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Abstract. We present a model of crowd motion in regions with moving obsta-

cles, which is based on the notion of measure sweeping process. The obstacle is
modeled by a set-valued map, whose values are complements to r-prox-regular

sets. The crowd motion obeys a nonlinear transport equation outside the ob-

stacle and a normal cone condition (similar to that of the classical sweeping
processes theory) on the boundary. We prove the well-posedness of the model,

give an application to environment optimization problems, and provide some

results of numerical computations.

1. Introduction. Moving crowds are usually modeled, at the macroscopic level,
by evolution PDEs with nonlocal terms [5, 9, 7, 8, 17, 16, 19]. States of these
equations are measures (or densities) which describe the distribution of individuals
(also called agents) on some configuration space, typically, the space of agents’
positions or position-velocity pairs. Nonlocal terms appear due to the fact that the
behavior of each agent depends on the positions of other agents. Such equations
can often be expressed either as Wasserstein gradient flows [2] or nonlocal transport
equations [18]. Each framework has its own advantages: the first one allows to deal
with various diffusion terms, the second one admits vector fields that do not possess
the gradient structure. Stationary obstacles in both cases are handled by imposing
either the Neumann ρv ·n = 0 or the Dirichlet ρ = 0 boundary condition. The latter
condition is more demanding: to achieve it one has to adjust nonlocal terms [8] or
introduce specific distances in the space of measures [13].

Measures evolving inside moving domains were considered, probably for the first
time, by Di Marino, Maury and Santambrogio in [11]. They described, in particular,
how a measure ρt supported on a time dependent convex set C(t) evolves when it
is pushed by the boundary of C(t). To deal with the problem they introduced a
notion of measure sweeping process and extend the classical Moreau catching-up
scheme to the space of measures.

Our goal is to extend the approach of [11] in two respects: we admit here non-
convex (more precisely, r-prox-regular) driving sets C(t) and measures ρt which are
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not only pushed by ∂C(t) but also drift along a given nonlocal vector field V (ρt).
One can naturally think of such evolution models as perturbed measure sweeping
processes with perturbation given by V . We shall see that these modifications
turn the concept of measure sweeping process into a usable tool of crowd dynamics.
Moreover, we shall prove that any solution of the measure sweeping process satisfies
the underlying PDE together with the Neumann type condition ρ(nt + v · nx) = 0
on the boundary of the time dependent domain. Let us stress that below we deal
only with Lipschitz non-local vector field, so basically we stay within the framework
of [18].

We define a moving obstacle by a set-valued map O : [0, T ] ⇒ Rd taking values
among open subsets of Rd. Instead of dealing with O(t) we prefer to look at its
complement C(t) = Rd \ O(t), which we call the viability region. The values of
C : [0, T ] ⇒ Rd are assumed to be closed bounded r-prox-regular sets, for a given
r > 0. The perturbed measure sweeping process is the system of the form

∂tρt +∇ · (vtρt) = 0,

vt(x)− V (ρt)(x) ∈ −NC(t)(x),

spt(ρt) ⊂ C(t).

(1)

where V maps measures to vector fields and NA(x) denotes the proximal normal
cone to A ⊂ Rd at x. In what follows, P2(Rd) denotes the space of probability
measures with finite second moments equipped with the Wasserstein distance W2.

Definition 1.1. An absolutely continuous curve ρ : [0, T ]→ P2(Rd) is said to be a
solution of the measure sweeping process (1) if

• there exists a Borel vector field (t, x) 7→ vt(x) such that (ρ, v) satisfies

∂tρt +∇ · (vtρt) = 0

in the sense of distributions;
• the normal cone condition

vt(x)− V (ρt)(x) ∈ −NC(t)(x)

holds for a.e. t ∈ [0, T ] and ρt-a.e. x ∈ Rd;
• spt(ρt) ⊂ C(t) for all t ∈ [0, T ].

Remark that the normal cone condition implies that vt(x) = V (ρt)(x) if x lies
in the interior of C(t), which means that inside C(t) the crowd moves according to
the nonlocal transport equation

∂tρt +∇ · (V (ρt)ρt) = 0.

The inclusion spt ρt ⊂ C(t) guaranties that the crowd never leaves the viability
region.

Throughout the paper, we impose the following assumptions:

(A1) There exist L > 0 such that V : P2(Rd)→ C(Rd;Rd) satisfies

‖V (ρ1)− V (ρ2)‖∞ ≤ LW2(ρ1, ρ2) ∀ρ1, ρ2 ∈ P2(Rd)

|V (ρ)(x)− V (ρ)(y)| ≤ L|x− y|, |V (ρ)(x)| ≤ L ∀x, y ∈ Rd, ∀ρ ∈ P2(Rd),

(A2) There exist M > 0 and r > 0 such that the set-valued map C : [0, T ] ⇒ Rd is
M -Lipschitz in the Hausdorff distance dH :

dH (C(t),C(s)) ≤M |t− s| ∀t, s ∈ [0, T ],

and its values are compact r-prox-regular sets.
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Now we are ready to state the main result of the paper.

Theorem 1.2. Let V satisfy (A1) and C satisfy (A2). Then the following asser-
tions hold:

(1) For any ϑ ∈ P2(Rd) such that sptϑ ⊂ C(0), there exists a unique solution
ρ : [0, T ]→ P2(Rd) of the measure sweeping process (1) with ρ0 = ϑ.

(2) The corresponding vector field v satisfies

|vt(x)| ≤ 2L+M, for a.e. t and ρt-a.e. x.

In particular, t 7→ ρt is (2L+M)-Lipschitz.
(3) If graphC is r′-prox-regular for some r′ > 0 then

ξ + vt(x) · η = 0 ∀(ξ, η) ∈ NgraphC(t, x)

for a.e. t and ρt-a.e. x.
(4) If C̃ is another set-valued map satisfying (A2) and ρ̃ is a solution of the

corresponding measure sweeping process then the estimate

r(t) ≤
(
r(0) + (6L+ 2M)

∫ t

0

∆(s) ds
)
e(4L+ 3L+M

2r )t (2)

holds for all t ∈ [0, T ], where r(t) = 1
2W

2
2 (ρt, ρ̃t) and ∆(t) = dH(C(t), C̃(t)).

To prove the existence part we use the following catching-up scheme, which yields,
for every natural N , a sequence of probability measures ρτkτ , k = 0, . . . , 2N .

Algorithm 1 The catching-up scheme (see Figure 1)

1: Split [0, T ] into 2N segments of length τ := T/(2N), then set ρ0 := ϑ, k := 0.
2: while 2kτ < T do
3: Solve the linear continuity equation

∂tµt +∇ · (2V (ρ2kτ )µt) = 0, µ2kτ = ρτ2kτ , (3)

on the segment [2kτ, (2k + 1)τ ] and set ρτ(2k+1)τ := µ(2k+1)τ .

4: Project ρτ(2k+1)τ onto C((2k + 2)τ) and set ρτ(2k+2)τ to be equal to this pro-

jection.
5: k := k + 1.
6: end while

With ρτkτ at hand, we can construct two curves on P2(Rd):
• a continuous one ρτ , by connecting ρτ2kτ , ρτ(2k+1)τ with a (unique) trajectory

of (3) and ρτ(2k+1)τ , ρτ(2k+2)τ with a (unique) Wasserstein geodesic;

• a piecewise constant one ρ̄τ , which equals to ρτ2kτ on [2kτ, (2k + 1)τ ] and
ρτ(2k+1)τ on [(2k + 1)τ, (2k + 2)τ ].

It can be shown that ρτ converges to some ρ as τ → 0. The latter curve, being
absolutely continuous, satisfies ∂tρt+∇·(vtρt) = 0, for some velocity v, and spt ρt ⊂
C(t), for all t. The piecewise constant curve ρ̄τ , which has the same limit as ρτ , is
used to prove the normal cone condition.

Assertion (4) (and, thus, the uniqueness part) follows from the standard repre-
sentation for the time derivative of the squared Wasserstein distance along a pair
of absolutely continuous curves (see [2] or Appendix C).
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Figure 1. One step of the catching-up algorithm. Here t = 2kτ ,
the dark rounded rectangle represents an obstacle.

Structure of the paper. In Section 2 we introduce the notation, recall basic proper-
ties of prox-regular sets and standard results concerning the geometry of P2(Rd).
Section 3, the most technical one, contains a proof of the existence part of The-
orem 1.2. The well-posedness part is proven in Section 4. Then, in Section 5,
we give an application of Theorem 1.2 to environment optimization problems. Fi-
nally, Section 6 contains some numerical computations for the measure sweeping
process (1).

2. Preliminaries. We begin with notation, then recall some useful facts about
prox-regular sets and the Wasserstein space.

2.1. Notation. Below, X and Y are metric spaces, U is an open subset of Rd.
P(X) the space of probability measures on X
P2(Rd) the space of probability measures µ on Rd with

∫
|x|2 dµ <∞

M(X;Rd) the space of finite Radon vector measures on X
C(X;Y ) the space of continuous maps f : X → Y
Ck(U) the space of k times continuously differentiable maps f : U → R
Ckc (U) the space of all compactly supported maps from Ck(U)
K(Rd) the space of nonempty compact subsets of Rd
Kr(Rd) the space of compact r-prox-regular subsets of Rd
⇀ the weak (narrow) convergence on M(X;Rd)
W2 the quadratic Wasserstein distance on P2(Rd)
dH the Hausdorff distance on K(Rd)
‖ · ‖∞ the supremum norm on C(X;Y )
Lip(f) the minimal Lipschitz constant of f ∈ C(X;Y )
B the closed unit ball in Rd centered at 0
a+ rB the closed ball in Rd with center a ∈ Rd and radius r ≥ 0
dA(x) the distance between a compact set A ⊂ Rd and a point x ∈ Rd
PA(x) the projection map, i.e., PA(x) = {a ∈ A : |x− a| = dA(x)}
A◦ the interior of A ⊂ Rd
∂A the boundary of A ⊂ Rd
Ac the complement of A ⊂ Rd
NA(x) the proximal normal cone to A ⊂ Rd at x

2.2. Prox-regular sets. We collect here, for the future references, some basic
properties of prox-regular sets (also called sets with positive reach).

