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We introduce models for viscoelastic materials, both solids and fluids, based on
logarithmic stresses to capture the elastic contribution to the material response.
The matrix logarithm allows to link the measures of strain, that naturally belong
to a multiplicative group of linear transformations, to stresses, that are additive
elements of a linear space of tensors. As regards the viscous stresses, we simply
assume a Newtonian constitutive law, but the presence of elasticity and plas-
tic relaxation makes the materials non-Newtonian. Our aim is to discuss the
existence of weak solutions for the corresponding systems of partial differential
equations in the nonlinear large-deformation regime. The main difficulties arise
in the analysis of the transport equations necessary to describe the evolution
of tensorial measures of strain. For the solid model, we only need to consider
the equation for the left Cauchy–Green tensor, while for the fluid model, we
add an evolution equation for the elastically-relaxed strain. Due to the tensorial
nature of the fields, available techniques cannot be applied to the analysis of such
transport equations. To cope with this, we introduce the notion of charted weak
solution, based on non-standard a priori estimates, that lead to a global-in-time
existence of solutions for the viscoelastic models in the natural functional setting
associated with the energy inequality.
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1 INTRODUCTION

The realm of viscoelasticity covers a broad class of phenomena in continuum mechanics relevant to the description of
materials that, when deformed, develop internal stresses of both conservative and dissipative nature. The two most suc-
cessful continuum theories to date, namely, solid elasticity and Newtonian fluid mechanics, represent opposite conditions
in which either dissipative or conservative effects are completely negligible [1]. As a consequence, the mathematical tech-
niques employed to treat the two classes of models developed quite separately. Variational methods became the tool of
choice to deal with elasticity, as testified by numerous authoritative monographs [2–4], while the analysis of nonlinear par-
tial differential equations marked the history of mathematical fluid mechanics [5–9]. In a similar fashion, the treatment
of viscoelasticity has followed different paths when stemming from solid or fluid mechanics.
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2 CIAMPA ET AL.

Common to all viscoelastic frameworks is the need to keep track of both the material deformation, related to elastic
responses, and the rate of deformation, involved in dissipative effects. We work in a setting typical of the fluid mechanics
approach but also covering models of viscoelastic solids, which will be indeed our starting point. As a matter of fact,
viscoelastic fluid models can also describe visco-elasto-plastic solids in certain regimes. We use the spatial, or Eulerian,
framework and describe viscous stresses by the simplest Newtonian model that leads to the Navier–Stokes equation. The
distinctive features of the models that we introduce are the use of stresses proportional to the logarithm of the strain that
keeps track of the material deformation and of evolution equations for both the current and relaxed strain measures, as
opposed to the single evolution equation for the elastic stress or the conformation tensor that characterizes Oldroyd-type
models of viscoelastic fluids [10–12]. The combination of these two aspects, which have a rather long history in solid
mechanics and plasticity theory, has important consequences on the mathematical analysis of the evolution equations
for our viscoelastic models.

The importance of considering the logarithm of strain measures has been recently highlighted by several works [13–16].
It is intimately related to acknowledging that the mechanical interpretation of those tensors identifies them as elements
of submanifolds of Lie groups. The matrix logarithm provides a mapping to the associated Lie algebra that is key in the
development of constitutive relations. In fact, the Cauchy stress tensor, from which the deformation of the material is
driven, can be naturally interpreted as an element of the tangent or cotangent bundle to the Banach manifold of tensorial
measures of strain, directly related to Lie algebra and logarithmic strains. What may appear a subtle mathematical argu-
ment eventually leads to a more natural balance of the terms that couple the evolution equations for the material to those
for the tensorial measures of strain, as we shall highlight in due course.

Another important aspect of this work is that we need to consider transport equations for tensor fields that are coupled
to the balance of linear momentum, since the strains that affect the elastic stress are advected by the velocity field of the
continuum. This is common to several models for viscoelastic materials featuring the evolution of tensorial measures of
strain or stress [11, 12, 17, 18], but we propose a somewhat different approach to the analysis of such equations.

Transport equations are a classical topic in analysis and mathematical physics for their ubiquitous presence in con-
tinuum mechanical models where the evolution of various fields is coupled with the deformation of the material. This
class of evolution equations is still attracting considerable attention in relation to the existence and regularity of solutions.
They have stimulated the introduction of novel concepts of weak solutions and, beyond the seminal paper by DiPerna
and Lions [19], a number of works have been broadening the field in recent years (see, for instance, Refs. [20–23]).

Nevertheless, the tensorial transport equations we need to consider cannot be reduced to a system of scalar equations
and a direct application of available results remains elusive. This is due to the presence of source terms (essential for the
physical meaning of the model) that produce a nontrivial coupling between different components of the tensor and with
the gradient of the transporting velocity field. Moreover, and most importantly, the interpretation of those tensors within
submanifolds of Lie groups poses serious limitations to the standard application of techniques based on Lebesgue and
Sobolev spaces.

The existence of solutions in the nonlinear finite-deformation regime with natural regularity assumptions on the data
is still an open problem for several viscoelastic models considered in the literature [11], notwithstanding the important
results of Masmoudi [24] on Oldroyd-type models. Notably, Liu and Walkington [25] were able to establish an existence
result by considering initial data that are small in the sense that the relevant tensor field is close to the identity. This
assumption, essentially, allows to linearize the elastic stress–strain relation and perturbatively split the transport equation
for the deformation gradient in two decoupled equations. The first one concerns a rotation field that evolves in a compact
manifold, so that very strong a priori estimates are available and permit a treatment à la Di Perna–Lions of the source in
the transport equation. The second one follows an evolution on the tangent space to the manifold of deformation tensors
and is thus amenable to a linear space analysis. Stronger convergence properties of approximate solutions were obtained,
thanks to a crucial assumption, in a simplified model considered by Lions and Masmoudi [26], who could then prove
global-in-time existence of weak solutions. This inspired also the work of Bejaoui and Majdoub [27] on other models.
Further important results on the viscoelastic dynamics in the vicinity of the elastically-relaxed state were obtained by
Lin and Zhang [28], Lin, Liu, and Zhang [29], and Lei, Liu and Zhou [30]. Another approach to cope with the nonlinear
coupling has been followed by Kalousek [31] and consists in looking for solutions of the equations up to a reminder term
that may or may not be negligible depending on the size of initial data. Also in this case, the relevance of the solution is
proper in a somewhat linear or small-data regime.

We follow a rather different route and introduce the notion of charted weak solutions that provides a way to tackle the
analysis of tensorial transport equations with sources within a linear space setting. When applied to the study of evo-
lution equations for viscoelastic materials, this approach generates solutions enjoying optimal regularity properties in
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CIAMPA ET AL. 3

relation to the natural estimates on initial data. Moreover, we obtain global-in-time existence of solutions for arbitrarily
large deformations. We exploit the link between a Lie group and the associated Lie algebra through suitable logarithm and
exponential maps and consider important cases in which the relevant tensor manifold, which is an infinite-dimensional
Banach manifold, can be locally parametrized by a single chart in a Banach (or even Hilbert) space. In this way, approxi-
mation and convergence properties on the manifold are reduced to those in the linear setting of the local chart. Charted
weak solutions are based on an approximation scheme and compactness arguments. As of now, the precise meaning of
the limit equation remains to be established. The situation resembles the one encounter in variational problems involving
non-smooth functionals, where Euler–Lagrange equations may be ill-defined at minima.

In Section 2, we present a prototypical model for the dynamics of an incompressible viscoelastic material. This moti-
vating example features tensorial transport equations the analysis of which requires some novel ideas. We introduce the
definition of charted weak solutions for our tensorial equation in Section 3. The proof of existence of suitably defined solu-
tions for the dynamics of the prototypical model is given in Section 4, while Section 5 is devoted to the analysis of a more
structured viscoelastic fluid model. Prospective applications and further research directions are outlined in Section 6,
while Section 7 provides a discussion of some open problems.

