
Optimization Approaches for RMS Current
Reduction of Triple Active Bridge Converters

Ahmed A. Ibrahim, Andrea Zilio, Davide Biadene, Tommaso Caldognetto, Paolo Mattavelli
Dept. of Management and Engineering (DTG)

University of Padova, Vicenza, Italy
Email: ahmedadelaly.ibrahim@phd.unipd.it, andrea.zilio.5@phd.unipd.it, davide.biadene@unipd.it,

tommaso.caldognetto@unipd.it, paolo.mattavelli@unipd.it

Abstract—Isolated multi-port converters can interconnect dif-
ferent loads and energy sources at their ports, while utilizing a
limited number of switching devices and magnetic components,
which offers potential advantages in terms of power density.
However, being the multiple ports coupled among each other, the
number of modulation variables and operating modes increases,
which poses challenging optimization issues. This paper exploits
three different optimization approaches used to optimize the per-
formance of a triple active bridge converter (TAB) by minimizing
the ports total true rms current. The three approaches shown
herein are based on an offline gradient descent search, online
multidimensional ripple correlation search, and artificial neural
network. All the approaches are validated through simulation
and experimental results considering a TAB converter prototype
rated 5 kW.

Index Terms—Multi-port converter, triple active bridge (TAB),
rms current optimization.

I. INTRODUCTION

Isolated multi-port converters (IMPC) allow hosting differ-
ent sources and loads with different voltage and power levels at
their ports [1]–[4], while ensuring galvanic isolation between
these ports and offering potential advantages in terms of
power density. These features make such converters suitable in
different applications such as electric vehicles, electric aircraft,
and micro and nano grids [5]–[8].

The triple active bridge converter (TAB) is an IMPC with
three ports [9], [10], as shown in Fig. 1(a). The TAB consists of
three full bridges connected to a three-terminal high-frequency
transformer. Power flow control among the ports is performed
by controlling the phase-shifts (i.e., φ2, φ3) among the ports
voltages (i.e., v1, v2, v3). The phase-shift magnitude allows
to regulate the magnitude of the power flow, with maximum
phase shift at π/2, while the phase-shift sign controls the
power flow direction, with positive power flow from the
leading port to the lagging port. This basic modulation method
is known as phase-shift modulation (PSM) [11], and it is
illustrated in Fig. 1(b). PSM modulation shown to provide
simplicity and good conversion efficiency while operating
at moderate-to-high power levels with matching voltages at
port terminals (i.e., V1 : V2 : V3 = n1 : n2 : n3). At
these conditions, PSM achieves low conduction loss and zero
voltage switching (ZVS). However, at low power operation
and voltage mismatch at the ports terminal, PSM brings to
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Fig. 1. (a) Triple active bridge converter; (b) phase-shift modulation; (c) penta
phase-shift modulation. Modulation variable φ2, φ3, D1, D2, D3 highlighted.

relatively high conduction loss and loss of ZVS, with overall
performance substantially far from optimal [11].

Penta phase-shift has been proposed in [11], utilizing the
voltages duty cycles (i.e., D1, D2, D3) besides the phase-
shifts, as shown in Fig. 1(c). To exploit the duty cycles,
increases the modulation variables from two to five, with total
possible voltage switching patterns 6! = 720. This complicates
the optimization problem of finding the optimum pattern for
minimum converter loss using normal analysis tools. The
literature reports several relevant optimization methods [11]–
[14]. In [11], The optimization of the total converter loss was
limited to the fundamental component, ignoring the harmonics.
The assumption in [11] is valid for medium to high powers,
while at low power levels, the effect of harmonics increases.
In [12]–[14], an analysis of the converter in the frequency
domain has been investigated. However, the frequency domain
analysis depends on many assumptions, which may limit
model generality.

