gaits—including generic small perturbations of the previous ones—give
however quasi-periodic behaviours. Figures 4.a-4.d show the trajectories of a point
of the car’s frame in the plane (only the (x, y) coordinates are shown) as a result of
gaits of the types above. The first two refer to drifting motions and the last two to
quasi-periodic motions.

We do not show in the Figure the trajectory relative to a gait of type 0., which
is simply a straight line. However, we note that in case 0. the absence of any quasi-
periodic or periodic behaviour is an example of the fact that the projection in the
group can loose one of the frequencies. In this specific case, this happens because
the s1-component of the Lie algebra element Aψ2

is zero if φ` = 0.
In each example in the Figure the function t 7→ φ`(t) is a triangle wave, shown

in the inset. The non-constancy of φ` makes the s1-component of the Lie algebra
element Aψ2 non-zero, and the gait gives its frequency to the motion in the group.
As we know from Section 4.1, this is the only frequency for drifting motions, while
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pure quasi-periodic motions may get an extra frequency. This is clearly visible in
the Figures:

• In Figure 4.a, φ` is an odd function, as in case 1., and θ`(T ) = 0. The motion
is drifting, and the wobbling of the trajectory of the car’s frame reflects the
periodicity of the gait.

• In Figure 4.b φ` has been (carefully) chosen so that θ`(T ) = 2π. Not shown is
the orientation of the car, which makes a full turn in each gait’s period.

• Figures 4.c and 4.d refer to ‘generic’ gaits, for which
〈
θ`(T )

〉
6= 0. The re-

construction introduces a second frequency to the motion, which is thus quasi-
periodic with two frequencies. The appearance of a second, longer period is
evident in the pictures.

Since SE(2)QP is not a subgroup of SE(2), drifting phases may also be produced
by suitably concatenating gaits that individually produce the generic quasi-periodic
behaviour. For instance, the gait in Figure 4.a is the concatenation of two π-periodic
gaits which, individually, produce quasi-periodic motions. Other examples are easily
built.

4.4. The car robot with G = SE(2)× S1. In the previous example the rank of
the group G = SE(2) is 1. Hence, the reconstruction can contribute at most one
frequency to the motions (and in fact, this happens only for the quasi-periodic mo-
tions). If, as in Section 4.2, the car robot is regarded as a control system with group
G = SE(2) × S1, which has rank two, then the reconstruction can contribute two
frequencies to the motions. In particular, drifting motions may have two frequen-
cies, and quasi-periodic motions may have three frequencies. However, the extra
frequency corresponds to the rotation of the front wheel and no new frequency is
observed in the trajectory of the car on the plane.

4.5. A planar amoeba-like swimmer. An example with group SE(2) and a
three-dimensional shape space is provided by the amoeba-like planar swimmers [38,
32, 44]. In a particular model, the swimmer is modeled as a set in R2 whose bound-
ary is a smooth curve that depends on three shape parameters s = (s1, s2, s3) ∈ R3

and is given, in polar coordinates (ρ, σ), by the equation

ρ = ρ0

(
1 + s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ)

)
with a constant ρ0 > 0. The configuration manifold of the control problem is thus
SE(2) × R3 = S1 × R2 × R3 3 (θ, (x, y), s), with (θ, x, y) that fix position and
orientation of a (suitably defined) swimmer’s reference frame. Under hypotheses
discussed in [38, 44], which include the fact that the swimmer starts with zero
linear momentum, the control system is

θ̇ = −µs3ṡ2 + νs2ṡ3 ,

(
ẋ
ẏ

)
= Rθ

(
−µs2ṡ1 + s1ṡ2

−µs3ṡ1 + s1ṡ3

)
where µ and ν are two positive parameters that depend on the mass of the swimmer
and on the density of the fluid. These equations are of the form (15).

It thus follows from Proposition 4 that a T -periodic gait t 7→ `(t)
= (s`1(t), s`2(t), s`3(t)) produces drift if and only if〈

θ`(T )
〉

= 0 and

∫ T

0

Rθ`(t)

(
µs`2(t)ṡ`1(t)− s`1(t)ṡ`2(t)
µs`3(t)ṡ`1(t)− s`1(t)ṡ`3(t)

)
dt 6=

(
0
0

)
(20)
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with, now,

θ`(t) =

∫ t

0

(
νs`2(τ)ṡ`3(τ)− µs`3(τ)ṡ`2(τ)

)
dτ . (21)

Since the group is SE(2), the predominant behaviour is quasi-periodicity. Let us
thus focus on gaits that produce the exceptional drifting behaviour.

