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Abstract. Human action recognition plays a major role in enabling an
effective and safe collaboration between humans and robots. Consider-
ing for example a collaborative assembly task, the human worker can use
gestures to communicate with the robot while the robot can exploit the
recognized actions to anticipate the next steps in the assembly process,
improving safety and the overall productivity. In this work, we propose
a novel framework for human action recognition based on 3D pose es-
timation and ensemble techniques. In such framework, we first estimate
the 3D coordinates of the human hands and body joints by means of
OpenPose and RGB-D data. The estimated joints are then fed to a set
of graph convolutional networks derived from Shift-GCN, one network
for each set of joints (i.e., body, left hand and right hand). Finally, using
an ensemble approach we average the output scores of all the networks
to predict the final human action. The proposed framework was evalu-
ated on a dedicated dataset, named IAS-Lab Collaborative HAR dataset,
which includes both actions and gestures commonly used in human-robot
collaboration tasks. The experimental results demonstrated how the en-
semble of the different action recognition models helps improving the
accuracy and the robustness of the overall system.

Keywords: human action recognition, gesture recognition, 3D pose es-
timation, ensemble learning, human-robot collaboration

1 Introduction

Human-robot collaboration (HRC) aims to a close and direct collaboration be-
tween robots and humans to reach higher productivity and ergonomics thanks
to the synergy between human intelligence and robot mechanical power [1–3].
In such scenario, the robot should always be aware of the position and the in-
tentions of the human worker, in order to foresee possible dangerous situations
and guarantee the safety of the human partner. Moreover, by knowing which
step of the assembly the person is working on, the robot can plan its actions
accordingly, such as working in a different part of the workspace or preparing
parts and tools for the next step in the assembly process.

Human action recognition has been widely investigated in the literature to
provide such awareness to the robot [4–6]. Generally, the actions to be recognised
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are steps in an assembly sequence (e.g. pick a part, place a part, screw) or
general actions such as walking, interacting or standing still; thus all actions
that involve various parts of the body and can be easily distinguished. Some
works focus instead on gesture recognition, where the actions to be classified are
usually very small movements of few parts of the body, such as hands, used to
communicate information to the robot (e.g. go left, go right, stop). Given this
difference, the problems of action and gesture recognition are generally tackled
separately with dedicated approaches and setups, for example a camera framing
only the human hands in case of gesture recognition.

In this work, we address the problem of human action recognition in collab-
orative scenarios by proposing a general framework capable of recognizing both
hands gestures and full-body gestures (i.e., general actions involving the whole
body). Our framework relies on an ensemble of different skeleton-based classi-
fiers, each one trained to recognize actions on a subset of skeleton joints (e.g.,
body joints, hands joints); the use of dedicated classifiers allows to be robust to
partial skeleton inputs with missing joints, and to handle together body actions
and hand gestures. Moreover, using skeletons as an intermediate representation
between the classifiers and the raw RGB-D data, our system is able to gener-
alize to different scenarios and collaborative tasks. Indeed, in such a manner,
the action classifiers can leverage on mid-level features describing only people
movements: picking up a piece to be assembled or grabbing up a hammer from
a toolbox can both be considered a “pick” action despite the particular object
being picked up.

The proposed system has been evaluated on a dataset acquired on purpose
in our laboratory, namely the IAS-LAB Collaborative HAR dataset1, which in-
cludes RGB-D videos of several subjects executing typical actions which occur
in a human-robot collaboration task. Unlike other works in the literature, in our
dataset we did not restrict the action set to a specific application (e.g., take part
A, place part B, take hammer from the toolbox), but we tried to generalize the
most recurrent actions and gestures in the literature in order to create a common
basis for several collaborative tasks.

Summarizing, the work presents 3 main contributions: (i) a unified frame-
work for human action and gesture recognition in a human-robot collaboration
scenario; (ii) an experimental comparison of different ensembling techniques to
improve the overall accuracy and robustness of the system; (iii) a novel RGB-D
dateset for action recognition in a human-robot collaboration scenario, including
both general actions and hand gestures, to further drive research in this field.
The remainder of the paper is organized as follows. Section 2 reviews the works
related to action recognition, with a focus on human-robot collaboration sce-
narios. In Section 3 the main elements of our system are described in details.
In Section 4 we present the action recognition dataset acquired in our labora-
tory, used to thoroughly evaluate the system proposed in Section 5. Finally, in
Section 6, conclusions are drawn and future directions of research identified.

