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Abstract—Over the last few years, the Deep Reinforcement
Learning (DRL) paradigm has been widely adopted for 5G and
beyond network optimization because of its extreme adaptability
to many different scenarios. However, collecting and processing
learning data entail a significant cost in terms of communication
and computational resources, which is often disregarded in the
networking literature. In this work, we analyze the cost of learn-
ing in a resource-constrained system, defining an optimization
problem in which training a DRL agent makes it possible to
improve the resource allocation strategy but also reduces the
number of available resources. Our simulation results show that
the cost of learning can be critical when evaluating DRL schemes
on the network edge and that assuming a cost-free learning model
can lead to significantly overestimating performance.

Index Terms—Reinforcement Learning, Continual Learning,
Network Slicing, Mobile Edge Computing

I. INTRODUCTION

The orchestration of next-generation mobile networks is

beyond the capabilities of human-designed algorithms, as it is

characterized by multiple objectives and fast dynamics, with

several classes of traffic having highly specific activity patterns

and Quality of Service (QoS) guarantees [1]. In this context,

machine learning is essential to allow the network protocols to

dynamically adapt to different scenarios without the need to

manually reconfigure the entire system [2]. In particular, the

combination of Reinforcement Learning (RL) principles with

deep learning, also known as Deep Reinforcement Learning

(DRL) [3], is one of the most promising tools for the opti-

mization of 5G and beyond networks [4].

The training of DRL models in complex environments is

still very computationally expensive [5], and cannot be always

performed in advance because of the rapid changes that char-

acterize future mobile networks. Therefore, it is fundamental

for 5G and beyond systems to support online training on the

network edge, exploiting a continual learning approach [6]. In

this context, the training updates are either performed directly

on the edge nodes, according to the Mobile Edge Computing

(MEC) paradigm, or they are offloaded to more powerful
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scholarship 2019, and partly by the Danmarks Frie Forskningsfond (DFF)
through the WATER project.

Cloud servers, reducing the consumption of local resources

but requiring the transmission of large amounts of data.

In a MEC scenario, the training cost creates a fundamental

trade-off: updating a DRL model with new experience can im-

prove the learned policy, increasing its efficiency in the target

task, but also subtracts some resources from that very same

task. Disregarding this trade-off and assuming that training is

a free action may have serious consequences, degrading the

performance of the system that should be optimized [7]. The

machine learning research community is starting to become

aware of this issue [8], focusing on model compression and

lightweight learning techniques to reduce the burden on the

edge hardware [9] and considering the cost of learning in

the design of neural networks meant to operate on resource-

constrained devices [10]. In particular, the Federated Learning

(FL) approach can reduce the computational load of learning

systems by performing the training of the target algorithms in

a distributed fashion [11]. In the past years, many frameworks

to reduce the computation and communication cost of FL have

been proposed: for a deeper review on these topics, we refer

the reader to [12], [13].

To the best of our knowledge, the resource efficiency of

DRL techniques in future network scenarios is a relatively

unexplored topic [14], as most researches in the literature still

neglect the cost of the training, separating the learning process

from the optimization even in online applications. In this work,

we attempt to model the cost of learning explicitly, defining

an optimization problem that balances learning and system

optimization. The objective is to identify learning strategies

that maximize the system performance during training, ac-

counting for the cost of the learning itself. Our results show

that adapting the number of training updates is a key factor

for the optimization of MEC systems, while considering an

ideal case with free learning actions may lead to a significant

overestimating of the real performance.

The rest of this paper is organized as follows: Sec. II

presents the cost of learning problem, which is then applied

in a network slicing use case in Sec. III. The results of our

online learning are presented in Sec. IV, and Sec. V concludes

the paper and presents some possible avenues of future work.
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II. COST OF LEARNING MODEL

We consider a typical network management application, in

which a DRL agent tries to maximize system performance by

allocating communication or computational resources to differ-

ent users. The environment is modeled as a Markov Decision

Process (MDP) defined by the 4-tuple (S,A, P,R), where S
is the state space, A is the action space, P : S × A → S is

the state transition probability function and R : S2 ×A → R

is the reward function. Hence, time is discretized into slots

t = 0, 1, 2, ... and, at any slot, the agent chooses a new action

according to a policy π : S → A. The function Pat
(st, st+1)

is the probability that action at in state st at time t will lead to

state st+1 at time t+1, while Rat
(st, st+1) is the immediate

reward received after a transition from st to st+1 due to action

at. The goal of the agent is to learn the optimal policy π∗,

which maximizes the expected discounted return G(t):

G(t) = E

[

∞
∑

τ=t

γτ−tRaτ
(sτ , sτ+1)

∣

∣

∣

∣

∣

π, st

]

, (1)

where γ ∈ [0, 1) is the so-called discount factor.