Definition 2.1 ([12, 20]). A closed set S ⊂ Rd is called r-prox-regular, for
r ∈ (0,+∞], if the projection map PS is single-valued and continuous within the
open spherical neighborhood S + rB◦ = {x : dS(x) < r}.

A closely related notion of proximal normal is defined as follows.
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Definition 2.2 ([6, Chapter 11]). Let S be a closed set and x ∈ S. A vector v ∈ Rd
is called a proximal normal to S at x if there exists σ = σ(x, v) ≥ 0 such that

〈v, y − x〉 ≤ σ |y − x|2 ∀y ∈ S.
The set NS(x) consisting of such v defines the proximal normal cone to S at x.

The prox-regular sets can be characterized in several equivalent ways (see [24])
gathered in the proposition below.

Proposition 1. The following assertions are equivalent:

(a) S is r-prox-regualar;
(b) for any x ∈ S, each nonzero proximal normal v ∈ NS(x) is realized by an

r-ball, i.e.,

〈v, y − x〉 ≤ |v|
2r
|x− y|2 ∀y ∈ S;

(c) d2
S is continuously differentiable over S + rB◦.

Moreover, one has

1

2
∇d2

S(x) = x− PS(x) ∀x ∈ S + rB◦,

and, for any positive r′ < r,

|PS(x)− PS(y)| ≤ r

r − r′
|x− y| ∀x, y ∈ S + r′B◦.

2.3. Space of measures. Here we briefly recall basic facts about the Wasserstein
space P2(Rd). The corresponding proofs can be found, e.g., in [2, 25].
Space of measures as a metric space. Recall that P2(Rd) is a complete separable
metric space when equipped with the quadratic Wasserstein distance [25, Chapter
6]:

W2(µ, ν) =

(
inf

π∈Γ(µ,ν)

∫
|x− y|2 dπ(x, y)

)1/2

. (4)

The infimum above is taken over the set Γ(µ, ν) of all transport plans between
the measures µ and ν. Recall that a transport plan Π ∈ Γ(µ, ν) is a probability
measure on Rd ×Rd whose projections on the first and the second factor are µ and
ν, respectively. In other words,

π1
]Π = µ, π2

]Π = ν,

where π1, π2 are the projection maps on the factors. Here ] is the pushforward
functor, which works as follows: for any Borel map f : X → Y between metric
spaces, it generates a map f] : P(X)→ P(Y ) by the rule

(f]µ)(A)
.
= µ

(
f−1(A)

)
, for all Borel sets A ⊂ Y.

Remark that the minimum in (4) can always be achieved. Any transport plan
that provides the minimum is called optimal. A plan π is optimal if and only if its
support sptπ is contained in a cyclically monotone set A ⊂ Rd × Rd, which means
that any finite collection of points (xi, yi) ∈ A, i = 1, . . . , k, satisfies

〈y1, x2 − x1〉+ 〈y2, x3 − x2〉+ · · ·+ 〈yk, x1 − xk〉 ≤ 0.

The convergence in the Wasserstein distance is slightly stronger then the weak
convergence of measures. More precisely, W2(ρk, ρ)→ 0 if and only if∫

ϕdρk →
∫
ϕdρ,



5014 NADEZHDA MALTUGUEVA AND NIKOLAY POGODAEV

for any continuous ϕ satisfying ϕ(x) ≤ C
(
1 + |x|2

)
for some C > 0.

Space of measures as a length space. Recall that the length of a continuous curve
ρ : [a, b]→ P2(Rd) is given by

L(ρ) = sup

N∑
i=1

W2(ρti−1
, ρti),

where the supremum is taken among all finite partitions a = t0 ≤ t1 ≤ · · · ≤ tN = b
of the interval [a, b].

The space P2(Rd) is a strictly intrinistic length space, meaning that any two
measures µ, ν ∈ P2(Rd) can be connected with a continuous curve whose length
is W2(µ, ν) (see [4]). Such a curve is called a minimal geodesic from µ to ν. Any
minimal geodesic joining µ and ν can be uniquely parametrized by t ∈ [0, 1] so that

W2(ρt, ρs) = |t− s|W2(µ, ν).

In what follows, by saying that ρ is a geodesic joining µ and ν we mean that ρ is a
minimal geodesic from µ to ν parametrized in this way.

Any geodesic ρ joining µ and ν takes the form ρt =
(
(1− t)π1 + tπ2

)
]
Π, where Π

is an optimal plan between µ and ν. In particular, if the optimal plan is unique, the
geodesic is unique as well. If an optimal plan Π ∈ Γ(µ, ν) is realized by a transport
map F : Rd → Rd, i.e.,

F]µ = ν, W 2
2 (µ, ν) =

∫
|x− F (x)|2 dµ(x),

then Π = (id, F )]µ and thus the geodesic takes the form ρt = ((1− t)id + tF )] µ.

Curves in the space of measures. A map ρ : [0, T ] → P2(Rd) is called Borel mea-
surable if t 7→ ρt(B) is Borel measurable for any Borel set B ⊂ Rd. Any Borel
measurable ρ produces a measure ρ on [0, T ]× Rd by the rule∫

[0,T ]×Rd
ϕ(t, x) dρ(t, x)

.
=

∫ T

0

∫
Rd
ϕ(t, x) dρt(x) dt, ∀ϕ ∈ C∞c

(
(0, T )× Rd

)
.

Below, we never distinguish ρ from ρ.

Lemma 2.3. If ρk → ρ in C
(
[0, T ];P2(Rd)

)
then ρk ⇀ ρ in M

(
[0, T ]× Rd;R

)
Proof. For any ϕ ∈ Cb

(
[0, T ]× Rd

)
, one has∫

ϕ( dρk − dρ) =

∫ T

0

∫
ϕ(t, x)

(
dρkt (x)− dρt(x)

)
dt.

Since ϕ is bounded and ρkt → ρt in P2(Rd) for each t ∈ [0, T ], we conclude that
fk(t)

.
=
∫
ϕ(t, x)

(
dρkt (x)− dρt(x)

)
converges to 0 for all t ∈ [0, T ]. On the other

hand, |fk| ≤ 2‖ϕ‖∞, hence the assertion follows from Lebesgue’s dominated con-
vergence theorem.

A curve ρ : [0, T ]→ P2(Rd) is called absolutely continuous if there exists a func-
tion g ∈ L1([0, T ]) such that

W2(ρt, ρs) ≤
∫ t

s

g(τ) dτ, ∀t ≥ s, s, t ∈ [0, T ].

If ρ : [0, T ]→ P2(Rd) is absolutely continuous, the limit

|ρ′|(t) .
= lim
ε→0

W2(ρt+ε, ρt)

|ε|
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exists for a.e. t ∈ [0, T ] and is called the speed (or the metric derivative) of ρ at t.
Absolutely continuous curves has finite length which can be expressed as

L(ρ) =

∫ T

0

|ρ′|(t) dt.

The following theorem from [2, Section 8.3] shows that absolutely continuous
curves on P2(Rd) are completely characterized by the continuity equations. In the
statement, L2

µ(Rd;Rd) denotes the space of µ-measurable vector fields v : Rd → Rd
such that

‖v‖µ
.
=

(∫
Rd
|v|2 dµ

)1/2

<∞.

As usual, two maps v and v′ are considered equivalent if they coincide for µ-a.e. x.

Theorem 2.4 ([2, Chapter 8.3]). Let ρ : [0, T ]→ P2(Rd) be an absolutely continu-
ous curve. Then there exists a Borel vector field (t, x) 7→ vt(x) such that

vt ∈ L2
ρt(R

d;Rd), ‖vt‖ρt ≤ |ρ′|(t) for a.e. t ∈ [0, T ],

and the continuity equation

∂tρt +∇ · (vtρt) = 0 (5)

holds in the sense of distributions. Conversely, if a Borel map ρ : [0, T ] → P2(Rd)
satisfies equation (5) for some Borel vector field v with∫ T

0

‖vt‖2ρt dt <∞, (6)

then t 7→ ρt admits an absolutely continuous representative t 7→ %t with

|%′|(t) ≤ ‖vt‖%t for a.e. t ∈ [0, T ].

Any Borel vector field v satisfying (5) is called a velocity of the absolutely con-
tinuous curve ρ. If a velocity v is sufficiently regular, e.g.,

vt ∈ C(Rd;Rd) ∀t ∈ [0, T ] and

∫ T

0

(‖vt‖∞ + Lip(vt)) dt <∞, (7)

it generates a map Ψ: [0, T ]× [0, T ]× Rd → Rd by the rule

Ψs,t(x)
.
= y(t), s, t ∈ [0, T ], x ∈ Rd,

where y : [0, T ]→ Rd is a unique solution of the Cauchy problem

ẏ(t) = vt (y(t)) , y(s) = x.

This map Ψ, called the flow of v, is well-defined and satisfies the identities

Ψs,s = id, Ψs,t = Ψτ,t ◦Ψs,τ ∀s, t, τ ∈ [0, T ].

Moreover, for any s, t ∈ [0, T ], the map Ψs,t : Rd → Rd is a homeomorphism with

Lip(Ψs,t) ≤ exp

(∫ t

s

Lip(vτ ) dτ

)
.

Absolutely continuous curves generated by regular vector fields admit a nice
representation formula given in following theorem (see [1, Proposition 4] and [2,
Proposition 8.1.7]).

Theorem 2.5. Let ρ : [0, T ]→ P2(Rd) be an absolutely continuous curve that starts
at ϑ and whose velocity v satisfies (7). Then
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(a) ρt = Ψ0,t]ϑ for all t ∈ [0, T ],
(b) ρ is a unique solution of (5) that satisfies ρ0 = ϑ.