1 Available at http://robotics.dei.unipd.it/
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2 Related Works

Human action recognition (HAR) is generally defined as the process of identi-
fying and analyzing the movements of one or several parts of the human body,
applied in a large set of scenarios such as public events [7], video surveillance and
home monitoring [8, 9], human-robot interaction [5, 10] and safety monitoring in
industry [11]. According to the sensory modalities and sources adopted, HAR
systems can be classified into two main categories: contact-based and vision-
based systems. Contact-based approaches require a physical interaction of the
user with sensors and acquisition devices such as accelerometers, multi-touch
screens, body-mounted sensors or wearable sensors like sensorized gloves [9, 10,
12]. Vision-based approaches rely instead on images or video sequences to rec-
ognize activities, using either a single RGB-D camera or a network of cameras
to be robust to occlusions. Unlike contact-based activity recognition systems,
vision-based systems are considered “non-intrusive” since they do not require
ordinary users to wear several and uncomfortable devices on different parts of
their body, making them an easier solution to be used in real scenarios.

A main challenge in vision-based action recognition tasks consists in han-
dling both a spatial and a temporal dimension, since an action is generally seen
as a sequence of consecutive movements in time. Many approaches have been
proposed in the literature to deal with it, such as LSTMs [13, 14], 3D-CNNs [15,
16] and multi-stream 2D-CNNs [17, 18]. In 3D-CNNs the temporal information
is exploited by considering an input sequence of RGB frames, then elaborated
using 3D convolution kernels. In multi-stream CNNs instead, spatial and tem-
poral information are analyzed by two different branches in the network, taking
as input RGB frames and optical flow information respectively. Recently, many
pose estimation models such as OpenPose [19] achieved very high performance
and many researchers started addressing action classification using the human
body pose as input of graph convolutional networks (GCNs) [20–22]. Body pose
allows to encode spatial and temporal information in a more compact way than
images, leading GCN models such as the Shift-GCN architecture [20] to outper-
form other approaches on many popular action recognition datasets [23, 24].

Human action recognition is largely applied in many human-robot interac-
tion scenarios, such as social robotics and manufacturing industry. Usually, the
set of actions to be recognized includes hand gestures and face expressions, in
order to provide a fast and easy interaction with the robots [4, 25]. For example,
in [4] authors propose six gestures to allow the human to communicate with a
collaborative robot; the gestures (i.e., on, off, right, left, up, down) are recognised
by fusing together three different modalities, namely speech command (with a
CNN), hand motion (with a LSTM), and body motion.

Considering an industrial context, the set of actions of interest can also in-
clude either general actions (e.g., walking, standing) or very specific actions and
gestures, depending on the main purpose of the action recognition. For exam-
ple, action recognition could be used to guarantee human safety in human-robot
collaboration by monitoring what people do while inside the robot workspace.
In [5], authors monitor the people moving close to a robotic arm and recognize
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actions such as passing, observing, dangerously observing, interacting. The recog-
nition is done with a multi-modal approach: a 3D-CNN is used to learn features
from sequences of RGB frames, while signals collected with a haptic sensors are
employed to detect collisions between human and robot by means of a 1D-CNN.

When a task involves close collaboration between humans and robots, hu-
man action recognition could be used to improve productivity, by monitoring
the different stages of the collaboration. In such case the set of actions to be
recognized generally includes the different operations that the human needs to
fulfill the overall assembly task. For example, in [10] the set of actions includes
grab a tool from a toolbox, insert a screw, tight the screw, put back the tool
in the toolbox. In such work, authors proposed an action recognition classifier
based on a CNN trained on a combination of skeleton features and signals from
EMG and IMU sensors. In [6] similar activities are considered, such as taking
a product or a component, move a product, grab a tool, put on screws, hold a
product, tighten the screws, check product and place product. To classify such
actions the authors focus on hands information only, proposing a system that
combines hands’ pose and images cropped around the hands. In [17] the assem-
bly actions include instead cleaning, hammering, polishing, smearing, installing,
screwing and marking, all recognised using a two-stream CNN.