We assume that the environment dynamics change over

time, which makes it impossible to explore the environment

offline, i.e., collect data with a pre-determined policy and

perform training on this static dataset before the agent deploy-

ment. More specifically, we consider that the environment is

organized into episodes k = 0, 1, ..., and that each episode

lasts T slots. Hence, we assume that P (·) and R(·) are

stochastic processes that change over time in a step-wise

manner, after a coherence period of K episodes. In general,

we can assume that the agent is aware of the environment

evolution and that it is reinitialized at the end of every

coherence period. Accelerating the training might be possible

by exploiting transfer learning, using previous experience

to avoid periodically starting a new learning process from

scratch [15]. However, the implementation of such techniques

is out of the scope of this work.

We define the expected reward for an episode as

R(k) = E

[

T−1
∑

t=0

Rat
(st, st+1)

T

]

, (2)

and we set the goal of maximizing the expected reward

RK =
∑K−1

k=0 R(k) during the K episodes constituting a

single coherence period. In general, this is achieved by making

the agent policy converge to the optimum in the shortest

time possible. However, in our scenario, training the agent

consumes some of the resources (computational or communi-

cation, depending on the architecture) that should be assigned

to the users. Hence, each learning update has a direct impact

on the system performance, and there is a trade-off between

convergence speed and cost of learning.

To model this aspect, we assume that each episode is divided

into two subsequent phases: first, an exploitation phase, in

which the learned strategy is applied, then an update phase

devoted to the agent training. In particular, the two phases last

Tπ and Tρ = T − Tπ slots, respectively, so that the agent’s

actions are determined by the learned policy π during the first

Tπ slots of any episode k, while the agent follows a pre-

determined policy ρ during the last Tρ slots, i.e.,

at =

{

π(st), t ∈ {0, 1, ..., Tπ − 1};

ρ(st), t ∈ {Tπ, Tπ + 1, ..., T − 1},
(3)

where t is the slot index within the same episode.

The policy ρ ensures that all or part of the system resources

are used for the agent training, making it possible to update the

policy π with the new experience that the agent has gained.

On the other hand, since ρ subtracts some of the resources

from the users, this strategy leads to sub-optimal performance,

decreasing the reward collected during the episode.

From a practical perspective, the value of Tρ determines

the amount of time and resources devoted to the learning

process. As Tρ increases, so does the number of experience

samples used to train the agent after each episode. This

makes it possible to accelerate the convergence speed of the

agent, thus improving the immediate reward gained during the

exploitation phases of the next episodes. On the other hand,

increasing Tρ also shortens those exploitation phases, because

more time is spent in the update phases in which the sub-

optimal policy ρ is used. In particular, the average reward

during the k-th episode, considering a fixed Tρ, is given by:

R(k|Tρ) =

(

T − Tρ

T
Rπk

(k) +
Tρ

T
Rρ(k)

)

, (4)

where πk is the policy learned by the agent in the k-th episode,

while Rπk
(k) = E[R(k);πk] and Rρ(k) = E[R(k); ρ] are

the expected average rewards gained using policies πk and

ρ, respectively. The optimal value of Tp depends on multiple

factors, including the coherence time of the underlying non-

stationary MDP.

In this work, we consider two possible approaches for

balancing exploitation and training. In the first, we adopt the

naive assumption that the amount of resources assigned to

the learning task is constant over time, and we analyze how

Tρ affects the system performance. In the second approach,

instead, we assume that the amount of training resources

can be adapted over time, based on the convergence speed

of the learning agent, and we study the trade-off between

convergence speed and effectiveness of the learned strategy. In

the following, we formally define the optimization problems

underlying the two approaches, which will be successively

analyzed and compared in Sec. IV, considering a MEC system

as a use-case scenario.

