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TOPOLOGICAL SEMIINFINITE TENSOR (SUPER)MODULES

FRANCESCO ESPOSITO AND IVAN PENKOV

Abstract. We construct universal monoidal categories of topological tensor supermodules
over the Lie superalgebras gl(V ⊕ ΠV ) and osp(V ⊕ ΠV ) associated with a Tate space V .
Here V ⊕ΠV is a Z/2Z-graded topological vector space whose even and odd parts are iso-
morphic to V . We discuss the purely even case first, by introducing monoidal categories

T̂gl(V ), T̂o(V ) and T̂sp(V ), and show that these categories are anti-equivalent to respective
previously studied categories Tgl(V ), To(V ), Tsp(V ). These latter categories have certain uni-

versality properties as monoidal categories, which consequently carry over to T̂gl(V ), T̂o(V )

and T̂sp(V ). Moreover, the categories To(V ) and Tsp(V ) are known to be equivalent, and

this implies the equivalence of the categories T̂o(V ) and T̂sp(V ). After introducing a super-

symmetric setting, we establish the equivalence of the category T̂gl(V ) with the category

T̂gl(V ⊕ΠV ), and the equivalence of both categories T̂o(V ) and T̂sp(V ) with T̂osp(V ⊕ΠV ).
Keywords: tensor representation, universal monoidal category, Tate space, topological

tensor product, Lie superalgebra
Mathematics Subject Classification 2020: 17B10, 17B65, 46A13, 46A20

1. Introduction

Let V be a complex infinite-dimensional self-dual Tate space. We think of V as U⊕U∗ for
a countable-dimensional discrete complex vector space U and its dual U∗, and V is endowed
with a locally linearly compact topology. The Lie algebra gl(V ) of continuous endomorphisms
of the topological vector space V has been considered by Tate in [14], where he gave a
definition of residues on a curve and a proof of the residue theorem in terms of a central
extension of gl(V ). This approach is made fully explicit in [1], where the authors reinterpret
Tate’s work and prove the law of reciprocity for curves in terms of a corresponding central
extension of the infinite-dimensional group GL(V ). The Lie algebra gl(V ) and its central
extension have been studied also as symmetries of nonlinear integrable systems (e.g. [5], [4]);
see [8] and [9] for representation-theoretic considerations.

In the present paper we construct a natural category of topological tensor modules over
gl(V ). In the recent note [7], we have introduced and studied two such anti-equivalent

categories Tgl(U) and T̂gl(U) for the discrete vector space U . These two categories have
universality properties which they inherit from the category Tgl(∞), see [7].

One of our objectives is to extend the results of [7] from the space U to the Tate space
V = U ⊕ U∗. A further objective is to embed the tensor modules of the Lie algebra gl(V )
into a supersymmetric context and obtain results on categories of tensor supermodules over
certain “semiinfinite” Lie superalgebras. Our approach to this problem is based on an idea
of V. Serganova who connected the study of tensor modules over the Lie algebras gl(∞) and
o(∞) or sp(∞) with a study of tensor supermodules over the respective Lie superalgebras
gl(∞|∞) and osp(∞|∞) [13].
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Concretely, we construct anti-equivalent monoidal categories Tgl(V ) and T̂gl(V ) of topolog-

ical tensor gl(V )-modules such that V, V ∗, and gl(V ) are objects of T̂gl(V ). The categories

Tgl(V ) and T̂gl(V ) turn out to be equivalent respectively to the categories Tgl(U) and T̂gl(U).
This is a consequence of the equivalence of monoidal categories

Tgl(V ) Tgl(∞)
≃

which we establish in Section 3. It is an interesting feature that, while the gl(U)-module U

corresponds to the gl(V )-module V under the equivalence of T̂gl(U) and T̂gl(V ), the topological
vector spaces U and U∗ are non-isomorphic and the topological vector spaces V and V ∗ are
isomorphic. We then introduce semiinfinite orthogonal and symplectic Lie algebras o(V )

and sp(V ) and respective monoidal categories of topological modules To(V ), Tsp(V ), T̂o(V ),

T̂sp(V ).
The supersymmetric setting is presented in Section 4. We consider the Tate superspace

V ⊕ΠV and the Lie superalgebras gl(V ⊕ΠV ) and osp(V ⊕ΠV ). We show that the categories

of supermodules Tgl(V⊕ΠV ) and T̂gl(V⊕ΠV ) are equivalent respectively to Tgl(V ) and T̂gl(V ).
The monoidal categoryTosp(V⊕ΠV ) is equivalent to both monoidal categories To(V ) andTsp(V ),

while the category T̂osp(V ⊕ΠV ) is equivalent to both monoidal categories T̂o(V ) and T̂sp(V ).
Consequently, the categories To(V ) and Tsp(V ) are equivalent monoidal categories, and the

same holds for T̂o(V ) and T̂sp(V ). We conclude by a discussion of the universality properties
of all categories introduced in the paper.

Acknowledgements. F.E. is a member of the INDAM group GNSAGA; his work has
been supported in part by the project of the University of Padova BIRD203834/20. The
work of I.P. has been supported in part by DFG grant PE 980/8-1.

2. Preliminaries on topological vector spaces

The ground field is C endowed with the discrete topology. All vector spaces we consider
are endowed with a linear topology, and, if not stated explicitly, homomorphisms between
topological vector spaces are assumed to be continuous. Vector spaces of at most countable
dimension are considered as discrete topological vector spaces; vice versa, all discrete vector
spaces considered have at most countable dimension. The dual of a discrete vector space is a
linearly compact vector space, i.e. a (countable) projective limit of finite-dimensional vector
spaces, topologized with the projective limit topology. The abelian semisimple categories
of discrete vector spaces and of linearly compact vector spaces are mutually dual via the
functor of taking continuous dual. The intersection of these two categories is the self-dual
category of finite-dimensional vector spaces.

