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a b s t r a c t

We study the feedback vertex set problem in tournaments from the polyhedral point
of view, and in particular we show that performing just one round of the Sherali–
Adams hierarchy gives a relaxation with integrality gap 7/3. This allows us to derive a
7/3-approximation algorithm for the feedback vertex set problem in tournaments that
matches the best deterministic approximation guarantee due to Mnich, Williams, and
Végh, and is a simplification and runtime improvement of their approach.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A feedback vertex set (FVS) of a tournament T is a set X of vertices such that T −X is acyclic. Given a tournament T and
(vertex) weights w : V (T ) → Q≥0, the feedback vertex set problem in tournaments (FVST) asks to find a feedback vertex
set X such that w(X) :=

∑
x∈X w(x) is minimum. This problem has numerous applications, for example in determining

election winners in social choice theory [4].
We let OPT(T , w) be the minimum weight of a feedback vertex set of the weighted tournament (T , w). An

α-approximation algorithm for FVST is a polynomial-time algorithm computing a feedback vertex set X with w(X) ≤
α · OPT(T , w). We say that a directed cycle on 3 vertices is a directed triangle.

Let T be a tournament and let △(T ) denote the collection of all {a, b, c} ⊆ V (T ) that induce a directed triangle in T ;
we will use abc := {a, b, c} as a convenient shorthand. Note that T is acyclic if and only if △(T ) = ∅. This suggests the
following easy 3-approximation algorithm for FVST in the unweighted case (the general case follows for instance from
the local ratio technique [7]). If T is acyclic, then ∅ is an FVS, and we are done. Otherwise, we find abc ∈ ∆(T ) and put all
its vertices into the FVS. We then replace T by T − {a, b, c} and recurse.

In this paper, we study FVST from the polyhedral perspective. The basic LP relaxation, or just basic relaxation, for T is
the polytope

P(T ) := {x ∈ [0, 1]V (T )
| ∀abc ∈ △(T ) : xa + xb + xc ≥ 1},

where throughout the text LP stands for linear programming (or linear program, according to the context).
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The integer points of P(T ) are exactly the characteristic vectors of feedback vertex sets of T . We call any polytope
Q (T ) ⊆ [0, 1]V (T ) with this property a relaxation of FVST. The extent to which optimizing over a relaxation Q (T ) of FVST
approximates OPT(T , w) is encoded by its integrality gap. This is the supremum of the ratio

OPT(T , w)
min{wT x : x ∈ Q (T )}

,

taken over all w : V (T )→ Q≥0.
It is not hard to see (Proposition 4) that the integrality gap of P(T ) is at most 3. Moreover, using random tournaments,

one can show (see Proposition 3) that the worst-case integrality gap of P(T ) is exactly 3 (by worst-case, we mean that we
take the supremum over all tournaments T ).

In this paper, we give a relaxation for FVST with integrality gap 7/3. This allows us to derive a 7/3-approximation
algorithm for FVST, matching the best-known deterministic approximation algorithm by Mnich et al. [14]. Our approach
simplifies the algorithm from [14] and has significantly faster running time. Before stating our results, we briefly review
the previous work on the topic.

State of the art

The first non-trivial approximation algorithm for FVST was a 5/2-approximation algorithm by Cai, Deng, and Zang [5].
Cai et al.’s approach is polyhedral. It is based on the fact that the basic LP relaxation P(T ) is integral whenever the input
tournament avoids certain subtournaments, see the next paragraphs for details.

Let T5 be the set of tournaments on 5 vertices where the minimum FVS has size 2. Up to isomorphism, |T5| = 3 (see
Cai et al. [5]). We say that T is T5-free if no subtournament of T is isomorphic to a member of T5. More generally, let T
e a collection of tournaments. A T -subtournament of T is a subtournament of T that is isomorphic to some tournament
f T . We say that T is T -free if T does not contain a T -subtournament.
Cai et al. prove that P(T ) is integral as soon as T is T5-free. In this case solving a polynomial-size LP gives a minimum

eight FVS. We let CDZ(T , w) be the polynomial-time algorithm from Cai et al. [5], that given a T5-free tournament T and
w : V (T )→ Q≥0, finds a minimum weight feedback vertex set of T .

A 5/2-approximation algorithm follows directly from this. Using the local ratio technique, while T contains a
T5-subtournament S, one can reduce to a smaller instance with one vertex of S removed. If one is aiming for a
5/2-approximation algorithm, one can reduce to a T5-free tournament T , for which one can even solve the problem
exactly by applying CDZ(T , w).