The following result shows that the boundedness of a regular vector field implies
the Lipschitz continuity of the corresponding curve.

Lemma 2.6. Let Ψ be the flow of a bounded vector field w satisfying (7), and
ϑ ∈ P2(Rd). Then ρ : [0, T ]→ P2(Rd) defined by ρt = Ψ0,t]ϑ is ‖w‖∞-Lipschitz.

Proof. Take two time moments s, t ∈ [a, b] such that s < t. Since Ψs,t is a transport
map between ρs and ρt, we have

W 2
2 (ρt, ρs) ≤

∫
|x−Ψs,t(x)|2 dρs(x).

On the other hand,

Ψs,t(x)− x =

∫ t

s

wτ (Ψs,τ (x)) dτ.

Hence the boundedness of w implies the Lipschitz continuity.

General absolutely continuous curves admit another useful representation for-
mula. To describe it, we first define, for every t ∈ [0, T ], the evaluation map
et : Rd × C

(
[0, T ];Rd

)
→ Rd by et(x, γ) = γ(t).

Theorem 2.7 ([2, Chapter 8.2]). Let ρ : [0, T ] → P2(Rd) be an absolutely contin-
uous curve and v be its velocity field such that (6) holds. Then ρt = (et)]η for a
suitable Borel probability measure η on Rd×C

(
[0, T ];Rd

)
. This measure is concen-

trated on the set Γ of pairs (x, γ) such that γ is an absolutely continuous solutions
of the equation ẋ(t) = vt (x(t)), for a.e. t ∈ [0, T ], with γ(0) = x.

2.4. Projecting measures on sets. Let C ⊂ Rd be a bounded r-prox-regular set.
Consider all measures ρ supported in C:

C =
{
ρ ∈ P2(Rd) : spt ρ ⊂ C

}
.

Lemma 2.8. Let ϑ ∈ P2(Rd) satisfy sptϑ ⊂ C + rB◦. Then

(i) there exists ϑC ∈ C such that W2(ϑ, ϑC) = infρ∈C W2(ϑ, ρ);
(ii) ϑC is unique and given by ϑC = (PC)]ϑ;

(iii) ϑ and ϑC are connected with the unique geodesic ρt = ((1− t)id + tPC)] ϑ.

Proof. First note that PC is single-valued and continuous on C + rB◦ by the defi-
nition of r-prox-regularity. Consider the transport plan Π given by

Π(A) = ϑ ({x ∈ C + rB◦ : (x, PC(x)) ∈ A}) .
Its support belongs to graphPC . Hence the cyclical monotonicity of graphPC would
imply the optimality of Π. Cyclical monotonicity can be expressed as follows:∑

i

|xi − PC(xi)|2 ≤
∑
i

|xi − PC(xi+1)|2 for any x1, . . . , xk ∈ C + rB◦.

This property clearly holds because

|xi − PC(xi)| = dC(xi) ≤ |xi − PC(xi+1)|.
Let ϑ′C ∈ C satisfy W2(ϑC , ϑ) = W2(ϑ′C , ϑ) and Π′ be the corresponding optimal

transport plan. Since π1
]Π′ = ϑ, the previous identity can be rewritten as follows:∫ (
|x− y|2 − |x− PC(x)|2

)
dπ′(x, y) = 0.
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The integrand is nonnegative on spt Π′ because |x − y| ≥ |x − PC(x)| for all x ∈
C + rB◦ and y ∈ C. Therefore, for Π′-a.e. (x, y), we have

|x− y|2 = |x− PC(x)|2.

Since in the open r-neighborhood of C the projection PC is unique, we conclude
that y = PC(x), for Π′-a.e. (x, y). In other words, Π′ is supported on graphPC .
Now from π1

]Π = π1
]Π′ = ϑ it follows that Π = Π′.

There are two consequences of this fact: 1) ϑC = ϑ′C (so we established unique-
ness) and 2) the optimal plan Π between ϑC and ϑ is unique. Recall that any
geodesic between ϑ and ϑC takes the form ρt =

(
(1− t)π1 + tπ2

)
]
Π, where Π is an

optimal plan between ϑ and ϑC . Thus, the geodesic is unique due to the uniqueness
of the optimal plan.

Definition 2.9. The measure ϑC defined in the previous lemma is called a pro-
jection of ϑ on C.

3. Existence. In this section we shall prove the existence part of Theorem 1.2.

3.1. Continuous approximation. We consider two processes on Rd. The first
one Φϑs,t is the flow of the vector field 2V (ϑ). The second one Ψτ

s,t is defined only
for x ∈ C(s+ τ) + rB◦ and t ∈ [s, s+ τ ] by

Ψτ
s,t(x) =

[(
1− t− s

τ

)
id +

t− s
τ

PC(s+τ)

]
(x).

Both processes generate maps in the space of measures:

Φ̃s,t(ϑ) =
(
Φϑs,t

)
]
ϑ, Ψ̃τ

s,t(ϑ) =
(
Ψτ
s,t

)
]
ϑ.

We merge these maps to construct a curve t 7→ ρτt in the following way:

ρτ0 = ϑ, ρτt =

{
Φ̃2kτ,t (ρτ2kτ ) , t ∈ [2kτ, (2k + 1)τ ] ,

Ψ̃τ
(2k+1)τ,t

(
ρτ(2k+1)τ

)
t ∈ [(2k + 1)τ, (2k + 2)τ ] ,

k ∈ N. (8)

Let us find a velocity of this curve. To that end, take

wτs (x)
.
=
PC(s+τ)(x)− x

τ
, x ∈ C(s+ τ) + rB◦,

and note that

Ψτ
s,t(x) = x+ (t− s)wτs (x).

Hence the time dependent vector field (t, x) 7→ wτs,t(x) generating the map (t, x) 7→
Ψτ
s,t(x) satisfies

d

dt
Ψτ
s,t(x) = wτs,t

(
Ψτ
s,t(x)

)
= wτs (x).

Thus we conclude that ρτ satisfies the continuity equation with the vector field
given by

vτt =

2V (ρτ2kτ ) , t ∈ [2kτ, (2k + 1)τ) ,

wτ(2k+1)τ ◦
[
Ψτ

(2k+1)τ,t

]−1

t ∈ [(2k + 1)τ, (2k + 2)τ ] ,
k ∈ N. (9)
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3.2. Properties of the continuous approximation.

Lemma 3.1. For all sufficiently small τ , the curve ρτ : [0, T ] → P2(Rd) is well-
defined and Lipschitz with constant 2(L + M). Moreover, |vτt (x)| ≤ 2(L + M) for
all t and ρτt -a.e. x.

Proof. 1. Assume that ρτ is well-defined up to a time moment s = 2kτ (we can
always choose k = 0). Then spt ρτs ⊂ C(s) because the image of Ψτ

s−τ,s belongs
to C(s). In order to construct ρτ on the interval [s, s+ 2τ ], we must show that
spt ρτs+τ lies in the domain of Ψτ

s+τ,t for all sufficiently small τ . Indeed, by Lipschitz
continuity of C,

C(s) ⊂ C (s+ 2τ) + 2τMB.

This inclusion together with spt ρτs ⊂ C(s) implies

spt ρτs+τ ⊂ Φs,s+τ (C(s)) ⊂ C(s) + 2τLB ⊂ C (s+ 2τ) + 2τ(L+M)B. (10)

Thus we conclude that spt ρτs+τ ⊂ C (s+ 2τ)+rB◦, whenever τ is sufficiently small.
This proves that ρτ is well-defined on [0, T ].

2. Let us estimate vτ . For each t ∈ [s, s+ τ) (here again s = 2kτ), we have

|vτt (x)| = |2V (ρτs )(x)| ≤ 2L ∀x ∈ Rd.

Now suppose that t ∈ [s+ τ, s+ 2τ ] and let

α∗
.
= inf

{
α : spt ρτs+τ ⊂ C(s+ 2τ) + αB

}
.

Then, by construction,

|vτt (x)| ≤ α∗

τ
∀x ∈ C(s+ 2τ) + α∗B.

It follows from (10) that α∗ ≤ 2τ(L+M). Thus, for each t ∈ [s+τ, s+2τ ], we have

|vτt (x)| ≤ 2(L+M) ∀x ∈ C(s+ 2τ) + α∗B.

Since spt ρτt ⊂ C(s + 2τ) + α∗B, for any t ∈ [s + τ, s + 2τ ], we get the desired
estimate on vτ . The lipschitzeanity of ρτ now follows from Lemma 2.6.

3.3. Piecewise constant approximation. Let us introduce the map

Rτ (t) = kτ, t ∈ [kτ, (k + 1)τ),

which can be roughly thought as a “projection” of t on the mesh {kτ}∞k=0.
Taking the curves t 7→ ρτt and t 7→ vτt , we construct two piecewise constant curves

t 7→ ρ̄τt and t 7→ v̄τt in the following way:

ρ̄τt = ρτRτ (t), v̄τt = vτRτ (t), t ∈ [0, T ].

The next lemmas establish the relationship between the continuous and the piece-
wise constant approximations.

Lemma 3.2. Consider two families of vector measures Eτ = vτρτ and Ēτt =
EτRτ (t), where ρτ and vτ are defined by (8) and (9). Assume that Eτ ⇀ E, Ēτ ⇀ Ē,

ρτ ⇀ ρ, ρ̄τ ⇀ ρ̄. Then

(1) E = Ē and ρ = ρ̄;
(2) E = vρ for some v.
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Proof. 1. Since Cc(Rd+1) is dense in C0(Rd+1), two Radon measures E and Ē
coincide if

∫
ϕ · dE =

∫
ϕ · dĒ for any ϕ ∈ C∞c (Rd+1). Fix ϕ ∈ C∞c (Rd+1) and

note that∫
ϕ · dEτ −

∫
ϕ · dĒτ =

∫ T

0

(∫
ϕ · vτt dρτt −

∫
ϕ · v̄τt dρ̄τt

)
dt.