Trivial examples are given by the two classes of gaits with either s`2 = 0 and

any s`1, s
`
3 such that

∫ T
0

(
µs`3(t)ṡ`1(t)− s`1(t)ṡ`3(t)

)
dt 6= 0 (which produce translation

in the direction

(
− sin θ`

cos θ`

)
) or s`3 = 0 and any s`1, s

`
2 such that

∫ T
0

(
µs`2(t)ṡ`1(t) +

s`1(t)ṡ`2(t)
)
dt 6= 0 (which produce a translation along the direction

(
cos θ`

sin θ`

)
).

More generally, any s`2 ∈ LT and s`3 = (s`2)µ/ν give θ`(t) = 0 for all t and
therefore, if they satisfy (20), produce a drifting motion. The same happens if
s`2 = cs`3 with a real constant c 6= 0. But there are also other possibilities. For
example, if the T -periodic functions s`2 and s`3 are both odd or both even, then the
integrand in (21) averages to zero, so again θ`(T ) = 0 and drifting motions can be
produced.

The discussion of the frequencies of these motions is analogous to that of the car
robot.

4.6. 3D swimmers. There are interesting examples also with G = SE(3), such as
the three dimensional swimmers immersed either in an ideal or in a viscous fluid
presented in [13, 34]. As already noticed, for this group the generic case is drifting
[2, 22].

Indeed, let us write the elements of SE(3) = SO(3) n R3 as (exp ω̂, r) with
ω, r ∈ R3 (here, as usual, ω̂ is the antisymmetric matrix that represents the cross

product ω×· in R3). Note that (exp(ω̂), r)n =
(

exp(n̂ω),
∑n
k=0 exp(k̂ω)r

)
if n > 0,

and a similar expression for n < 0. If ω 6= 0 the component of
∑n
k=0 exp(k̂ω)r

parallel to ω grows linearly with n, while its component in the plane orthogonal to
ω rotates. Remembering the case of SE(2), one concludes that

SE(3)QP = {(exp(ω̂), r) : ω · r = 0 except (ω = 0, r 6= 0)}
SE(3)D = {(exp(ω̂), r) : ω · r 6= 0 or (ω = 0, r 6= 0)} .

Thus SE(3)QP has codimension one and SE(3)D has codimension zero.
We do not treat these examples here, but we limit ourselves to note that, since

SE(3) has rank one, motions may have at most two frequencies as in the case of
the planar swimmer.

5. Conclusions. In this paper we highlighted the relevance of the qualitative prop-
erties of the dynamics in relative periodic orbits of equivariant dynamical systems
for control theory. Specifically, this was done for trajectory generation via peri-
odic controls in a class of driftless control systems on Lie groups called robotic
locomotion systems.

From the persepctive of dynamical systems with symmetry, we identified the
frequencies of drifting motions in relative periodic orbits for groups which are the
semi-direct product of a compact group and of a vector space, among which SE(n)
is one of the most representative examples. An extension of this result to more
general non-compact Lie groups is an interesting problem that will be the subject
of future work.
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A point to stress is that in our study we did not take into account any optimiza-
tion problem. Instead, our focus is on trajectory generation, which is more closely
related to controllability, i.e. the possibility of finding control functions that steer
the system between two given configurations. However, optimization is central to
control theory. In a recent work [27] it is shown that, for a quadratic optimization
problem for an equivariant locomotion system with two controls, the optimal con-
trols are periodic. Thus, a possible future research direction is to apply the ideas
highlighted in this paper to the study of the relative periodic orbits obtained from
such periodic optimal controls.

Finally, we mention that our qualitative approach has been recently applied [41]
to trajectory generation for a nonholonomic system known as the hydrodynamic
Chaplygin sleigh [21], whose governing equations, even if SE(2)-invariant, are not of
the form (1). Specifically, the SE(2)-reduced space is the product of the shape space
S and of the momentum space g∗. Not every periodic control of the shape produces
a periodic reduced orbit in S×g∗. However, in this case, for certain classes of shape
controls the reduced equations become linear non homogeneous in the momenta,
and via Floquet theory it is possible to prove that there exist periodic controls of
the shape which produce periodic reduced orbits. The reconstruction procedure can
thus be applied to them. This same approach coould be easily extended to the class
of nonholonomic systems forming the so called pure transport case [6], whose reduced
equations are also linear non homogeneous in the momenta. More challenging would
be to study more general classes of shape-controlled nonholonomic systems, whose
reduced equations are nonlinear in the momenta and Floquet theory does not apply.

Appendix: Quasi-periodic motions. For completeness, we describe here in
some detail the known results from [25, 2, 15] about the quasi-periodic dynam-
ics in a relative periodic orbit.