2 A PROTOTYPICAL MODEL FOR VISCOELASTIC MATERIALS

Let us consider a set of labels represented by a bounded domain Ω0 ⊂ R
d (with d = 2 or 3) with Lipschitz boundary. The

points of the set of labels are identified by the Lagrangian (or material) coordinates X ∈ Ω0. Given a time interval [0,T]
with T > 0, we define a time-dependent deformation as the map

𝝋 ∶
{

[0,T] × Ω0 → R
d

(t,X) → 𝝋(t,X)

and the deformation gradient tensor field F̂ ∶ [0,T] × Ω0 → Matd(R) with components defined by

F̂(t,X)i𝑗 =
𝜕𝝋i

𝜕X 𝑗

(t,X).

The map 𝝋 represents the position at time t of a material point labelled by X . For any t ∈ [0,T], we assume that 𝝋(t, ·) is
injective and that det F̂(t,X) > 0 for any (t,X) ∈ [0,T] × Ω0. For now, we assume that the regularity of 𝝋 is such that F̂ is
well defined.

In order to introduce the Eulerian setting without ambiguities, we limit ourselves to the case in which, for all times
t ∈ [0,T], 𝝋(t,Ω0) = Ω ⊂ R

d, where the fixed spatial domain Ω is bounded and with Lipschitz boundary. The points of Ω
are the spatial coordinates x. Moreover, we define the spatial inverse on Ω of the deformation as

𝝋̃ ∶
{

[0,T] × Ω → Ω0
(t, x) → 𝝋̃(t, x)

with the property 𝝋̃(t,𝝋(t,X)) = X . The Eulerian velocity field u is defined by

u(t, x) ∶= 𝜕t𝝋(t, 𝝋̃(t, x)).

In the Eulerian setting, we will write the evolution equations in terms of u and the Eulerian deformation gradient F,
given by F(t, x) ∶= F̂(t, 𝝋̃(t, x)). From the above definition, we see that the map 𝝋 is the solution of the nonlinear ordinary
differential equation .

𝝋 = u(t,𝝋).

2.1 Incompressible evolution of the left Cauchy–Green tensor
We define the advective derivative associated with a divergence-free velocity field u as

u ∶= 𝜕t + (u · ∇).

The evolution equation for the Eulerian version F of the deformation gradient reads

uF = ∇uF. (1)
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4 CIAMPA ET AL.

From this, we can easily deduce the equation for the left Cauchy–Green tensor B ∶= FFT as

uB = ∇uB + B∇uT. (2)

For an incompressible material, we know that the velocity field is divergence-free and that the determinant of F is
constant. Without loss of generality, we can assume det F(t, x) = 1 for any instant in time and point in space, implying
also det B(t, x) = 1 for any (t, x) ∈ [0,T] × Ω. To ascertain that the evolution generated by Equation (2) preserves the
value of the determinant, it is enough to check that the right-hand side is tangent to the manifold of tensor fields with
unit determinant. To this end, we consider the first variation of the constraint functional

[M] ∶= ∫
T

0 ∫Ω
(det M − 1)

that gives, for any test tensor field G,

⟨𝛿[M],G⟩ = ∫
T

0 ∫Ω
tr
(
cof(M)TG

)
= ∫

T

0 ∫Ω
tr
(
M−1G

)
,

where the last equality holds if M is invertible and det M = 1, as is the case for F and B. Considering that divu = tr(∇u) = 0,
we immediately obtain

⟨𝛿[B],∇uB + B∇uT⟩ = ∫
T

0 ∫Ω
tr
(
B−1(∇uB + B∇uT)

)
= ∫

T

0 ∫Ω
2tr(∇u) = 0, (3)

proving that, for any B in the appropriate set, the right-hand side of (2) is orthogonal to the constraint normal 𝛿[B] in
the sense of the tensor scalar product in L2([0,T] × Ω;Matd(R)), induced by the matrix product A ∶ C ∶= tr(ACT). The
transpose on the second factor is irrelevant whenever A or C is symmetric.

2.2 Viscoelastic Cauchy stress
The evolution equation corresponding to the local balance of linear momentum for a continuum in the Eulerian setting
takes the form

𝜌uu = divT + 𝜌f , (4)

where 𝜌 is the mass density, u is the velocity field, 𝜌f is a given force density, and T is the Cauchy stress tensor. The
description of specific materials is addressed by prescribing a constitutive law that expresses the dependence of the stress
T upon kinematic quantities.

For an incompressible viscoelastic material, the Cauchy stress can be additively decomposed in three terms as T =
−pI + Tvi + Tel. The pressure field p takes the role of a Lagrange multiplier for the incompressibility constraint and the
corresponding isotropic pressure term adsorbs all the spherical part of the stress, implying that suitable forms of the
viscous stress Tvi and of the elastic contribution Tel should be traceless. For the viscous stress, we assume the simple
Newtonian form Tvi = 2𝜂D, where 𝜂 is a constant viscosity and D = 1

2
(∇u + ∇uT) is the symmetric deformation rate

tensor. Note that, for an incompressible material, trD = tr∇u = 0.
As for the elastic stress, it must depend on a measure of the deformation that neglects rigid rotations, such as the

left Cauchy–Green tensor B. As argued above, since the evolution driven by Tel should be tangent to the manifold of
deformation tensors with unit determinant, a natural choice is to consider the matrix logarithm log B (a spatial version
of the Hencky strain tensor), which is traceless whenever det B = 1. We thus assume Tel = 𝜅(log B − log Bref), with 𝜅 > 0
being an elasticity constant and Bref representing the relaxed state of deformation, in which no elastic stress arises. For
the time being, we can set Bref = I (as customary in solid mechanics) and obtain the following form of the constitutive
prescription for a viscoelastic solid material:

T = −pI + 2𝜂D + 𝜅 log B. (5)
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CIAMPA ET AL. 5

By choosing a fixed Bref, we are stating that the relaxed configuration never changes, and in this precise sense, we can
say that the viscoelastic material we are representing is a solid. We will introduce in Section 5 a viscoelastic fluid model, in
which the relaxed configuration represented by Bref evolves over time as a consequence of plastic relaxation phenomena.

In summary, the coupled Equations (2) and (4), with the definition (5) and suitable initial and boundary conditions,
represent the differential problem that describes the incompressible evolution of our viscoelastic solid.

3 TENSORIAL TRANSPORT EQUATIONS AND CHARTED WEAK
SOLUTIONS

Here, we introduce a suitable notion of solution for tensorial transport equations that will lead to a satisfactory treatment,
in Section 4, of the coupled system of evolution equations for the viscoelastic solid model obtained by (2) and (4) under
the constitutive assumption (5) and the incompressibility constraint. We will discuss in Section 6 the broader scope of
applicability our approach in the context of continuum mechanical models.

If we are given a smooth divergence-free vector field u, we can consider the Cauchy problem{
𝜕tF + u · ∇F = ∇uF,
F(0, ·) = F0,

(6)

where F0 is some smooth matrix-valued function with det F0 = 1. Then, by setting B ∶= FFT and B0 ∶= F0FT
0 , we have a

solution of {
𝜕tB + u · ∇B = ∇uB + B(∇u)T,
B(0, ·) = B0.

(7)

If the vector field is irregular, namely, u ∈ L1((0,T);W 1,p(Ω)) for some 1 < p < ∞, the Cauchy–Lipschitz theory
cannot be applied, and in particular, distributional solutions of (7) may not be defined. This is indeed our context: If
u is the velocity field that solves a Navier–Stokes-type equation, we have that u is divergence-free and typically u ∈
L∞((0,T);L2(Ω)) ∩ L2((0,T);H1

0(Ω)).

3.1 A Hilbert manifold of tensor fields
To describe divergence-free velocity fields in a weak sense, we employ the standard spaces H and V defined as the closure
of smooth compactly supported divergence-free vector fields on Ω with respect to the norm in L2(Ω;Rd) and H1(Ω;Rd),
respectively. In particular, V is the subspace of H1

0(Ω;R
d) of weakly divergence-free vector fields vanishing on 𝜕Ω in the

sense of traces.
To appropriately deal with the relevant tensor fields, we introduce the set of symmetric traceless d × d matrices  ∶=

{M ∈ Matd(R) ∶ MT = M, trM = 0} and the set of tensor fields

 ∶=
{

B0 ∶ Ω → Mat3(R) ∶ B0 = BT
0 , det B0 = 1, and log B0 ∈ L2(Ω;)

}
. (8)

We will prove that, for any divergence-free velocity field u ∈ L2([0,T];V), Equation (2) admits a solution in the set

T ∶=
{

B ∶ [0,T] × Ω → Mat3(R) such that B = BT
, det B = 1,

and log B ∈ L2([0,T] × Ω;) ∩ L∞([0,T];L2(Ω;))

}
for any T > 0 and for any choice of the initial condition B0 ∈ .