This paper describes and compares three different opti-
mization approaches capable of reducing the TAB converter
conduction loss by means of minimizing the total true rms
current. The first approach is based on a time domain analysis
of a set of selected favorable switching patterns [15]. The
second optimization technique is a model-free technique based
on the ripple correlation search, a form of extremum seeking



TABLE I
SIMULATION PARAMETERS OF BF,VALUES ARE REFERRED TO V1

Parameters Value

Nominal power at each port Prated kW 5.5
Switching frequency fS = 1/TS kHz 40
Port-1 rated voltage V1 V 300
Port-2, Port-3 rated voltage V2, V3 V 400
Transf. leakage inductance L1 = L2 = L3 µH 25
Transf. turns ratio n1 : n2 : n3 30:40:40

algorithm [16]. The last approach is based on an artificial
intelligence method, in which an artificial neural network is
trained offline to make a TAB converter operate with minimum
circulating rms currents [17].

II. OPTIMIZATION APPROACHES FOR MINIMUM TAB RMS
CURRENT

This section reports a study of three different optimization
approaches. The approaches aim to find the minimum total
true rms current defined as:

irms =

√√√√ 3∑
p=1

rp
(
irms
p

)2
= f(φ2, φ3, D1, D2, D3) (1)

where weights rp, p = 1, . . . , 3, are the equivalent path
resistances of the respective p-th port. Notably, the total true
rms current depends on five modulation parameters, which
are two phase shifts (i.e., φ2, φ3) and three duty cycles (i.e.,
D1, D2, D3). The three optimization methods optimize the
total true rms current in (1) by searching for the optimum
duty cycles while the phase shifts are adjusted by means of a
couple of PI regulators in order to regulate the converter output
voltages (i.e., V2, V3). The input voltage to the converter (V1)
is imposed by an external dc supply.

The principal concepts and simulation results for each
technique are discussed in the following, while experimental
validations are reported in Sect. III.

A. Offline Gradient Descent Optimization

This approach is performed in three steps:
1) Search for a favorable switching pattern achieving mini-

mum true rms current.
2) Constructing a mathematical model of the favorable pat-

tern.
3) Optimizing the mathematical model by gradient descent

algorithm (GDA).
The first step is a systematic brute-force (BF) search of the
optimal points on the duty cycles D1, D2, and D3. The search
is performed offline on Matlab/Simulink with parameters listed
in Table. I. Fig. 2 shows simulation results of the BF search
at one set point defined with P2 = 400 W, P3 = 100 W,
V1 = 300 V, V2 = 320 V, and V3 = 280 V. In Fig. 2(a) the
x-axis describes different combinations of duty cycles, each
segment identified by the labels on top of the figure has a
constant duty cycle D1, while D2 and D3 vary with a fixed
step in their domain. Fig. 2(b) shows a zoom-in view of the
third segment of Fig. 2(a), where D1 is fixed at 0.14, where
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Fig. 2. Simulation results at set point P2 = 400W, P3 = 100,W, V1 =
300V, V2 = 320V, V3 = 280V: (a) total true rms current for different
combinations of the three duty cycles; (b) total true rms current at fixed
D1 = 0.14 with different combinations of D2 and D3.

the x-axis can be interpreted as different combinations of D2

and D3, with fixed D2 inside each segment labeled on top of
the figure. Notably, Fig. 2 shows that different combinations of
duty cycles, corresponding to different switching patterns, can
give similar values of minimum true rms current. In this case,
the switching pattern covering the wider range of operating
conditions should be used. The found pattern is considered as
the favorable pattern for low power level operation, Fig. 3(a)
shows the range of the favorable pattern for the same set-point
used in Fig. 2 but with variable power at port-2. Fig. 3(b) shows
the benefits from using the found pattern rather than phase-
shift modulation (PSM), especially at low power level, where
a total true rms current reduction of up to 70% is recorded.
Besides, at medium-to-high power levels, PSM results to the
same true rms current.