The 5/2-approximation algorithm of Cai et al. [5] was improved to a 7/3-approximation algorithm by Mnich, Williams,
and Végh [14]. Loosely speaking, Mnich et al.’s algorithm replaces T5 by T7, defined as the set of tournaments on 7 vertices
where the minimum FVS has size 3. It is known that, up to isomorphism, |T7| = 121 (see [14]).

Similarly, if one is aiming for a 7/3-approximation algorithm, one can reduce to T7-free tournaments. In fact, instead
of using the local ratio technique, Mnich et al. [14] use iterative rounding, see the next paragraph. However, the basic
relaxation P(T ) is not necessarily integral for T7-free tournaments, so obtaining a 7/3-approximation algorithm requires
more work.

The algorithm in [14] consists of two phases. Let the T7-relaxation be the LP obtained from the basic relaxation P(T )
by adding the constraint

∑
v∈V (S) xv ≥ 3 for each T7-subtournament S of T . The first phase is an iterative rounding

procedure on the T7-relaxation. This reduces the problem to a residual tournament which is T7-free. The second phase is
a 7/3-approximation algorithm for FVST on the residual tournament, via an intricate layering procedure.

Recently, Lokshtanov, Misra, Mukherjee, Panolan, Philip, and Saurab [12,13] gave a randomized 2-approximation
algorithm for FVST. Their algorithm produces a feasible solution that is a 2-approximation with probability at least 1/2,
and does not rely on Cai et al. [5], but rather on the idea of guessing vertices which are not part of some optimal FVS
and that of controlling the in-degree sequence of the tournament. The derandomized version of their algorithm runs in
quasi-polynomial-time. A deterministic 2-approximation algorithm would be best possible, since for every ε > 0, FVST
does not have a (2− ε)-approximation algorithm, unless the Unique Games Conjecture is false or P = NP.1

Our contribution

We show that performing just one round of the Sherali–Adams hierarchy [16] on the basic relaxation P(T ) yields a
relaxation whose integrality gap is 7/3. Below, SAr (T , w) denotes both the relaxation obtained by performing r rounds
of the Sherali–Adams hierarchy on P(T ) and projecting out extra variables, and the optimum value of the corresponding
linear program (formal definitions can be found in Section 2).

Theorem 1. Let T be a tournament. The relaxation SA1(T , w) has worst-case integrality gap equal to 7/3.

1 This follows from results of Speckenmeyer [17] and Khot and Regev [9]. Speckenmeyer gave a reduction from the vertex cover problem to
FVST, which actually turns out to be approximation-preserving. Khot and Regev proved that, under the Unique Games Conjecture, it is NP-hard to
approximate the vertex cover problem within a ratio of 2− ε, where ε > 0 is any constant.
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Theorem 1 allows us to replace the T7-relaxation used in Mnich et al.’s 7/3-approximation algorithm for FVST [14] with
he Sherali–Adams relaxation SA1(T , w). This significantly improves the running time of the first phase of the algorithm.
oreover, we further simplify the second phase of the algorithm, obtaining the following.

heorem 2. Algorithm 1 is a 7/3-approximation algorithm for FVST. More precisely, the algorithm outputs in polynomial
time a feedback vertex set X such that w(X) ≤ 7

3SA1(T , w) ≤ 7
3OPT(T , w).

We will not prove Theorem 1 directly, but derive it as a consequence of Theorem 2. Precise definitions will be given
ater. For now, we give a sketch of Algorithm 1, and explain how it compares with Mnich et al. [14].

omparison to previous work

Our approach simplifies both phases of Mnich et al.’s algorithm [14]. In our first phase, instead of considering the
7-relaxation, we consider SA1(T , w), the relaxation obtained from the basic LP after applying one round of the Sherali–
dams hierarchy. One can check that the two relaxations are incomparable.2 However, we believe that the Sherali–Adams
elaxation is preferable for its provably bounded integrality gap (see Theorem 1) and for its smaller size. By definition
see Section 2), SA1(T , w) only has O(n4) constraints, while the T7-relaxation can have Ω(n7) constraints.

The randomized algorithm by Lokshtanov et al. [13] has (worst-case) O(n17) complexity. The feasible solution it returns
s a 2-approximation with probability at least 1/2. Mnich et al. [14] do not give a precise analysis of the run time of their
lgorithm. However, it seems the solution of the linear programs is the bottleneck of their algorithm, and this is true also
or ours. Therefore, by using a smaller LP, we obtain a speedup in run-time.