A natural next step is to study inductive limits and projective limits of topological vector
spaces. The inductive systems we consider are countable and the morphisms involved are
continuous with closed image. Dually, the projective systems we consider are countable and
the morphisms involved are continuous and surjective. In this manner we regard ind-linearly
compact vector spaces and pro-discrete vector spaces as generalizations of linearly compact
and discrete vector spaces.
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In [2] A. Beilinson introduces tensor products ⊗∗ and ⊗! of topological vector spaces. In

agreement with our prior work [7], we denote these tensor products respectively by ⊗̂
∗
and

⊗̂
!
. We also set ⊗ := ⊗C.

Definition 2.1. Let I be the category whose objects are ind-linearly compact vector spaces
and whose morphisms are continuous linear maps.

Definition 2.2. Let P be the category whose objects are pro-discrete vector spaces and
whose morphisms are continuous linear maps.

Proposition 2.3. (i) The category I is stable under Beilinson’s tensor product ⊗̂
∗
.

(ii) Equipped with ⊗̂
∗
, the category I is a C-linear symmetric quasi-abelian semisimple

monoidal category.

(iii) The category P is stable under Beilinson’s tensor product ⊗̂
!
.

(iv) Equipped with ⊗̂
!
, the category P is a C-linear symmetric quasi-abelian semisimple

monoidal category.
(v) Taking continuous duals yields an antiequivalence of the symmetric monoidal quasi-

abelian categories I and P.

Proof. (i) It is observed in [10, Remark 12.1] that for any topological vector spaces U and

W , the tensor product U⊗̂
∗
W is the completion of the space U ⊗W with respect to the

∗-topology (see [2, 1.1(a)] or [10, Section 12] for the definition), and satisfies a universality
property regarding continuous multilinear maps. Thus, if U =

⋃
i Ui and W =

⋃
jWj are

objects of I, one has U ⊗W =
⋃
i,j Ui⊗Wj and the ∗-topology coincides with the inductive

limit topology. Furthermore, the inductive limit of complete topological vector spaces is
complete. Hence, one concludes

U⊗̂
∗
W =

⋃

i,j

Ui⊗̂
∗
Wj ,

and thus I is closed under ⊗̂
∗
.

(ii) The fact that I is quasi-abelian semisimple is proved in [7, Proposition 2.9] . Therefore

the functor ⊗̂
∗
is exact and associative by [10, Proposition 13.4(a)] , and I is a symmetric

quasi-abelian monoidal semisimple category.
(iii) It follows from [2, 1.1(b)] that for any two pro-discrete topological vector spaces

U = lim
←−i

Ui and W = lim
←−j

Wj , one has

U⊗̂
!
W = lim

←−
i,j

Ui ⊗Wj .

Thus P is closed under the tensor product operation ⊗̂
!
.

(iv) The fact that P is quasi-abelian semisimple is proved in [7, Proposition 2.9]. Hence

⊗̂
∗
is exact, and associative by [10, Proposition 13.4(c)]. Consequently P is a symmetric

monoidal quasi-abelian semisimple category.
(v) The fact that taking continuous duals produces an anti-equivalence between I and P

as quasi-abelian categories is stated in [7, Proposition 2.6] . Moreover, taking continuous
dual is clearly a monoidal functor between the category of discrete vector spaces and the
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category of linearly compact vector spaces. Therefore, for objects U =
⋃
i Ui andW =

⋃
jWj

of I, one gets

(U⊗̂
∗
W )∗ = (

⋃

i

Ui ⊗̂
∗
⋃

j

Wj)
∗ = (

⋃

i,j

Ui⊗̂
∗
Wj)

∗ =

(
⋃

i,j

Ui⊗̂Wj)
∗ = lim
←−
i,j

U∗
i ⊗W

∗
j = lim
←−
i,j

U∗
i ⊗̂

!
W ∗
j = U∗⊗̂

!
W ∗ .

One has thus an anti-equivalence of the symmetric monoidal quasi-abelian categories I and
P. �

Definition 2.4. Let T be the intersection of I and P as full subcategories of the category
Top of all linearly topologized topological vector spaces. It is the category of locally linearly
compact vector spaces, also called Tate vector spaces.

Next we present some basic properties of Tate vector spaces.

Lemma 2.5. (i) Let W =
⋃
iWi be an ind-linearly compact vector space defined as the

union of an ascending chain of linearly compact vector spaces {Wi}i∈Z. Then W is
Tate if and only if, for every i ∈ Z, the space Wi is of finite codimension in Wi+1.

(ii) Let Z = lim
←−j

Zj be a pro-discrete vector space defined as the projective limit of discrete

vector spaces {Zj}j∈Z. Then Z is Tate if and only if, for every j ∈ Z, the kernel of the
surjective map Zj → Zj−1 is finite dimensional.

(iii) The category T is quasi-abelian semisimple, and self-dual under the functor of taking
continuous dual.

(iv) Let V be an infinite-dimensional Tate vector space. Then V is self-dual if and only if
V = U ⊕ U∗ for an infinite-dimensional discrete vector space U .

Proof. (i) Let W =
⋃
iWi be an ind-linearly compact vector space which is isomorphic to

a pro-discrete vector space Z = lim
←−j

Zj as a topological vector space, i.e. let W be a Tate

vector space. The composition
Wi →W ∼= Z → Zj

is a continuous map from a linearly compact vector space to a discrete vector space; hence
its image Zi,j is finite dimensional . One may then express the spaces Wi and Zj in terms of
the Zi,j:

Wi = lim
←−
j

Zi,j and Zj =
⋃

i

Zi,j .

This yields two different expressions of W as double limits:

W =
⋃

i

lim
←−
j

Zi,j = lim
←−
j

⋃

i

Zi,j .

To understand these double limits, for every i, j ≥ 0 denote byKi,j the kernel of the surjection
Zi,j → Zi,j−1, and choose complements Z ′

i,j such that

Ki,j = Z ′
i,j ⊕ (Zi−1,j ∩Ki,j) .