Despite sharing some common high-level actions and gestures, many of the
human-robot collaboration systems presented in this section consider a very spe-
cific set of actions related to a particular task; in many cases authors acquire also
an ad-hoc dataset for their application which, however, is either not published
or proves to be too specific to be used by other researchers. Moreover, action
recognition is usually addressed focusing either on body information or hands
information. To the best of our knowledge no work has attempted to recognise
actions using body and hands information together.

In this work we address both such problems, namely the lack of a general
dataset and the recognition of actions involving either the body or the hands.
On one hand, we propose a general framework to recognize both body actions
and hands gestures in a collaborative scenario; on the other hand the system
is evaluated on a novel action recognition dataset acquired on purpose, includ-
ing common actions of a collaborative task so as to be generalisable to various
applications.

3 Methods

In this section, we provide a detailed description of the main parts of our sys-
tem. A schematic representation of the proposed pipeline is shown in Figure 1,
highlighting the main steps involved. Our system takes as input a sequence of
RGB-D frames and predicts the corresponding action performed according to a
given set of actions of interest. In the first stage, we estimate the pose of the
person in a sequence of RGB frames by means of OpenPose [19]; in particular,
we focus on estimating the pose information of both the body and the hands,
since many collaborative gestures could be executed by using the hands only.
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OpenPose predicts a set of 2D joints describing the pose of the person in the
image, which is then projected in 3D space thanks to the information provided
by the sequence of depth images. The estimated 3D joints are then fed to a set
of graph convolutional networks derived from Shift-GCN [20], a state-of-the-art
action recognition architecture. Indeed, for the final action recognition stage, we
rely on an ensemble of classifiers, each one trained to recognize actions from a
different set of joints (e.g., body, left hand and right hand). The final output of
the system is a weighted average of the output scores of all the classifiers, which
according to our experiments in Section 5 proves to be more accurate and robust
with respect to a single model trained on body and hands poses together.

Fig. 1: Overview of the proposed action recognition system. In the first stages, 3D
skeletons including body and hand joints are estimated from sequences of RGB-
D frames by means of OpenPose architecture. In the last stage, the classification
step, actions are predicted using an ensemble of skeleton-based action recognition
models, each one trained to recognize actions from a particular set of 3D joints.

3.1 Pose estimation

To develop our general framework we focused on skeleton-based action recog-
nition models, which are in general more accurate and robust than other ap-
proaches. Indeed, skeletons present many advantages with respect to raw RGB-
D data, since they represent a lightweight information describing both spatial
and temporal information in a compact form (i.e., joints’ coordinates). More-
over, skeletons provide a robust representation of the human movements free of
any disturbances such as external objects, lighting and aesthetic differences of
people such as clothes or skin colour; this is important especially for collabora-
tive scenarios, where both the human and the robot are moving and the human
worker should interact with many objects and tools.

For pose estimation in our framework we rely on the OpenPose architec-
ture [19], which provides different pretrained models for multi-person pose es-
timation, allowing to estimate in real-time either 15, 18 or 25 body keypoints,
42 hand keypoints and 70 face keypoints. Although very accurate in general,
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Fig. 2: Body and hand joints considered in the proposed framework, together
with their associated ID. We consider a total of 15 joints describing the body,
and 12 joints to describe each one of the hands.

OpenPose predictions could be missing of some keypoints when the subject is
far away from the camera or partially occluded; this is especially true for the
hands’ keypoints, which can be easily occluded during interactions with objects.

Considering such limitations, in our framework we consider as input of the
HAR models only a subset of the most significant joints for the body and hands
skeletons provided by OpenPose. In particular, as shown in Figure 2, our choice
for the hand joints is limited to: the wrist, three joints each for the thumb, index
and middle finger, and two joints for the ring finger; for a total of 12 joints
for each hand. The rest of the joints are omitted, being more difficult to be
estimated and less useful for the action recognition process. For what concerns
the body, some keypoints such as the ones corresponding to eyes, ears and feet
are not considered either, leading to a 15 joints body model comprising head,
neck, shoulders, elbows, wrists, pelvis, hips, knees and ankles.