We now give an overview of Algorithm 1, whose input is a tournament T and a weight function w. Let x be an optimal
olution to SA1(T , w). For each coordinate xv of x such that xv ≥ 3/7, we round up xv to 1 and delete v from T . We
continue the rounding using SA0(T , w) (the basic relaxation), rounding up coordinates with value at least 1/2. At the end
we obtain a residual tournament (which is still denoted by T for simplicity) such that all coordinates of an optimal solution
of SA0(T , w) are less than 1/2. The whole rounding is done exactly as in [14], except that we replace the T7-relaxation
with SA1(T , w).

Then, we proceed to the second phase, described by the algorithm Layers (see Section 4 for formal definitions). The
idea follows Mnich et al. [14], but we obtain a few important simplifications thanks to our use of the Sherali–Adams
relaxation during the first phase. We start from a minimum in-degree vertex z and build a breadth-first search (BFS)
in-arborescence that partitions V (T ) in layers such that every triangle of T lies within three consecutive layers. Hence, a
feedback vertex set for T can be obtained by including every other layer, and, for every layer i that is not picked, a set Fi
that is a feedback vertex set for that layer (we call the set Fi a local solution).

Algorithm 1 FVST-main

Input: A tournament T and a weight function w : V (T )→ Q>0.
Output: A feedback vertex set of T of weight at most 7

3OPT(T , w).
1: x← optimal solution to SA1(T , w)
2: F ← {v ∈ V (T ) : xv ≥ 3/7}
3: if F is a FVS for T then
4: return F
5: else
6: Z ← ∅
7: repeat
8: add to Z all vertices of T − F − Z that are not contained in any triangle
9: x← optimal solution to SA0(T − F − Z, w)
0: F ← F ∪ {v ∈ V (T − F − Z) : xv ≥ 1/2}
1: until T − F − Z is empty or xv < 1/2 for all v ∈ V (T − F − Z)
2: F ′ ← Layers(T − F − Z, w,∅, V (T − F − Z))
3: return F ∪ F ′
4: end if

The main difference with the layering algorithm of [14] is how local solutions are selected: while they use CDZ(T , w) on
each layer as a subroutine to optimally select local solutions, we only use CDZ(T , w) on a small number of layers produced
by the BFS procedure (see Section 4 for further details). For the other layers, we show that they can be naturally partitioned
into two acyclic subtournaments. Hence, we can choose the cheapest of the two as our local solution.

Our method gives, in fact, an improved 9/4-approximation algorithm for FVST on our residual tournament, compared
to the 7/3 factor obtained in Mnich et al. [14].

2 Indeed, using for instance the code in [6], one checks that, settings unit weights (w = 1), SA1(T , w) is stronger than the T7-relaxation when
∈ T , and weaker for some T ∈ T (specifically, for the unique ‘‘light’’ T mentioned in Section 3).
5 7 7
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Paper outline

In Section 2, we establish the first basic facts about the integrality gap of the basic relaxation and we define the
herali–Adams hierarchy. In Section 3 we introduce a local structure called a diagonal, which will be helpful in our
ounding procedure. We also classify every tournament as either light or heavy, and derive some structural properties
f light tournaments. These results will be used later, since the input of our layering algorithm is a light tournament. In
ection 4, we describe our layering procedure and prove several lemmas on it. Finally, in Section 5, we prove Theorems 1
nd 2. A conclusion is given in Section 6.

. The basic relaxation and the Sherali–Adams Hierarchy

We begin with a simple observation that will be useful for establishing integrality gaps of both the basic relaxation
nd the Sherali–Adams relaxation. Its proof is a straightforward application of the probabilistic method and can be found,
or instance, in the introduction of the book by Alon and Spencer [1].

roposition 3. Let T be a tournament on n vertices where the direction of each arc is chosen uniformly at random. Then any
eedback vertex set of T has size at least n− O(log n) with high probability.

We now use Proposition 3 to derive the worst-case integrality gap of the basic relaxation. We give the (rather standard)
roof for completeness.

roposition 4. The worst-case integrality gap of the basic relaxation of FVST is equal to 3.

roof. Let T be any tournament with weight function w : V (T ) → Q≥0, and let x∗ be an optimal solution of
ax{wT x : x ∈ P(T )}. Let S = {v ∈ V (T ) : x∗v ≥

1
3 }. Then S is a feedback vertex set of weight at most 3wT x∗. Hence,

OPT(T , w) ≤ w(S) ≤ 3wT x∗, proving that the integrality gap of T is at most 3.
On the other hand, Proposition 3 implies that there are tournaments T on n vertices with OPT(T , 1) = n − O(log n),

where we set w to be the all-ones vector. But setting xv =
1
3 for each v ∈ V (T ) yields a solution of P(T ) with weight n