By applying this search technique to the whole power and
voltage range of operation of the converter results in the six
switching patterns in Fig. 4, these present the most favorable
loss performance with different voltage levels.

A second step is to derive a closed-form analytical repre-
sentation for the true rms current, as:

irms = f(D1, D2, D3, P2, P3, Σpar) (2)

Where, Σpar is the converter parameters. This approach is now
viable since the number of switching pattern under study are
limited by the procedure described above to only six in Fig. 4
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Fig. 3. Simulation results of BF search at the same set point of Fig. 2 with
variable P2: (a) variation of the optimum duty cycles; (b) illustration of the
improvements made by the found favorable pattern over PSM.
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Fig. 4. Six switching patterns for low power level rms current optimization
(favorable switching pattern).

– notably, the total number of switching patterns for the TAB
amounts to 6! = 720.

After obtaining the total true rms current in closed-form, a
search for the modulation parameters to achieve minimum total
rms current, which would bring to minimum conduction loss,
can be run on the deduced formula. Then, a gradient descent
search algorithm is implemented, run offline, and used to build
a look-up table (LUT) by the found results.

B. Online Multidimensional Ripple Correlation Search

The second approach described herein is run online, and it
does not require any modeling of the converter, namely, it is
model-free. The technique is based on the ripple correlation
control (RCC) [18], which has the same theoretical framework
of extremum seeking control (ESC) [16], where a correlation,
positive or negative, is found between two variables. One of
these variables is the cost function, specifically, the TAB con-
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Fig. 5. Ripple correlation search: (a) one dimentional RCC; (b) extended
three-dementional RCC (3D-RCC).

verter rms current (1), while the other variable is a controllable
variable, specifically, the modulation variable. By perturbing
the controllable variables and observing the effect of such
perturbations on the cost function, the controlled variables
are driven in the direction of reducing the cost function. This
optimization is based on an estimation of correlation factor
(ρxy) among the two variables obtained by means of the
scheme displayed in Fig. 5(a).

Since the control variables herein are three variables
(D1, D2, D3), three-dimensional ripple correlation control
(3D-RCC) is applied, in which the multidimensional opti-
mization problem is simplified into three separate optimization
problems. Orthogonality is obtained between the modulation
variables by utilizing three different perturbation frequencies
on the modulation variables and observing the effect of each
perturbation separately, as shown in Fig. 5(b).

Hardware in the loop (HIL) is utilized in this part to show
the efficacy of the 3D-RCC optimization technique. Fig. 6
shows the real-time simulator PLECS RT-Box1 with param-
eters listed in Table. II. The 3D-RCC search and converter
control and modulation are implemented on an Imperix L.t.d.
B-Box RCP controller.

The collected results using 3D-RCC are compared to those
found by a systematic BF search on the same cost function
using HIL validation. On this basis, the results obtained by
the BF search are regarded as the true optimum solutions as
in Sect. II-A.

Fig. 7 shows the obtained results at V1 = 400 V, V2 =
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Fig. 6. Hardware-in-the-loop validation setup.

TABLE II
HIL VALIDATION PARAMETERS

Parameters Value

Nominal power at each port Prated kW 5
Switching frequency fS = 1/TS kHz 5
Rated dc voltages V1 = V2 = V3 V 400
Transf. turns ratio n1 : n2 : n3 1:1:1
Transf. leakage inductance L1 = L2 = L3 µH 350
Sinusoidal disturbance magnitude ε 0.01
Sinusoidal disturbance-1 freq. ω1 rad/s 24π
Sinusoidal disturbance-2 freq. ω2 rad/s 20π
Sinusoidal disturbance-3 freq. ω3 rad/s 16π
Simulation integration step µs 4

320 V, V3 = 480 V, and P2 = 350 W, while port-3 power
P3 is changing by a step of 150 W, with total true rms
current (1) as optimization objective. Specifically, Fig. 7(a)
shows the optimum duty cycles found by the BF search (i.e.,
D1BF , D2BF , D3BF ) compared to the 3D-RCC search results
(i.e., D1RCC , D2RCC , D3RCC). The searching technique gives
almost the same duty cycles over the considered P3 variation.
Fig. 7(b) shows the total true rms currents corresponding to
the BF search findings and 3D-RCC search findings, with the
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Fig. 7. HIL validation: (a) variation of the optimum duties w.r.t the change
in the power level; (b) total true rms current of both BF and 3D-RCC search
.
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maximum deviation between the two currents of less than 5%.