3.2 3D Pose estimation

The output of OpenPose is a 2D skeleton describing the pose of each person in
the input image. From this information we compute a 3D skeleton by means of
re-projection, in order to have a more standard and general representation to be
used as input for the action classifiers. Given a calibrated RGB-D camera and its
extrinsic parameters, it is possible to transform the depth image by aligning it to
the RGB image, obtaining a direct mapping for each pixel; for each 2D keypoint
(xP , yP ) estimated by OpenPose in the input image, we use the information in
the aligned depth image to compute the keypoints coordinates in the 3D space
using re-projection and the intrinsics parameters of the camera.

The depth information acquired with a RGB-D sensors is usually not accurate
around borders and for small objects, like the fingers of the hand in our case.
Therefore, to improve accuracy and robustness of the 3D keypoints, we do not
consider the raw depth value, but we take instead the median value in a 5 × 5
window centered at coordinates (xP , yP ) in the depth image.
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3.3 Action and gesture recognition

The action recognition module in our framework is based on the Shift-GCN ar-
chitecture [20], a graph convolutional network which achieved state-of-the-art
performance on the NTU RGB+D dataset [23]. Compared to other architec-
tures, Shift-GCN has the advantage of being lightweight and requiring a lower
computational cost, thanks to the introduction of the graph shift convolution
operations. This was one of the main aspects that guided our choice, since in
human-robot collaboration scenarios we would like to have a fast recognition of
the human actions to obtain a smooth and responsive collaboration.

The Shift-GCN architecture takes as input a sequence of skeletons, (i.e., a
sequence of 3D joints coordinates), and is composed of 10 blocks, each one includ-
ing a spatial graph shift convolution operation and an adaptive temporal shift
operation. The final output layer contains 60 nodes, since it has been originally
proposed to classify the actions in the NTU RGB+D dataset.

Unlike the NTU dataset, where actions were classified based only on the body
pose information, in this work we aim to develop a general framework capable of
recognizing both actions and gestures which can occur during the collaboration
between a human worker and a robot; in such scenario, many possible actions
and gestures involve only the use of hands while the body of the worker stands
still (e.g., “stop” and “confirm” signals). This leads us to propose different action
recognition networks based on the Shift-GCN architecture, each one designed to
recognize collaborative actions from a particular set of joints. In particular, we
consider the following set of joints:

– wholebody, which includes the 39 joints shown in Figure 2 describing the
pose of both the body and the hands;

– body, including the 15 joints which describe the pose of the body;
– hands, including the 24 joints which describe both hands together;
– single hand, including the 12 joints of a hand (i.e., wrist and fingers’ joints).

As in the original Shift-GCN architecture, the input sequences of skeleton
joints undergo some pre-processing operations before being fed to the network: a
traslation of the joint coordinate reference frame to a central joint of the skeleton,
and a joints coordinate normalization. These operations allow to consider all the
body movements with respect to the body itself, which makes them a better
input for the network and easier to generalize to different scenarios. For our
networks, we choose as origin of the new reference frame the joint corresponding
to the neck (i.e., Joint 1 in Figure 2); the z−axis of the new reference frame
is taken parallel to the segment connecting the pelvis (i.e., Joint 8) and the
neck joints, while the x−axis is considered parallel to segment connecting the
shoulder joints (i.e., Joints 2 and 5). For the networks considering only the hands
joints we use the same convention for the reference frame’s axes, but placing its
origin on the wrist joint (i.e., Joint 0) of each hand (or the right hand wrist
when both hands are considered. In such a manner, also the hands movements
are expressed with respect to a local reference frame maintaining their relative
orientation with respect to the rest of the body.



8

3.4 Ensemble averaging of the classifiers predictions

As the last step of our proposed framework, all the action recognition models’
outputs are combined together by means of ensemble techniques to compute the
final prediction. Ensemble is a machine learning technique that combines several
base models in order to produce one optimal predictive model, improving the
overall accuracy and robustness.