Then Wi/Wi−1 =
∏

j Z
′
i,j, and moreover one has the equality

W =
⊕

i≥0

∏

j≥0

Z ′
i,j =

∏

j≥0

⊕

i≥0

Z ′
i,j . (1)
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Now we note that equality (1) holds if and only if, for all but finitely many i, one has
Z ′
i,j = 0 for all but finitely many j. Hence there is no loss in generality in assuming that, for

all i > 0 only finitely many Z ′
i,j are nonzero. This means that Wi−1 is of finite codimension

in Wi.
Vice versa, if W =

⋃
iWi is such that the linearly compact space Wi−1 is of finite-

codimension in Wi for all i, then the subspaces Wi are open in W and form a basis of
open neighborhoods of W . Hence W ∼= lim

←−i
W/Wi is pro-discrete, and consequently W is a

Tate space.
This proves (i). Statement (ii) is proved along the same lines. Statement (iii) follows

from Proposition 2.3(v).
Let us prove (iv). Let U be an infinite-dimensional discrete vector space of countable di-

mension. Then, clearly U⊕U∗ is self-dual and Tate. Vice versa, let V be infinite-dimensional
self-dual and Tate. Then there is a filtration

V =
⋃

i∈O

V≥i

where V≥i is linearly compact and of codimension one in V≥i−1 and O is a totally ordered
set isomorphic to Z. To make some frmulas more symmetric we fix O to be Z\ {0}. We also
fix a topological basis {vi}i∈Z\{0} of V for which the linearly compact subspace V≥i is the
closure of < vj |j ≥ i >. Then the subspace V<i, spanned by the vj for j < i, is discrete and

V = V<i ⊕ V≥i .

Moreover, one easily sees that there is a topological isomorphism (V≥i)
∗ ∼= V<i. We conclude

that V = U ⊕ U∗, with U =
⋃
i>0 V<i discrete of countable dimension.

�

3. Categories of mixed tensors

3.1. The space V . We fix here the notation for the rest of the paper. Let V be a fixed
infinite-dimensional self-dual Tate vector space. We denote by gl(V ) the Lie algebra of
continuous endomorphisms of V . This is a Lie algebra in the category P.

By Lemma 2.5(iv), we may fix a decomposition V = U⊕U∗, where U is infinite-dimensional
discrete. Associated with such decomposition is a nondegenerate symmetric bilinear form

A : V × V → C , A((u, ϕ), (u′, ϕ′)) = ϕ(u′) + ϕ′(u) ,

and a nondegenerate antisymmetric bilinear form

B : V × V → C , B((u, ϕ), (u′, ϕ′)) = ϕ(u′)− ϕ′(u) .

We denote by o(V ) := o(V,A) the Lie subalgebra of gl(V ) of those continuous endomorphisms
f : V → V such that, for all v, w ∈ V

A(f(v), w) + A(v, f(w)) = 0 .

Accordingly, sp(V ) := sp(V,B) is the Lie subalgebra of gl(V ) of those continuous endomor-
phisms f : V → V such that, for all v, w ∈ V

B(f(v), w) +B(v, f(w)) = 0 .
5



Furthermore, one may fix a basis U− = {v−1, v−2, . . .} of the discrete vector space U .
This yields a topological basis U+ = {v1, v2, . . .} of U∗ dual to the basis U−. The union
V = {. . . , v−2, v−1, v1, v2, . . .} is a topological basis of V .

By h we denote the abelian Lie subalgebra of gl(V ) consisting of the endomorphisms of V
with diagonal matrix with respect to the topological basis V.

Definition 3.1. Let h1 be the abelian Lie algebra intersection of h with o(V ), or equivalently
with sp(V ); it consists of the diagonal matrices D = (ai,i)i∈Z\{0} with respect to the basis V,
such that ai,i = −a−i,−i.

Definition 3.2. Let g(V ) be any one of the topological Lie algebras gl(V ), o(V ), sp(V ),
and let hg(V ) := h in the case g(V ) = gl(V ), and hg(V ) := h1 in the cases g(V ) = o(V ) or
g(V ) = sp(V ).

3.2. Topological vector spaces of mixed tensors.

Definition 3.3. The topological spaces of mixed tensors of V are the spaces

Vp,q := V ⊗̂
∗

p ⊗̂
∗
(V ∗)⊗̂

∗

q

and

V̂p,q := V ⊗̂
!
p ⊗̂

!
(V ∗)⊗̂

!
q .

By definition, the space V is a representation of the Lie algebra gl(V ). Therefore, by
functoriality, all topological spaces of mixed tensors also are representations, or modules, of
gl(V ). Furthermore, by restriction, these are modules also over o(V ) and sp(V ).

Lemma 3.4. The space Vp,q is ind-linearly compact. The space V̂q,p is the continuous dual
of Vp,q and is thus pro-discrete.

Proof. Follows directly from Proposition 2.3 (i), (v). �

Lemma 3.5. V ∗ is isomorphic to V as a topological o(V )-module, and also as a topological
sp(V )-module.

Proof. We carry out the argument for the bilinear form A, the argument for B being anal-
ogous. The map v 7→ A(v,−) is a linear map from ΦA : V → V ∗, and one checks that it is
bijective and bicontinuous, for example from the decomposition V = U ⊕ U∗. Furthermore,
if ϕ is the linear form A(v,−), then ΦA(v) = ϕ, and if X ∈ o(V ) one gets

ΦA(Xv) = XΦA(v) .

Thus the isomorphism ΦA is o(V )-equivariant. �

3.3. hg(V )-module structure and weight part. Let W be an hg(V )-module. Recall that
an element χ ∈ h∗

g(V ) is a weight of W if

W χ =
{
w ∈ W | tw = χ(t)w , ∀t ∈ hg(V )

}
6= 0 .

The space W χ is the χ-weight space of W . The sum of all weight spaces of W is the weight
part Wwt of W ; it is the largest semisimple hg(V )-submodule of W .