C. Artificial Neural Network Modulation Based

A modulation based on an artificial neural network (ANN)
is then described as third possible approach. This technique
involves the training of an ANN to find the minimum total
true rms current (1). The complexity of the cost function is
overcome by a data-driven approach, exploiting the informa-
tion collected from a simulation model to compute the optimal
TAB modulation parameters for rms current reduction. The
training process of the ANN is done in three steps as follows.

1) Simulation model validation and data-set collection.
2) Training of the ANN based on the collected data.
3) Validation of the results on the experimental prototype.
PLECS simulations have been used to generate the data-set

used to train the ANN, as done in [19]. The simulation model
has been calibrated and validated to match the experimental
prototype in Table. IV, considering the actual transformer
leakage inductance, switching frequency, deadtime, etc. The
matching process includes matching transformer rms current
and current and voltage waveforms at several test points.
The rms current deviation between the two models is below
10%. Then, a systematic BF search is run on the duty cycles
D1, D2, D3, testing about 512 possible combinations of duty
cycles for each power and voltage set-point. The search
finds duties with minimum total true rms current, and it is
repeated for about 15, 000 set-points of different ports voltages
and powers. The collected data-set represents the BF search
findings, with about 15, 000 points, which is then used to train
the ANN.

An operating points is used to show the performances of
the built ANN. The voltages V2 and V3 with the power P2

are kept constant as shown in Fig. 8, the dotted lines are the
data obtained from BF analysis and used during the training
process while, the continuous lines represent ANN outputs.

Fig. 9 illustrates the flowchart for the three discussed ap-
proaches. Table. III shows a comparison between the three
approaches features.

III. EXPERIMENTAL RESULTS

A. Laboratory Prototype

The setup in Fig. 10 with a TAB converter prototype with
parameters listed in Table. IV and structure in Fig. 11 is
considered for experimental validation.

Port-1 of the converter is connected to a fixed dc power
supply at rated voltage V1 = 400 V, while port-2 and port-3
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TABLE III
COMPARISON BETWEEN THE THREE APPROACHES

optimization approach online
optimization

core
implementation

GDA closed formula 7 LUT

3D-RCC model-free 3 RCC

ANN data-driven 7 ANN-model

are connected to corresponding dc electronic loads. Controls
and modulation are implemented on an Imperix L.t.d. B-Box
RCP controller driving six Imperix PEB8032-A half-bridges.

To find the five modulation parameters for each set-point,
two phase-shifts φ2 and φ3 are adjusted by employing two
separate linear regulators followed by a decoupling matrix, as
in [11]. Duty cycles D1, D2, and D3 are generated from the
corresponding optimization approach.

B-Box RCP
Controller

PEB 8032

DC supply

DC Electronic Loads

3 -Terminal HFT

Fig. 10. Laboratory prototype of TAB.
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B. Results of the Discussed Approaches

The results given by the three considered approaches and
the simple PSM modulation are compared in this subsection
and confronted with a BF characterization of the experimental
prototype. A test case at low power with voltages mismatch
at the three ports, with V1 = 400V, V2 = 320V, V3 =
480V, P2 = 350W, and P3 = 200W, is considered in the
following.

