
 
 

European Journal of Nuclear Medicine and Molecular Imaging 

 

Individual-level metabolic connectivity from dynamic [18F]FDG 

PET reveals glioma-induced impairments in brain architecture 

and offers novel insights beyond the SUVR clinical standard 

 

Giulia Vallini, Erica Silvestri†, Tommaso Volpi†, John J. Lee, Andrei G. Vlassenko, Manu S. 

Goyal, Diego Cecchin, Maurizio Corbetta and Alessandra Bertoldo 

 
†These authors contributed equally to this work.  

 

Author information 

Corresponding author: Alessandra Bertoldo 

Department of Information Engineering, University of Padova, Padova, Italy 

Padova Neuroscience Center, University of Padova, Padova, Italy 

E-mail: bertoldo@dei.unipd.it  

https://orcid.org/0000-0002-6262-6354 

 

Giulia Vallini 

Department of Information Engineering, University of Padova, Padova, Italy 

giulia.vallini@phd.unipd.it 

https://orcid.org/0000-0002-9634-8401 

 

Erica Silvestri 

Department of Information Engineering, University of Padova, Padova, Italy 

https://orcid.org/0000-0002-1853-0777 

 

Tommaso Volpi 

Padova Neuroscience Center, University of Padova, Padova, Italy 

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA 

https://orcid.org/0000-0002-5451-6710  

 

mailto:bertoldo@dei.unipd.it
https://orcid.org/0000-0002-6262-6354
mailto:giulia.vallini@phd.unipd.it
https://orcid.org/0000-0002-9634-8401
https://orcid.org/0000-0002-1853-0777
https://orcid.org/0000-0002-5451-6710


 
 

John J. Lee 

Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University 

School of Medicine, St Louis, MO, USA 

https://orcid.org/0000-0003-2269-6267 

 

Andrei G. Vlassenko 

Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University 

School of Medicine, St Louis, MO, USA 

 

Manu S. Goyal 

Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University 

School of Medicine, St Louis, MO, USA 

https://orcid.org/0000-0003-1970-4270    

 

Diego Cecchin 

Padova Neuroscience Center, University of Padova, Padova, Italy 

Department of Medicine, Unit of Nuclear Medicine, University of Padova, Padova, Italy 

https://orcid.org/0000-0001-7956-1924 

 

Maurizio Corbetta 

Padova Neuroscience Center, University of Padova, Padova, Italy 

Department of Neuroscience, University of Padova, Padova, Italy 

https://orcid.org/0000-0001-8295-3304 

 

Abstract  
Purpose: This study evaluates the potential of within-individual Metabolic Connectivity (wi-

MC), from dynamic [18F]FDG PET data, based on the Euclidean Similarity method. This 

approach leverages the biological information of the tracer's full temporal dynamics, enabling 

the direct extraction of individual metabolic connectomes. Specifically, the proposed 

framework, applied to glioma pathology, seeks to assess sensitivity to metabolic dysfunctions 

in the whole brain, while simultaneously providing further insights into the pathophysiological 

mechanisms regulating glioma progression. 
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Methods: We designed an index (Distance from Healthy Group, DfHG) based on the alteration 

of wi-MC in each patient (n=44) compared to a healthy reference (from 57 healthy controls), 

to individually quantify metabolic connectivity abnormalities, resulting in an Impairment Map 

highlighting significantly compromised areas. We then assessed whether our measure of 

metabolic network alteration is associated with well-established markers of disease severity 

(tumor grade and volume, with and without edema). Subsequently, we investigated disruptions 

in wi-MC homotopic connectivity, assessing both affected and seemingly healthy tissue to 

deepen the pathology's impact on neural communication. Finally, we compared network 

impairments with local metabolic alterations determined from SUVR, a validated diagnostic 

tool in clinical practice. 

Results: Our framework revealed how gliomas cause extensive alterations in the topography of 

brain networks, even in structurally unaffected regions outside the lesion area, with a 

significant reduction in connectivity between contralateral homologous regions. High-grade 

gliomas have a stronger impact on brain networks, and edema plays a mediating role in global 

metabolic alterations. As compared to the conventional SUVR-based analysis, our approach 

offers a more holistic view of the disease burden in individual patients, providing interesting 

additional insights into glioma-related alterations.  

Conclusion: Considering our results, individual PET connectivity estimates could hold 

significant clinical value, potentially allowing the identification of new prognostic factors and 

personalized treatment in gliomas or other focal pathologies. 
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Introduction  
In recent years, the brain has been studied as a complex network comprised of interconnected 

regions that operate on a large scale, a central concept in the field of neuroscience known as 

“connectomics”. However, imaging studies on brain connectivity mainly rely on assessing the 

synchronization of hemodynamic signals obtained through blood oxygen level dependent 

(BOLD) functional magnetic resonance imaging (fMRI), referred to as Functional 

Connectivity (FC), and evaluating the number and strength of white matter connections 



 
 

between brain regions using diffusion magnetic resonance imaging (dMRI) techniques, termed 

as Structural Connectivity (SC). However, given that chemical synapses are the primary means 

of signal transduction in the human brain, a pivotal advancement for connectomics involves 

delving into the molecular aspects of neural communication [1]. At the macroscale level, the 

exploration of these phenomena is facilitated by molecular imaging. In particular, positron 

emission tomography (PET) utilizing [18F]fluorodeoxyglucose ([18F]FDG) as a radiotracer 

offers a unique opportunity to characterize the metabolic foundations of brain connectivity, 

denoted as “Metabolic Connectivity” (MC), which describes the relationships between the 

metabolic measurements of different brain regions.  