The weights εk ∈ h∗ for k ∈ Z \ {0} are by definition the weights of the gl(V )-module V ,
and dimV εk = 1 for all k. In particular, the weights of V≥i are all εk for k ≥ i. Furthermore,
the vectors v∗k form a topological basis of V ∗ which is dual to V, and v∗k has weight −εk.
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Next, the linear forms χk := (εk)|hg(V )
form a basis of h∗

g(V ). If g(V ) = o(V ) or g(V ) = sp(V ),
we assume k > 0 since here χ−k = −χk.

Lemma 3.6. The following statements hold:

(i) The subspaces

Vp,q
i := V ⊗̂

∗

p
≥i ⊗̂

∗
((V≤−i)

∗)⊗̂
∗

q

are linearly compact hg(V )-submodules of the g(V )-module Vp,q. For any weight χ ∈
h∗g(V ) of V

p,q
i , the weight space (Vp,q

i )χ is finite dimensional, and

Vp,q
i =

∏

χ

(Vp,q
i )χ

with only a countable number of weights occurring. Furthermore,

(Vp,q)wt = V p,q := (V wt)⊗p ⊗ (V ∗wt)⊗q .

(ii) There is an order-preserving bijection between closed hg(V )-stable subspaces of Vp,q and
hg(V )-stable subspaces of V p,q, given in one direction by taking weight part, and in the
other direction by taking closure. In particular (Vp,q)wt is dense in Vp,q.

Proof. Observe that the space Vp,q
i is linearly compact and may be realized as the following

inverse limit
Vp,q
i = lim

←−
r

V ⊗p
[i,r] ⊗ (V ⊗q

[−r,−i])
∗ , r > |i| .

The canonical map
V ⊗p
[i,r] ⊗ (V ⊗q

[−r,−i])
∗ → V ⊗p

[i,r−1] ⊗ (V ⊗q
[−(r−1),−i])

∗

is a surjective homomorphism of hg(V )-modules. It has a unique right inverse due to the
fact that it is an isomorphism when restricted to the direct sum of the weight subspaces of
V ⊗p
[i,r]⊗(V

⊗q
[−r,−i])

∗ corresponding to weights of V ⊗p
[i,r−1]⊗(V

⊗q
[−(r−1),−i]))

∗. It follows that all weight

spaces relative to hg(V ) of V
p,q
i are finite dimensional. Furthermore, the canonical map

∏

χ

(Vp,q
i )χ = lim

←−
χ

(Vp,q
i )χ → lim

←−
r

V ⊗p
[i,r] ⊗ (V ⊗q

[−r,−i])
∗

is an isomorphism of topological vector spaces. The weights of Vp,q
i are of the form χ =∑

k nkχk (note that χk = εk for g(V ) = gl(V )), where the integers nk satisfy
∑

k

|nk| ≤ p+ q .

Furthermore, the above implies

(Vp,q)wt =
⋃

i,j

(Vp,q
i )wt =

⋃

i,r

(V ⊗p
[i,r] ⊗ (V ⊗q

[−r,−i])
∗)wt

=
⋃

i,r

(V ⊗p
[i,r] ⊗ (V ⊗q

[−r,−i])
∗) = V ⊗p ⊗ V ⊗q

∗ = V p,q ,

where the injection V ⊗p
[i,r−1]⊗(V

⊗q
[−(r−1),−i])

∗ →֒ V ⊗p
[i,r]⊗(V

⊗q
[−r,−i])

∗ is the unique homomorphism of

hg(V )-modules which is right inverse to the canonical surjection V ⊗p
[i,r]⊗ (V ⊗q

[−r,−i])
∗ → V ⊗p

[i,r−1]⊗

(V ⊗q
[−(r−1),−i])

∗. This concludes the proof of (i).
7



Let us now prove (ii). Observe that, for each i, there is an order-preserving bijection
between the closed hg(V )-stable subspaces of

∏
χ(V

p,q
i )χ and the hg(V )-stable subspaces of

its weight part
⊕

χ(V
p,q
i )χ. If L is an hg(V )-stable subspace of V p,q, then L =

⋃
i Li where

Li = L∩ (Vp,q
i )wt. Furthermore, one checks that Li = Li−1 ∩ (V

p,q
i ). Therefore the closure L

of L in Vp,q is equal to
⋃
i Li, where Li is the closure of Li in Vp,q

i . Thus, taking the weight
part gives rise to an order-preserving bijection between closed hg(V )-stable subspaces of V

p,q

and hg(V )-stable subspaces of V p,q. The inverse bijection is given by taking the closure. In

particular, one has (Vp,q)wt = Vp,q, so (Vp,q)wt is dense in Vp,q. This concludes the proof of
(ii). �

3.4. The categories Tg(V ) and T̂g(V ). The definition of the categories Tgl(V ), To(V ), Tsp(V )

runs parallel, therefore it is convenient to have a single definition of a category Tg(V ) of
topological g-modules, where g(V ) is one of the topological Lie algebras gl(V ), o(V ) or

sp(V ). Analogously, it is possible to give a uniform definition of the categories T̂gl(V ), T̂o(V ),

T̂sp(V ).

Definition 3.7. The objects of the category Tg(V ) are topological vector spaces of the form
Z/Q, where Z is a closed g(V )-stable subspace of a finite direct sum of topological vector
spaces of the form Vp,q, and Q is a closed g(V )-stable subspace of Z. The morphisms in the
category Tg(V ) are g(V )-equivariant continuous linear maps.

Remark 3.8. Lemma 3.5 implies that in the case of o(V ) or sp(V ) in Definition 3.7 it is
sufficient to consider only spaces Vp,q with q = 0.

Lemma 3.9. Let W be an object of Tg(V ) and let Z be a closed hg(V )-stable subspace of W .
Then there is a closed hg(V )-stable subspace Q of W such that the canonical map Z⊕Q→W
is an hg(V )-equivariant topological isomorphism.