If t ∈ [(2k + 1)τ, (2k + 2)τ), the definitions of ρτ and vτ allow us to write∫
ϕ · vτt dρτt =

∫
ϕ · w(2k+1)τ ◦

[
Ψτ

(2k+1)τ,t

]−1

d
[
Ψτ

(2k+1)τ,t

]
]
ρτ(2k+1)τ

=

∫
ϕ ◦Ψτ

(2k+1)τ,t · w(2k+1)τ dρ
τ
(2k+1)τ ,∫

ϕ · v̄τt dρ̄τt =

∫
ϕ · w(2k+1)τ dρ

τ
(2k+1)τ .

Hence, by Lemma 3.1,∣∣∣ ∫ ϕ · vτt dρτt −
∫
ϕ · v̄τt dρ̄τt

∣∣∣ ≤ ∫ ∣∣∣ϕ ◦Ψτ
(2k+1)τ,t − ϕ

∣∣∣ · ∣∣w(2k+1)τ

∣∣ dρτ(2k+1)τ

≤ 2Lip(ϕ)(L+M)

∫ ∣∣∣Ψτ
(2k+1)τ,t(x)− x

∣∣∣ dρτ(2k+1)τ (x),

Similarly, for t ∈ [2kτ, (2k + 1)τ), we have∫
ϕ · vτt dρτt = 2

∫
ϕ · V (ρ2kτ ) d

[
Φτ2kτ,t

]
]
ρτ2kτ

= 2

∫
ϕ ◦ Φτ2kτ,t · V (ρ2kτ ) ◦ Φτ2kτ,t dρ

τ
2kτ ,∫

ϕ · v̄τt dρ̄τt = 2

∫
ϕ · V (ρ2kτ ) dρτ2kτ .

Again by Lemma 3.1,∣∣∣∫ ϕ · vτt dρτt −∫ ϕ · v̄τt dρ̄τt ∣∣∣ ≤ 2
∣∣∣∫ ϕ ◦ Φτ2kτ,t ·

(
V (ρ2kτ ) ◦ Φτ2kτ,t − V (ρ2kτ )

)
dρτ2kτ

∣∣∣
+ 2
∣∣∣ ∫ (ϕ ◦ Φτ2kτ,t − ϕ

)
· V (ρ2kτ ) dρτ2kτ

∣∣∣
≤ 2‖ϕ‖∞

∫
|V (ρτ2kτ ) ◦ Φ2kτ,t − V (ρτ2kτ )| dρτ2kτ

+ 2L

∫
|ϕ ◦ Φ2kτ,t − ϕ| dρτ2kτ

≤ 2L (‖ϕ‖∞ + Lip(ϕ))

∫
|Φ2kτ,t(x)− x| dρτ2kτ (x).

Recalling that

|Φ2kτ,t(x)− x| ≤ 2τL, t ∈ [2kτ, (2k + 1)τ) ,∣∣Ψ(2k+1)τ,t(x)− x
∣∣ ≤ 2τ(L+M), t ∈ [(2k + 1)τ, (2k + 2)τ) ,

we conclude that ∣∣∣ ∫ ϕ · vτt dρτt −
∫
ϕ · v̄τt dρ̄τt

∣∣∣ ≤ Cτ ∀t ∈ [0, T ],
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for some C > 0 that does not depend on τ . As a consequence,∣∣∣ ∫ ϕ · dEτ −
∫
ϕ · dĒτ

∣∣∣ ≤ TCτ,
which implies E = Ē. By the same arguments, one can show that ρ = ρ̄.

2. We derive the last assertion from the properties of the Benamou-Brenier
functional B2 (see Appendix A). Since Eτ = vτρτ , Proposition 3(i) and Lemma 3.1
yield

B2(ρτ , Eτ ) =
1

2

∫
|vτ |2 dρτ ≤ C,

for some C > 0 which does not depend on τ . Hence the lower semicontinuity of B2

implies

B2(ρ,E) ≤ lim inf
τ↓0

B2(ρτ , Eτ ) < +∞,

which means, by Proposition 3(iv), that there exists v such that E = vρ.

Lemma 3.3. Let uτt = V (ρτt ) and ūτt = V (ρ̄τt ). If ‖ρτ − ρ‖∞ → 0 then ‖ρ̄τ −
ρ‖∞ → 0 and the sequences of vector measures uτρτ and ūτ ρ̄τ converge to uρ with
ut = V (ρt).

Proof. According to Lemma 3.1, one has

‖ρ̄τ − ρ‖∞ ≤ ‖ρ̄τ − ρτ‖∞ + ‖ρτ − ρ‖∞
= sup
t∈[0,T ]

W2(ρτRτ (t), ρ
τ
t ) + ‖ρτ − ρ‖∞

≤ 2(L+M)τ + ‖ρτ − ρ‖∞.

This proves the first assertion.
Let us show that the limit of uτρτ is uρ. Indeed, for any ϕ ∈ Cb(Rd+1), one has∫ T

0

∫
Rd
ϕ(t, x) · V (ρτt )(x) dρτt (x) dt−

∫ T

0

∫
Rd
ϕ(t, x) · V (ρt)(x) dρt(x) dt

=

∫ T

0

∫
Rd
ϕ(t, x) · [V (ρτt )(x)− V (ρt)(x)] dρτt (x) dt

+

∫ T

0

∫
Rd
ϕ(t, x) · V (ρt)(x) [ dρτt (x)− dρt(x)] dt.

The absolute value of the first integral from the right-hand side is estimated by

L‖ϕ‖∞ sup
t∈[0,T ]

W2(ρτt , ρt),

and thus tends to 0. The second integral converges to 0, because (t, x) 7→ ut(x) is
continuous and bounded.

It remains to check that ūτ ρ̄τ ⇀ uρ. For any ϕ ∈ Cb(Rd+1), one has∫
ϕ · ūτ dρ̄τ −

∫
ϕ · u dρ =

∫
ϕ · u ( dρ̄τ − dρ) +

∫
ϕ · (ūτ − uτ ) dρ̄τ

+

∫
ϕ · (uτ − u) dρ̄τ .

The first integral from the right-hand side, which can be rewritten as∫ T

0

∫
Rd
ϕ(t, x) · ut(x) ( dρ̄τt − dρτt ) dt,
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converges to 0 since ρ̄τt ⇀ ρt for a.e. t ∈ [0, T ]. The absolute values of the last two
integrals can be estimated by

L‖ϕ‖∞ sup
t∈[0,T ]

W2(ρ̄τt , ρt) and L‖ϕ‖∞ sup
t∈[0,T ]

W2(ρτt , ρt),

respectively. This proves the last assertion.

3.4. Normal cone inclusion. The curves ρτ and the vector fields vτ are con-
structed so that

∂tρ
τ
t +∇ · (vτt ρτt ) = 0.

The sequence ρτ , being uniformly Lipschitz by Lemma 3.1, converges (up to a
subsequence) to a Lipschitz map ρ in C

(
[0, T ];P2(Rd)

)
. Lemmas 2.3 and 3.2 yield

that ρτ ⇀ ρ and vτρτ ⇀ vρ for some Borel map v. In particular, it follows that

∂tρt +∇ · (vtρt) = 0.

The inclusion spt ρt ⊂ C(t) is a direct consequence of the following lemma.

Lemma 3.4. Let µk ∈ P2(Rd) and sptµk ⊂ A + rkB, where A is compact. If
µk ⇀ µ and rk → 0 then sptµ ⊂ A.

Proof. The set Un = (A+ rnB)
c

is open. Hence, for each n, we have

0 = lim inf
k→∞

µk(Un) ≥ µ(Un).

This means that µ (
⋃
n Un) = 0. It remains to note that⋃

n

Un =
(⋂

n

(A+ rnB)
)c

= Ac,

completing the proof.

To prove that ρ is a solution of (1), it remains to establish the following Propo-
sition 2, whose proof heavily relies on the properties of the piecewise constant
approximation.

Proposition 2. For a.e. t ∈ [0, T ], there exists a set At ⊂ Rd such that

vt(x)− V (ρt)(x) ∈ −NC(t)(x) ∀x ∈ At (11)

and ρt(At) = 1.

Consider a set-valued map t 7→ C̄τ (t) defined by

C̄τ (t) = C ((2k + 2)τ) , t ∈ (2kτ, (2k + 2)τ ] .

Given a measurable selection y(t) ∈ C(t), we define in the same way

ȳτ (t) = y ((2k + 2)τ) = y(2k+2)τ , t ∈ (2kτ, (2k + 2)τ ] .

Let us introduce the integral

Jτ =

∫ T

0

∫
Rd
a(t)b(x)

( 〈
v̄τt (x)− V (ρ̄τt ) (x), PC̄τ (t)(x)− ȳτ (t)

〉
− 1

2r

∣∣v̄τt (x)− V (ρ̄τt ) (x)
∣∣ · ∣∣PC̄τ (t)(x)− ȳτ (t)

∣∣2) dρ̄τt (x) dt, (12)

where a and b are nonnegative bounded Lipschitz functions. Our aim is to pass to
the limit in the integral as τ → 0. Without loss of generality, we can consider only
those τ that satisfy (2N + 2)τ = T for some N ∈ N.
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Recall that

v̄τt − V (ρ̄τt ) =

{
V (ρτ2kτ ), t ∈ [2kτ, (2k + 1)τ ] ,

wτ(2k+1)τ − V
(
ρτ(2k+1)τ

)
t ∈ [(2k + 1)τ, (2k + 2)τ ] .