Note that, while  is a linear space, neither  not T are such, due to the nonlinear constraint of unit determinant.
Most importantly, it is the logarithm of elements of  and T that belongs to a linear space. The set T is a Hilbert
manifold. In fact, the matrix logarithm is bijective and differentiable on symmetric positive definite tensor fields, and
provides an atlas covering T with a single local chart represented by the Hilbert space L2([0,T]×Ω;). This fact allows
us to introduce a charted weak topology on T such that a sequence {Bh} converges weakly to B if and only if the sequence
{log Bh} converges weakly to log B in L2([0,T] × Ω;).
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6 CIAMPA ET AL.

3.2 Charted weak solutions
Based on the notion of charted weak convergence in the set T mentioned above, we can give our main definition and
results. In what follows, we will denote the norm on spaces of the form Lp([0,T];X) by || · ||LpX .

Definition 1. Given u ∈ L∞([0,T];H) ∩ L2([0,T];V) and B0 ∈ , we say that B ∈ T is a charted weak solution of
the transport Equation (7) with initial datum B0 if there exist two sequences {uk} and {log B0,k} of smooth fields that
satisfy

(i) uk
∗
⇀ u in L∞([0,T];H) ∩ L2([0,T];V),

(ii) log B0,k ⇀ log B0 in L2(Ω;),

and such that the corresponding sequence of smooth solutions {Bk} of (7) with advecting field uk and initial condition
B0,k satisfies

log Bk
∗
⇀ log B in L∞([0,T];L2(Ω;)).

In particular, B is the limit of {Bk} in T with respect to the charted weak topology.

We can now prove the main theorem of this section.

Theorem 3.1. For any B0 ∈  and u ∈ L∞([0,T];H) ∩L2([0,T];V), there exists a charted weak solution B ∈ T of the
Cauchy problem (7), which satisfies

|| log B||2L∞L2 ≤ 16T||∇u||2L2L2 + 2|| log B0||2L2 . (9)

Proof. By taking convolutions with standard mollifiers, we can construct sequences {uk} and {log B0,k} of smooth
fields such that uk

∗
⇀ u in L∞([0,T];H) ∩ L2([0,T];V) and log B0,k → log B0 in L2(Ω;). To obtain B0,k, we regu-

larize log B0 by convolution and then take the matrix exponential. In this way, we directly have a uniform bound on|| log B0,k||L2 as needed. Then, for any k ∈ N, we consider the unique smooth solution Bk of

𝜕tBk + (uk · ∇)Bk = ∇ukBk + Bk∇uT
k (10)

with initial condition B0,k. Note that, since uk is smooth, existence and uniqueness of a smooth solution Bk for
problem (7) is a classical result.

The central step of the proof is establishing suitable a priori estimates on solutions of (10). We multiply Equation (10)
by B−1

k log Bk, and by integrating over Ω, we obtain (see (A5) in Appendix A)

d
dt
|| log Bk||2L2 + ∫Ω

(uk · ∇)(log Bk ∶ log Bk)dx = 4∫Ω
(∇uk ∶ log Bk)dx ≤ 2

𝜀
||∇uk||2L2 + 2𝜀|| log Bk||2L2 , (11)

where the last term comes from applying Young's inequality with a parameter 𝜀 > 0, with units of inverse time, that
will be chosen later. The second term of the left-hand side vanishes since uk vanishes on 𝜕Ω and divuk = 0. Hence,
by integrating in time, we obtain

|| log Bk(t, ·)||2L2 ≤ 2
𝜀
||∇uk||2L2L2 + 2𝜀|| log Bk||2L2L2 + || log B0,k||2L2 (12)

and by the trivial bound || log Bk||2L2L2 ≤ T|| log Bk||2L∞L2 ,

we obtain that

(1 − 2𝜀T)|| log Bk||2L∞L2 ≤ 2
𝜀
||∇uk||2L2L2 + || log B0,k||2L2 ≤ 2

𝜀
||∇u||2L2L2 + || log B0||2L2 ,

where in the last step, we used the properties of the mollifiers. By choosing 𝜀 < 1∕(2T), say 𝜀 = 1∕(4T), from the
combination of (12) and (3.2), we conclude that any solution of (10) belongs to T , since log Bk ∈ L2([0,T] ×Ω;) ∩
L∞([0,T];L2(Ω;)), and the estimate (9) is satisfied by each Bk.
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CIAMPA ET AL. 7

Moreover, the sequence {log Bk} is uniformly bounded in the spaces L2([0,T] × Ω;) and L∞([0,T];L2(Ω;)).
Hence, the existence of a charted weak solution B for (7) follows from a standard compactness argument. The proper-
ties of being symmetric and traceless are linear constraints defining closed subspaces and pass naturally to the limit.
This implies that B is symmetric and det B = 1. □

Remark 3.2. With Theorem 3.1, we have proven that the approximation procedure described in the definition of
charted weak solutions admits a limit that is well behaved, in the sense that it satisfies the integrability properties that
we can a priori establish for a solution of the tensorial transport equation with natural assumptions on the regularity
of the initial data and the advecting velocity field.

Remark 3.3. A better characterization for charted weak solutions remains elusive. This is partly due to the fact that
we cannot pass to the limit directly in the distributional formulation of the equations. A major obstacle originates
from the fact that derivatives of a tensor field do not in general commute with the tensor itself (at variance with the
scalar case) and a theory of renormalized solutions (in the spirit of [32] for example) does not seems to work. This
is intimately linked to the nonlinear nature of the tensor manifold that becomes apparent when we consider the
evolution equation for the logarithm itself, as shown in Appendix C.

4 EXISTENCE OF SOLUTIONS FOR THE VISCOELASTIC SOLID

By substituting the constitutive assumption (5) in the balance of linear momentum (4) and neglecting external forces (f =
0) for simplicity, we obtain the equations for our viscoelastic solid. Combining it with the incompressibility constraint,
the evolution equations for the left Cauchy–Green tensor, and with suitable initial and boundary conditions, we obtain,
in a time-space domain [0,T] × Ω, the differential problem

𝜌uu = −∇p + 𝜂Δu + 𝜅div log B, (13a)

uB = ∇uB + B∇uT, (13b)

div u = 0, det B = 1, (13c)

u(0, ·) = u0, B(0, ·) = B0, (13d)

u|𝜕Ω = 𝟎. (13e)

Definition 2. We say that a pair (u,B) is a Leray weak solution of the differential problem (13) if

(i) u ∈ L∞([0,T];H) ∩ L2([0,T];V) satisfies Equation (13a) in the distributional sense, namely,

∫
T

0 ∫Ω
𝜌 (u𝜕t𝚯 + u ⊗ u ∶ ∇𝚯) dxdt + ∫Ω

𝜌u0𝚯(0, ·)dx = −∫
T

0 ∫Ω

(
2𝜂D + 𝜅 log B

)
∶ ∇𝚯dxdt, (14)

for all divergence-free test functions 𝚯 ∈ C∞
c ([0,T) × Ω);

(ii) B ∈ T is a charted weak solution of Equation (13b) with initial datum B0;
(iii) the pair (u,B) satisfies, for almost every t ∈ [0,T], the energy inequality

𝜌||u(t, ·)||2L2 +
𝜅

2
|| log B(t, ·)||2L2 + 4𝜂 ∫

t

0
||D(s, ·)||2L2 ds ≤ 𝜌||u0||2L2 +

𝜅

2
|| log B0||2L2 . (15)

Note that the energy inequality guarantees that our model is thermodynamically consistent, because the sum of kinetic,
elastic, and dissipated energy is bounded by the total energy at the initial time. To prove the existence of Leray weak
solutions for the differential problem (13), we will make use of the following theorems (see [33, Corollary 8.1] and [34],
respectively).