Proof. It is clear from Definition 3.7 that it suffices to consider the case W = Vp,q. Here,
the filtration {Vp,q

i } induces an hg(V )-stable filtration by closed linearly compact subspaces
W =

⋃
iWi which, by Lemma 3.6 (i), are isomorphic to direct products of finite-dimensional

weight spaces. Analogously, the closed subspace Z has the induced filtration Z =
⋃
i Zi. For

every weight χ of W , one may choose compatible supplementary subspaces (Qi)
χ of (Zi)

χ

in (Wi)
χ. Then the subspaces Qi :=

∏
χ(Qi)

χ are closed and hg(V )-stable, and there are
isomorphisms Zi ⊕Qi

∼= Wi of topological hg(V )-modules. Consequently, Q := Qi is a closed
and hg(V )-stable subspace of W , and the canonical morphism Z⊕Q→ W is an isomorphism
of topological hg(V )-modules. This concludes the proof. �

Definition 3.10. Let g(∞) be the subalgebra of g(V ) stabilizing V wt.

Definition 3.11. The objects of the category Tg(∞) are vector spaces of the form Z ′/Q′,
where Z ′ is a g(∞)-stable subspace of a finite direct sum of vector spaces of the form (Vp,q)wt,
and Q′ is a g(∞)-stable subspace of Z ′. The morphisms in the category Tg(∞) are g(∞)-
equivariant linear maps.

Lemma 3.12. Taking the weight part is a functor ( )wt : Tg(V ) → Tg(∞).

Proof. By Lemma 3.6, the weight part of Vp,q is V p,q. Note that V p,q is not g(V )-stable,
but is stable by the dense Lie subalgebra g(∞). Let W ∼= Z/Q be an object of Tg(V ) where

8



Q ⊂ Z are two closed g(V )-stable subspaces of a finite direct sum
⊕

iV
pi,qi. Then the

weight parts Qwt and Zwt are g(∞)-stable subspaces of
⊕

i V
pi,qi, and Lemma 3.9 implies

that Wwt ∼= Zwt/Qwt. Thus the weight part Wwt is an object of the category Tg(∞). Finally,
it is clear that morphisms in Tg(V ) restrict to g(∞)-equivariant morphisms between weight
parts. This proves the statement. �

Lemma 3.13. The map

Φ : HomTg(V )
(Vp,q,Vp′,q′)→ HomTg(∞)

((Vp,q)wt, (Vp′,q′)wt)

induced by the functor ( )wt, is an isomorphism of vector spaces.

Proof. Since by Lemma 3.6 (ii) the subspace (Vp,q)wt is dense in Vp,q, the map Φ is injective.
Furthermore, by [6, Section 6], the vector space HomTgl(∞)

((Vp,q)wt, (Vp′,q′)wt) is generated
by compositions of contractions and permutations. These morphisms clearly extend to Vp,q

by continuity, and hence are in the image of the map Φ. Thus Φ is also surjective. �

Recall that the definition of a strict morphism in a quasi-abelian category is given in [11,
1.1.7], or see [7, Section 2].

Proposition 3.14. Let

W =
r⊕

k=1

Vpk,qk and W ′ =
r′⊕

k′=1

Vp′
k′
,q′

k′ .

Then every f ∈ HomTg(V )
(W,W ′) is strict. Moreover, if Q is a closed g(V )-stable subspace

of W , every restriction f|Q is also strict.

Proof. Let f ∈ HomTg(V )
(W,W ′) and let Z denote the image of f . By [7, Lemma 2.10], to

show that f is strict it suffices to prove that Z is a closed subspace of W ′.

Consider Wi :=
⊕r

k=1V
pk,qk
i and W ′

i′ :=
⊕r′

k′=1V
p′
k
,q′

k

i′ . The topologies on W and W ′ are
the inductive limit topologies on

⋃
iWi and

⋃
i′ W

′
i′ respectively. Thus, if Zi′ := Z ∩W ′

i′ one
has Z =

⋃
i′ Zi′; moreover Z is closed in W ′ if and only if, for every i′, the subspace Zi′ is

closed in W ′
i′.

Let us fix i′ and prove that Zi′ is closed inW ′
i′. Set Zi′,i := f(Wi)∩W

′
i′ . Then Zi′ =

⋃
i Zi′,i,

and, by [7, Lemma 2.3 (iii)], the subspace Zi′ is closed in W ′
i′ if and only if there exists i

such that Zi′,i = Zi′.
We now show that indeed there is an i such that Zi′,i = Zi′, thus proving the proposition.

By Lemma 3.6 (i), the the χ-weight spaces of Wi and W ′
i′ are finite dimensional for any

χ ∈ h∗
g(V ), and

Zi′ =
∏

χ

(Zi′)
χ and Zi′,i =

∏

χ

(Zi′,i)
χ.

Let us treat the case g(V ) = gl(V ). By S we denote the finitary symmetric group on
countably many letters, i.e., S =

⋃
n Sn. Then S acts on V by permuting the elements

of the basis V, and S acts contragrediently on V ∗. Therefore S acts also on W and W ′.
Lemma 3.13 and [6, Lemma 6.1] imply that the map f is S-equivariant. Observe that W ′

i′

is stable under the action of the subgroup S ′ of S which fixes pointwise the set {vi} for
|i| ≤ N := |i′|. Furthermore, since S normalizes hg(V ) = h, it follows that the action of S ′

permutes the weights and, accordingly, the respective weight spaces. Denote r = N + p+ q,
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and observe that the weights χ for which (W ′
i′)
χ 6= 0 form finitely many S ′-orbits and each

orbit contains a weight of V ⊗p
[i′,r] ⊗ (V ⊗q

[−η,−i′])
∗. Let i be such that (Zi′)

χ = (Zi′,i)
χ for every

weight χ of V ⊗p
[i′,r] ⊗ (V ⊗q

[−r,i′])
∗.

Let us show that this implies (Zi′)
ψ = (Zi′,i)

ψ for any weight ψ, and thus ultimately
Zi′ = Zi′,i. Indeed, for k < l, let Ek,l ∈ gl(V ) be the endomorphism sending vk to vl, and
sending all other basis vectors to 0. Observe that Ek,l(W

′
i′) ⊂ W ′

i′ , and that Ek,l(Wj) ⊂ Wj

for every j; since f is gl(V )-equivariant, one has also Ek,l(Zi′,i) ⊂ Zi′,i.
Let us proceed by contradiction.
Suppose ψ =

∑
alεl is a weight for which (Zi′)

ψ 6= (Zi′,i)
ψ, and moreover that the number

of nonzero coefficients al with |l| > r is minimal over all such weights. By the hypothesis on
i, there is at least one l such that |l| > r and |al| > 0, and there is at least one k such that
|i′| < k ≤ r and ak = 0.