We propose two main approaches to combine the information from the action
recognition models: an ensemble of the body and hands models, and an ensemble
of the body model with both single hand models (i.e., left hand and right hand
models). In both approaches, the information from the models is combined at the
score-level, namely the output of the softmax activation function in the last layer
of the networks. Considering for example the first approach (i.e., body + hand
models), we compute the final score as a weighted sum of the score of each model.
The predicted action lpred is then obtained by taking the argmax of the final
score,

lpred = argmax (αb ob + αh oh) , with αb + αh = 1 (1)

where N is the number of actions of interest, ob ∈ [0, 1]N is the output score
of the body network, oh ∈ [0, 1]N is the output score of the hands network and
αo, αh are the corresponding weights.

In the second approach (i.e., body + left hand + right hand models) we take
into account also the fact that some actions or gestures can be made using only
one hand (e.g., confirm, left, right, stop) while the other one remains still or even
not visible. The final score is still computed as a weighed sum of the models’
score, but considering a weight αih = 0 if the hand i, i ∈ {left, right} is the only
one not visible or in a rest position. We assume in this case that the hand whose
action is labelled as “rest” falls in a group of actions in which only one of the
two hands is actively moving, while the other one stands still; the actual action
is therefore related to the moving hand and the other one is irrelevant in terms
of action recognition.

4 IAS-Lab Collaborative HAR Dataset

As highlighted in Section 2, there exist different actions that are common to
many human-robot applications. In order to obtain a general framework suitable
for different collaborative settings, we trained our models on a set of actions and
gestures that generalize those commonly found in the literature. For example,
in many works we have actions such as grab a tool, pick a piece or pick the
hammer which can be all summarized as a pick action if we only focus on the
human movements; the specific object to be picked can be then detected from a
dedicated object detector. The actions that we selected are reported in Table 1,
categorized in four main groups. The first group refers to general movements
that a person can do in the robot workspace, where WALK includes all the
movements of a worker moving around the workspace and REST indicates that
the human operator is not working. The second group includes the most common
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Table 1: Actions and gestures in the IAS-Lab Collabative HAR dataset

Group Actions

Spatial movements WALK, REST

Assembly actions PICK, PLACE, SCREW, INSERT/JOIN, HAMMER

Collaborative gestures HAND TO, REQUIRE

Communication gestures
STOP, OK/CONFIRM, UP, DOWN, FORWARD,
BACKWARD, LEFT, RIGHT, POINT

assembly actions performed by the human worker, while the third group includes
all the signals that the human can do to request or pass objects to the robot
during the collaboration. Finally, the fourth group includes all the gestures used
to communicate an instruction to the robot, including directions of movements
and signals of confirmation or halting.

The set of actions to be recognised was chosen in order to include movements
that are as generic as possible, and that can in general be distinguished with-
out pairing them to objects or tools and without setting a world coordinates
system to locate the human operator in the workspace. It can be noticed that
many actions require an active use of hands and that the hands movements are
potentially discriminative in the recognition of the performed action, especially
for what concerns gestures and assembly actions.

Once defined the set of actions in Table 1, we collected a novel dataset of
people performing such actions in our laboratory. We asked to 6 different subjects
to perform 5 times each the 18 actions selected, for a total of 18 × 6 × 5 =
540 samples. Each sample is a sequence of RGB-D frames of about 5 seconds,
acquired with a Intel Realsense L515 camera2. The camera was placed at a
distance of about 2.5 meters from the subjects, in order to frame the whole
subject body during all the actions. Some samples from the acquired dataset are
shown in Figure 3. During the dataset collection, subjects were only told the
name of the action to be executed, without receiving any further instruction on
how to perform it. This allowed to increase the variability of the dataset, since
many subjects performed the same actions in different manners as shown in
Figure 4. Indeed, we aim to recognise actions and gestures executed as naturally
as possible, without creating a rigid dictionary of movements and having to
give many specific instructions to users. This can help achieving an easier, more
immediate and natural communication between people and robots.

2 https://www.intelrealsense.com/lidar-camera-l515/
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Fig. 3: Some samples from the IAS-Lab Collaborative HAR dataset, together
with the skeletons outputs estimated by means of OpenPose.

Fig. 4: Examples of variability in the IAS-Lab Collaborative HAR dataset. Each
subject performed the actions requested in a different manner.