Theorem 4.1 (Leray–Schauder). Let (X , || · ||) be a Banach space and let A ∶ X → X be a compact operator. Then, either
Au = u has a solution or the set

S ∶= {u ∈ X ∶ Au = 𝜆u for some 𝜆 > 1},
is unbounded.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10469 by C

ochraneItalia, W
iley O

nline L
ibrary on [11/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 CIAMPA ET AL.

Lemma 4.2. Let Ω ⊂ R
d be an open and bounded domain with Lipschitz boundary and let vn be a bounded sequence

in L∞([0,T];L2(Ω)) ∩ L2([0,T];H1
0(Ω)). Assume that there exists C and 𝛼 > 0 such that, for all 𝛿 ≥ 0 sufficiently small,

∫
T−𝛿

0
||vn(t + 𝛿, ·) − vn(t, ·)||2L2 dt ≤ C𝛿𝛼. (16)

Then, the sequence admits a convergent subsequence in L2([0,T];L2(Ω)).

Proof. We denote by ṽn the sequence defined on R
d+1 which is equal to vn on (0,T)×Ω and 0 otherwise. Let 0 < 𝛿 < T,

we have that

∫
+∞

−∞ ∫
R

d
|ṽn(t + 𝛿, x) − ṽn(t, x)|2dxdt = ∫

T−𝛿

0 ∫Ω
|vn(t + 𝛿, x) − vn(t, x)|2dxdt

+ ∫
T

T−𝛿 ∫R
d
|ṽn(t + 𝛿, x) − vn(t, x)|2dxdt ≤ C𝛿𝛼 + 2𝛿||vn||2L∞L2 .

On the other hand, if h ∈ R
d, we have that

∫
+∞

−∞ ∫
R

d
|ṽn(t, x + h) − ṽn(t, x)|2dxdt = ∫

T

0 ∫
R

d

|||||∫
1

0
∇ṽn(t, x + sh)hds

|||||
2

dxdt ≤ C|h|2||∇vn||2L2L2 ,

where in the last line we used Sobolev's extension theorem. Then, since by assumption the norms ||vn||L∞L2 and||∇vn||L2L2 are equibounded, the assertion follows from an application of Riesz–Fréchet–Kolmogorov theorem. □

We can now prove the main theorem of this section.

Theorem 4.3. Given T > 0, for any u0 ∈ H and B0 ∈ , there exists a Leray weak solution (u,B) of the differential
problem (13) in the sense of Definition 2.

Proof. We divide the proof in several steps.
Step 1 Construction of the approximating sequence (I). We use a Galerkin scheme. Let V1 ⊂ V2 ⊂ … ⊂ H1

0(Ω)
be a sequence of spaces of smooth divergence-free functions, and let

⋃
nVn be dense in V ∶= {v ∈ H1

0(Ω) ∶ divv = 0}.
We assume that Vn = span(𝝓1, … ,𝝓n) where 𝝓i is an eigenfunction of the Stokes system, that is, they satisfy{−𝜂Δ𝝓i + ∇𝜋i = 𝜆i𝝓i, in Ω,

div𝝓i = 0, in Ω,
𝝓i = 0, on 𝜕Ω,

(17)

where {𝜆i} is a countable non-decreasing positive sequence. Note that functions in Vn are smooth. For a given v ∈
C([0,T];H1

0(Ω)), we define vn = Πnv ∈ C([0,T];Vn), where Πn ∶ L2(Ω) → Vn is the standard projector. Note that,
since divergence-free vector fields are orthogonal to gradients, the pressure term disappears when projecting the flow
equation. Finally, consider the following linear system:

⎧⎪⎨⎪⎩
𝜌𝜕tun + 𝜌Πn [(vn · ∇)un] = 𝜂ΠnΔun + 𝜅Πndiv log Bn,
div un = 0,
𝜕tBn + (vn · ∇)Bn = ∇vnBn + Bn(∇vn)T,
un(0, ·) = Πnu0,Bn(0, ·) = exp[(log B0)n].

(18)

Since vn is smooth, we can infer that for every n there exists a unique smooth solution Bn of the third equation
in (18). On the other hand, the first equation in (18) reduces to the system of ODEs with Lipschitz right-hand side
given by

𝜌ċn
i (t) = −𝜆n

i cn
i (t) − 𝜌

n∑
𝑗,k=1

Bi𝑗kan
𝑗 (t)c

n
k(t) + bn

i (t), for all i = 1, … n, (19)
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CIAMPA ET AL. 9

where, denoting by ⟨·, ·⟩ the L2 scalar product, we used

un =
n∑

i=1
cn

i (t)𝝓i(x), vn =
n∑

i=1
an

i (t)𝝓i(x),

𝜅Πndiv log Bn =
n∑

i=1
bn

i (t)𝝓i(x),Bi𝑗k = ⟨(𝝓𝑗 · ∇)𝝓k,𝝓i⟩.
Then, by standard Cauchy–Lipschitz theory, we can infer that there exists a smooth solution un on some time

interval [0,Tn). It is worth noticing that, at this stage, we only have local existence because the Lipschitz constant of
the right-hand side of (19) is not uniformly bounded with respect to n.

Step 2 Energy estimates on un. We now show that the solution actually exists on any arbitrary set of times [0,T].
This is achieved by showing that the coefficients cn

i do not blow up in finite time. Let s ∈ (0,Tn) and take the inner
product of the first equation in (18) with un(s):

𝜌⟨𝜕tun(s),un(s)⟩ + 𝜂⟨−Δun(s),un(s)⟩ + 𝜌⟨Πn ((vn(s)·)un(s)) ,un(s)⟩ = 𝜅⟨Πndiv log Bn(s),un(s)⟩. (20)

It is easy to show, by integration by parts and application of Cauchy's and Young's inequalities, that

• ⟨𝜕tun(s),un(s)⟩ = 1
2

d
dt
||un(s)||2L2 ,

• ⟨−Δun(s),un(s)⟩ = ||∇un(s)||2L2 ,
• ⟨Πn ((vn(s)·)un(s)) ,un(s)⟩ = 0,
• ⟨Πndiv log Bn(s),un(s)⟩ ≤ 𝜅

2𝜂
|| log Bn(s)||2L2 +

𝜂

2𝜅
||∇un(s)||2L2 .

Then, by integrating in time, we get

𝜌||un(t, ·)||2L2 + 𝜂 ∫
t

0
||∇un(s, ·)||2L2 ds ≤ 𝜌||Πnu0||2L2 +

𝜅2

𝜂 ∫
t

0
|| log Bn(s, ·)||2L2 ds

≤ 𝜌||u0||2L2 +
𝜅2

𝜂
(16T||∇vn||2L2L2 + 2|| log B0||2L2 ),

for all 0 ≤ t < Tn < T, where in the last inequality we have used Theorem 3.1. Finally, since ||∇vn||L2L2 is uniformly
bounded and ||un(t)||2L2 =

∑n
i=1 |cn

i (t)|2, it follows that the sequence {cn
i }

n
i=1 does not blow-up in finite time.

Step 3 Construction of the approximating sequence (II). Let n ∈ N be fixed and define the following operator

 ∶ vn ∈ C([0,T];Vn) → un ∈ C([0,T];Vn). (21)

Our goal is to show that  has a fixed point. To this end we want to apply Theorem 4.1; then, it is enough to show

(i) un is equicontinuous in C([0,T];Vn);
(ii) the set S ∶= {v ∈ C([0,T];Vn) ∶  (v) = 𝜆v for some𝜆 > 1} is bounded.