3 .
hus, taking the supremum over all such T gives that the worst case integrality gap is exactly 3. □

We now turn our attention to the Sherali–Adams relaxation. Let P = {x ∈ Rn
| Ax ≥ b} be a polytope contained in

0, 1]n and let PI := conv(P ∩ Zn). Numerous optimization problems can be formulated as minimizing a linear function
ver PI , where P has only a polynomial number of constraints. For example, let T be a tournament and w : V (T )→ Q≥0.
hen OPT(T , w) is simply the minimum of w⊺x over PI , where P = P(T ) is the basic relaxation defined above.
The Sherali–Adams hierarchy [16] is a simple but powerful method to obtain a refining sequence of approximations

or PI . Since it does not require any knowledge of the structure of PI , it is widely applicable. The procedure comes with
parameter r , which specifies the accuracy of the approximation. That is, for each r ∈ N, we define a polytope SAr (P).
hese polytopes satisfy P = SA0(P) ⊇ SA1(P) ⊇ · · · ⊇ SAr (P) ⊇ · · · ⊇ PI .
An important property of the procedure is that if P is described by a polynomial number of constraints and r is a

onstant, then SAr (P) is also described by a polynomial number of constraints (in a higher dimensional space). Therefore,
or NP-hard optimization problems (such as FVST), one should not expect that SAr (P) = PI for some constant r . However,
s we will see, good approximations of PI can be extremely useful if we want to approximately optimize over PI . Indeed,
espite some recent results [2,8,11,15,18], we feel that the Sherali–Adams hierarchy is underutilized in the design of
pproximation algorithms, and hope that our work will inspire further applications.
Here is a formal description of the procedure. Let P = {x ∈ Rn

| Ax ≥ b} ⊆ [0, 1]n and r ∈ N. Let Nr be the nonlinear
ystem obtained from P by multiplying each constraint by

∏
i∈I xi

∏
j∈J (1−xj) for all disjoint subsets I, J of {1, . . . , n} such

hat 1 ≤ |I| + |J| ≤ r . Note that if xi ∈ {0, 1}, then x2i = xi. Therefore, we can obtain a linear system Lr from Nr by setting
2
i := xi for all i = 1, . . . , n and then xI :=

∏
i∈I xi for all I ⊆ {1, . . . , n} with |I| ≥ 2. We then let SAr (P) be the projection

f Lr onto the variables xi, i ∈ {1, . . . , n}.
We let SAr (T ) := SAr (P(T )), where P(T ) is the basic relaxation. In particular, we have SA0(T ) := P(T ).
For the remainder of the paper, we only need the inequalities defining SA1(T ), which we now describe. Recall that

(T ) is the collection of all {a, b, c} ⊆ V (T ) that induce a directed triangle in T . For simplicity, we call the elements of
△(T ) triangles. For all abc ∈ △(T ) and d ∈ V (T − a− b− c), we have the inequalities

xa + xb + xc ≥ 1+ xab + xbc , (1)

xad + xbd + xcd ≥ xd and (2)

xa + xb + xc + xd ≥ 1+ xad + xbd + xcd . (3)

In addition, there are the inequalities

1 ≥ x ≥ x ≥ 0 (4)
a ab
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Fig. 1. An example of a diagonal and the three tournaments (up to isomorphism) in T5 .

for all distinct a, b ∈ V (T ). Let E(T ) be the set of all unordered pairs of vertices of T . The polytope SA1(T ) is the set
of all (xa)a∈V (T ) ∈ RV (T ) such that there exists (xab)ab∈E(T ) ∈ RE(T ) so that inequalities (1)–(4) are satisfied. Finally, for
w : V (T ) → Q≥0 as above, and r ∈ {0, 1}, we denote by SAr (T , w) the linear program min{wT x : x ∈ SAr (T )}. We will
abuse notation and write SAr (T ′, w) for a subtournament T ′ of T , where coordinates of w corresponding to V (T ) \ V (T ′)
are ignored.

3. Diagonals and light tournaments

Let T be a tournament. An (unordered) pair of vertices ab is a diagonal if there are vertices u, v such that uva ∈ △(T )
and uvb ∈ △(T ) (see Fig. 1(a)). We say that a triangle contains a diagonal if at least one of its pairs of vertices is a diagonal,
and a triangle is heavy if it contains at least two diagonals. A tournament T is heavy if at least one of its triangles is heavy.
If a tournament is not heavy, we say that it is light.