5 Experimental Results

The proposed framework has been evaluated using the IAS-Lab Collaborative
HAR dataset described in Section 4. Such dataset is very small with respect
to the dataset commonly used to train deep learning models, and hence not
suitable to train from scratch the action recognition networks proposed in our
framework. Therefore, the action recognition models have all been trained on
a large collection of data such as the NTU RGB+D dataset and then fine-
tuned on the IAS-Lab Collaborative dataset. This allows to exploit the larger
dataset to learn several features encoding the human movements, which are then
specialized for the human-robot collaboration scenario. The models described in
the following have all been implemented starting from the official implementation
of the Shift-GCN architecture3. In all the experiments the models have been
trained using the hyper-parameters suggested by the Shift-GCN authors, using
a NVIDIA® Titan RTX 2080 GPU.

5.1 Pre-training on the NTU RGB+D dataset

The NTU RGB+D dataset [23] is a large dataset containing RGB-D frames
and pose annotations of several subjects performing 60 actions, acquired with
a multi-view setup composed of 3 cameras. Pose annotations are provided as
skeleton models composed of 25 joints describing only the body pose. However,

3 https://github.com/kchengiva/Shift-GCN
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they do not include hands joints and the body joints slightly differ from the
ones estimated by the OpenPose architecture used in our framework. For these
reason, since our framework has been designed to exploit both body and hands
pose information, we recreated all the pose annotations for the NTU RGB+D
dataset using the OpenPose network to predict both body and hands joints.
For each RGB frame in the NTU RGB+D dataset, we run the OpenPose pose
estimator to predict the 2D poses of the people in the images. Then, by using
the associated depth frame, the corresponding 3D pose is computed by means
of re-projection as described in Section 3.

The authors of the NTU RGB+D dataset proposed two benchmarks: a cross-
subject benchmark where all the subjects are split into training and testing
groups, and a cross-view benchmark where data from different cameras are used
as train and test data. However, in this work, we are interested in using the NTU
dataset primarily as a tool to train our models on a large collection of actions;
for this reason, we did not follow any of the proposed divisions but tried to use
a training set with the largest number of images. We took as training set all the
data from the cameras 2 and 3, adding also the data from camera 1 reserved for
training in the cross-subject benchmark; the remaining data, namely the test
data in the cross-subject benchmark acquired with the camera 1, are used as a
small validation set to monitor the training and avoid overfitting.

With such division of the dataset, we trained the models described in Sec-
tion 3 on the sequences of 3D skeletons derived from OpenPose outputs, consid-
ering the subset of the most important joints shown in Figure 2. In particular,
we trained a separate model for each set of joints (e.g., body joints, left hand and
right hand joints) and a whole body model considering all the available joints
(i.e., body and hand joints). The results obtained for each trained model on the
NTU dtaset are reported in Table 2. We evaluated the models in terms of accu-
racy, considering a Top1 accuracy and Top5 accuracy. The former represents the
percentage of correctly predicted actions in the test set, while the Top5 accu-
racy is the percentage of actions whose correct prediction falls in the five highest
softmax scores estimated by the network.

As reported in Table 2, the best results are obtained with the model trained
only on the 15 selected body joints, while the models trained on the hands’ joints
achieve very low accuracy. These results were somehow expected considering the
actions of the NTU dataset, which includes daily actions (e.g., drinking, eating,
reading) where the use of hands is very limited. Many of these actions differ
mainly in body posture, while the hands represent only marginal information
which is not sufficient for a model trained only on hands joints to distinguish
such a large set of actions.

Even the model trained using both body and hands joints achieves lower ac-
curacy than the model with only body information. This result seems to suggest
that adding hand information is even detrimental to the model, leading it to
confuse more actions than using body information alone: considering the 39 in-
put joints, only 15 joints describe the body pose, while more than half represent
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Table 2: Experimental results on the NTU RGB+D dataset for each proposed
model. Results are provided in terms of accuracy using the skeleton sequences
extracted with OpenPose.

Model #Joints Top1 % Top5 %

wholebody 39 59.44 81.34

body 15 90.40 97.68

hands 24 36.25 67.63

left hand 12 21.12 49.38

right hand 12 31.90 62.68

hand information which does not provide enough information about the actions
to be recognized.