PET connectivity studies typically use static PET data, with pairwise correlations of 

semiquantitative [18F]FDG uptake measures (e.g., standardized uptake value ratio, SUVR) 

being computed across individuals, leading to group-level MC matrices [2]. However, this 

approach encounters a significant constraint, relying on the definition of an homogeneous 

group of individuals and the normalization of interindividual differences, which significantly 

restricts the applicability of the method [3]. Moreover, an individual estimate is by definition 

necessary if one aims to use MC as a disease biomarker [4].  

Several approaches have recently been developed with the aim of estimating individual-level 

MC measures from these group-level matrices, such as the perturbation approach by Sun et al. 

[5], the Kullback-Leibler divergence similarity estimation by Wang et al. [6], and the method 

based on a weighting matrix by Huang et al. [7], which mostly work by assessing how much 

the PET regional data of one individual contribute to the group-level MC matrix, and how the 

matrix changes when removing a given subject. In addition, such methods rely on static PET 

images, and thus on a single cumulative measurement of cerebral glucose uptake, not 

accounting for the temporal dynamics of the network within an individual. When aiming to 

integrate data from multiple imaging modalities (e.g., fMRI and PET) to provide a more 

comprehensive understanding of brain connectivity, it is necessary to introduce a method for 

computing MC that is conceptually comparable to FC, which correlates signal fluctuations 

between spatially distinct brain regions, taking into account brain dynamics. For this reason, in 

our previous study we addressed the challenge of selecting an effective approach to derive 

within-individual MC (wi-MC) starting from dynamic PET data [8], expanding on the previous 

correlation-based method proposed by Jamadar and colleagues [4]. While the latter was 

designed for constant-infusion functional PET data, our focus was to propose a method suitable 

for any protocol, including bolus injection. We developed the Euclidean Similarity (ES) 

method, based on pairwise Euclidean distance between time-activity curves (TACs), given that 



 
 

a distance-based approach has long been proven effective in identifying biologically significant 

clusters in dynamic PET data (i.e. it can reliably differentiate voxels belonging to 

“functionally” distinct regions of gray matter and white matter according to their different 

kinetic behaviors) [9]. Importantly, our Euclidean distance-based approach determines 

similarity based on the amplitude and shape of time-activity curves, which are known to be 

biologically informative and are therefore used in kinetic modeling, rather than their 

fluctuations, which are thought to be more related to physical and statistical noise 

(measurement error) than to biologically informative variability [10]. However, this method 

has only been applied to a dataset of healthy controls (HCs), and its sensitivity to pathological 

alterations in metabolic connections within individual brains has not yet been proven.  

The present work evaluates the effectiveness of our wi-MC estimation method on a dataset of 

patients diagnosed with glioma, a primary brain tumor originating from glial cells. On one 

hand, given the focal nature of glioma pathology, we believe this is an optimal context for 

testing the efficacy of the method in detecting individual network alterations. On the other 

hand, this choice is also motivated by the growing clinical interest in the field known as “cancer 

neuroscience”, which aims to understand the complex network of high-level relationships 

between gliomas and their host (i.e., the brain) [11]. Our goal was to assess whether the wi-

MC approach is sensitive to both focal and distant metabolic connection impairments and 

whether it can provide further insights into the pathophysiological mechanisms regulating 

glioma progression. These evaluations would offer additional information on disease 

aggressiveness, enabling individual risk stratification and facilitating personalized treatment 

strategies.  

(1) First, we developed a novel region-wise index (referred to as Distance from Healthy Group, 

DfHG) capable of accurately quantifying the extent of wi-MC alterations in glioma patients 

and constructed an Impairment Map of significantly altered regions for each individual. (2) 

Then, we evaluated whether wi-MC impairments are associated with well-established disease 

severity markers, including tumor grade and volume. (3) Additionally, we investigated if 

glioma pathology leads to disruption in wi-MC homotopic connectivity. Although the present 

study represents the first attempt to investigate gliomas within the MC framework, such lesions 

have already been extensively explored in fMRI FC studies. Strong functional connections 

between mirror areas in the two hemispheres are considered a key feature of normal brain 

function, but in glioma patients the pathways that facilitate these communications may be 

disrupted [12]. (4) Finally, since regions of hypo- or hyper-metabolism, based on SUVR, 

represent a valuable diagnostic tool for gliomas in clinical practice, our aim was to demonstrate 



 
 

the added value of wi-MC in characterizing disease-related impairments (i.e., metabolic 

network alterations), proving its complementarity with information derived from SUVR (i.e., 

local metabolic alterations) and laying the foundations for potential clinical application of wi-

MC. 

  

Materials and methods  
Participants 

Pre-surgical data of 44 patients (mean age 60.8±14.9 years, 25 males) with de novo brain 

tumors were collected at the University Hospital of Padova between June 2016 and April 2021. 

Diagnosis was made according to the criteria of the WHO classification system, 2016 version 

[13]. The dataset includes 6 low-grade gliomas (LGG), 35 high-grade (HGG) and 3 for whom 

the grading information was not available (biopsy not performed); as to IDH1 mutation status, 

28 are wild-type, 5 mutated and 11 undefined.  The patients’ demographic and clinical 

information are summarized in Table 1. All participants regularly received anticonvulsants for 

seizure control, and corticosteroids. The protocol has been approved by the local Ethics 

Committee of the University Hospital of Padova and conducted in accordance with the 1964 

Declaration of Helsinki and its subsequent amendments. Written informed consent was 

obtained from all participants.  