Lemma 5. Let T be a tournament and let x ∈ SA1(T ). If xv < 3/7 for all v ∈ V (T ), then T is light.

Proof. First, let ab be a diagonal of T . We claim that xab ≥ 1/7. Indeed, since ab is a diagonal there must be u, v ∈ V (T )
with uva, uvb ∈ △(T ). From (1), xa+xu+xv ≥ 1+xau+xav and from (2), xab+xau+xav ≥ xa. Adding these two inequalities,
we obtain xu + xv + xab ≥ 1, implying our claim.

Now, suppose by contradiction that T is a heavy tournament. Hence, there exists abc ∈ △(T ) such that ab and bc are
diagonals. By (1), we have xa + xb + xc ≥ 1 + xab + xbc . By the above claim, xab ≥ 1/7 and xbc ≥ 1/7, making the right
hand side at least 9/7. So max(xa, xb, xc) ≥ 3/7, a contradiction. □

Next we prove some results connecting light tournaments to the work of Mnich et al. [14], which relies on tournaments
being T7-free. First, it is easy to describe the tournaments in T5: we refer to Figs. 1(c) and 1(b) for the proof of the following
statement.

Proposition 6. The set T5 contains three tournaments: one of them is heavy, while the other two are light and can be obtained
from each other by reversing the orientation of one arc.

Moreover, although we do not use this fact, we have a computer-assisted proof which shows that 120 out of 121 of
the tournaments in T7 are heavy, and only one is light. We refer to [6] for the code of our proof. Thus, even though a
light tournament is not necessarily T7-free, the property of being light forbids almost all of the tournaments in T7 as
subtournaments.
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Fig. 2. S5 is the following subset of T5 , where the missing arcs can be oriented arbitrarily. Two of these orientations produce isomorphic tournaments.

Fig. 3. S7 is the following subset of T7 , where the missing arcs can be oriented arbitrarily.

We now establish further properties of light tournaments, which we will need in Section 4. Let S5 ⊆ T5 and S7 ⊆ T7
be the collection of tournaments defined in Figs. 2, and 3, respectively. If T is a tournament, we let A(T ) be the set of arcs
of T .

Lemma 7. Every S ∈ S5 is either heavy or has (ui, u3−i), (vi, v3−i) ∈ A(S) for some i ∈ {1, 2} (where S is labeled as in Fig. 2).

Proof. Suppose (u1, u2), (v2, v1) ∈ A(S). Observe that zv2 is a diagonal, since v1u1z and v1u1v2 are triangles, and v2u2 is
a diagonal, since v1u1v2 and v1u1u2 are triangles. Because zv2 and v2u2 are both diagonals, we conclude that the triangle
v2u2z is heavy. The result follows by symmetry. □

Lemma 8. Every S ∈ S7 is heavy.

Proof. Suppose some S ∈ S7 is light, where S is labeled as in Fig. 3. By symmetry, we may assume that (u1, u2), (u2, u3) ∈
A(S). By Lemma 7, (v1, v2), (v2, v3) ∈ A(S). Therefore, u2z is a diagonal, since v1u1z and v1u1u2 are triangles, and zv2 is
a diagonal, since v3u3z and v3u3v2 are triangles. We conclude that v2u2z is a heavy triangle, which contradicts that S is
light. □

4. The layering procedure

This section describes our layering algorithm and proves its correctness. Lemmas 10 to 12 ensure that the algorithm
actually produces a feedback vertex set. Lemmas 14 to 17 prove that Algorithm 2 is a 9/4-approximation algorithm.

We first give some notation. Let T be a light tournament with weight function w : V (T ) → Q≥0. For S ⊆ V (T ), the
in-neighborhood of S is N(S) := {v /∈ S | (v, u) ∈ A(T ) for some u ∈ S} and N(u) := N({u}). For every z ∈ V (T ), define
V1(z) = {z}, and for i ≥ 2 let Vi+1(z) := N(

⋃i
j=1 Vj(z)). In other words, Vi(z) is the set of vertices whose shortest directed

path to z has length exactly i− 1.
Given two sets S, Z ⊆ V (T ), we say that Z in-dominates S if for every s ∈ S there is a z ∈ Z with (s, z) ∈ A(T ). We say

that Z 2-in-dominates S if Z has a subset Z ′ ⊆ Z with |Z ′| ≤ 2 such that Z ′ in-dominates S (we call Z ′ a 2-in-dominating
set).
154
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We now give a more detailed description of the Layers algorithm introduced in Section 1, referring to Algorithm 2 for
the pseudo-code. First, our input tournament T is required to be light, which can be assumed thanks to Lemma 5. This
ill be crucial for the correctness of the algorithm.
We begin by picking a vertex z of minimum in-degree, and by defining layers V1 := V1(z) = {z}, V2 := V2(z), . . . ,