Note that the Shift-GCN architecture achieves a Top1 accuracy of 96.5% on
the original NTU dataset with body pose annotations, while our “body” model
performs slightly worse with a Top1 accuracy of 90.4%. A detailed and direct
comparison between the two results is not possible, since we used slightly differ-
ent train and test sets. However, the drop in performance could be partly due to
our new annotations and how partial inputs to the network are handled: if some
of the required joints are missing in the input, the entire input skeleton is dis-
carded. We found this happening on several occasions when using the skeletons
estimated by OpenPose, leading us to discard whole sequences when too many
skeletons were missing.

5.2 Fine-tuning on the IAS-Lab Collaborative HAR Dataset

Using the NTU RGB+D dataset, we were able to train several action recognition
models for recognizing a large number of daily activities. Given the large size of
the dataset, these models were able to learn several low and mid-level features
to be exploited for our action recognition system in collaborative scenarios. We
fine-tuned all the models on the IAS-Lab Collaborative HAR dataset described
in Section 4, substituting the final layer of 60 nodes with a layer of 18 nodes to
match the size of the new set of actions. In order to preserve the low and mid-
level features already learnt, during fine-tuning we froze all the layers’ weights
except the last ones. In particular, denoting with ℓi, i ∈ [1, 10] the 10 blocks
of the Shift-GCN architecture, for each model we froze all the blocks except
for the final ones reported in Table 3. We allowed more blocks to be retrained
for models that achieved low accuracy on the NTU dataset (e.g., hand models),
since in general low accuracy denotes that poor mid- and high-level features have
been learned and more layers’ weights should be updated.
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For fine-tuning the models on the IAS-Lab dataset we followed a cross-subject
benchmark, where the first 5 subjects are used for training and the sixth subject
is used for validation. All the fine-tuned models have been evaluated in terms
of Top1 and Top3 accuracy, reported in Table 3. Since the number of actions in
this case is much smaller than in the NTU dataset, we chose to measure a Top3
accuracy instead of the Top5 of the previous case.

Table 3: Experimental results on the IAS-Lab Collaborative HAR dataset for
each proposed model. Results are provided in terms of accuracy using the models
pre-trained on the NTU RGB+D dataset.

Model #Joints valid inputs Top1 % Top3 % learnable blocks

wholebody 39 45% 44.00 54.00 ℓ7, ℓ8, ℓ9, ℓ10

body 15 100% 62.22 86.67 ℓ9, ℓ10

hands 24 45% 50.00 64.00 ℓ8, ℓ9, ℓ10

left hand 12 75% 59.42 73.91 ℓ6, ℓ7, ℓ8, ℓ9, ℓ10

right hand 12 70% 59.42 71.01 ℓ6, ℓ7, ℓ8, ℓ9, ℓ10

Among the results reported in Table 3 the best performances are still obtained
with the model trained on the body joints which, however, achieves just 62.22%
on Top1 accuracy. Interestingly, we obtain better performance for the models
trained on the hands joints compared to the NTU dataset, especially for the
models considering each hands separately. In many sequences of the IAS-Lab
dataset the subjects’ actions were done with one hand, while the other one
was in a resting position. These represent ambiguous situations for a model
that recognizes actions using information from both hands, reducing its overall
accuracy.

However, no model can correctly classify all actions in the test set data,
highlighting the complexity of the assigned recognition task. As described in Sec-
tion 4, the IAS-Lab dataset collects several typical actions of a human-robot col-
laboration scenario, including both general actions (e.g., pick, place) and hands
gestures (e.g., confirm, stop). In the former case, the actions to be recognized
are large movements involving many body parts, such as walking or hammering.
Hand gestures, instead, are commonly used to communicate with the robot and
involve only movements of the worker’s hands while the rest of the body remains
mostly stationary. Both the body model and the single hands models are very
accurate in classifying only one of the two types of actions, but fail on the other
one, not having enough information. For example, as shown in Figure 5, the body
model predicts very accurately actions like place, hammer or walk, but struggles
to recognize all the gestures based on hands movements (e.g., hand to).
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Fig. 5: Confusion matrices for the models fine-tuned on the IAS-Lab Collabora-
tive HAR dataset. On the left, the confusion matrix for the body model. On the
right, the confusion matrix for the hands model.