The HC group was composed of 57 adults (mean age 55.8±15.2 years, 25 males) as part of the 

Adult Metabolism & Brain Resilience (AMBR) study [14]. 
 

Table 1 Patients’ demographics and clinical data 

Age (years) 60.8 ± 14.9 

Gender  

    Female 19 

    Male 25 

Tumor Histology  

    Astrocytoma 2 

    Diffuse astrocytoma         1 

    Glioblastoma 32 

    Gliosarcoma 1 

    Glioneural neoplasm 2 

    Oligodendroglioma 1 

    Other 5 

Tumor grade  

    II 6 

    III 3 

    IV 32 

    n.a. 3 



 
 

IDH1 mutation status  

    Wild-type 28 

    Mutated     5 

    n.a. 11 

Tumor site  

    Left  23 

    Right 18 

    Bilateral 3 

 

IDH, isocitrate dehydrogenase gene; n.a., not available 

 

Data acquisition 

[18F]FDG PET and structural MRI images were acquired for both patients and controls.  

Glioma patients underwent simultaneous PET/MR acquisitions on a Siemens 3T Biograph 

mMR scanner (Siemens, Erlangen, Germany). Dynamic PET data (60-minute acquisition), 

performed following an intravenous bolus manual-injection of 203±40 MBq, were 

reconstructed as 256x256x127 matrices with a 2.8x2.8x2.0 mm3 voxel size, in 39 frames with 

increasing duration (10x6 s, 8x15 s, 9x60 s, 12x240 s).       

For HCs, structural MRI scans were performed on a Siemens Magnetom Prismafit scanner, 

while [18F]FDG scans were acquired on a Siemens 962 ECAT EXACT HR+ PET 

(Siemens/CTI) scanner. Dynamic PET data (60-minute acquisition), performed following an 

intravenous bolus manual-injection of 187.7±12.1 MBq, were reconstructed as 128x128x63 

matrices with a 2.0x2.0x2.4 mm3 voxel size in 52 frames (24x5 s, 9x20 s, 10x60 s, 9x300 s). 

All PET images were acquired in the eyes-closed waking state. For a comprehensive 

description of the acquisition protocols see Supplementary Methods.  

 

MRI preprocessing 

T1w structural images of both patients and HC group underwent similar pre-processing 

procedures, outlined in detail in the Supplementary Methods. 

The present study employed two distinct parcellation schemes: the Hammers anatomical atlas 

[15], and the Yan homotopic functional atlas, 100 regions of interest (ROIs) and 7 Networks 

[16]. Each atlas was registered to individual T1w image using the Advanced Normalization 

Tools (ANTs, v2.4.3) [17].  

Regarding the Hammers atlas, a total of 74 regions were selected for analysis, excluding white 

matter (WM) and cerebrospinal fluid (CSF) ROIs (list provided in the Supplementary 

Methods).  



 
 

As to the Yan atlas, the initial set of 100 ROIs was supplemented with 12 additional subcortical 

regions from the Hammers atlas, including bilateral Caudate, Nucleus accumbens, Putamen, 

Pallidum, Thalamus, and Cerebellum regions. The atlas-based networks are Default Mode, 

Cognitive Control, Limbic, Ventral Attention, Dorsal Attention, SomatoMotor, Visual, plus 

Subcortical and Cerebellum. The Yan atlas results are presented in the main manuscript, while 

the Hammers results are reported in the Supplementary Material. 

For glioma patients, we exploited the two lesion segmentations already defined in our previous 

work [18]: specifically, the tumor (TM) mask includes tumor core (contrast agent enhancing 

and non-enhancing regions) and necrosis, while the lesion mask (TM+E) also includes the area 

of edema (E). In the patient group, all the normalizations to the standard space were performed 

with ANTs [17] excluding the TM+E area [19].  

 

PET analysis 

The dynamic PET data of both patients and HCs underwent motion correction using FSL's 

mcflirt algorithm [20], and to minimize partial volume effects (PVEs), the data were processed 

without applying any additional spatial smoothing, in agreement with many recent studies [21]. 

For each participant, a static PET image was generated by summing the motion-corrected late 

PET frames (40-60 min) and the static PET was registered to the T1w image using ANTs [17]. 

Finally, the TM and TM+E masks, Hammers and Yan parcellations, and the individual grey 

matter (GM) and white matter (WM) tissue segmentations, obtained using Statistical 

Parametric Mapping tool (SPM12, v7219 https://www.fil.ion.ucl.ac.uk/spm/), were mapped 

from T1w to PET space, applying the previously estimated transformations. Subsequently, the 

static PET image of both patient and HC was normalized by dividing each voxel’s value by the 

average [18F]FDG uptake in the Cerebellum WM (as further described in the Supplementary 

Methods), resulting in SUVR map [22]. In the case of healthy individuals, the reference region 

comprises the bilateral Cerebellum WM. For glioma patients, the reference region encompasses 

the Cerebellum WM ipsilateral to the lesion (except for those with bilateral tumors, where the 

bilateral Cerebellum WM is used). This choice was motivated by the fact that the incidence of 

glioma is very low in the cerebellum (4.5% of all gliomas) and crossed cerebellar diaschisis is 

not infrequent in glioma patients [23].  