Vk := Vk(z), until we have included all vertices from which z can be reached. If these layers do not cover all the vertices
of T , we just re-run the procedure on the remaining vertices by choosing a new vertex z (we refer to this as a fresh start).
We remark that any triangle in T lies within three consecutive layers. Hence, a feedback vertex set for T can be obtained
by including every other layer and, for every layer Vi that is not picked, a local solution Fi that is a feedback vertex set
for Vi.

We are now left to explain how we obtain the local solutions Fi. The first layer V1 is a singleton, hence, setting F1 = ∅
suffices. The same applies to other ‘‘first’’ layers after a fresh start. For the second layer V2, and for the other ‘‘second’’
layers after a fresh start, we will get a local solution via the algorithm CDZ from Cai et al. [5], following the same idea
as the layering algorithm of Mnich et al. [14]. This is justified by the fact that the subtournament corresponding to those
layers is T5-free (See Lemma 11).

For all the other layers, a different property is established, which allows us to immediately obtain our local solutions.
Indeed, we will show (Lemmas 9, 12) that a layer Vi(z) with i ≥ 3 is 2-in-dominated by the previous layer Vi−1(z). We
remark that such a 2-in-dominating set {zi−1, z ′i−1} can be found efficiently, for instance by trying all possible pairs: this
procedure is called 2-in-dominates in Algorithm 2. Then, it turns out (Lemma 10) that Vi(z) can be partitioned into two
subtournaments, Ui = N(zi−1) and Si = Vi(z) − U , that are both acyclic. This implies that our local solution Fi can be set
as the cheapest of Ui and Si.

Algorithm 2 Layers(T , w,Ui,W )

Input: A light tournament T , w : V (T ) → Q≥0, the current root layer Ui , and the set of vertices W that have not been
processed yet (U0 := ∅ and W := V (T ) on the first call). We assume all objects that depend on i (including i itself) to
be available throughout subsequent recursive calls.

utput: A feedback vertex set F ′ of T of weight at most 3
4w(T ).

1: if W = ∅ then {Finished}
2: L0 ← ∪j evenUj ∪ Sj, L1 ← ∪j oddUj ∪ Sj
3: F ′ ← (∪i

j=1F2j) ∪ L1 if w(L0) ≥ w(L1) otherwise (∪i−1
j=0F2j+1) ∪ L0

4: return F ′
5: end if
6: if N(Ui) ̸= ∅ then
7: {zi, z ′i } ←2-in-dominates(N(Ui)) with w(N(zi) ∩W ) ≥ w(N(z ′i ) ∩W )
8: Ui+1 ← N(zi) ∩W , Si+1 ← N(z ′i ) ∩W − Ui+1,W ← W − Ui+1 − Si+1
9: Fi+1 = Si+1

10: i← i+ 1
11: return Layers(T , w,Ui+1,W )
12: else {Fresh Start}
13: zi+1 ← choose z ∈ W with |N(z) ∩W | minimum
14: Ui+1 ← {zi+1} , Ui+2 ← N(zi+1) ∩W , Si+1 ← ∅
15: Fi+1 ← ∅
16: Fi+2 ← CDZ(Ui+2, w)
17: W ← W − (Ui+1 ∪ Ui+2)
18: i← i+ 2
19: return Layers(T , w,Ui+2,W )
20: end if

We now prove the lemmas needed to show the correctness of our algorithm. For simplicity, we will denote all layers
produced by Algorithm 2 as Vi = Ui∪ Si, for i = 1, . . . , ℓ, where Si is possibly empty (for instance, in layers corresponding
to a fresh start).

Lemma 9. For an arbitrary vertex z in a light tournament T , V3(z) is 2-in-dominated by V2(z).