Hence Jτ can be rewritten as

N∑
k=0

∫ (2k+1)τ

2kτ

a(t) dt

∫
b(x)

(〈
V (ρτ2kτ ) (x), PC((2k+2)τ)(x)− y(2k+2)τ

〉
− 1

2r

∣∣V (ρτ2kτ ) (x)
∣∣ · ∣∣PC((2k+2)τ)(x)− y(2k+2)τ

∣∣2) dρτ2kτ (x)

+

N∑
k=0

∫ (2k+1)τ

2kτ

a(t+ τ) dt

∫
b(x)

(〈
wτ(2k+1)τ (x)− V

(
ρτ(2k+1)τ

)
(x),

PC((2k+2)τ)(x)− y(2k+2)τ

〉
− 1

2r

∣∣wτ(2k+1)τ (x)−V
(
ρτ(2k+1)τ

)
(x)
∣∣ · ∣∣PC((2k+2)τ)(x)−y(2k+2)τ

∣∣2) dρτ(2k+1)τ (x).

Since ∣∣wτ(2k+1)τ (x)− V
(
ρτ(2k+1)τ

)
(x)
∣∣ ≥ ∣∣wτ(2k+1)τ (x)

∣∣− ∣∣V (ρτ(2k+1)τ

)
(x)
∣∣,

we conclude that Jτ ≤ Jτ1 + Jτ2 + Jτ3 , where

Jτ1 =

N∑
k=0

(∫ (2k+1)τ

2kτ

a(t) dt

∫
b(x)

〈
V (ρτ2kτ ) (x), PC((2k+2)τ)(x)− y(2k+2)τ

〉
dρτ2kτ (x)

−
∫ (2k+1)τ

2kτ

a(t+ τ) dt

∫
b(x)

〈
V
(
ρτ(2k+1)τ

)
(x),

PC((2k+2)τ)(x)− y(2k+2)τ

〉
dρτ(2k+1)τ (x)

)
,

Jτ2 = − 1

2r

N∑
k=0

(∫ (2k+1)τ

2kτ

a(t) dt

∫
b(x)

∣∣V (ρτ2kτ ) (x)
∣∣

·
∣∣PC((2k+2)τ)(x)− y(2k+2)τ

∣∣2 dρτ2kτ (x)

−
∫ (2k+1)τ

2kτ

a(t+ τ) dt

∫
b(x)

∣∣V (ρτ(2k+1)τ

)
(x)
∣∣

·
∣∣PC((2k+2)τ)(x)− y(2k+2)τ

∣∣2 dρτ(2k+1)τ (x)

)
,

Jτ3 =

N∑
k=0

∫ (2k+1)τ

2kτ

a(t+ τ) dt

∫
b(x)

(〈
wτ(2k+1)τ (x), PC((2k+2)τ)(x)− y(2k+2)τ

〉
− 1

2r

∣∣wτ(2k+1)τ (x)
∣∣ · ∣∣PC((2k+2)τ)(x)− y(2k+2)τ

∣∣2) dρτ(2k+1)τ (x).

We are going to show that Jτ1 = O(τ) and Jτ2 = O(τ).

Lemma 3.5. Given µ1, µ2 ∈ P2(Rd) and a Lipschitz function b ∈ C(Rd), suppose
that

(a) there exists K ∈ Kr(Rd) such that sptµ1 ∪ sptµ2 ⊂ K + r
2B;
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(b) there exist a Borel measurable map ψ : Rd → Rd and C > 0 such that µ2 =
ψ]µ1 and |x− ψ(x)| ≤ Cτ for all x.

Then there exists C1 > 0 such that∣∣∣ ∫ b(x) 〈V (µ1)(x), PK(x)− y〉 dµ1(x)

−
∫
b(x) 〈V (µ2)(x), PK(x)− y〉 dµ2(x)

∣∣∣ ≤ C1τ,∣∣∣ ∫ b(x) |V (µ1)(x)| · |PK(x)− y|2 dµ1(x)

−
∫
b(x) |V (µ2)(x)| · |PK(x)− y|2 dµ2(x)

∣∣∣ ≤ C1τ,

for all y ∈ K + r
2B.

Proof. 1. We start with the first inequality. Note that∫
b(x) 〈V (µ2)(x), PK(x)− y〉 dµ2(x)

=

∫
b ◦ ψ(x) 〈V (µ2) ◦ ψ(x), PK ◦ ψ(x)− y〉 dµ1(x).

Now taking x1 = x and x2 = ψ(x), we may write

b(x1) 〈V (µ1)(x1), PK(x1)− y〉 − b(x2) 〈V (µ2)(x2), PK(x2)− y〉
= (b(x1)− b(x2)) · 〈V (µ1)(x1), PK(x1)− y〉
+ b(x2) (〈V (µ1)(x1), PK(x1)− y〉 − 〈V (µ2)(x2), PK(x2)− y〉) .

The first term from the right-hand side can be estimated by

Lip(b)L|x1 − x2| · |PK(x1)− y|.

To deal with the second term, consider the difference

〈V (µ1)(x1), PK(x1)− y〉 − 〈V (µ2)(x2), PK(x2)− y〉
= 〈V (µ1)(x1)− V (µ2)(x1), PK(x1)− y〉
+ 〈V (µ2)(x1)− V (µ2)(x2), PK(x1)− y〉
+ 〈V (µ2)(x2), PK(x1)− PK(x2)〉 .

Our assumptions imply that the first term from the right-hand side can be estimated
by LW2(µ1, µ2)|PK(x1)− y|, the second term by L|x1 − x2| · |PK(x1)− y|, and the
third term by L |PK(x1)− PK(x2)|.

Since b is bounded on K + r
2B and, for all x1 ∈ sptµ1, we have

|x1 − x2| = |x− ψ(x)| ≤ Cτ,

W2(µ1, µ2) ≤
(∫
|x− ψ(x)|2 dµ1(x)

)1/2

≤ Cτ,

|PK(x1)− PK(x2)| ≤ 2|x1 − x2| ≤ 2Cτ, (by Proposition 1) (13)

|PK(x1)− y| ≤ diamK + r.

After combining all the estimates, we get the desired inequality.
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2. The second inequality can be proven in the similar way. We begin with the
identity∫

b(x) |V (µ2)(x)| · |PK(x)− y|2 dµ2(x)

=

∫
b ◦ ψ(x) |V (µ2) ◦ ψ(x)| · |PK ◦ ψ(x)− y|2 dµ1(x).

Again, by taking x1 = x and x2 = ψ(x), we get

b(x1) |V (µ1)(x1)| · |PK(x1)− y|2 − b(x2) |V (µ2)(x2)| · |PK(x2)− y|2

= (b(x1)− b(x2)) · |V (µ1)(x1)| · |PK(x1)− y|2

+ b(x2)
(
|V (µ1)(x1)| · |PK(x1)− y|2 − |V (µ2)(x2)| · |PK(x2)− y|2

)
.

The first term from the right-hand side is estimated by Lip(b)CL (diamK + r)
2
τ .

As for the second term, we have

|V (µ1)(x1)| · |PK(x1)− y|2 − |V (µ2)(x2)| · |PK(x2)− y|2

=
(
|V (µ1)(x1)| − |V (µ2)(x2)|

)
· |PK(x1)− y|2

+ |V (µ2)(x2)| ·
(
|PK(x1)− y|2 − |PK(x2)− y|2

)
(14)

We can easily estimate the first term in (14) because∣∣ |V (µ1)(x1)| − |V (µ2)(x2)|
∣∣ ≤ |V (µ1)(x1)− V (µ2)(x2)|

≤ L|x1 − x2|+ LW2(µ1, µ2) ≤ 2LCτ.

Thanks to (13) and the identity

|PK(x1)− y|2 − |PK(x2)− y|2 = |PK(x1)− PK(x2)| · |PK(x1) + PK(x2)− 2y| ,
we can estimate the second term in (14) by 4LCτ (diamK + r). Combining all the
estimates above, we obtain the desired inequality.

Lemma 3.6. Let a : [0, T ]→ R be Lipschitz, s ∈ [0, T − τ ], and α, β ∈ R. Then∣∣∣α ∫ s+τ

s

a(t) dt− β
∫ s+τ

s

a(t+ τ) dt
∣∣∣ ≤ |α|Lip(a)τ2 + |α− β| · ‖a‖∞τ.

Proof. After rearranging the left-hand side can be written as follows:∣∣∣α ∫ s+τ

s

[a(t)− a(t+ τ)] dt+ (α− β)

∫ s+τ

s

a(t+ τ) dt
∣∣∣.

Now the required estimate easily follows from the Lipschitz continuity of a.

Lemma 3.7. One has Jτ1 = O(τ), Jτ2 = O(τ).

Proof. 1. We begin with Jτ1 . Let us take

α =

∫
b(x)

〈
V (ρτ2kτ ) (x), PC((2k+2)τ)(x)− y(2k+2)τ

〉
dρτ2kτ (x),

β =

∫
b(x)

〈
V
(
ρτ(2k+1)τ

)
(x), PC((2k+2)τ)(x)− y(2k+2)τ

〉
dρτ(2k+1)τ (x).

We know that spt ρ(2k+2)τ ⊂ C ((2k + 2)τ). Hence if τ is small enough then

spt ρ2kτ ∪ spt ρ(2k+1)τ ⊂ C ((2k + 2)τ) +
r

2
B.
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Lemma 3.5 implies that |α − β| ≤ C1τ for some C1 > 0. Now from Lemma 3.6 it
follows that

α

∫ (2k+1)τ

2kτ

a(t) dt− β
∫ (2k+1)τ

2kτ

a(t+ τ) dt = O(τ2). (15)

This gives Jτ1 = (N + 1)O(τ2) = T
2τO(τ2) = O(τ).

2. To deal with Jτ2 we take

α =

∫
b(x)

∣∣V (ρτ2kτ ) (x)
∣∣ · ∣∣PC((2k+2)τ)(x)− y(2k+2)τ

∣∣2 dρτ2kτ (x),

β =

∫
b(x)

∣∣V (ρτ(2k+1)τ

)
(x)
∣∣ · ∣∣PC((2k+2)τ)(x)− y(2k+2)τ

∣∣2 dρτ(2k+1)τ (x).