For each patient/control, the SUVR maps were parceled using both Hammers and Yan atlases, 

i.e. the mean SUVR for each ROI was calculated by averaging the voxels values within the 

parcel filtered using the GM mask. Note that in the patient cohort, the tumor voxels (TM mask, 

https://www.fil.ion.ucl.ac.uk/spm/


 
 

mapped to the PET space) were excluded from the regional SUVR computation, as typically 

done in several studies on gliomas to ensure that possible alterations were not simply due to 

tumor-associated tissue loss and dysfunction [24].  

Tissue TACs were extracted from pre-processed dynamic [18F]FDG PET images – for each 

ROI belonging to the two parcellation schemes – by averaging the voxel activities within the 

GM mask (properly described in the Supplementary Methods). As for the SUVR, in the 

calculation of the patients’ ROI TACs, tumor voxels (TM mask, mapped to the PET space) 

were excluded, as done for regional SUVR values. Regional TACs were then interpolated on 

a uniform virtual grid (one-second step) and wi-MC matrices were calculated for both HCs and 

patients, using a the ES-based method, detailed in Volpi et al. [8] and summary reported in the 

Supplementary Methods.  

 

Calculation of the DfHG index in Glioma patients 

To evaluate the capability of wi-MC matrices to discriminate pathological changes in brain 

metabolic connections caused by glioma, we introduced a novel index designed to quantify 

regional impairment for each patient. The analysis workflow is reported in Fig. 1. For this 

purpose, a healthy wi-MC reference was first defined by averaging the wi-MC matrices 

obtained from the 57 HCs. As previously shown, the ES approach leads to a robust estimate of 

group-average wi-MC in HCs: the between-individual variability is low, so the average matrix 

can be considered as well-representative of the HC group [8].  

For each participant (patient or control), we defined a region-wise index (referred to as 

Distance from Healthy Group, DfHG), which involves calculating the Pearson’s correlation 

coefficient (!!, range [-1, 1]) between the wi-MC profile of the i-th ROI in the individual ("!) 
and the corresponding ROI profile in the HC reference template (#!). Only regions with 

significant correlations (after Bonferroni correction) were selected for further analysis. Finally, 

the index for each individual’s i-th ROI was defined as one minus the correlation value ($%&'!, 
range [0, 2]). Since no alterations are expected in wi-MC among HCs, the values of the DfHG 

index from all ROIs across individuals were collectively utilized to establish a healthy 

reference distribution. Subsequently, for each glioma patient, a region-by-region analysis was 

conducted by comparing the DfHG calculated for each region with the healthy reference 

distribution: a ROI was deemed impaired if its DfHG value exceeded the 97.5th percentile of 

the healthy distribution. This highly conservative threshold was chosen to ensure selectivity in 

the identification of significantly compromised regions, minimizing the risk of false positives. 



 
 

A sensitivity analysis was also performed to verify the impact of the threshold in the selection 

of affected areas (see Supplementary Methods).  

Finally, an Impairment Map was generated for each patient from the abnormal ROIs according 

to the above-mentioned procedure.  

 
Fig. 1 The wi-MC matrix is calculated for each participant (both healthy controls and patients). 

The Group Reference Metabolic Connectivity is obtained as the average of the wi-MC matrices 

of the healthy controls only. The DfHG index values from all regions and all healthy individuals 

were collectively used to establish the Healthy Reference Distribution. Subsequently, in each 

glioma patient, the DfHG index for each region is computed and compared with the Healthy 

Reference Distribution: if the DfHG exceeds the 97.5th percentile threshold of the healthy 

distribution, the region is marked as impaired and included in the patient's Impairment Map 



 
 

(i.e., all the regions deemed as impaired in a given patient). The lower panel describes the 

DfHG calculation for the i-th ROI: for each ROI, the Pearson’s correlation (!!) between the wi-

MC connectivity pattern of the i-th ROI in the individual participant ("!), i.e., the i-th row in 

the wi-MC matrix, and the wi-MC connectivity pattern of the same i-th ROI in the group 

reference MC matrix (#!) is calculated; the $%&'! index is obtained as one minus !!. The 

relation between the values of Pearson’s correlation (!!) and the derived index $%&'! is also 

described in the lower part. 

 

 

Association between Overall Impairment and markers of disease 

severity 
We then examined whether the DfHG index estimated from the patient's wi-MC correlates with 

known markers of disease severity in gliomas (lesion volume, grade). The patient’s Overall 

Impairment (OI) was derived by averaging the DfHG indices across all brain regions, offering 

a global assessment of the wi-MC alterations induced by glioma. We then investigated the 

across-individual association between OI and tumor grade, as well as the volume of both the 

entire lesion (TM+E) and the tumor (TM). Specifically, the Mann-Whitney U-test (P<0.05) 

was employed to compare the OI between patients with high-grade (HGG, n=35) and low-

grade glioma (LGG, n=6). The Mann-Whitney U-test was chosen due to the non-normal data 

distributions revealed by the Lilliefors test. A linear regression analysis was performed to 

assess the relationship of OI with TM+E and TM volume. Particularly, for the analysis of the 

association between OI and grade, the 3 patients with unavailable grade information were 

excluded from the analysis, whereas the volumes of TM+E and TM are available for all 44 

patients. 