Intuitively, a model that uses body and hand information together should be
the best way to recognize all the given actions, but in our experiments we found
the opposite to be true, with the wholebody model achieving the lowest accuracy
among the results reported in Table 3. This is mainly due to the fact that in
several sequences the skeletons found were not complete with all joints, leading
to discarding such sequences from the model training set and thus limiting the
model’s ability to learn to recognize all actions. The percentage of valid sequences
available for each models has been reported in Table 3, highlighting how the
available data were particularly limited to train the wholebody model. Although
more accurate in theory, in practice using a model based on the body and hands
together proved to be less robust and difficult to train; this observation led us
to investigate alternative approaches for combining body and hand information
together, such as ensemble techniques.

5.3 Ensemble results using body and hands models

Body posture and hand posture are complementary information that, if properly
combined, can greatly aid in the classification of actions. As highlighted in the
previous experiment, combining this information when training a network proved
to be inefficient: on the one hand, more sequences are required to learn the
various relationships that may exist between body and hands during the actions
of interest; on the other hand, it requires that in each frame all joints are always
detected, which could be not true in case of occlusions.

For these reasons, we developed our action recognition system by combining
information at the score level by means of ensemble techniques: we run in par-
allel the models fine-tuned on the IAS-Lab dataset, and combine together their
score predictions (i.e. the predicted probability for each actions) by means of a
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weighted sum. In particular, we investigated two main approaches: an ensemble
of the body and hands models, and an ensemble of the body model with the
models for each hand. In the former case we found that best results are obtained
when weighting equally the contributions, that is using weights αb = αh = 0.5 in
Equation (1). When using instead a separate model for each hand we found that
less importance should be given to the scores of the left hand model, probably
due to the fact that the majority of the subjects in the dataset were right-
handed and tended use their rigth hand to perform the requested actions; the
final weights we selected for this approach are αb = αrh = 0.358 and αlh = 0.284.

Table 4: Experimental results on the IAS-Lab Collaborative HAR dataset using
different ensembles of the fine-tuned models.

Model Top1 % Top3 %

body + hands 68.00 90.00

body + left hand + right hand 76.54 87.65

The results obtained using the two ensemble strategies proposed are reported
in Table 4. Both strategies lead to an improvement of the Top1 accuracy with
respect to the previous results, showing how in general combining body and
hands information helps classifying actions. The best result is obtained with the
ensemble of the body model with the single models for each hand, achieving a
huge improvement with respect to the results obtained by each model in Table 3.
Although better on the Top3 accuracy, the body + hands ensemble achieves a
lower Top1 accuracy, mainly due to the many one-handed actions in the dataset,
since the second hand not performing the “real” action is misleading for the
model. Moreover, such ensemble is also limited by the low number of valid input
sequences available, as reported in Table 3. The body + single hands ensemble
approach represents instead a more robust solution for implementing our action
recognition system, since it relies on the base models with the lowest number of
joints required: a sequence is considered a valid input if at least the body or a
hand is detected, reducing the number of overall frames and sequences discarded.

6 Conclusions

In this work, we propose a unified framework for action recognition in human-
robot collaboration scenarios. Our framework can recognize many body-actions
and hand-gestures which are often used in several collaborative tasks, thus rep-
resenting a general solution to various possible real applications. The system
has been evaluated on a novel dataset including general actions of human-robot
collaboration scenarios, which could be used as a benchmark to further drive
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research in this field. In our experiments, we demonstrated how ensemble tech-
niques help to achieve higher accuracy when averaging the predictions of several
skeleton-based classifiers, each one trained to recognize actions from a different
set of joints. Best results have been obtained using an ensemble of classifiers
for body joints and single hands joints, which also represents a robust solution
to handle possible missing joints in the estimated skeletons. As future research
directions, we will apply the proposed framework in a real human-robot collabo-
ration task to monitor human movements during an assembly process. Moreover,
we will investigate the use of a multi-camera setup to improve the 3D pose esti-
mation step, reducing inaccuracies and possible missing joints due to occlusions.
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