Let σ ∈ S ′ be the transposition exchanging k and l. Let θ = σ(ψ). By S-equivariance,

one has dim(Zθ
i′) = dim(Zψ

i′ ). Furthermore, one checks that the operator E
|ak|
k,l sends (W ′

i′)
θ

isomorphically to (W ′
i′)
ψ. Then, by the gl(V )-equivariance of f , the same operator sends

isomorphically (Zi′,i)
θ to (Zi′,i)

ψ and (Zi′,i)
θ to (Zi′,i)

ψ. Since in the decomposition of θ there
appears one less εl with |l| > r we have a contradiction, and it implies (Zi′)

θ = (Zi′,i)
θ and

thus also (Zi′)
ψ = (Zi′,i)

ψ. This proves that Zi′ = Zi′,i, and hence f is strict in the case
g(V ) = gl(V ).

Let now Q be a closed gl(V )-stable subspace ofW . Since by Lemma 3.6 one has Q = Qwt,
it follows that Q is S-stable. If Qi := Q ∩Wi, then Q =

⋃
iQi is a presentation of Q as

inductive limit of linearly compact closed hg(V )-submodules. The above arguments can be
repeated with Z = f(Q), Zj = Z ∩W ′

j , Zj,i = f(Qi)∩Zj , to prove that f|Q has closed image.
Hence f|Q is strict.

The case g(V ) = o(V ) or g(V ) = sp(V ) is dealt with analogously. Indeed in this case, the
group S acts on U by permuting the basis elements . . . , u−2, u−1, and contragrediently on
U∗ permuting accordingly the topological basis u1, u2, . . .. Hence S acts on V = U ⊕ U∗ in
a g(V )-equivariant way, and ultimately on W and W ′. Similarly to the case g(V ) = gl(V ),
results in [6, Section 6] show that f is S-equivariant. Let S ′ be the subgroup fixing the
vectors v−N , . . . , vN for N = |i′|. One uses again the S ′-action on the weights of h(V ) and
on the various weight spaces to show that Zi′ = Zi′,i for an appropriate i. One must only
substitute Ek,l with Ek,l − E−k,−l, 0 < k < l, for g(V ) = o(V ), and with Ek,l + E−k,−l,
0 < k < l, for g(V ) = sp(V ). �

Proposition 3.15. Every object of Tg(V ) is isomorphic to a subobject of a finite direct sum
of Vp,q-s.

Proof. Let W = Z/Q where Q ⊂ Z are closed g(V )-equivariant subspaces of a finite direct
sum M =

⊕
j V

pi,qi. It follows from Lemma 3.9 that Wwt ∼= Zwt/Qwt. Furthermore,

by [6, Proposition 4.5], any object of Tg(∞) is isomorphic to a subobject of an injective
object of the form

⊕
j V

rj ,sj . Let ϕ : Wwt → A be a g(V )-equivariant isomorphism, where

A is a g(V )-stable subspace of (M ′)wt =
⊕

j V
rj ,sj forM ′ =

⊕
j V

rj,sj . Let Z ′ be the closure

of A in M ′. Moreover, by the injectivity of (M ′)wt and Lemma 3.13, it follows that ϕ is the
restriction of a g(V )-equivariant map ϕ̃ :Mwt → (M ′)wt which extends to a g(V )-equivariant
map f :M →M ′. By Proposition 3.14, the subspace f(Z) is closed and is thus equal to Z ′.
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Now f induces a bijective continuous linear map between W and Z ′, which is a topological
isomorphism by [7, Lemma 2.7(a)]. This proves the proposition. �

Definition 3.16. The objects of the category T̂g(V ) are topological vector spaces of the form
Z/Q, where Z is a closed g(V )-stable subspace of a finite direct sum of topological vector

spaces of the form V̂p,q, and Q is a closed g(V )-stable subspace of Z. The morphisms in the

category T̂g(V ) are g(V )-equivariant continuous linear maps.

Theorem 3.17. The following statements hold:

(i) The categories Tg(V ) and T̂g(V ) are symmetric monoidal abelian subcategories of I and
P respectively.

(ii) The duality between I and P restricts to a duality between Tg(V ) and T̂g(V ).
(iii) The weight part functor

( )wt : Tg(V ) → Tg(∞)

is an equivalence of symmetric monoidal abelian categories.

Proof. The fact that the categories Tg(V ) and T̂g(V ) are symmetric monoidal categories is a
consequence of the isomorphisms

Vp,q⊗̂
∗
Vp′,q′ ∼= Vp+p′,q+q′ and V̂p,q⊗̂

!
V̂p′,q′ ∼= V̂p+p′,q+q′ .

From the description in [7, Prop. 2.9] of kernels and cokernels in I and P, it follows that the

categories Tg(V ) and T̂g(V ) are closed under taking kernels and cokernels, respectively in I

and P. Thus Tg(V ) and T̂g(V ) inherit the quasi-abelian structure. Furthermore, a linear map
f is g(V )-equivariant if and only if its dual f ∗ is g(V )-equivariant. This implies that the
duality stated in Proposition 2.3 restricts to a duality between the quasi-abelian categories

Tg(V ) and T̂g(V ), and hence proves (ii).
To prove (i), observe that a quasi-abelian category is abelian if and only if every morphism

is strict (see [3, Remark 4.7 and Remark 4.9]). By duality, it suffices to prove that every
morphism in Tg(V ) is strict.