 

Homotopic Connectivity 

To examine the disruption of homotopic connectivity induced by gliomas, we also assessed the 

presence of reduced wi-MC between homologous areas, akin to previous approaches employed 

in fMRI FC studies [12]. For each pair of homotopic regions (mirror areas of the two 

hemispheres, 37 pairs in the Hammers atlas and 56 pairs in the Yan atlas), the expected 

distribution of connections was calculated from the HC wi-MC links. Subsequently, the 

homotopic wi-MC values were extracted for each patient, and a region-by-region comparative 



 
 

analysis was conducted using the ROI-specific HC distribution as a reference. Region pairs 

were categorized into two types: those involving ROIs of apparently normal tissue and those 

in which one region overlaps with the lesion (TM+E). Subsequently, global homotopic 

connectivity, computed as the average of all homologous pair wi-MC values, was compared 

between LGG (n=6), HGG (n=35) and HCs (n=57) using a one-way ANOVA and Tukey-

Kramer’s test to address multiple comparisons, chosen due to the normal data distributions 

revealed by the Lilliefors test. Finally, a linear regression analysis was performed to assess the 

relationship of the global homotopic connectivity with TM+E and TM volume. 

 

SUVR impairments 

To identify regions whose local metabolism is altered, we performed a statistical comparison 

on SUVR maps at the region level between each patient and the control group. First, the 

parceled SUVR values of each HC underwent a z-score transformation (z-SUVR) to remove 

inter-individual differences of tracer uptake in mean and standard deviation (SD), as in Horwitz 

et al. [25]. For each ROI, we defined the expected distribution of z-SUVR values in HCs, and 

we set an abnormality threshold, comparable to the one chosen for wi-MC DfHG indices. Since 

z-SUVR values approximately follow a Gaussian distribution, with alterations manifesting as 

hypo- or hyper-metabolism, we established thresholds for both tails of the distribution, 

encompassing 97.5% of the values within this range. A z-score transformation was also 

performed for each patient but considering only regions in the hemisphere contralateral to the 

tumor for the calculation of the mean and SD values, to avoid the results being affected by 

large lesions. For the three patients with bilateral gliomas, the predominant hemisphere and 

tumor-involved regions in the contralateral hemisphere were excluded from the calculation of 

mean and SD of z-SUVR. We then compared the z-SUVR value of each ROI in each patient 

with the region-specific healthy reference distribution, marking the region as metabolically 

impaired if it exceeded the established thresholds. As for wi-MC DfHG indices, a sensitivity 

analysis was performed to verify the impact of the threshold in the selection of metabolically 

compromised areas (see Supplementary Methods). 

 



 
 

Results  
Participants 

The lesion frequency maps (TM+E and TM) of the patient population are shown in 

Supplementary Fig. 1. The lesion distribution is sparse, with tumors predominantly involving 

the right frontal and temporal lobes, with low spatial overlap (maximum value 21.9% of 

patients for TM+E and 17.1% of patients for TM).  

 

Impairment Maps 

The Impairment Maps generated for 4 representative patients are shown in Fig. 2, where the 

TM+E mask is highlighted in blue, and the DfHG values of the significantly altered ROIs (Yan 

atlas), going from low (dark) to high (light), are reported. The Hammers version is shown in 

Supplementary Fig. 5. From visual inspection, it is evident that in all individuals there are 

compromised regions which overlap with the lesion areas. However, the impacted ROIs are 

not confined to the lesioned tissue, with alterations in wi-MC that extend into uninjured brain 

areas in both the ipsilateral and contralateral hemisphere. For example, patient 7 (Pt #07) has a 

HGG in the left parietal lobe, which is well detected by its Impairment Map. Patient 12 (Pt 

#12) has a HGG in the left temporal lobe, while patient 24 (Pt #24) has a HGG in the right 

fronto-insular area; in both cases the lesions are detected by the wi-MC analysis. In all three 

patients, there are several compromised areas that spread beyond the tumor itself into 

structurally unaffected regions (outside the lesion) of the tumor-bearing hemisphere, ipsilateral 

cerebellum, and the contralateral hemisphere. The involvement of non-lesioned brain tissue is 

much less pronounced in LGGs, as evident in patient 2 (Pt #2). In this case, the disturbances in 

wi-MC are confined to the tumor ROIs, with an almost intact pattern in the non-injured tissue. 

Notably, the patients’ DfHG values observed in our data have a range between 0.1 and 1.4, 

which correspond to correlation values ranging from -0.4 ($%&'! = 1.4) to 0.9 ($%&'! =
0.1). 



 
 

 
Fig. 2 The lesion mask is shown in blue, the altered ROIs (Yan atlas) are shown according to 

their DfHG value, from low (dark) - small impairment values - to high (light) - increased 

impairment values. Pt #02 has a low-grade glioma in the left frontal lobe; Pt #07 has a high-

grade glioma in the left parietal lobe; Pt #12 has a high-grade glioma in the left temporal lobe 

and Pt #24 has a high-grade glioma in the right fronto-insular area 

 

Association between Overall Impairment and markers of disease 

severity 

Fig. 3 depicts the relationships of the Overall Impairment (OI) index (Yan atlas) with the entire 

lesion (TM+E) volume (Fig. 3a) and the tumor (TM) volume (Fig. 3b). In both cases a 

significant correlation is observed, with a stronger association when including edema (lesion: 

R2=0.53, P<0.001; tumor: R2=0.35, P<0.001). Patients with low-grade glioma (Fig. 3, black-

filled dots) have the lowest values of OI: this observation is confirmed via the Mann-



 
 

Whitney U-test, which revealed HGG patients having a significantly higher OI index than LGG 

(P<0.001).  

The Hammers atlas results corroborate these findings: a significant relationship is identified 

between OI and both lesion (R²=0.52, P<0.001) and tumor volume (R²=0.34, P<0.001), and a 

significant difference in OI between HGG and LGG is detected (Mann-Whitney U-test, 

P<0.001). 