Then Lemma 3.6 gives (15) and, as a consequence, Jτ2 = O(τ).

Since −wτ(2k+1)τ (x) is a proximal normal to C ((2k + 2)τ) at PC(2k+2)τ (x), we

conclude that〈
wτ(2k+1)τ (x), PC((2k+2)τ)(x)− y(2k+2)τ

〉
− 1

2r

∣∣wτ(2k+1)τ (x)
∣∣ · ∣∣PC((2k+2)τ)(x)− y(2k+2)τ

∣∣2 ≤ 0,

for all x ∈ C ((2k + 2)τ) + rB◦. This means that Jτ3 ≤ 0. So we have

Jτ +O(τ) ≤ 0. (16)

Lemma 3.8. Let y(·) be a Lipschitz continuous selection of C(·) and a ∈ C(R),
b ∈ C(Rd) be nonnegative bounded Lipschitz functions. Then∫ T

0

∫
Rd
a(t)b(x)

(
〈vt(x)− V (ρt) (x), x− y(t)〉 − σ(t, x) ·

∣∣x− y(t)
∣∣2) dρt(x) dt ≤ 0,

for some nonnegative Borel map σ : [0, T ]× Rd → R.

Proof. 1. We shall prove the lemma by passing to the limit in (16) as τ → 0. But
first, let us show that Ēτ

.
= σ̄τ ρ̄τ with

σ̄τ (t, x) =
1

2r

∣∣v̄τt (x)− V (ρ̄τt ) (x)
∣∣

tends to σρ for some Borel map σ. Since all Ēτ are supported on the compact set

Cr =
{

(t, x) : x ∈ C(t) +
r

2
B, t ∈ [0, T ]

}
and, by Lemma 3.1, their total variations are uniformly bounded:

‖Ēτ‖ .=
∫
σ̄τ dρ̄τ ≤ 1

2r

∫ T

0

(3L+ 2M) dt,

we conclude that Ēτ weakly converges (up to a subsequence) to some nonnegative
measure E. As in Lemma 3.2, the corresponding Benamou-Brenier functional is
uniformly bounded:

B2(ρ̄τ , Ēτ ) =
1

2

∫
|σ̄τ |2 dρ̄τ ≤

∫ T

0

(3L+ 2M)
2
dt.

Hence the lower semicontinuity of B2 (Proposition 3) implies that B2(ρ,E) < +∞,
and therefore E = σρ, for a Borel map σ.

2. Let us show that we get the desired limit if we replace PC̄τ (t)(x)− ȳτ (t) with

f(t, x) = PC(t)(x) − y(t). Indeed, if τ is small then spt ρ̄τ ⊂ Cr. The function f
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is continuous inside Cr thanks to Lemma B.1. Recalling Lemmas 3.2 and 3.3, we
obtain∫ T

0

∫
Rd
a(t)b(x)

(
〈vt(x)− V (ρt)(x), f(t, x)〉 − σ(t, x)f2(t, x)

)
dρt(x) dt

in the limit. Since spt ρt ⊂ C(t), we have PC(t)(x) = x for all x ∈ spt ρt. This gives
the desired inequality.

3. The function f , being defined on a compact set, is uniformly continuous. In
particular, for any ε > 0 there exists δ such that for all τ < δ∣∣f(t, x)− f(R2τ (t), x)

∣∣ ≤ ε ∀(t, x) ∈ Cr.
Hence letting ūτt = v̄τt − V (ρ̄τt ) we get∣∣∣ ∫∫ a(t)b(x)

[
f(R2τ (t), x)− f(t, x)

]
· d(ūτ ρ̄τ )(t, x)

∣∣∣→ 0.

Similarly using uniform continuity of |f |2 we can show that∣∣∣ ∫∫ a(t)b(x)
[
|f(R2τ (t), x)|2 − |f(t, x)|2

]
· d(σ̄τ ρ̄τ )(t, x)

∣∣∣→ 0,

which completes the proof.

To proceed, we need one more technical lemma.

Lemma 3.9. Let µ be a Borel measure on Rd with compact support and ϕ : Rd → R
be a bounded Borel measurable function. If for any smooth function a : Rd → [0, 1]
we have ∫

a(x)ϕ(x) dµ(x) ≤ 0

then ϕ(x) ≤ 0 for µ-a.e. x.

Proof. Let A = {x : ϕ(x) > 0}. Since A is measurable and µ is regular then, for
any ε > 0, there exist a compact set Fε ⊂ A and an open set Gε ⊃ A such that
µ(A \ Fε) < ε and µ(Gε \ A) < ε. By Urysohn’s lemma there exists a smooth
function aε : Rd → [0, 1] which is 1 on Fε and 0 outside of Gε. Consider the obvious
identity ∫

aεϕdµ =

∫
Fε

aεϕdµ+

∫
A\Fε

aεϕdµ+

∫
Gε\A

aεϕdµ.

Since ϕ > 0 on A \ Fε and ϕ ≤ 0 on Gε \A, we obtain∫
Fε

aεϕdµ =

∫
Fε

ϕdµ ≥
∫
A

ϕdµ− cµ(A \ Fε),∫
A\Fε

aεϕdµ ≥ 0,∫
Gε\A

aεϕdµ ≥
∫
Gε\A

ϕdµ ≥ −cµ(Gε \A),

where c is chosen so that |ϕ(x)| ≤ c for all x ∈ Rd. These inequalities imply∫
aεϕdµ ≥

∫
A

ϕdµ− 2cε. (17)

Suppose that µ(A) > 0. Then
∫
A
ϕdµ > 0. Indeed, A contains a density point y

of ϕ (see, e.g., [3, Theorem 5.8.8]) and from ϕ(y) = limr↓0
1

µ(y+rB)

∫
y+rB

ϕdµ > 0
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it follows that
∫
A
ϕdµ ≥

∫
y+rB

ϕdµ > 0 for some r. Thus, choosing ε small enough

makes the right-hand side of (17) strictly positive and leads to a contradiction.

Proof of Proposition 2. Take a countable dense subset subset {tn}n of [0, T ].
Then, for each tn, choose a countable dense subset {xkn}k of C(tn). The set of pairs
{(tn, xkn)}n,k is also countable. For each (tn, x

k
n) we consider the map yn,k : [0, T ]→

Rd defined by

−ẏn,k(t) ∈ NC(t), yn,k(tn) = xkn.

This map is uniquely defined and Lipschitz continuous. We state that {yn,k(t)}n,k
is dense in C(t) for each t ∈ [0, T ]. Indeed, since C is lower semicontinuous, for
any t and any open ball x + εB◦ such that C(t) ∩ {x + εB◦} 6= ∅ there exists tn
such that C(tn)∩{x+ εB◦} 6= ∅. The latter set has nonempty interior and we can
select from it some xkn. Since tn can be arbitrary close to t then yn,k(t) ∈ x+ εB◦,
as desired.

Now, for each yn,k, apply Lemma 3.9 to the inequality established in Lemma 3.8.
Then we get∫

Rd
b(x)

(
〈vt(x)− V (ρt) (x), x− yn,k(t)〉 − σ(t, x) · |x− yn,k(t)|2

)
dρt(x) ≤ 0

for all t ∈ [0, T ]\ In,k, where each In,k is a set of Lebesgue measure zero. The union
I of these sets also has measure zero. Since yn,k(t) are dense in C(t), we have∫

Rd
b(x) max

y∈C(t)

(
〈vt(x)− V (ρt) (x), x− y〉 − σ(t, x) · |x− y|2

)
dρt(x) ≤ 0,

for all t ∈ [0, T ] \ I. Using again Lemma 3.9, we obtain that for ρt-a.e. x

〈vt(x)− V (ρt) (x), x− y〉 ≤ σ(t, x) · |x− y|2 ∀y ∈ C(t).

This completes the proof. �

4. Continuous dependence. Before passing to the continuous dependence, let
us prove assertions (2) and (3) of Theorem 1.2.

Lemma 4.1. For each solution ρ of (1) assertions (1) and (2) of Theorem 1.2 hold.

Proof. 1. Since the velocity v of ρ can be tweaked on a ρ-negligible set without
changing the solution of the continuity equation, we may assume that (11) holds
for all t and x.

2. Let us show that ρ = E](λ × η), where η is defined as in Theorem 2.7, λ is
the one dimensional Lebesgue measure, and E : (t, x, γ) 7→ (t, γ(t)). Indeed, take
A ⊂ [0, T ]× Rd and denote by At its slice {ξ : (t, ξ) ∈ A}. Then

ρ(A) =

∫ T

0

ρt(At) dt =

∫ T

0

η
(
e−1
t (At)

)
dt =

∫ T

0

η(Ãt) dt = (λ× η)(Ã),

where Ã = {(t, x, γ) : (t, γ(t)) ∈ A}. It remains to note that Ã = E−1(A).

3. Let Γ be defined as in Theorem 2.7 and Ã ⊂ [0, T ]×Γ be the set of all triples

(t, x, γ) such that γ̇(t) exists and equals to vt(γ(t)). We are going to show that Ã
is a set of full measure λ× η. By Fubini’s theorem,

(λ× η)(Ã) =

∫
Γ

λ(Ã(x,γ)) dη(x, γ), where Ã(x,γ) = {t : (t, x, γ) ∈ Ã},

Now we obtain (λ× η)(Ã) = T because λ(Ã(x,γ)) = T , for all x and γ.
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4. Since ρ = E](λ × η), we conclude that E(Ã) is a set of full measure ρ. In
other words, for ρ-a.e. (t, x) there exists a solution y of the sweeping process

ẏ(t) ∈ V (ρt)(y(t))−NC(t)(y(t)), for a.e. t ∈ [0, T ],

such that y(t) = x, ẏ(t) exists and equals to vt(x).
5. Now we deduce from [23, Theorem 2.4] that |vt(x)| ≤ 2L+M for ρ-a.e. (t, x)

and from Proposition 4 that

ξ + η · vt(x) = 0 ∀(ξ, η) ∈ NgraphC(t, x)

for ρ-a.e. (t, x), when graphC is r′-prox-regular.