Let f : W →W ′ be a morphism in Tg(V ). By Proposition 3.15, one may suppose that W
andW ′ are submodules of respective modulesM andM ′ which are finite direct sums of Vp,q-
s. By [6, Proposition 4.5] and Lemma 3.13, one gets that the g(V )-equivariant continuous
linear maps from W to W ′ are restrictions of g(V )-equivariant continuous linear maps from
M to M ′, and such restrictions are strict by Proposition 3.14. Thus (i) is proved.

Let us prove (iii). We keep the notations W,W ′,M,M ′ from (i). Then one has a commu-
tative diagram of linear operators

HomTg(V )
(M,M ′)

a
−−−→ HomTg(V )

(W,M ′)

c

y d

y

HomTg(∞)
(Mwt, (M ′)wt)

b
−−−→ HomTg(∞)

(Wwt, (M ′)wt) .

The map c is bijective by Lemma 3.13; the map b is surjective by injectivity of (M ′)wt

( [6, Proposition 4.5]). It follows that d is surjective. Since Wwt is dense in W , the map d
is also injective, and hence d is an isomorphism.
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Assume W ′ is the kernel of a homomorphism g ∈ HomTg(V )
(M ′, N ′), where N ′ is a finite

direct sum of Vp,q-s. This leads to the commutative diagram

0 −−−→ HomTg(V )
(W,W ′) −−−→ HomTg(V )

(W,M ′) −−−→ HomTg(V )
(W,N ′)y d

y ∼=

y
0 −−−→ HomTg(∞)

(Wwt, (W ′)wt) −−−→ HomTg(∞)
(Wwt, (M ′)wt) −−−→ HomTg(∞)

(Wwt, (N ′)wt)

where the rows are exact and the middle vertical arrow is the map d from above. We have
established that d is an isomorphism, and in the same way one can establish that the third
vertical arrow is an isomorphism. It thus follows that the first vertical arrow is also an
isomorphism. This proves that the functor ( )wt is fully faithful.

Let us prove the essential surjectivity of the functor ( )wt. Let A be an object of Tg(∞).
By [6, Proposition 4.5], A may be assumed to be the kernel of a homomorphism φ ∈
HomTg(∞)

((M ′′)wt, (M ′′′)wt), where M ′′,M ′′′ are finite direct sums of Vp,q-s. By Lemma 3.13,
the map φ is the restriction of a unique map ψ ∈ HomTg(V )

(M ′′,M ′′′). One has then

(kerψ)wt = A; thus the functor ( )wt is essentially surjective. This concludes the proof
of (iii). �

Corollary 3.18. Every object of T̂g(V ) is isomorphic to a quotient of a finite direct sum of

V̂p,q-s.

Proof. Follows from Theorem 3.17(ii) and Proposition 3.15. �

4. A supersymmetric setting

We conclude the paper by a supersymmetric extension of Theorem 3.17. Let’s start by

introducing supersymmetric analogues of the categories Tgl(∞), Tgl(V ) and T̂gl(V ).
By Π we denote the functor on the category of vector superspaces (Z/2Z-graded vector

spaces) which changes the Z/2Z-grading to the opposite one. Considering V as a purely even
superspace (i.e. V0 = V , V1 = 0), we introduce the topological superspace V ⊕ ΠV . This is
a self-dual Tate superspace as (V ⊕ΠV )∗ = V ∗ ⊕ΠV ∗ = V ⊕ΠV . The Lie superalgebra of
continuous endomorphisms of V ⊕ΠV is denoted gl(V ⊕ΠV ). The Lie algebra gl(V ⊕ΠV )0,
the even part of gl(V ⊕ ΠV ), equals gl(V ) ⊕ gl(ΠV ). Note that gl(ΠV ) = gl(V ), i.e.,
gl(V ⊕ΠV )0 = gl(V )⊕ gl(V ).

Let now U ⊕ΠU be the superspace with (U ⊕ΠU)0 = U and (U ⊕ΠU)1 = U . Choosing a
basis {u0i } in U endows U⊕ΠU with a basis {u0i , u

1
i }, where u

1
i is the vector u

0
i considered as

an element of ΠU . Setting then U∗⊕ΠU∗ = span{(u0i )
∗, (u1i )

∗}, where {(u0i )
∗} is the system

dual to {u0i } and {(u
1
i )

∗} is the system dual to {u1i }, we obtain a nondegenerate pairing

(U ⊕ ΠU)× (U∗ ⊕ ΠU∗)→ C

which respects the Z/2Z-grading. The tensor product

(U ⊕ΠU)⊗ (U∗ ⊕ΠU∗)

is therefore an associative superalgebra (Z/2Z-graded associative algebra), and gl(∞|∞) is
by definition the Lie superalgebra associated with this superalgebra. Note that gl(∞|∞) is
a Lie subsuperalgebra of gl(V ⊕ ΠV ).

12



Similarly, V ⊕ΠV is endowed with a supersymmetric pairing

AB : (V ⊕ΠV )× (V ⊕ ΠV )→ C

given by AB((x, y), (z, t)) = A((x, z)) +B((y, t)), where x, z ∈ V , y, t ∈ ΠV and we identify
V and ΠV when taking B((y, t)). The Lie subsuperalgebra

osp(V ⊕ΠV ) ⊂ gl(V ⊕ ΠV )

is the Lie subsuperalgebra generated by Z/2Z-homogeneous operators ϕ ∈ gl(V ⊕ ΠV ) of
parity ϕ ∈ Z/2Z, such that

AB(ϕ((x, y)), (z, t)) + (−1)ϕAB((x, y), ϕ((z, t))) = 0 .

The Lie algebra osp(V ⊕ ΠV )0 is isomorphic to o(V )⊕ sp(V ).

The definitions of the categories Tgl(∞), Tgl(V ) and T̂gl(V ) extend in an obvious way to

definitions of categories Tgl(∞|∞), Tgl(V⊕ΠV ) and T̂gl(V ⊕ΠV ): one replaces V by V ⊕ ΠV in
the respective definition and works with vector superspaces instead of just vector spaces.