1) Offline Gradient Descent Optimization Results: Apply-
ing voltage and power conditions of the test case together
with system parameters mentioned in Table. IV to the of-
fline gradient descent algorithm described in Sec. II-A. The
GDA generates the optimum duty cycles offline, at which
the minimum total true rms current is obtained as illustrated
in Fig. 12 The optimum duty cycles found by GDA are
Dopt

1 = 0.23, Dopt
2 = 0.25, Dopt

3 = 0.155, and the total
true rms current irms = 4.15A. Fig. 13(a) shows voltage
and current waveforms utilizing PSM, while Fig. 13(b) shows

TABLE IV
EXPERIMENTAL PROTOTYPE PARAMETERS

Parameters Value

Nominal power at each port Prated kW 5
Switching frequency fS = 1/TS kHz 40
Rated dc voltages V1 = V2 = V3 V 400
Transf. turns ratio n1 : n2 : n3 1:1:1
Transf. leakage inductances:
Port-1 leakage inductance L1 µH 40
Port-2 leakage inductance L2 µH 47
Port-3 leakage inductance L3 µH 41
Dead time µs 1
Switching Devices MMIX1Y100N120C3H1



T
ot
al

tr
u
e
rm

s
cu

rr
en
t
(A

)

(a)

D
u
ty

cy
cl
es

0.15

0.10

0.20

0.25

0.30

0.35

0.40

0.45

0.50

4

6

8

10

12

14

(b)
0 50 100 150 200 250 300 400350 450

Iteration

Total true rms current optimized by
gradient descent search

D2

D1

D3

Fig. 12. Offline gradient descent optimization.

waveforms of the GDA optimization. The total true rms current
reduced by about 60% of its original value compared to PSM.

2) Online Multidimensional Ripple Correlation Search Re-
sults: The same test case is optimized with 3D-RCC described
in Sec. II-B. The search starts with the following initial duty
cycles D1 = D2 = D3 = 0.4 with total true rms current of
about irms = 10A. The search runs online on the experimental
prototype, as shown in Fig. 14. The found optimum point is
at Dopt

1 = 0.21, Dopt
2 = 0.23, Dopt

3 = 0.145 with irms = 4.2.
The total rms current reduced by about 57% as compared to the
initial value and by about 60% as compared to PSM. Fig. 13(c)

shows the waveforms of the steady state search results with
3D-RCC.

3) Artificial Neural Network-Based Modulation Results:
The ANN model has been implemented on the L.t.d B-Box
RCP controller. The ANN model is run at a rate of 10 kHz,
that is, 25% of the switching and control frequency. Measured
voltages and powers of port-2 and port-3 are fed to the ANN as
four inputs, while the ANN generates the optimum duty cycles
based on the trained data. The result of optimizing the same
test case is Dopt

1 = 0.205, Dopt
2 = 0.218, Dopt

3 = 0.1448, at
which irms = 4.14 A is obtained with a reduction of 60%
as compared to PSM. Fig. 13(d) illustrates the waveforms of
ANN-based modulation.

Fig. 15 compares the three approaches together with PSM
and the BF results by means of experimental results, showing
a slight deviation between the three approaches and the actual
minimum found by BF search.

IV. CONCLUSION

This paper discusses and demonstrates three optimization
approaches for achieving reduced rms operation of triple
active bridge (TAB) converter. The discussed approaches are
offline gradient descent algorithm (GDA), online multidimen-
sional ripple correlation search (3D-RCC), and artificial neural
network modulation based (ANN). Different characteristics
emerged. GDA provides analytical analysis of a subset of the
total possible switching patterns (favorable patterns) followed
by a GDA search for optimum modulation variables, showing
the possibility of having an accurate converter model for
specific operating conditions. 3D-RCC provides an online
model-free optimization technique that is effective regardless
of the converter parameters. Finally, the ANN-based modu-
lation provides a data-driven model of the TAB converter to
overcome the problem complexity and allow prompt response
times. The ANN is trained offline on optimum cases collected
by PLECS simulation model.
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Fig. 14. 3D-RCC optimization.
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