 

 
Fig. 3 Scatter plots reporting the association between the Overall Impairment index and (a) 

lesion volume (tumor and edema) and (b) tumor volume (without edema), on the Yan 

functional atlas. HGG patients are shown as empty dots, LGG patients as black-filled dots 

 

Homotopic Connectivity 

Fig. 4a shows the homotopic connectivity values of two representative patients (patient 3 has 

a HGG and patient 20 has a LGG) in two distinct homotopic regions (Yan atlas), along with 

the distribution of the corresponding homotopic connection values in HCs. Specifically, one 

pair comprises ROIs of normal-appearing tissue (right column), while the other pair includes a 

region that overlaps with the lesion site (left column). A notable observation is the substantial 

difference in homotopic connectivity between HGG and LGG patients. While in the former, 

the decrease in connectivity between contralateral homologous regions is not only evident in 

areas directly impacted by the pathology but also in tumor-free ROIs, in the latter, values 

remain within the HCs distribution. To gain a comprehensive understanding of the 

phenomenon, the global homotopic connectivity values for HCs, LGGs and HGGs is also 

reported in Fig. 4b. The one-way ANOVA revealed a significant difference in global 

homotopic connectivity between the three groups (P<0.001). Tukey-Kramer’s post hoc test for 



 
 

multiple comparisons suggested a significant decrease in connectivity within contralateral 

homologous regions between HCs and HGGs (P<0.001), as well as between LGGs and HGGs 

(P<0.05), but no significant difference was observed between HCs and LGGs (P=0.95) 

confirming the observations we derived from panel (a). Finally, to further investigate the 

association between global homotopic connectivity and glioma severity, we assessed the 

potential effects of tumor volume, both in terms of TM+E and TM. In both cases, no significant 

relationship was found (TM+E: R2=0.05, P=0.134; TM: R2=0.04, P=0.194). 

 



 
 

 
Fig. 4 (a) Homotopic connectivity values (red line) of two representative patients (Pt #03 - 

high-grade - and Pt #20 - low-grade) in two distinct pairs of regions (Yan atlas regions in pink, 

lesions in blue). Regions with no overlap with the lesion are reported on the right, regions that 



 
 

overlap with the lesion on the left. For Pt #03, we selected an area within the Default-Mode 

network on the left, and an area within the SomatoMotor network on the right. Regarding Pt 

#20, an area within the Default Mode network (temporal) was identified on the left, and an area 

within again the Default Mode network (prefrontal cortex) on the right. The distribution of the 

corresponding homotopic connectivity values in HCs is reported in the histograms (dashed 

black line represents the HCs mean). (b) Boxplots with global homotopic connectivity values 

for HCs (green), LGGs (yellow) and HGGs (red). ***P < 0.001; *P < 0.05 

 

SUVR and wi-MC impairments 

Fig. 5a reports the impaired regions (rows), grouped according to Yan atlas networks plus 

Subcortical areas and Cerebellum, for each patient (columns). The matrix distinguishes 

between SUVR-only impairments (green), wi-MC-only impairments (orange), and regions 

where both SUVR and wi-MC exhibit alterations (purple). Notably, the figure highlights how 

network alterations (as determined from wi-MC) and local metabolic changes (SUVR) show 

only partially overlapping areas, with distinct regions affected by each process. Specifically, 

wi-MC shows a considerable number of impairments in the Default Mode, Cognitive Control, 

Subcortical, Cerebellum and Visual network areas.  

Moreover, patients with tumors in the right hemisphere seem to exhibit more pronounced 

network alterations compared to those with left-sided lesions: the proportion of wi-MC 

alterations among left-sided patients is 11%, whereas it rises to 19% among those with right-

sided tumors. This disparity is also evident in SUVR alterations, albeit to a lesser degree, with 

rates of 12% for left-sided gliomas and 15% for right-sided ones. 

The role of the cerebellum is also noteworthy: the ipsilateral cerebellum is impaired in 41% 

and 29% of patients in terms of wi-MC and SUVR, respectively, while the contralateral 

cerebellum exhibits impairment in wi-MC for 19% and in SUVR for 14% of patients.  

Fig. 5b reports the network-wise percentage of altered regions, in terms of only wi-MC, only 

SUVR, and both SUVR and wi-MC, relative to the total number of alterations in the network. 

Many overlapping impairments emerge in the Dorsal Attention, Default Mode, Cognitive 

Control network, and Cerebellum. The remaining networks instead show complementarity 

between the two types of metabolic alterations. 

Fig. 6 shows Impairment maps in terms of SUVR (green), wi-MC (orange), and both SUVR 

and wi-MC (purple) for four representative individuals. From the SUVR alteration maps, it is 

evident that local impairments are primarily confined to the lesion area and adjacent regions. 



 
 

Impairments based on wi-MC, on the other hand, highlight not only proximal but also distant 

areas from the lesion, both in the ipsilateral and contralateral hemispheres. 

The Hammers results are shown in Supplementary Fig. 6. The complementarity of the 

alterations highlighted by the network-based and local approach is again evident, with a greater 

overlap in Frontal and Parietal areas.  