Proof. Let H = {h1, h2, . . . , hk} ⊆ V2(z) be an inclusion-wise minimal set that in-dominates V3(z). Suppose k ≥ 3. By
minimality, for each hi ∈ H there must be some vi ∈ V3(z) such that (vi, hi) ∈ A(T ) and (hi, vj) ∈ A(T ) for all j ̸= i. Since
(z, vi) ∈ A(T ) for all i, it follows that T [{z, h1, h2, h3, v1, v2, v3}] is isomorphic to a tournament in S7 (see Fig. 3). Therefore,
by Lemma 8, T [{z, h1, h2, h3, v1, v2, v3}] is heavy, which contradicts that T is light. □

Lemma 10. Let T be a light tournament, z be any vertex of T , and i ≥ 3. If Vi(z) is 2-in-dominated by {zi−1, z ′i−1} ⊆ Vi−1(z)
(possibly z = z ′ ), then U := N(z ) ∩ V (z) and S := V (z)− U are triangle-free.
i−1 i−1 i−1 i i
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Fig. 4. The triangle u1u2u3 cannot exist in a light tournament. All of its arcs are diagonals due to triangles vzi−1zi−2 for v ∈ {u1, u2, u3}.

Proof. Suppose by contradiction that u1u2u3 is a triangle in U (see Fig. 4). Since zi−1 ∈ Vi−1(z) and i ≥ 3, we have
(zi−1, r) ∈ A(T ) for some r ∈ Vi−2(z). Since U ⊆ Vi(z), arcs (r, u1), (r, u2), (r, u3) ∈ A(T ). Thus, rujzi−1 is a triangle for all
j = 1, 2, 3. It follows that the triangle u1u2u3 is heavy, since all of its arcs are diagonals, a contradiction. If S has a triangle,
we can repeat the same argument. □

The next lemma ensures that the layer produced after a fresh start is T5-free. This allows us to use the algorithm CDZ
from Cai et al. [5], as described above. Its proof follows the proof of Lemma 9 of Mnich et al. [14], except that we assume
that T is light.

Lemma 11. Let z be a minimum in-degree vertex in a light tournament T . Then V2(z) is T5-free.

Proof. We assume V2(z) ̸= ∅, otherwise there is nothing to show, and we suppose by contradiction that X ⊆ V2(z) is a
light T5 (X cannot be heavy as T is light, so X is oriented as in Fig. 1(b)). For every u ∈ V2(z) there must be a v ∈ V3(z)
with (v, u) ∈ A(T ). If not then N(u) ⊊ V2(z) = N(z), contradicting the minimality of |N(z)|. Thus V3(z) ̸= ∅. Let H ⊆ V3(z)
be an inclusion-wise minimal subset of V3(z) such that for every u ∈ V2(z) there exists v ∈ H with (v, u) ∈ A(T ). We
distinguish cases according to the size of H .

Case 1: H = {h}. Then huiz are triangles for all ui ∈ X , therefore all arcs in X are diagonals. Since X must contain at
least some triangle, this triangle must be heavy, since all of its arcs are diagonals, contradicting the fact that T is light.

Case 2: H = {f , h}. Let X = {a, b, c, d, e}. We can assume without loss of generality that f points to exactly three
vertices of X , for the following reason. If there are less than three, we can swap h with f . If there are more than three,
then f must point to a triangle of X (since T [X] is a T5-subtournament), which would be heavy, arguing as in Case 1.

Notice that ec and de are diagonals within X (due to triangles ade and adc , bdc and bec , respectively), hence, none of
ad, ea, cb, be can be diagonals, otherwise one of ade or cbe will be a heavy triangle. This implies that f cannot point to
both vertices of any of the latter pairs. From this, one easily derives that f cannot point to a nor b. Hence, (a, f ), (b, f ),
(f , d), (f , e), (f , c) ∈ A(T ), which implies (h, a), (h, b) ∈ A(T ). This forces (e, h), (c, h), (d, h) ∈ A(T ); otherwise, again, one
of ad, ea, cb, be is a diagonal. See Fig. 5 for the orientations we have determined thus far. Notice that adc and fca are
triangles, so fd is a diagonal. Moreover, since had and zha are triangles, dz is a diagonal. Therefore zfd is a heavy triangle,
a contradiction.

Case 3: |H| ≥ 3. In this case, one can easily find a tournament in S7 made of z, three vertices of V2(z) and three vertices
of V3(z), in contradiction with Lemma 8 (see the proof of Lemma 9). □

The next lemma ensures that, at each recursive call of Algorithm 2, we can find local solutions by either applying
CDZ(T , w) or Lemma 10. Together with the previous lemmas, it is enough to conclude that Algorithm 2 outputs a feedback
vertex set of our (light) tournament T . For simplicity, we refer to layer V1 and to other layers corresponding to a fresh
start as fresh start layers.

Lemma 12. Let V1 = U1 ∪ S1, . . . , Vℓ = Uℓ ∪ Sℓ be the layers produced by Algorithm 2, run on input (T , w,U0 := ∅,W :=
V (T )). For i = 1, . . . , ℓ − 1, if Vi is a fresh start layer, then T [Vi+1] = T [Ui+1] is T5-free; otherwise, then Si+1 and Ui+1 are
both feedback vertex sets of T [Vi+1].