Let ρ1, ρ2 : [0, T ] → P2(Rd) be solutions of the sweeping processes (1) corre-
sponding to the set-valued maps C1,C2 : [0, T ] → Kr(Rd), respectively. By v1

t , v
2
t

we denote their velocity fields.
In order to prove the continuous dependence, we are going to differentiate the

function r(t)
.
= 1

2W
2
2 (ρ1

t , ρ
2
t ). Since both curves ρ1 and ρ2 are absolutely continuous,

we can use the formula

d

dt
W 2

2 (ρ1
t , ρ

2
t ) = 2

∫∫ 〈
v1
t (x)− v2

t (y), x− y
〉
dΠρ1t ,ρ

2
t
(x, y),

whose proof repeats that of Theorem 8.4.7 [2] (we put it in Appendix C, for com-
pleteness). The measure Πρ1t ,ρ

2
t

in the right-hand side denotes an optimal plan

between ρ1
t and ρ2

t .
Let i = 1, 2. By definition, V (ρit)(x) − vit(x) ∈ NCi(t)(x), for a.e. t ∈ [0, T ] and

ρit-a.e. x ∈ Rd. Since the values of Ci are r-prox-regular, Proposition 1(b) implies
that 〈

vit(x)− V (ρit)(x), x− y
〉
≤ 1

2r

∣∣vit(x)− V (ρit)(x)
∣∣ |x− y|2, (18)

for a.e. t ∈ [0, T ], ρit-a.e. x ∈ Rd, and all y ∈ Ci(t).
According to Lemma C.1, we have

1

2

d

dt
W 2

2 (ρ1
t , ρ

2
t ) =

∫∫ 〈
v1
t (x)− v2

t (y), x− y
〉
dΠρ1t ,ρ

2
t
(x, y)

=

∫∫ 〈
v1
t (x)− V (ρ1

t )(x), x− y
〉
dΠρ1t ,ρ

2
t
(x, y)

+

∫∫ 〈
v2
t (y)− V (ρ2

t )(y), y − x
〉
dΠρ1t ,ρ

2
t
(x, y)

+

∫∫ 〈
V (ρ1

t )(x)− V (ρ2
t )(y), x− y

〉
dΠρ1t ,ρ

2
t
(x, y)

= I1 + I2 + I3. (19)

for a.e. t ∈ [0, T ].
We split the first integral I1 as follows:

I1 =

∫∫ 〈
v1
t (x)− V (ρ1

t )(x), x− PC1(t)(y)
〉
dΠρ1t ,ρ

2
t
(x, y)

+

∫∫ 〈
v1
t (x)− V (ρ1

t )(x), PC1(t)(y)− y
〉
dΠρ1t ,ρ

2
t
(x, y). (20)
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Note that t 7→ PC1(t)(y) is, in general, a set-valued map. Here, slightly abusing the

notation, we denoted by PC1(t)(y) its measurable selection, which always exists1.
Taking into account the inclusions

spt Πρ1t ,ρ
2
t
⊂ spt ρ1

t × spt ρ2
t ⊂ C1(t)×C2(t),

we deduce from (18) and assertion (2) of Theorem 1.2 that∫∫ 〈
v1
t (x)− V (ρ1

t )(x), x− PC1(t)(y)
〉
dΠρ1t ,ρ

2
t
(x, y) ≤ 3L+M

2r
W 2

2 (ρ1, ρ2),∫∫ 〈
v1
t (x)− V (ρ1

t )(x), PC1(t)(y)− y
〉
dΠρ1t ,ρ

2
t
(x, y) ≤ (3L+M)∆(t),

where ∆(t)
.
= dH

(
C1(t),C2(t)

)
. This gives

I1 ≤ (3L+M)∆(t) +
3L+M

4r
r(t).

The same inequality holds for I2.
We rewrite the last integral I3 as the sum∫ 〈

V (ρ1
t )(x)− V (ρ2

t )(x), x− y
〉
dΠρ1t ,ρ

2
t
(x, y)

+

∫ 〈
V (ρ2

t )(x)− V (ρ2
t )(y), x− y

〉
dΠρ1t ,ρ

2
t
(x, y).

The first integral above is bounded by(∫ ∣∣V (ρ1
t )(x)− V (ρ2

t )(x)
∣∣2dρ1

t (x)

)1/2

·
(∫
|x− y|2dΠρ1t ,ρ

2
t
(x, y)

)1/2

≤ LW 2
2 (ρ1

t , ρ
2
t ),

thanks to L-Lipschitz continuity of V : P2(Rd) → C(Rd;Rd). The second one is
bounded by LW 2

2 (ρ1
t , ρ

2
t ) due to L-Lipschitz continuity of V (ρ2

t ) ∈ C(Rd;Rd). Thus,
we have I3 ≤ 4Lr(t).

Plugging the above estimates into (19) gives

ṙ(t) ≤ (6L+ 2M)∆(t) +

(
4L+

3L+M

2r

)
r(t).

By Grönwall’s lemma, we obtain (2), thus completing the proof of assertion (4).
Finally, note that uniqueness in assertion (1) is a direct consequence of the above
estimate.

5. Application to environment optimization. An important task of crowd
dynamics is to understand how environment affects the crowd motion. Consider
a specific question: can an obstacle, such as a column, placed at the right spot
help the crowd to evacuate a room? We know that under some circumstances it
happens in the real life [14]. Numerical experiments (see Section 6) show that this
phenomenon, called Braess’s paradox [15], can be reproduced in our model. But
can we find the best shape and position of the obstacle?

Let us formulate this problem within our framework. Suppose that r is a fixed
positive constant, Ω a compact r-prox-regular set that represents the region where
the crowd can move, ϑ a compactly supported measure on Ω which defines agents’
distribution. We assume that Ω consists of two parts: the safe S and the dangerous

1Since PC1(t)(y) = {y + dC1(t)(y) ·B} ∩ C1(t), PC1 is measurable as an intersection of two

measurable set-valued maps; hence it has a measurable selection.
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D regions. The crowd leaves the dangerous region moving along a given nonlocal
vector field vt = V (ρt). Our aim is to place an obstacle O ⊂ Ω so that the number
of agents staying in D by a time moment T were minimal. As was discussed before,
each obstacle defines the corresponding viability region C = Ω\O. We assume that
admissible viability regions C belong to the set

C =
{
C ∈ Kr(Rd) : C ⊂ Ω, ϑ(C) = 1

}
.

The following theorem says that among all admissible viability regions one can
always choose an optimal one.

Theorem 5.1. Let ρC : [0, T ] → P2(Rd) denote the trajectory of (1) which corre-
sponds to C(t) ≡ C, for C ∈ C. If D is open then the minimization problem

min
{
ρCT (D) : C ∈ C

}
admits a solution.

Proof. We know that C 7→ ρCT is continuous as a map Kr(Rd) → P2(Rd). Since
D is open, we conclude, by the Portmanteau theorem, that C 7→ ρCT (D) is lower
semicontinuous as Kr(Rd) 7→ R. To complete the proof, it suffices to show that C
is compact.

We can always extract from any sequence Cn ∈ C a subsequence converging
to some compact set C ⊂ Ω (see, e.g., [21, p. 120]). By Theorem 4.13 in [12],
C ∈ Kr(Rd). Hausdorff convergence implies that for any k ∈ N one may find n(k)
such that Cn(k) ⊂ C + 1

kB. This means that ϑ
(
C + 1

kB
)

= 1, for each k ∈ N.

Therefore, 1 = lim
k→∞

ϑ
(
C + 1

kB
)

= ϑ
(⋂∞

k=1(C + 1
kB)

)
= ϑ(C).

6. Numerical computations. While continuous dependence on the moving set
leads to existence results in environment optimization problems, continuous depen-
dence on the initial measure provides an algorithm for computing trajectories of (1).
Indeed, let ρ be a trajectory issuing from ϑ ∈ P2(Rd). We can always approximate

ϑ by a discrete measure ϑN
.
= 1

N

∑N
i=1 δxi (because such measures are dense in

P2(Rd) [25]). The corresponding trajectory ρN , being absolutely continuous, con-
sists of discrete measures as well (note that several δ-functions could be glued into
one along the way, but they can never be split again). Now, we can easily com-
pute ρN by applying the catching-up scheme. Theorem 1.2 shows that ρN → ρ in
C([0, T ];P2(Rd)) as N →∞.

Below we provide computations for two simple models of crowd dynamics taken
from [17] and [9].

Example 1 (Attraction/repulsion model). The first model [17] corresponds to

V (µ)(x) = w(x) +

∫
K(x− y) dµ(y),

where w : R2 → R2 is a drift and K the attraction/repulsion kernel of the form

K(x) = −Aax
2a2

exp
(
− |x|

2

2a2

)
+
Arx

2r2
exp

(
− |x|

2

2r2

)
,

Here a and r determine the attraction and repulsion ranges, Aa and Ar the attrac-
tion and repulsion intensities. It is common to take r < a, so agents repulse each
other at short distances and attract at large ones. One can easily verify that V
satisfies our assumptions if w is bounded and Lipschitz.
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Figure 2. Solutions to the attraction/repulsion model (Exam-
ple 1) at time moments t = 2, 6, 10, 14, 16, 18. The initial mea-
sure ϑ is the Gaussian probability distribution on R2 with mean
(4, 0) and variance id. The obstacle is the blue ellipse moving from
the bottom left to the top right corner. Parameters of the model:
Aa = 4, Ar = 7, a = 1/

√
2, r = 0.5, w ≡ −0.3, parameters of

discretization: τ = 0.01, N = 300.