A. Constant update duration

Given the coherence period duration K , the first optimiza-

tion problem aims at determining the optimal Tρ to maximize

RK , while assuming that Tρ is constant over time:

T ∗
ρ = argmax

Tρ∈{0,...,T}

(

K−1
∑

k=0

R(k|Tρ)

K

)

. (5)



B. Adaptive update duration

The second approach assumes that the agent can determine

when the policy π converges to the optimal one. In particular,

after discovering the optimal policy, the agent sets Tρ to zero,

fully exploiting the system resources. If we define the number

of episodes until convergence as η(Tρ), we have the following

optimization problem:

T ∗
ρ = argmax

Tρ∈{0,...,T}





η(Tρ)−1
∑

k=0

R(k|Tρ)

K
+

(

1−
η(Tρ)

K

)

Rπ∗



 .

(6)

In this case, we expect T ∗
ρ to be higher, since a quicker conver-

gence to the optimal policy allows the system to terminate the

training process and fully dedicate its resources to the users.

III. USE-CASE

To test the benefits of our cost-aware learning framework,

we consider a Network Slicing (NS) scenario, where a set of

users with heterogeneous requirements transmits data through

the uplink. We assume that the traffic is divided into slices that

depend on the applications’ QoS requirements, and the Base

Station (BS) needs to allocate the capacity of a backhaul link

to guarantee the best possible performance for each slice. The

link resources are managed by a DRL agent, whose actions

depend on the state of the slice buffers at the BS.

A. Communication model

We assume that time is discretized into slots t = 0, 1, 2, ...
of length τ and that, in each slot t, each user u ∈ U
(corresponding to a single application) transmits a vector of

packets xu(t) to the BS. All packets have the same length

L, and we denote by xu(t,m) the m-th packet of xu(t). We

also assume that each application is associated with a specific

slice σ ∈ Σ, according to the application requirements. We

denote by Uσ ⊂ U the set of users associated with slice σ. In

particular, all the packets belonging to the same slice σ are

seen by the BS as a single stream of data sharing the same

communication resources.

We assume that the BS maintains a First In First Out (FIFO)

buffer with a maximum size of Q packets for each slice σ ∈ Σ.

The packets present in the buffer for slice σ at the beginning

of slot t are collected in vector qσ(t). We can conservatively

assume that packets are added to the backhaul link buffer at the

end of each slot. The buffer size condition is then |qσ(t)| ≤ Q,

where |x| represents the length of vector x.

We assume that the backhaul link has a total capacity Cbh,

that can be divided into N resource blocks, each of which

makes it possible to transmit τCbh

N
bits per slot. Note that

packets can be transmitted over multiple subsequent slots. We

now denote by Nσ(t) the number of resource blocks assigned

to slice σ during slot t. Naturally, any resource allocation

scheme should comply with the condition
∑

σ∈Σ Nσ(t) ≤ N .

The number of packets from slice σ that can be delivered

in slot t, given that Nσ(t) backhaul resources are allocated to

it, is then given by:

χσ(t) = min

(

|qσ(t)|,

⌊

Nσ(t)
τCbh

LN

⌋)

. (7)

We denote by yσ(t) the vector containing the χσ(t) packets of

slice σ that are transmitted during slot t. At the next step, the

queue vector qσ(t+1) contains the remaining queued packets,

as well as the newly arrived ones. However, the queue cannot

contain more than Q packets, and in case of buffer overflows,

the oldest ωσ(t) packets are then discarded:

ωσ(t) = max (0, |qσ(t− 1)| − χσ(t− 1) + |xσ(t)| −Q) .
(8)

We denote the vector of discarded packets by dσ(t), so that

|dσ(t)| = ωσ(t). Once the buffer states qσ(t), ∀σ ∈ Σ have

been updated, the backhaul resources can be reallocated. To

evaluate the system performance, we consider the queuing

delay, defined as:

δ(p, t) =

{

s : p ∈ xσ(t− s), p ∈ (yσ(t) ∪ qσ(t)) ;

∞, p ∈ dσ(t),
(9)

where the elay is computed for packet p from slice σ at time

t. Therefore, the delay is the number of slots since p was

delivered to the BS if p is transmitted or still in the buffer,

while it is considered infinite if p is discarded.