In particular, note that from (i), we immediately obtain that the operator  is completely continuous by applying
Ascoli–Arzelà's Theorem. We start by proving (i), for which it is useful to show that 𝜕tun ∈ L4∕3([0,T];V∗). By setting
un =  (vn) and testing the equation with 𝜑 ∈ V , by Holder's inequality, we get

⟨𝜕tun, 𝜑⟩ = −𝜂

𝜌
⟨∇un,∇𝜑n⟩ − 𝜅

𝜌
⟨log Bn,∇𝜑n⟩ − ⟨(vn · ∇)un, 𝜑n⟩

≤
(
𝜂

𝜌
||∇un(t)||L2 + 𝜅

𝜌
|| log Bn(t)||L2

) ||∇𝜑||L2 + ||vn(t)||L3 ||∇un(t)||L2 ||𝜑||L6 ,

where 𝜑n ∶= Πn𝜑. By Sobolev's embedding, we know that

||𝜑||L6 ≤ C1||∇𝜑||L2 ,
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10 CIAMPA ET AL.

and then from (22), it follows that

∫
T

0
||𝜕tun(t)||4∕3

V∗ dt ≤
(
𝜂

𝜌

)4∕3

∫
T

0
||∇un||4∕3

L2 dt + T
(
𝜅

𝜌

)4∕3|| log Bn||4∕3
L∞L2) + C4∕3

1 ∫
T

0
(||vn(t)||4∕3

L3 ||∇un(t)||4∕3
L2 )dt

≤ T1∕3
(
𝜂

𝜌

)4∕3||∇un||4∕3
L2L2 + T

(
𝜅

𝜌

)4∕3|| log Bn||4∕3
L∞L2) + C4∕3

1 ∫
T

0
(||vn(t)||4∕3

L3 ||∇un(t)||4∕3
L2 )dt.

(22)

Note that we can bound

∫
T

0

(||vn(t)||4∕3
L3 ||∇un(t)||4∕3

L2

)
dt ≤

(
∫

T

0
||vn(t)||4L3 dt

) 1
3
(
∫

T

0
||∇un(t)||2L2 dt

) 2
3

,

and by arguing again on Sobolev's embeddings, we have

∫
T

0
||vn(t)||4L3 dt ≤ ∫

T

0
C2

2||vn(t)||2L2 ||∇vn(t)||2L2 dt ≤ C2
2||vn||2L∞L2 ||∇vn||2L2L2 .

Finally, thanks to the energy estimates proved in Step 2, we obtain

∫
T

0
||𝜕tun(t)||4∕3

V∗ dt ≤ C3(T, ||u0||L2 , || log B0||L2 , ||vn||L∞H∩L2V ). (23)

Then, since on finite dimensional spaces all the norms are equivalent, we can write

||un(t2, ·) − un(t1, ·)||H1 ≤ C4 ∫
t2

t1

||𝜕tun(s, ·)||V∗ds ≤ C5
4
√

t2 − t1,

which proves (i). We now prove (ii): Let vn ∈ S, that is, (vn) = 𝜆vn for some (fixed) 𝜆 > 1. This means that vn satisfies

⎧⎪⎨⎪⎩
𝜆𝜌𝜕tvn + 𝜆𝜌Πn[(vn · ∇)vn] = 𝜆𝜂ΠnΔvn + 𝜅Πndiv log Bn,
𝜆divvn = 0,
𝜕tBn + (vn · ∇)Bn = ∇vnBn + Bn(∇vn)T,
𝜆vn(0, ·) = Πnu0,Bn(0, ·) = exp[(log B0)n].

(24)

We multiply the first equation in (24) by vn and integrate in space and time to obtain

𝜆𝜌∫Ω
|vn(t, x)|2dx + 2𝜆𝜂 ∫

t

0 ∫Ω
|∇vn(s, x)|2dxds = 𝜆𝜌∫Ω

|Πnu0(x)|2dx − 2𝜅 ∫
t

0 ∫Ω
log Bn(s, x) ∶ ∇vn(s, x)dxds (25)

On the other hand, by multiplying the equation for Bn by B−1
n log Bn and arguing as in Theorem 3.1, we obtain

1
2∫Ω

| log Bn(t, x)|2dx = 1
2∫Ω

| log B0,n|2dx + 2∫
t

0 ∫Ω
∇vn ∶ log Bndxds. (26)

Summing (25) plus 𝜅 times (26), we easily obtain

∫Ω
|vn(t, x)|2dx + 2𝜂

𝜌 ∫
t

0 ∫Ω
|∇vn(s, x)|2dxds ≤ ∫Ω

|Πnu0(x)|2dx + 1
𝜆

𝜅

2𝜌∫Ω
| log B0,n|2dx. (27)

Considering that 𝜆 > 1, we can show that ||vn||L∞L2 and ||vn||L2H1 are bounded uniformly with respect to 𝜆. Since all
the norms are equivalent on finite-dimensional subspaces, this implies the boundedness of the set S. In conclusion,
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CIAMPA ET AL. 11

we have proven that  satisfies the hypothesis of Theorem 4.1, hence it follows that there exists a fixed point such
that un =  (un).

Step 4 Convergence of the approximating sequence. Let {(un,Bn)} be a sequence with un fixed points as con-
structed in previous step. We show that such a sequence converges to a Leray weak solution of (13). First of all, by the
energy estimates proved in Step 2, the sequence {un} satisfies the bound

||un||L∞L2∩L2H1 ≤ C(u0, log B0).

Then, there exists a vector field u ∈ L∞L2 ∩ L2H1 such that

un ⇀ u inL∞L2 ∩ L2H1.

Moreover, following the proof of Theorem 3.1, we obtain the existence of a charted weak solution B for Equation (13b)
such that the sequence approximating log B is precisely {log Bn}.

The only thing left to prove is the compactness in L2([0,T];H) for the sequence {un} in order to pass to the limit in
the integral formulation of the equation. This follows from Lemma 4.2: Note that for a sequence of fixed points, the
constant in (23) does not depend on n, telling us that an estimate like the one in (16) holds.

Step 5 Energy inequality. We first observe that, for a smooth divergence-free vector field u that vanishes on 𝜕Ω, we
have

||∇u||2L2 = −∫Ω
div∇u · u = −∫Ω

(div∇u + ∇divu) · udx = −2∫Ω
divD · udx = 2∫Ω

D ∶ ∇udx = 2||D||2L2 . (28)

By arguing as in the proof of (ii) in Step 3, (un,Bn) satisfies the energy balance

𝜌||un(t, ·)||2L2 +
𝜅

2
|| log Bn(t, ·)||2L2 + 4𝜂 ∫

t

0
||Dn(s, ·)||2L2 ds = 𝜌||Πnu0||2L2 +

𝜅

2
|| log B0,n||2L2 . (29)

Then, by the lower semi-continuity of the norms with respect to weak convergence and the strong convergence of
the initial datum, we get that (u,B) satisfies the energy inequality in Definition 2. □

5 A VISCOELASTIC FLUID MODEL

As mentioned above, we can construct models for viscoelastic fluids by keeping the very simple form Tel = 𝜅(log B −
log Bref) of the elastic stress, but letting Bref evolve and consequently depart from the identity tensor used for the solid
model. The visoelastic stress tensor is again

T = −pI + 2𝜂D + 𝜅(log B − log Bref), (30)

but the prescription of an evolution equation for Bref is now necessary and represents the heart of the modeling effort.
We base our proposal of what could be regarded as the simplest example of a more general class of models on a few

basic considerations. First of all, the tensor Bref represents a state of incompressible deformation in which the elastic stress
vanishes and, as such, we must keep det Bref = 1 and the symmetry of Bref throughout the evolution. This suggests that a
general evolution equation for Bref should be of the form

uBref = ABref + BrefA
T

for some traceless tensor field A. The fact that A should be traceless to preserve the unit determinant property is apparent
from the discussion in Section 2.1.

Then, if we were to start from a situation in which Bref = B and apply a rigid rotation to the material, no elastic stress
should arise. It means that Bref must rotate with B and hence A should reduce to W = 1

2
(∇u − ∇uT) in that special

case. More generally, we may wish to have the eigenvectors of Bref that always rotate coherently with those of B. To this
end, we can extract from ∇u a contribution that, under the evolution generated by Equation (2), leaves the eignevalues
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12 CIAMPA ET AL.

of B unchanged, while inducing the rotation of its eigenvectors. This can be achieved, as explained in Appendix B, by
projecting out the component of ∇u on the subspace of symmetric tensors that commute with B. We denote by Q the
component of ∇u orthogonal to that subspace, for which we obviously have the bound ||Q||L2 ≤ ||∇u||L2 .