For the computations presented in Figure 2, we choose Aa = 4, Ar = 7, a =
1/
√

2, r = 0.5, w ≡ −0.3, τ = 0.01. The moving set is given by C(t) = {x ∈
R2 : f(t, x) ≤ 0} with

f(t, x) = −(x1 − 0.5t+ 2)2 − 4(x2 − 0.5t+ 4)2 + 2,

that is, our obstacle is an ellipse crossing the crowd. We approximate the initial
measure ϑ (the Gaussian measure with mean (4, 0) and variance id) by a discrete

measure 1
N

∑N
i=1 δxi with xi randomly distributed according to ϑ, N = 300.

Example 2 (Congestion model). The second model [9] corresponds to the choice

V (µ)(x) = w(x) · ψ
(∫

η(|x− y|) dµ(y)

)
,

where w : R2 → R2 is a given vector field, η : R → R+ is a smooth bell-shaped
function, ψ : R+ → [0, 1] is Lipschitz and non-increasing. The idea behind this
model is that the velocity of an agent located at x decreases as the number of
agents around x (estimated by

∫
η(|x− y|) dµ(y)) grows.
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Figure 3. Solutions to the congestion model (Example 2) at
time moments t = 2, 6, 10, 14, 20. First column: no obstacle
(c = (100, 100), a = (0.9, 0.16), ω = 0), second column: a station-
ary obstacle (c = (1.1, 0), a = (0.9, 0.16), ω = 0), third column:
a moving obstacle (c = (1.1, 0), a = (0.9, 0.1), ω = 1). The ini-
tial measure ϑ is absolutely continuous with density 1

321[2,6]×[−4,4].
Parameters of the model: b = 0.6, δ = 0.1, parameters of dis-
cretization: τ = 0.01, N = 300.
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To define the non-local vector field we choose the following functions:

w(x) = − 1

2|x|
(1 + x2

1, 2x1x2),

ψ(r) = 1− 2

π
arctanκx2,

η(r) =

{
1
β e

1
(r/ε)2−1 , r < ε,

0, otherwise,

ε = 0.3, κ = 1000, β = 0.466.

Field lines of w are the parabolas depicted above. The moving set is given by

C(t) = {x ∈ R2 : f(t, x) ≤ 0} \ (I + δB◦), where I =
{
x = 0, |y| ≥ b

}
, b, δ > 0,

f(t, x) = −
( (x1 − c1) cosωt− (x2 − c2) sinωt

a1

)2

−
( (x1 − c1) sinωt+ (x2 − c2) cosωt

a2

)2

+ 1.

Here I + δB◦ models a wall with an exit and f an elliptic obstacle with semi-axis
a1, a2 rotating around its center c = (c1, c2). In our case, b = 0.6, δ = 0.1, τ =
0.01. The initial measure is absolutely continuous with density 1

321[2,6]×[−4,4]. We

approximate it by a discrete measure 1
N

∑N
i=1 δxi , where xi are uniformly distributed

on the rectangle [2, 6] × [−4, 4], N = 300. Solutions of (1) for various c, a, ω are
presented in Figure 3. Note that, by the time moment T = 20, the dangerous region
D = {x > 0} contains 19.67% of the total mass if there are no obstacles, 14.67%
for the stationary obstacle, 0.00% for the moving obstacle. Hence Braess’s paradox
may indeed occur in (1).

Appendix A. The Benamou-Brenier functional. For any couple (ρ,E), where
ρ ∈ M(X;R) is a measure and E ∈ M(X;Rd) is a vector measure, we correspond
the number

B2(ρ,E) = sup

{∫
X

a(x) dρ(x) +

∫
X

b(x) · dE(x) : (a, b) ∈ Cb(X;K2)

}
,

where

K2 =

{
(a, b) ∈ R× Rd : a+

1

2
|b|2 ≤ 0

}
.

Proposition 3 (Proposition 5.18 [22]). The map B2 is convex and lower semicon-
tinuous on M(X;R)×M(X;Rd). Moreover,

(i) B2 ≥ 0,
(ii) Cb(X;K2) can be replaced with L∞(X;K2) in the definition of B2,

(iii) if ρ and E are absolutely continuous with respect to a positive measure λ then

B2(ρ,E) =

∫
f2(ρ(x), E(x)) dλ(x),
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where

f2(t, x) = sup
(a,b)∈K2

(at+ b · x) =


1
2t |x|

2 if t = 0,

0 if t = 0, x = 0,

+∞ otherwise;

(iv) B2(ρ,E) < +∞ only if ρ ≥ 0 and E � ρ,
(v) for ρ ≥ 0 and E � ρ, we have E = vρ and B2(ρ,E) = 1

2

∫
|v|2 dρ.

Appendix B. Continuity of the projection map.

Lemma B.1. Let An
dH−−→ A and xn → x. If the projections PA(x) and PAn(xn)

are unique then PAn(xn)→ PA(x).

Proof. Consider the following functions

Fn(y) = χAn(y) + |xn − y|2, F (y) = χA(y) + |x− y|2,
where χA denotes the indicator function of A. From [10, Proposition 4.15] it follows
that F = Γ- limFn. By our assumptions, each PAn(xn) is a unique minimizer of Fn
and PA(x) is a unique minimizer of F . Since all PAn(xn) belong to a compact set
(because {An} is convergent), one may extract a converging subsequence. By one
of the key properties of Γ-convergence [10, Corollary 7.17], its limit is a minimizer
of F , i.e., PA(x). This means that PAn(xn)→ PA(x).

Appendix C. Derivative of the squared Wasserstein distance.

Lemma C.1. Let µt, νt be two absolutely continuous curves in P2(Rd) and ut, vt
be their velocity vector fields. Then, for a.e. t, one has

d

dt
W 2

2 (µt, νt) = 2

∫∫
〈ut(x)− vt(y), x− y〉 dΠµt,νt(x, y),

where Πµt,νt is an optimal transport plan from µt to νt.

Proof. We shall prove the formula for all t satisfying the following conditions: 1)

W 2
2 (µt, νt) is differentiable, 2) limh→0

W2(µt+h,S
h
t]µt)

h = 0, 3) limh→0
W2(νt+h,P

h
t]µt)

h =
0. Here

Sht = id + hut, Pht = id + hvt.

Proposition 8.4.6 from [2] says that all such t compose a set of full measure.
First, we show that

d

ds
W 2

2 (µs, νs)|s=t = lim
h→0

W 2
2 (Sht]µt, P

h
t]νt)−W 2

2 (µt, νt)

h
.

Indeed,

W 2
2 (µt+h, νt+h)−W 2

2 (µt, νt) = W 2
2 (Sht]µt, P

h
t]νt)−W 2

2 (µt, νt)

+W 2
2 (µt+h, νt+h)−W 2

2 (Sht]µt, P
h
t]νt),

so if we show that

lim
h→0

W 2
2 (µt+h, νt+h)−W 2

2 (Sht]µt, P
h
t]νt)

h
= 0,

we are done. Let us note that∣∣W 2
2 (µt+h, νt+h)−W 2

2 (Sht]µt, P
h
t]νt)

∣∣ ≤ C ∣∣W2(µt+h, νt+h)−W2(Sht]µt, P
h
t]νt)

∣∣ ,
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for some C > 0. Now,∣∣W2(µt+h, νt+h)−W2(Sht]µt, P
h
t]νt)

∣∣ ≤ ∣∣W2(µt+h, νt+h)−W2(Sht]µt, νt+h)
∣∣

+
∣∣W2(Sht]µt, νt+h)−W2(Sht]µt, P

h
t]νt)

∣∣
≤W2(µt+h, S

h
t]µt) +W2(νt+h, P

h
t]νt).

It remains to apply properties 2) and 3).
Choose any optimal plan Π between µt and νt. Note that the following plan

(Sht ◦ π1, Pht ◦ π2)]Π transports Sht]µt to Pht]νt. Hence

W 2
2

(
Sht]µt, P

h
t]νt
)
≤
∫
|x+ hut(x)− y − hvt(y)|2 dΠ(x, y)

≤W 2
2 (µt, νt) + h2

∫
|ut(x)− vt(y)|2 dΠ(x, y)

+ 2h

∫
〈ut(x)− vt(y), x− y〉 dΠ(x, y).

Therefore, if h > 0, we get

d

ds
W 2

2 (µs, νs)|s=t ≤ 2

∫
〈ut(x)− vt(y), x− y〉 dΠ(x, y).

If h < 0, we get the opposite inequality.

Appendix D. No-flux property. Here we prove a simple property of the per-
turbed sweeping process

ẏ(t) ∈ vt(y(t))−NC(t)(y(t)) for a.e. t ∈ [0, T ]. (21)

that we failed to find in the literature. Below 〈(s, x), (t, y)〉 denotes the scalar
product in Rd+1 and x · y the scalar product in Rd.

Proposition 4. Let (t, x) 7→ vt(x) be measurable in t, L-Lipschitz in x and L-
bounded, C : [0, T ] ⇒ Rd satisfy (A2) and have r′-prox-regular graph, r′ > 0. Let y
be a solution of (21). If t0 ∈ (0, T ) is so that ẏ(t0) exists then (1, ẏ(t0)) is tangent
to graphC at (t0, y(t0)) in the sense that

ξ + ẏ(t0) · η = 0 ∀(ξ, η) ∈ NgraphC(t0, y(t0)).

Proof. Pick some (ξ, η) ∈ NgraphC(t0, y(t0)). By Proposition 1(b), we have

|(ξ, η)|
2r′

|(t, y(t))− (t0, y(t0))|2 − 〈(ξ, η), (t, y(t))− (t0, y(t0))〉 ≥ 0, (22)

for all t sufficiently close to t0. Since for t = t0 the function on the left-hand side
of (22) becomes 0, we conclude that t0 is its extremal point. By Fermat’s rule,
ξ + ẏ(t0) · η = 0.
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