We then define a utility function fu(·) for each user,

which takes the packet delay as input and return a value in

[0, 1]. In particular, fu(·) is monotonically decreasing, with

fu(0) = 1 and limx→∞ fu(x) = 0, and depends on the delay

requirements of the user, expressed in terms of the maximum

delay ∆u. Finally, the performance Φu(t) of u and the overall

system performance Φ(t) at slot t are given by:

Φu(t) =

χσ(t)
∑

m=1

fu(yσ(t,m))(δ(yσ(t,m), t))

(χσ(t) + ωσ(t))
, (10)

Φ(t) =
1

|Σ|

∑

σ∈Σ

1

|Uσ|

∑

u∈Uσ

Φu(t), (11)

where u(p) is the user that sent packet p.

B. Learning framework

In order to optimize the system in a foresighted manner, we

model the resource allocation problem as an MDP, implement-

ing a DRL agent to manage the link resources. In particular,

the state s(t) at time t depends on the individual requirements

of the users currently being served, as well as the state of the

transmission buffer for each slice. Specifically, s(t) is a tuple

with 4 · |Σ| elements, namely:

• The number of packets contained in each slice buffer, i.e.,

|qσ(t)|, ∀ σ ∈ Σ;



TABLE I: Agent architecture.

Layer size (inputs × outputs) Inter-layer operations

4 · |Σ| × 64 ReLU activation

64 × 32 ReLU activation

32 × (1 + |Σ| · (|Σ| − 1)) Linear activation

• The average remaining time before the packets contained

in each slice buffer exceed the maximum allowed delay

∆u, which is given by

|qσ(t)|
∑

m=1

∆u(qσ(t,m)) − δ(qσ(t,m))

|qσ(t)|
, ∀σ ∈ Σ; (12)

• The minimum remaining time among the packets in each

slice buffer, i.e.,

min
m∈{1,...,|qσ(t)|}

(

∆u(qσ(t,m)) − δ(qσ(t,m))
)

, ∀σ ∈ Σ;

(13)

• The number of packets that will be transmitted during

the current slot for each slice, assuming that resource

allocation scheme does not change, which is:

min

(

|qσ(t)|,

⌊

Nσ(t− 1)
τCbh

LN

⌋)

, ∀σ ∈ Σ. (14)

We have S =
{

0, . . . , Q
L

}2·|Σ|

×R
2·|Σ|, while the action space

A includes 1 + |Σ| · (|Σ| − 1) different actions. Specifically,

action 0 maintains the resource allocation constant, so that

Nσ(t) = Nσ(t− 1), ∀ σ ∈ Σ. Instead, each of the remaining

actions is defined by the ordered tuple (i, j), i 6= j, and

corresponds to taking one resource block from slice σi and

assigning it to slice σj , so that Nσi
(t) = Nσi

(t − 1) − 1
and Nσj

(t) = Nσj
(t − 1) + 1. Naturally, resource allocation

can never be negative, i.e., Nσ(t) ≥ 0 ∀σ ∈ Σ, and the total

number of allocated resources is always N .

Hence, at each slot t, the agent observes state s(t) ∈ S and

selects a new action a(t) ∈ A according to its current policy π,

which determines the number of blocks Nσ(t) assigned to each

slice σ ∈ Σ. Then, the agent receives an instantaneous reward

Φ(t), which is given by the system utility defined in (11); we

note that, by definition, Φ(t) ∈ [0, 1].
We adopt the Deep Q-Network (DQN) approach [3], in

which the expected long-term value of each action, as given

by (1) with Φ(t) as reward, is approximated by a Neural

Network (NN) that, at each slot t, takes the current state

s(t) as input. In particular, we implement a fully connected

feed-forward NN, whose input layer is formed by one neuron

for each element of s(t). The output of the NN is a scalar

vector of size |A|, representing the expected long-term reward

of each possible action a ∈ A for the current state. In

particular, when operating greedily, the agent will always pick

the action corresponding to the highest output value. The main

parameters of the learning architecture are reported in Tab. I.

IV. SETTINGS AND RESULTS

In the following, we apply our meta-RL model in the NS

environment described in Sec. III. Specifically, we assume that

TABLE II: Application parameters.