 



 
 

 
Fig. 5 (a) Altered regions according to SUVR-only (green), wi-MC-only (orange), both SUVR 

and wi-MC (purple) are reported (rows) for each individual patient (columns). Participants are 

sorted into patients with lesions in the left hemisphere (Left Tumor), patients with lesions in 



 
 

the right hemisphere (Right Tumor), and patients with bilateral lesions (Bilateral Tumor). The 

regions are organized by network (visualized on the left). (b) Spider plot representing the 

percentage of altered regions by type (SUVR-only, wi-MC-only, both SUVR and wi-MC) over 

the total number of altered regions per network 

 

 
Fig. 6 Impairment map of SUVR (local impairment, green), wi-MC (network impairment, 

orange) and the overlap of SUVR and wi-MC (both local and network impairment, purple) 

 



 
 

Discussion  
This study aimed to evaluate the potential of within-individual metabolic connectivity (wi-MC) 

based on the Euclidean Similarity (ES) method, which, for the first time, leverages the 

biological information of the tracer's full temporal dynamics, enabling the direct extraction of 

individual metabolic connectomes [8]. Specifically, the proposed framework applied to glioma 

pathology (lesions highly localized in patients but heterogeneous across individuals, unlike 

neurodegenerative disorders, for instance), seeks to assess sensitivity to metabolic dysfunctions 

at whole-brain level and simultaneously provide further insights into the pathophysiological 

mechanisms regulating glioma progression.  

We first derived a novel imaging marker for each brain region, i.e., the DfHG index, from the 

individual metabolic connectome of every patient. The proposed marker is not based on local 

metabolism, but rather on the interaction of each region with all other brain areas (the region’s 

“connectivity profile”), and thus captures the impact of the tumor on the brain’s entire 

metabolic architecture. By focusing on regions with a DfHG index higher than the normality 

threshold, we have built an Impairment Map for each patient. Upon visual inspection, it is clear 

that the areas affected by the presence of the lesion show the expected wi-MC alterations, which 

is the first important finding, because it confirms that the proposed method is sensitive to 

connectivity changes and that the obtained brain’s MC structure is disrupted as expected in the 

areas directly impacted by the lesion.  

The second key finding is that metabolic network abnormalities do not just fall in the region of 

tumor-related structural damage, or even in the much larger region of edema. The presence of 

dysfunction in brain areas remote from the primary injury is referred to as diaschisis [26]. This 

is evident from the impairment maps shown in Fig. 2, in which alterations also emerge in 

apparently healthy tissue (i.e. beyond the region outlined in the lesion map), both ipsilaterally 

and contralaterally. This can be linked to three mechanisms. Firstly, substantial interactions 

between the neural system and malignant cells have been proven to exist, occurring not only 

near the tumor site but also at a distance, with glioneuronal synapses that enable gliomas to 

integrate into functionally active brain circuits [27]. Secondly, at least in some specific patients, 

the compromise of apparently healthy tissue could be attributed to the direct involvement of 

the anterior commissure, which, together with the corpus callosum, serves as an important 

conduit for interhemispheric information transfer. This results in a direct disruption of essential 

connections necessary for promoting optimal brain functionality. Indeed, this is the case of 

patient 12 (Fig. 2), wherein there is clear involvement of the anterior commissure in the tumor, 



 
 

and in fact, the metabolic connectome alterations are widely distributed across areas in the 

contralateral hemisphere. However, it should be noted that the altered areas do not always 

follow the well-known anatomical connections with the lesion site. We believe this may be due 

to the only partial matching between metabolic and structural connectomes [8] as well as 

mechanisms of metabolic network reorganization and metabolic compensation, a concept 

previously highlighted in functional connectivity studies [28]. Finally, the lesion may decrease 

the functionality of a specific area, thereby hindering the transfer of information and 

interactions with other regions, leading to anomalies even in anatomically distant but 

metabolically related areas. This latter mechanism could explain alterations especially in 

homotopic connectivity (i.e., robust and strong associations between mirror areas of the two 

hemispheres), which is a common feature of healthy brains [12]. However, our findings (Fig. 

4) suggest that tumor grade potentially plays a significant role in distorting homotopic 

connectivity in glioma patients. Intriguingly, low-grade gliomas (LGGs) disrupt 

communications between these regions to a lesser extent than high-grade gliomas (HGGs), and 

this observation applies to pairs of regions affected by the lesion and to pairs of apparently 

healthy tissue areas, without identifying any volume-dependent association, in agreement with 

the fMRI FC findings of Daniel and colleagues [12]. This is the case of patient 2 (Fig. 2), LGG, 

who presents few alterations, which are limited to the area of the lesion. This finding aligns 

with previous studies which emphasized that 1) regions within the tumor boundaries in LGGs 

tend to preserve their functionality, potentially leading to less extensive alterations and 2) that 

HGGs exhibit more significant tumor cell invasion with respect to LGGs [24]. The latter could 

explain the greater MC impairment observed in HGGs in multiple distant sites and resting-state 

networks. Based on this, we tested whether the patient’s Overall Impairment (OI), defined as 

the average DfHG index across regions, was associated with known markers of disease 

severity, such as lesion grade and volume. This index enables a comprehensive evaluation of 

the pathology's impact on the patient's metabolic brain architecture. It considers not only the 

significantly affected areas, which contribute to the Impairment Map, but also the degree of 

alteration in the remaining regions. Thus, a high OI value (close to 1) suggests extensive 

impairment, with many regions showing high levels of alteration, while a low OI value (close 

to 0) suggests limited alteration confined to a few regions, with most ROIs retaining a pattern 

similar to that of a healthy brain. In terms of lesion grade, this analysis confirmed that not only 

from the perspective of homotopic connectivity, but also regarding OI, LGGs exhibit greater 

integrity in the cerebral metabolic connectome compared to HGGs (Fig. 3). We also found a 

strong association of OI with both tumor volume (TM) and lesion volume (TM+E). 