Proposition 5. Let X be a G-invariant vector field on M = M̄ ×G. Assume that
the solution t 7→ m̄(t) of the reduced equation ˙̄m = X̄(m̄) with initial datum m̄0 is
periodic with minimal period T . Let

P = R̄×G ,

with R̄ = m̄(R), be the corresponding relative periodic orbit and γ be its phase.
Assume that H(γ) is compact.

Then there exist an integer k, 0 ≤ k ≤ rank(G), a smooth embedding

P : S1 × Tk ↪→ R̄×G = P

and, if k > 0, a vector ω ∈ Rk which are such that 6

ΦXt (m̄0, g) = Ψg ◦ P
(
〈 2πT t〉, 〈ωt〉

)
∀g ∈ G , t ∈ R . (22)

Moreover, the sets

Tg := Ψg ◦ P(S1 × Tk) , g ∈ G ,

are diffeomorphic to Tk+1, ΦX-invariant and are the fibers of a G-principal fibration
of P .

6Recall that G acts on P = R̄ × G by left translations on the factor G, namely Ψg(m̄, h) =

(m̄, gh).
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Proof. For simplicity, assume that there exists η ∈ g such that γ = exp(Tη) and
define K(η) as in (7). We write K for K(η). As noticed in Section 4.3, if H(γ) is
compact then K is a torus of G of some dimension k.

Choose a basis {ξ1, . . . , ξk} of lie(K) formed by vectors which after multiplication
by 2π generate ker(expK). Then, the map

J1 : S1 × Tk × R→ S1 ×K ,
(
〈τ〉, 〈α〉) 7→

(
〈τ〉 , expK(

∑k
i=1αiξi)

)
.

is a diffeomorphism. Consider the map

Ĵ2 : S1 ×G→ R̄×G ,
(
〈τ〉, g

)
7→
(
m̄
(
τ
ω0

)
, g expG

(
− τ
ω0
η
)
G
(
τ
ω0

))
.

A computation shows that it is well defined (namely, independent of the choice of τ
in the equivalence class), injective and immersive (see e.g. the proof of Proposition 2
in [17] for a similar computation in the case of compact G). Moreover it is surjective:
a point (m̄◦, g◦) ∈ R̄ × G is the image of (〈τ◦〉, g◦) ∈ S1 × G with 〈τ◦〉 such that

m̄(τ◦/ω0) = m̄◦ and g◦ = g◦ expG(− τ
◦

ω0
η)G( τ

◦

ω0
)−1. Thus, Ĵ2 is a diffeomorphism.

Being a closed subgroup of S1 × G, S1 ×K is an embedded submanifold of it.
Therefore, the restriction J2 := Ĵ2|S1×K of the diffeomorphism Ĵ2 to S1 ×K is an
embedding, and so is P := J2 ◦ J1 : S1 ×K → R̄×G. Explicitly,

P(〈τ〉, 〈α〉) =
(
m̄( τ

ω0
) , expK

(∑k
i=1(αi − τ

ω0
ωi)ξi

)
G
(
τ
ω0

))
where ω1, . . . , ωk ∈ R are the components of η in the basis ξ1, . . . , ξk of lie(K), see
(8). Hence

P(〈ω0τ〉, 〈ωt〉) =
(
m̄(t) , G(t)

)
= ΦXt (m̄0, eG) .

Equality (22) follows from here because, by equivariance, for any g0 ∈ G the integral
curve with initial datum (m̄0, g0) is t 7→ (m̄(t), g0G(t)) = Ψg0(ΦXt (m̄0, eG)).

Since S1 ×K is a closed subgroup of S1 ×G, its action by right translations on
S1 ×G, which is given by

Ψ(〈σ〉,h)(〈τ〉, g) = (〈τ + σ〉, gh) ,

is free and proper and its orbits S1×gK, g ∈ G, are the fibers of a principal bundle
p : S1×G→ (S1×G)\(S1×K) (see e.g. [16], section 1.11), and are diffeomorphic to

Tk+1. The base of this bundle can be identified withG\K. Thus, p◦Ĵ−1
2 : P → G\K

is a locally trivial fibration with fibers Ĵ2(S1 × gK) = Ψ(〈0〉,g) ◦ J2(S1 × K) =

Ψ(〈0〉,g) ◦ P(S1 × Tk) = Tg.
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[18] F. Fassò, L. C. Garćıa-Naranjo and A. Giacobbe, Quasi-periodicity in relative quasi-periodic
tori, Nonlinearity, 28 (2015), 4281–4301.
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