Application Bit rate [kb/s] Packet delay budget [ms]

NCVO 25 100

NCVI 384 300

CVO 25 (when active) 75

CVI 384 (when active) 100

the DRL agent deployed at the BS cannot be trained locally

and needs to exchange information with the core network to

improve its own policy. Part of the backhaul link resources are

then used to update the agent’s architecture, possibly degrading

the user performance. Hence, we investigate how the system

utility changes when varying the resources dedicated to the

training, both when the learning update is performed regularly

in time, and when it is stopped after a certain period (assuming

the DRL agent has converged to the optimal policy). In the

rest of the section, we will describe the settings we used in

our system, as well as the simulation results.

A. Scenario settings

The model described in Sec. III-A is very general and can

suit multiple communication scenarios with different charac-

teristics. In this work, for the sake of simplicity, we consider

a simple case with only two slices, named non-critical (σNC)

and critical (σC), respectively, with the following performance

functions fu(δ):

fu(δ) =

{

min
(

1, ∆u

δ

)

, if u ∈ σNC;

1(∆u − δ), if u ∈ σC;
(15)

where 1(x) is the limit-step function, equal to 1 if x ≥ 0 and 0

otherwise. Critical packets have a hard deadline, i.e., delivering

them after the maximum delay ∆u gives zero performance

benefits. On the other hand, the utility of non-critical packets

decreases gradually as the delay grows past the deadline.

We assume that time is divided into slots of τ = 10 ms and

that the backhaul link has a total capacity Cbh = 1 Mb/s. The

channel is divided into N = 10 resource blocks so that each

block allows the delivery of exactly 1 kb. However, we assume

that any allocation scheme remains constant over 10 slots, i.e.,

the agent takes a new action every 100 ms. This value is closer

to the granularity of actual schedulers and avoids the reward

tampering phenomenon [16]. Finally, we consider packets to

have a constant length L = 512 b, and set the maximum buffer

size to Q = 100 packets, equivalent to 64 kB.

We assume that there are 5 different users in the system,

each of which randomly picks an application among the 2

critical and 2 non-critical applications at the beginning of each

episode. The Non-Critical Voice (NCVO) and Non-Critical

Video (NCVI) applications are associated with σNC and have

constant bitrate. The Critical Voice (CVO) and Critical Video

(CVI) applications are associated with σC and generate new

packets following an on-off process.

More specifically, CVO and CVI behave according to a

Markov Chain (MC) with two state, namely silent (s) and

active (a): in the silent states, no packets are generated, which



implies that |xu(t)| = 0; conversely, in the active states,

packets are generate with constant bitrate. We assume that a

critical application can switch between states at the beginning

of each slot t, and we set the state transition probability to

pss = paa = 0.9 and psa = pas = 0.1, respectively. The

bitrate and the packet delay budget of the different applications

are summarized in Tab. II.

B. Learning settings

To orchestrate the backhaul link resources, we deploy the

learning system presented in Sec. III-B. Our implementation

of DQN is distributed: the inference network is installed on the

BS and is used to allocate resources in the exploitation phase

of each episode, while the training network is updated at every

training step and is in a Cloud server. The transmission of the

learning data and updated model occupies the backhaul link,

following the general framework defined in Sec. II.

At the beginning of each episode, the slice buffers are

emptied and each user is associated with a random application.

During the first Tπ slots of each episode, the inference network

sets the resource allocation policy and saves experience sam-

ples (s(t), a(t), s(t + 1),Φ(t), a(t+ 1)) in a local memory.

Instead, during the training phase, no application data are

transmitted, i.e., Nσ(t) = 0, ∀ σ ∈ Σ, and the entire link

capacity is used to forward training data to the core network.

We assume that each experience sample can be encoded into

Ltr = 704 b, while the NN architecture size is LNN = 92256 b.

Therefore, during the updating phase, Tρ
τCbh

Ltr
transitions can

be forwarded through the channel and used by the Cloud server

to update the training network. Moreover, every 10 learning

steps, a copy of the training network is sent back to the BS,

replacing the inference network and improving the current

policy ρ. In those steps, the number of transitions forwarded

through the channel is limited to
TρτCbh−LNN

Ltr
.