 
 

Importantly, this relationship becomes significantly stronger when taking edema into account, 

suggesting that the edema region may play a crucial role in modulating brain function in glioma 

patients, contributing to the observed changes in the OI. The result is supported by studies 

highlighting how glioma-related edema promotes cell invasion and markedly influences 

disease prognosis, contributing significantly to morbidity and mortality from glioma [29]. To 

our knowledge, this study is the first to unveil the role of edema in contributing to the alteration 

of the brain connectome in glioma pathology.  

Finally, we aimed to demonstrate the added value of the proposed approach, which is based on 

analyzing the individual patient's metabolic connectome, with respect to conventional clinical 

methods based on the patient's SUVR map. These two approaches give different perspectives: 

the former highlights large-scale network alterations, while the latter focuses on local changes. 

As visible in Fig. 5, the two methodologies only have a partial overlap, suggesting they could 

be complementary for reaching a comprehensive understanding of the pathology. While the 

relatively high occurrence of tumors in frontal regions helps explain the greater overlap of MC 

and SUVR alterations in Default Mode and Cognitive Control network areas, the substantial 

involvement of the Cerebellum is particularly surprising. This would suggest that its gray 

matter metabolism, and its connectivity pattern even more (i.e., the way it interacts with the 

remaining cortical and subcortical regions), are severely disrupted by glioma pathology. One 

potential reason for the elevated incidence of cerebellar alterations may stem from the well-

known presence of connections between cortical areas—namely, the parietal, prefrontal, and 

temporal cortices—and the cerebellum, as evidenced by structural [30] and magnetic resonance 

imaging studies [31]. Therefore, the presence of cortical lesions could certainly have 

consequences on normal metabolic mechanisms (both local and connectivity-related) involving 

the cerebellum. This is a new finding for [18F]FDG PET imaging, whereas Nenning and 

colleagues have already observed a highly symmetrical functional abnormality in glioma 

pathology, affecting not only cerebral but also cerebellar regions, irrespective of being ipsi- or 

contralateral to the tumor [32]. The frequent MC impairment of visual network components is 

also noteworthy, given that the occipital lobe is the least structurally involved by gliomas and 

farthest from the more commonly affected frontal and temporal areas. Interestingly, this 

network had previously emerged as highly impaired in a fMRI FC study on the same glioma 

dataset, which aligns with our current findings [18]. Moreover, patients with right-sided 

gliomas exhibit a greater disruption of the metabolic connectome. This is well explained by the 

fact that malignant brain tumors involving the right hemisphere are associated with more subtle 

symptoms that are difficult to recognize, which translates into a delayed diagnosis and, 



 
 

consequently, larger tumor volumes and greater impact on brain network architecture at the 

time of initial diagnosis [33]. Additionally, in the Supplementary Material, we investigated 

the relationship between SUVR alterations and clinical variables such as tumor grade and 

volume. While LGG patients demonstrated significantly lower SUVR alterations compared to 

HGGs (Mann-Whitney U-test, P<0.001), no significant relationship emerged with lesion 

volume, contrary to wi-MC. Overall, as evidenced by these examples, our wi-MC approach 

seems to provide interesting additional insights into glioma-related alterations that are not 

visible to conventional SUVR analysis.     

With respect to study limitations, the number of LGGs (n=6) and HGGs (n=35) in the available 

glioma dataset is unbalanced, which may affect the reproducibility of the results. Therefore, 

more in-depth analyses with comparable sample sizes should be conducted in the future to 

confirm these findings. Additionally, data from patients and controls were acquired with two 

different scanners, and this may have an impact on the results; we have detailed in the 

Supplementary Material how these differences do not impact the contrast-to-noise ratio of 

the data. Also, we have not directly compared our wi-MC characterization of glioma patients 

against the methods that have been previously proposed to “individualize” group-level MC 

matrices [5–7]. However, all these approaches are still exploratory and require further 

validation [1], so we chose to compare our wi-MC method only with well-established SUVR-

based analysis. Additionally, we aimed to assess the biological information contained in 

dynamic PET data by testing an approach more akin to the fMRI FC, which relies on the 

temporal relationship between regional signals measured in the single individual. 

Future directions may involve comparing alterations in both metabolic and functional 

connectivity networks to better understand the effects of glioma pathology. Additionally, 

analyzing the relationship between Overall Survival and our measure of metabolic connectome 

alteration index could be of interest, albeit not feasible here due to the limited sample size. 

Finally, it might be of interest to move analysis to the voxel-level for future individual-level 

metabolic connectivity research. However, several issues must first be considered and 

addressed. Firstly, it should be noted that voxel-level analyses would preclude the generation 

of voxel-to-voxel connectivity matrices akin to those presented in this study (i.e., using the 

Euclidean similarity method), due to the excessive computational burden this would entail. An 

entirely different approach would likely be required, e.g., independent component analysis 

(ICA) [2]. Moreover, the low signal-to-noise ratio of PET data at the voxel level when using 

data from low-sensitivity clinical scanners must be considered. Therefore, future efforts would 



 
 

first involve evaluating appropriate noise reduction methodologies to analyze PET data at the 

voxel-level without introducing significant bias in the MC estimates. 

Hence, given these encouraging results, individual PET connectivity estimates could provide 

important information on in vivo pathological brain features, potentially paving the way for 

improved treatment and prognosis of gliomas and other focal pathologies. 
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