Finally, we need to introduce a relaxation parameter, 𝜏r, that sets a time scale over which, in a static deformation exper-
iment, the elastic stress relaxes significantly. It means that the eigenvalues of Bref should evolve as long as log Bref is
different from log B. By combining these last requirements, we can set A = Q + 𝜏−1

r (log B − log Bref) and obtain

uBref = QBref + BrefQ
T + 1

𝜏r

[
(log B − log Bref)Bref + Bref(log B − log Bref)

]
. (31)

We stress that the model obtained combining (30) and (31) is possibly the simplest model that satisfies the physical and
mathematical considerations given above, but surely not the only possible choice.

The differential problem that describes the viscoelastic flow in [0,T] × Ω thus becomes

𝜌uu = −∇p + 𝜂Δu + 𝜅div(log B − log Bref), (32a)

uB = ∇uB + B∇uT, (32b)

uBref = QBref + BrefQ
T + 𝜏−1

r
[
(log B − log Bref)Bref + Bref(log B − log Bref)

]
, (32c)

div u = 0, det B = det Bref = 1, (32d)

u(0, ·) = u0, B(0, ·) = Bref(0, ·) = B0, (32e)

u|𝜕Ω = 0. (32f)

5.1 A priori estimates
We now prove a formal a priori estimate on Bref that plays a key role in what follows. Assume that Bref is a smooth tensor
which satisfies (32c). We multiply Equation (32c) by Bref

−1 log Bref and observe that

(i) 𝜕tBref ∶ Bref
−1 log Bref = 1

2
d
dt
| log Bref|2,

(ii) (u · ∇)Bref ∶ Bref
−1 log Bref = 1

2
(u · ∇)| log Bref|2,

(iii) QBref ∶ Bref
−1 log Bref = tr(QT log Bref) = Q ∶ log Bref,

(iv) BrefQ
T ∶ Bref

−1 log Bref = Q ∶ log Bref,
(v) (log B − log Bref)Bref ∶ Bref

−1 log Bref = (log B − log Bref) ∶ Bref,
(vi) Bref(log B − log Bref) ∶ Bref

−1 log Bref = (log B − log Bref) ∶ Bref.

Then, by using the identities above and integrating in space, we obtain

d
dt
|| log Bref(t, ·)||2L2 = 4∫Ω

Q ∶ log Brefdx + 4
𝜏r ∫Ω

log B ∶ log Brefdx − 4
𝜏r
|| log Bref||2L2 . (33)

The last term on the right hand side above is negative, then we can drop it and integrate in time to get

|| log Bref(t, ·)||2L2 ≤ 4∫
t

0 ∫Ω
Q ∶ log Brefdxds + 4

𝜏r ∫
t

0 ∫Ω
log B ∶ log Brefdxds + || log Bref(0, ·)||2L2 , (34)

and by using Young's inequality, we obtain

|| log Bref||2L∞L2 ≤ 2𝜀1||Q||2L2L2 + 2T
(

1
𝜀1

+ 1
𝜏r𝜀2

) || log Bref||2L∞L2 +
2𝜀2T
𝜏r

|| log B||2L∞L2 + || log B0||2L2 . (35)

By choosing 𝜀1 = 8T and 𝜀2 = 8T∕𝜏r and since Q is a projection of ∇u, we finally get

|| log Bref||2L∞L2 ≤ 32T||∇u||2L2L2 +
32T2

𝜏2
r

|| log B||2L∞L2 + 2|| log B0||2L2 . (36)
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CIAMPA ET AL. 13

A second important relation is an identity involving the quantity log B − log Bref. In the model under consideration,
thanks to the properties of the tensorial evolution equations, if B and Bref have the same eigenvectors at time t = 0, then
they commute at any time. Under such provisions, we have log B − log Bref = log(BBref

−1), and the tensor field BBref
−1 is

symmetric positive definite and with unit determinant. In light of the identity (A3) presented in Appendix A, we have

u(BBref
−1) = ∇uBBref

−1 + B∇uTBref
−1 − BBref

−1A − BATBref
−1
. (37)

Multiplying Equation (37) by (BrefB
−1) log(BBref

−1), taking into account that all tensors involved except ∇u and A are
symmetric and commute with each other, and integrating in space, we obtain

d
dt
|| log(BBref

−1)||2L2 = 4∫Ω
(∇u − A) ∶ log(BBref

−1)dx.

By considering that A = Q + 𝜏−1
r log(BBref

−1) and that Q is orthogonal to symmetric tensors that commute with B, we
finally arrive at the identities

d
dt
|| log(BBref

−1)||2L2 = 4∫Ω
∇u ∶ log(BBref

−1)dx − 4
𝜏r
|| log(BBref

−1)||2L2 , (38)

and || log(BBref
−1)(t, ·)||2L2 = 4∫

t

0 ∫Ω
D ∶ log(BBref

−1)dxds − 4
𝜏r ∫

t

0
|| log(BBref

−1)||2L2 ds, (39)

where we used the symmetry of log(BBref
−1) and the initial condition (32e).

5.2 Existence of Leray weak solutions
In this section, we prove an existence theorem of weak solutions for the system (32). In essence, we need to extend the
notion of charted weak solution, to cover the equation for Bref, and that of Leray weak solutions and then follow arguments
analogous to those in the previous sections.

Definition 3. Given u ∈ L∞([0,T];H) ∩ L2([0,T];V), B ∈ T , and B0 ∈ , we say that Bref ∈ T is a charted weak
solution of the transport Equation (31) with initial datum B0 if there exist sequences {uk}, {log Bk}, and {log B0,k} of
smooth fields that satisfy

(i) uk
∗
⇀ u in L∞([0,T];H) ∩ L2([0,T];V),

(ii) log Bk
∗
⇀ log B in L∞([0,T];L2(Ω;)),

(iii) log B0,k ⇀ log B0 in L2(Ω;),

and such that the corresponding sequence of smooth solutions {Ck} of (31) with advecting field uk, driving Bk, and
initial condition B0,k satisfies

log Ck
∗
⇀ log Bref in L∞([0,T];L2(Ω;)).

In particular, Bref is the limit of {Ck} in T with respect to the charted weak topology.

Theorem 5.1. Given T > 0, for any B0 ∈ , u ∈ L∞([0,T];H) ∩ L2([0,T];V) and B ∈ T, there exists a charted weak
solution Bref ∈ T of Equation (31) with initial condition B0.

Remark 5.2. The proof of Theorem 5.1 is a mere adaptation of that of Theorem 3.1 based on the availability of the
estimate (36).

Definition 4. A triple (u,B,Bref) is a Leray weak solution of the differential problem (32) if

(i) u ∈ L∞([0,T];H) ∩ L2([0,T];V) satisfies Equation (32a) in the distributional sense, namely

∫
T

0 ∫Ω
𝜌 (u𝜕t𝚯 + u ⊗ u ∶ ∇𝚯) dxdt + ∫Ω

u0𝚯(0, ·)dx = −∫
T

0 ∫Ω

(
2𝜂D + 𝜅(log B − log Bref)

)
∶ ∇𝚯dxdt, (40)
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14 CIAMPA ET AL.

for all divergence-free test functions 𝚯 ∈ C∞
c ([0,T) × Ω);

(ii) B ∈ T is a charted weak solution of Equation (32b) with initial datum B0;
(iii) Bref ∈ T is a charted weak solution of Equation (32c) with initial datum B0;
(iv) the triple (u,B,Bref) satisfies, for almost every t ∈ [0,T], the energy inequality

𝜌||u(t, ·)||2L2 +
𝜅

2
|| log B(t, ·) − log Bref(t, ·)||2L2 + 4𝜂 ∫

t

0
||D(s, ·)||2L2 ds

+ 2𝜅
𝜏r ∫

t

0
|| log B(s, ·) − log Bref(s, ·)||2L2 ds ≤ 𝜌||u0||2L2 .

(41)

Note that, in this case, the energy inequality features an additional term, proportional to 𝜅∕𝜏r, that represents the energy
dissipated by the plastic evolution of Bref.

Theorem 5.3. Given T > 0, for any u0 ∈ H and B0 ∈ , there exists a Leray weak solution (u,B,Bref) of the differential
problem (32) in the sense of Definition (4).

Proof. The proof is very similar to that of Theorem 4.3, hence, we only describe the differences.