To train the agent during the update phase, we implement

the on-policy State-Action-Reward-State-Action (SARSA) al-

gorithm [17] with a softmax exploration policy. In particular,

we set the discount factor γ = 0.95, and we implement the

Adaptive moment estimator (Adam) algorithm to optimize the

NN weights, using ζ = 10−5 as maximum learning rate.

Finally, we set the coherence period to K = 10000 episodes,

and we assume that each episode lasts T = 1000 slots.

C. Results

We now investigate different configurations of our learning

system, varying the time Tρ ∈ {1, . . . , 5} devoted to the agent

training. When Tρ is low, most of the system resources are

assigned to the users, and agent training proceeds slowly;

conversely, as Tρ increases, more learning data are transmitted

through the link, taking up more resources but increasing the

training speed. We compare the results with an ideal system,

where all the learning transitions are instantaneously transmit-

ted through a side-channel and used to update the inference

network, without impacting the users. Clearly, this represents

an upper bound to the practically achievable performance.
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Fig. 1: Mean performance over time with fixed Tρ.
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Fig. 2: Boxplots of the performance with fixed Tρ.

We first consider the scheme with a constant update duration

from Sec. II-A. In Fig. 1 we represent the average performance

during the training of the different strategies, obtained aggre-

gating the data of 100 independent simulations. It is easy to

see that larger values of Tρ lead to a quicker convergence

toward the optimal policy and, in particular, training is rather

slow if Tρ = 1. On the other hand, the configurations with

a higher Tρ improve faster but have lower performance after

convergence, since they continue to devote a fixed amount of

resources to the agent training.

We can have a better insight into the different strategies

by looking at Fig. 2, which uses boxplots to represent the

performance statistics during the beginning, intermediate and

last episodes of the training. The whiskers represent the 5th

and 95th percentiles of the performance distribution, while

the box goes from the 25th to the 75th. In the first third of

the coherence period, it is convenient to select a high value

for Tρ to learn the optimal policy faster. After a sufficient

number of episodes, the configurations with a lower Tρ also

converge and waste fewer system resources on further training,

but the configuration with Tρ = 1 is always outperformed

by the others, since it needs more than K episodes to reach

convergence.

We can now look at the adaptive system from Sec. II-B.

We use a simple heuristic strategy to infer convergence: if

the average reward over a rolling window of Kavg episodes

stops increasing, the agent estimates that the optimal policy

has been found and sets Tρ to zero, assigning the whole link

capacity to the users. This allows the agent to use the first
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portion of the coherence period to learn the optimal policy,

taking advantage of the acquired knowledge in the remaining

episodes. The choice of Tρ will then determine the time needed

to switch to the full exploitation phase.

Fig. 3 shows the performance over time with this approach,

considering Kavg = 4000. We observe that the performance

of the strategies with Tρ ≤ 3 is almost identical to that of the

previous scenario. In fact, the adaptive method does not reach

convergence before the end of the coherence period with such

a small Tρ. On the other hand, setting Tρ = 5 seems to be

too aggressive, and the heuristic stops the learning process too

soon, leading to suboptimal results.

The approach with Tρ = 4 outperforms all the other

strategies during the entire coherence period, striking a balance

between convergence speed and cost of learning. This is

confirmed by Fig. 4, which shows that Tρ = 4 achieves

better performance, both considering the lower and the higher

percentiles of the distribution.

V. CONCLUSIONS

In this work, we analyzed the cost of exploiting DRL

solutions for MEC network optimization. Specifically, we

designed a novel cost of learning framework to optimize the

amount of resources that a learning agent allocates to its own

improvement, so as to balance the speed of convergence of the

policy with the system performance during the training. We

consider a test case based on a 5G system in which a DRL

agent has to allocate the bandwidth of a backhaul link among

multiple slices while consuming part of the network resources

to transmit its own training updates. Our results show that

there is a significant trade-off between the convergence speed

and the communication overhead due to the training. Inferring

the agent convergence is also a critical problem, especially

in fast-varying scenarios which require the use of continual

learning. Future work on the subject may involve more general

solutions, based on hierarchical DRL or other meta-learning

tools, that can apply to different problems in which cost of

learning is a real concern.
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