The following diagrams of functors emerge,

Tgl(V⊕ΠV )

Tgl(V ) Tgl(ΠV )

iΠV iV (2)

and

T̂gl(V⊕ΠV )

T̂gl(V ) T̂gl(ΠV )

îΠV îV (3)

where iV and îV (respectively, iΠV and îΠV ) are the functors of taking gl(V )-invariants
(respectively, gl(ΠV )-invariants).

The weight functor ( )wt transfers diagram (2) to the diagram

Tgl(∞|∞)

Tgl(∞) Tgl(∞) ,

iΠV,∞ iV,∞ (4)

where iV,∞ and iΠV,∞ are the respective functors of invariants with respect to the subalgebras
gl(∞) ⊂ gl(V ) and gl(∞) ⊂ gl(ΠV ). Theorem 3.17 asserts that the weight functor ( )wt is
an equivalence of the categories Tgl(V ) and Tgl(∞); we leave to the reader to check that this
result extends also to the categories Tgl(V⊕ΠV ) and Tgl(∞|∞). Moreover, Serganova proves
in [13] that the diagram (4) consists of equivalences of monoidal categories, and this implies
the existence of an equivalence of monoidal categories

iV,∞ ◦ i
−1
ΠV,∞ : Tgl(∞) → Tgl(∞) .

In this way, we arrive to
13



Theorem 4.1. The diagrams (2) and (3) are diagrams of equivalences of monoidal cate-
gories.

Proof. The result for diagram (2) follows from Serganova’s result and from the fact that the
weight functor commutes with the respective functors of invariants. For the diagram (3) the
result follows by duality. �

Next we would like to turn our attention to the Lie superalgebra osp(V ⊕ ΠV ). We first
recall the Lie superalgebra osp(∞|∞). This is the intersection of the Lie subsuperalgebras
osp(V ⊕ΠV ) and (V ⊕ΠV )⊗ (V ⊕ΠV ) within gl(V ⊕ΠV ), where V ⊕ΠV is endowed with
the pairing AB. The adjoint osp(∞|∞)-module is isomorphic to the second (super)exterior
power

∧2(V ⊕ ΠV ) of the superspace V ⊕ ΠV , and osp(∞|∞)0 ∼= o(∞) ⊕ sp(∞), where
o(∞) = lim

−→
o(n), sp(∞) = lim

−→
sp(2n). The category Tosp(∞|∞) has been introduced in [13]

and its objects are osp(∞|∞)-modules isomorphic to subquotients of finite direct sums of
tensor products of the form (V ⊕ΠV )⊗k for k ≥ 0.

Next, the objects of the category Tosp(V⊕ΠV ) are topological vector superspaces of the
form Z/Q, where Z is a closed osp(V ⊕ ΠV )-stable subspace of a direct sum of topological

vector superspaces of the form (V ⊕ΠV )⊗̂
∗

p and Q is a closed osp(V ⊕ΠV )-stable subspace
of Z. The morphisms in the category Tosp(V⊕ΠV ) are osp(V ⊕ ΠV )-equivariant continuous
linear maps. Similarly to Theorem 3.17 one shows that the weight part functor yields an
equivalence between between the monoidal categories Tosp(V⊕ΠV ) and Tosp(∞|∞).

Moreover, Serganova has established in [13] that the diagram

Tosp(∞|∞)

To(∞) Tsp(∞) ,

isp(∞) io(∞) (5)

where io(∞) and isp(∞) are the respective functors of invariants with respect to the subalgebras
o(∞) ⊂ o(V ) and sp(∞) ⊂ sp(V ), is a diagram of equivalences of monoidal categories.

This brings us to

Theorem 4.2. The diagrams

Tosp(V⊕ΠV )

To(V ) Tsp(V )

isp(V ) io(V ) (6)

and

T̂osp(V⊕ΠV )

T̂o(V ) T̂sp(V ) ,

îsp(V ) îo(V ) (7)

where io(V ) and îo(V ) (respectively, isp(V ) and îsp(V )) are the functors of taking o(V )-invariants
(respectively, sp(V )-invariants), are diagrams of equivalences of monoidal categories.

✷
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We complete this paper by a brief discussion of universality properties of all our categories.
Recall first, that the monoidal category Tgl(∞) admits a canonical left exact functor into
any C-linear symmetric abelian monoidal category with two objects X, Y endowed with a
morphism X⊗Y → 1, where 1 denotes the monoidal unit. This functor sends U to X , U∗ to
Y , and the pairing U⊗U∗ → C to the morphism X⊗Y → 1. The existence of such a functor
has been established in [12] and [6]. Therefore, any category which is equivalent to Tgl(∞) as
a monoidal category has the same universality property. According to Theorems 3.17 and
4.1, this applies to the categories Tgl(U), Tgl(V ), Tgl(U⊕ΠU) and Tgl(V⊕ΠV ).

Since the category T̂gl(U) is anti-equivalent to the category Tgl(U) [7], there is a canonical

right-exact functor from T̂gl(U) to any C-linear symmetric monoidal category with two objects
X, Y and a morphism 1 → X ⊗ Y . This functor sends U to X , U∗ to Y , and the injection

1 → U⊗̂
!
U∗ to the morphism 1 → X ⊗ Y . Therefore this universality property applies to

both monoidal categories T̂gl(V ) and T̂gl(V ⊕ΠV ) introduced in this paper.
Finally, we recall that the equivalent monoidal categories To(∞) and Tsp(∞) share the

following universality property: each of them admits a canonical left-exact functor to any
given C-linear symmetric monoidal category with an object X endowed with a morphism
X ⊗ X → 1, sending V , or respectively V ⊕ ΠV , to X . Since the categories To(V ), Tsp(V )

and Tosp(V⊕ΠV ) are equivalent as monoidal categories to To(∞) and Tsp(∞), they share this

universality property. In turn, the categories T̂o(V ). T̂sp(V ) and T̂osp(V⊕ΠV ) share the following
universality property: each of them admits a canonical right-exact functor into any given C-
linear symmetric monoidal category with an object X endowed with a morphism 1→ X⊗X ,
sending V , or respectively V ⊕ΠV , to X .
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