Step 1 Construction of the approximating sequence (I). We start by constructing and approximating sequence
un in the same way of Step 1 of Theorem 4.3. We fix a v ∈ C([0,T];H1

0(Ω)), and we define vn = Πnv ∈ C([0,T];Vn),
where Πn ∶ L2(Ω) → Vn is the standard projector. Then, consider the following linear system

⎧⎪⎪⎨⎪⎪⎩

𝜌𝜕tun + 𝜌Πn [(vn · ∇)un] = 𝜂ΠnΔun + 𝜅Πndiv(log Bn − log Bref,n),
div un = 0,
𝜕tBn + (vn · ∇)Bn = ∇vnBn + Bn(∇vn)T,
𝜕tBref,n + (vn · ∇)Bref,n = QnBref,n + Bref,nQT

n + 1
𝜏r

[
(log Bn − log Bref,n)Bref,n + Bref,n(log Bn − log Bref,n)

]
,

un(0, ·) = Πnu0,Bn(0, ·) = Bref,n(0, ·) = B0,n,

(42)

where Qn is a suitable projection of ∇un described in Appendix B. Since vn is smooth, there exists a unique solution
of the above system, at least for small times t < Tn.

Step 2 Energy estimates on un. In full analogy with Step 2 of Theorem 4.3, we only need to prove an energy estimate
on un. This follows form the use of Theorem 3.1 and of the a priori estimate (36) and leads to

𝜌||un(t, ·)||2L2 + 𝜂 ∫
t

0
||∇un(s, ·)||2L2 ds ≤ 𝜌||Πnu0||2L2 +

𝜅2

𝜂 ∫
t

0
|| log Bn(s, ·) − log Bref,n(s, ·)||2L2 ds

≤ 𝜌||u0||2L2 +
𝜅2

𝜂𝜏2
r

[
16T(3𝜏2

r + 32T2)||∇vn||2L2L2 + 2(2𝜏2
r + 32T2)|| log B0||2L2)

]
,

(43)

for all 0 ≤ t < Tn < T. Since ||∇vn||2L2L2 is uniformly bounded, un does not blow up in finite time.

Step 3 Construction of the approximating sequence (II). We consider again the operator

 ∶ vn ∈ C([0,T];Vn) → un ∈ C([0,T];Vn). (44)

The proof of the equicontinuity of un simply requires substituting (log Bn − log Bref,n) for log Bn in the argument of
Theorem 4.3. Since log Bn and log Bref,n belong to the same space, no difficulty arises.

To prove that the set S ∶= {v ∈ C([0,T];Vn) ∶  (v) = 𝜆v for some𝜆 > 1} is bounded we proceed as follows. We fix
𝜆 > 1 and substitute 𝜆vn in place of un in system (42), then we multiply the first equation by vn and integrate in space
and time to obtain

𝜆𝜌∫Ω
|vn|2dx + 2𝜆𝜂 ∫

t

0 ∫Ω
|∇vn|2dxds = 𝜆𝜌∫Ω

|Πnu0)|2dx − 2𝜅 ∫
t

0 ∫Ω
(log Bn − log Bref,n) ∶ ∇vndxds. (45)
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CIAMPA ET AL. 15

By taking the sum of (45) with 𝜅∕2 times (39) applied to Bn and Bref,n, we easily find

∫Ω
|vn|2dx + 2𝜂

𝜌 ∫
t

0 ∫Ω
|∇vn|2dxds ≤ ||u0||2L2 , (46)

that provides a 𝜆-independent bound on vn and the boundedness of S by norm equivalence.
Step 4 Convergence of the approximating sequence. The convergence of un, Bn, and Bref,n can be shown precisely
as in Step 4 of Theorem 4.3.

Step 5 Energy inequality. Note that, by arguing as in the proof of Step 3 with 𝜆 = 1 and by recalling the identity (28),
the triple (un,Bn,Bref,n) satisfies the following identity involving kinetic, elastic, and dissipated energy:

𝜌||un(t, ·)||2L2 +
𝜅

2
|| log Bn(t, ·) − log Bref,n(t, ·)||2L2 + 4𝜂 ∫

t

0
||Dn(s, ·)||2L2 ds

+ 2𝜅
𝜏r ∫

t

0
|| log Bn(s, ·) − log Bref,n(s, ·)||2L2 ds = 𝜌||Πnu0||2L2 .

(47)

Then, by the lower semi-continuity of the norms with respect to weak convergence and the strong convergence of
the initial datum, we get that (u,B,Bref) satisfies the energy inequality in Definition 4. □

6 FURTHER APPLICATIONS

In this section, we highlight the broader scope of applicability of charted weak solutions by recalling the form of objec-
tive rates that have been proposed in connection with non-Newtonian fluid models requiring the transport of tensorial
quantities.

In this work, we proposed to follow the evolution of two distinct tensor fields, B and Bref, with the former linked to the
kinematics of the current deformation and the latter encoding the local elastically neutral state, and then build the elastic
response out of a combination of those. A more standard approach seeks to model the evolution of the viscoelastic stress
by postulating an evolution for either the stress itself or a conformation tensor, considered as a proxy for the evolving
structural properties of the material. A cornerstone for this approach is the seminal paper by Oldroyd [10].

Let us denote by A the evolving tensor field of interest. Following Oldroyd's reasoning, in situations where dissipative
interactions are dominant and microscopic inertial effects should be neglected, the material response cannot depend
on a global uniform acceleration of the material points [35]. Hence, particular attention should be paid to the way A
transforms after a change of reference frame. Given a time-dependent frame rotation Q, an objective tensor A transforms
as A∗ = QAQT. In general, the rate uA of an objective tensor is not objective [1]. Indeed, after defining the frame spin
as the anti-symmetric tensor Ω = (uQ)QT and recalling that QTQ = I, we find

uA∗ = QuAQT + (uQ)AQT + QAuQT = Q(uA)QT +𝛀A∗ − A∗𝛀.

However, by the transformation law of the anti-symmetric part of the velocity gradient, that reads W∗ = QWQT +Ω, it is
possible to define an objective corotational rate for the tensor A as

◦

A ∶= uA + AW − WA. (48)

Objectivity is equally preserved if we add objective tensors or a combination of them on the right-hand side. In par-
ticular, the symmetric part D of the velocity gradient ∇u is objective, and adding AD + DA to (48), we can get the
covariantly-convected (or lower-convected) rate

Δ
A ∶= uA + A∇u + ∇uTA, (49)
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16 CIAMPA ET AL.

and adding AD − DA, we obtain the contravariantly-convected rate

⋄

A ∶= uA − ∇uA − A∇uT, (50)

while adding −2A∇u − 2∇uTA to (49), we obtain the upper-convected (or Oldroyd's) rate

∇
A ∶= uA − A∇u − ∇uTA. (51)

Evolution equations featuring any of these objective rates, widely used in non-Newtonian fluid models, can be tackled
using the notion of charted weak solutions. Importantly, additional relaxation terms in the tensorial evolution should be
postulated in conjunction with the form of the elastic stress in ways that lead to a good interaction with the momentum
balance equation. This would allow to obtain existence results for their coupled evolution, as is the case for the models
presented above.

Finally, further directions in the construction of viscoelastic models that could benefit from our approach involve con-
sidering the role of finite extensibility of the polymeric chains that confer viscoelastic properties to several materials. This
results in a strongly nonlinear response under continuous deformation and in an evolution for the relaxed state dom-
inated by plastic effects. The emphasis we placed on the evolution equation for the relaxed state as a basic ingredient
to describe viscoelasticity represents a key step in connecting non-Newtonian fluid mechanics to plasticity theory in an
Eulerian setting.

7 DISCUSSION OF OPEN PROBLEMS

Regarding the notion of charted weak solutions introduced above, there are a few important questions that remain open.
First of all, we may ask whether the weak convergence of approximate solutions in Definition 1 is actually a strong
convergence. There are examples of similar equations in which it is possible to obtain such improved convergence by
careful estimates of remainder terms in the sequence of norm defects [24, 26, 27]. Exploring that direction, we have found
essential obstructions to the argument due to the inherent lack of integrability of the rotation term 𝛀 in the logarith-
mic strain Equation (C1). The potential mismatch of the eigenvectors between different terms of the weakly converging
sequence {log Bk} is also the main source of difficulties in proving a Cauchy property, and hence strong convergence, of
that sequence. This is another instance of the deep difference between what can be achieved in the analysis of tensorial
equations as opposed to scalar ones.

Related to the issue of strong convergence, there is the question of whether a charted weak solution of (7) is a solution
in a more classical sense. Even in the presence of a strong convergence, the lack of integrability estimates for the tensor
field B would prevent interpreting (7) in the sense of distributions. One could try to base the meaning of (7) on a notion
of distributional solution for the logarithmic strain Equation (C1), but we face again a lack of estimates on the source
terms appearing in the latter equation. A different way to tackle this issue would be to consider Equation (6) for the tensor
field F. In the work by Kalousek [31], the author proves that if F0 ∈ L2 and divF0 = 0, then one can give a distributional
meaning to Equation (6). However, although in principle we could assume these further properties, it is not clear how to
provide a link between the charted weak solution B and the weak limit F. In spite of these difficulties, we believe that it is
of paramount importance to place the tensorial evolution equations in the manifold setting suggested by the mechanical
meaning of the tensor fields. This can in fact provide a solid ground for the treatment of finite-deformation problems, as
shown by our results that apply to arbitrarily large deformations.

Finally, the tensorial nature of the transported quantities and the consequent lack of commutativity prevent us from
proving uniqueness of charted weak solutions using direct computations, in spite of the availability of a priori estimates.
This is due to the fact that such estimates control the eigenvalues of the tensor fields (which is sufficient to obtain weak
compactness) but cannot constrain the rotation of eigenvectors in an effective way. Obviously, one should address all of
these points for charted weak solutions of (7) with a given velocity field before working on possible improvements of the
results regarding the coupled equations of viscoelastic models.
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APPENDIX A: DETAILS ON A PRIORI ESTIMATES

In this section, we establish some accessory results useful in obtaining identities and estimates. We begin by considering a
symmetric tensor field C that can be diagonalized as C = RDRT, with D diagonal and R orthogonal. By differentiating the
relation RRT = I, we find that the tensor field 𝛀R ∶= (uR)RT is anti-symmetric. This entails the fundamental relation

uC = 𝛀RC − C𝛀R + R(uD)RT
. (A1)

If we now consider a matrix-valued analytic function 𝑓 of C such that 𝑓 (C) = R𝑓 (D)RT, we find that

u𝑓 (C) = 𝛀R𝑓 (C) − 𝑓 (C)𝛀R + 𝑓 ′(C)R(uD)RT = 𝛀R𝑓 (C) − 𝑓 (C)𝛀R + 𝑓 ′(C)(uC −𝛀RC + C𝛀R). (A2)

We are interested in two particular cases of matrix functions, namely the inverse C−1 and the logarithm log C. If det C ≠
0, exploiting the commutation properties of diagonal matrices, we have

uC−1 = 𝛀RC−1 − C−1𝛀R − C−1(uC −𝛀RC + C𝛀R)C−1 = −C−1(uC)C−1
. (A3)

Moreover, if C is symmetric and positive definite, we obtain

u log C = 𝛀R log C − (log C)𝛀R − C− 1
2 𝛀RC

1
2 + C

1
2 𝛀RC− 1

2 + C− 1
2 (uC)C− 1

2 , (A4)
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that leads to

1
2
u(log C ∶ log C) = (u log C) ∶ log C

= 𝛀R log C ∶ log C − (log C)𝛀R ∶ log C −𝛀R ∶ log C +𝛀R ∶ log C + C− 1
2 (uC)C− 1

2 ∶ log C

= uC ∶ C−1 log C, (A5)

where we used the cyclic property of the trace, the symmetry of C, and the fact that powers of C and log C commute.

APPENDIX B: ROTATION OF PRINCIPAL STRAINS

We consider a given symmetric matrix B ∈ Matd(R) positive definite and with det B = 1. Denoting by bi for i = 1, … , d
orthonormal eigenvectors of B, we can consider the tensors

Zi = bi ⊗ bi for i = 1, … , d,

Zd+i =
1√
2
(bi ⊗ b𝑗 + b𝑗 ⊗ bi) for i, 𝑗 = 1, … , d with 𝑗 > i,

Z d(d+1)
2

+i =
1√
2
(bi ⊗ b𝑗 − b𝑗 ⊗ bi) for i, 𝑗 = 1, … , d with 𝑗 > i,

and form the basis  = {Zi ∶ i = 1, … , d2} for Matd(R) that is orthonormal with respect to the scalar product A ∶ C =
tr(ACT) that defines orthogonality in Matd(R).

Proposition B.1. The orthogonal complement of the subspace

B ∶= {M ∈ Matd(R) ∶ MT = M and MB − BM = 0}

is the sum of the subspaces  of anti-symmetric matrices and

B ∶= {M ∈ Matd(R) ∶ MB + BMT = 0}.

Remark B.2. Given the defining properties of these subspaces, the projection Q of ∇u on ⟂
B is solely and the only

responsible for the rotation of the eigenvectors of B generated by Equation (2), beyond the effect of mere advection.
Such an orthogonal projection can be effectively computed by subtracting from ∇u its projections on the elements of
the basis  that generate B. Note that  and B need not be orthogonal subspaces of ⟂

B .

Proof. To prove our claim, there are a few cases to be considered. If B = I, then B comprises all symmetric matrices,
B is equal to , and ⟂

B = . If we now assume that B has distinct (and positive) eigenvalues bi, i = 1, … , d, and
we represent matrices on the eigenbasis of B mentioned above, matrices M = (mi𝑗) in B are such that

• for d = 2, we have 2m11b1 = 0, 2m22b2 = 0, and m12b2 + b1m21 = 0 from which we conclude that m11 = m22 = 0
and m12 = −(b1∕b2)m21;

• for d = 3, we similarly obtain m11 = m22 = m33 = 0 and

m12 = −(b1∕b2)m21, m13 = −(b1∕b3)m31, m23 = −(b2∕b3)m32.

In both cases, since the eigenvalues are all distinct, we immediately conclude that  ∩ B = {0}. Given that the
non-null elements ofB are clearly not symmetric, that subspace is not orthogonal to. Nevertheless, the dimensions
of B and  are both equal to 1, if d = 2, or 3, if d = 3, and add up to the dimension of ⟂

B . In this case, the latter
subspace is a direct sum of the former two.

This settles the matter for d = 2, but in the three-dimensional case, we need to consider what happens if two
eigenvalues coincide and are distinct from the third one. Without loss of generality we can assume b1 ≠ b2 = b3. We
still obtain m11 = m22 = m33 = 0 and

m12 = −(b1∕b2)m21, m13 = −(b1∕b2)m31, m23 = −m32.
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We easily see that the intersection between  and B has dimension equal to 1, while both subspaces have dimension
3. By Grassmann's formula, dim(+B) = 5 = dim⟂

B , since the degeneracy of the eigenvalues implies dimB = 4.
This concludes our argument. □

Our result gives an alternate proof of a theorem given by Fattal & Kupferman [36] and includes the cases in which
the eigenvalues are degenerate. We stress that the linear decomposition of a matrix M as the sum of three terms, belong-
ing respectively to B, B, and , is unique only when the three subspaces are in a direct sum. Our construction with
orthogonal projections on a tensorial basis provides a general way to compute the component of ∇u that generates only
the rotation of the eigenvectors of B.

APPENDIX C: EQUATION FOR THE LOGARITHMIC STRAIN

We can now use the results of the previous appendices to deduce an evolution equation for log B starting from the
evolution equation for the left Cauchy–Green tensor B.

First of all, we consider the decomposition ∇u = 𝛀 + K + S, where S is symmetric and commutes with B, 𝛀 is
anti-symmetric and generates the rotation of the eigenvectors of B, and K is such that KB + BKT = 0. With this, the
evolution equation for B becomes

uB = ∇uB + B∇uT = 𝛀B − B𝛀 + 2SB.

We now substitute this result in the equation for log B implied by (A4) and, considering that 𝛀 = 𝛀R, obtain

u log B = 𝛀 log B − (log B)𝛀 + 2S. (C1)

Even though this equation may seem linear, we should keep in mind that both 𝛀 and S depend on B in a nontrivial way.
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