Proof. Let i ∈ {1, . . . , ℓ− 1}. If Vi is a fresh start layer, Ui+1 is equal to V2(z) for some z ∈ V (T ) (see line 14 of Algorithm
2). Therefore, by Lemma 11, T [Ui+1] = T [V2(z)] is T5-free.

If Vi is not a fresh start layer, then there is some vertex zi−1 ∈ V (T ) such that Ui+1 ∪ Si+1 ⊆ V3(zi−1). By Lemma 9,
N(Ui) 2-in-dominates Ui+1 ∪ Si+1. Therefore, by Lemma 10, Si+1 and Ui+1 are both triangle-free. Thus, Si+1 and Ui+1 are
both feedback vertex sets of T [V ]. □
i+1
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Fig. 5. The orientations determined by the proof of Lemma 11.

After having shown the correctness of Algorithm 2, we focus on bounding the approximation ratio of its output. This
ostly amounts to bounding the weight of the local solutions obtained during the algorithm. We first summarize in a
roposition the results from Cai et al. [5] that we need.

roposition 13 ([5]). Let T be a T5-free tournament. Then the basic relaxation P(T ) is integral, and the set F = CDZ(T , w)
btained by solving the linear program SA0(T , w) is a minimum weight feedback vertex set.

emma 14. Let F1, . . . , Fℓ and U0, . . . ,Uℓ be the sets produced by Algorithm 2, run on input (T , w,U0 := ∅,W := V (T )).
hen for i = 1, . . . , ℓ, w(Fi) ≤ w(N(Ui−1))/2.

roof. If Fi = ∅ (for instance if i = 1), then the lemma clearly holds. If layer Vi−1 is not a fresh start layer, then we have
(Fi) ≤ w(N(Ui−1))/2 by construction (see line 9 of Algorithm 2).
Thus, we may suppose that layer Vi−1 is a fresh start layer. Hence, Vi−1 = Ui−1 = {zi−1}, Ui = N(zi−1), and

i = CDZ(Ui, w) (see line 16 of Algorithm 2). By Lemma 12, T [Ui] is T5-free, and by Proposition 13, Fi is a minimum
eight feedback vertex set of T [Ui]. Since the all 1

3 -vector is feasible for the basic relaxation of T [Ui], and this relaxation
s integral by Proposition 13,

w(Fi) ≤
1
3
w(Ui) =

1
3
w(N(Ui−1)) ≤

1
2
w(N(Ui−1)),

as required. □

In the next two lemmas, we assume that Algorithm 1 is run on input (T , w), and we establish properties of the sets
defined within the algorithm during the first phase (lines 1-11 of Algorithm 1). We briefly recall the first phase: it starts
by optimally solving SA1(T , w), rounds up to 1 the coordinates larger than 3/7, then iteratively solves the basic relaxation
SA0(T , w) on the residual tournament rounding up coordinates larger than 1/2, until all coordinates in an optimal solution
are strictly less than 1/2. Whenever we round up a coordinate, we include the corresponding vertex in set F . Moreover,
whenever a vertex does not belong to any directed triangle of the current tournament, we include it in set Z (those
ertices do not belong to any minimal FVS and can be ignored).

emma 15. After the first phase of Algorithm 1,

w(F ) ≤
7
3

(
SA1(T , w)− SA0(T − F − Z, w)

)
.

Proof. We first consider the set F obtained after the first rounding step (i.e. before line 7 of Algorithm 1). Letting x denote
he optimal solution to SA1(T , w), we get

w(F ) ≤
7
3

∑
w(v)xv
v∈F
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a

F
t

w

T

t
n
B
F
w

=
7
3

⎛⎝ ∑
v∈V (T )

w(v)xv −

∑
v∈V (T−F )

w(v)xv

⎞⎠
≤

7
3

(
SA1(T , w)− SA1(T − F , w)

)
≤

7
3

(
SA1(T , w)− SA0(T − F , w)

)
,

where the second inequality follows from the fact that x, restricted to V (T − F ), is a feasible solution of SA1(T − F , w),
nd the third inequality follows, since the first round of Sherali–Adams is at least as strong as the zeroth.
Now, we show that the above inequality is preserved after successive rounding steps. Consider any such step, and let

, Z be the sets obtained before that step, and let F ′, Z ′ be obtained after the step (see lines 7–11 of Algorithm 1). Recall
hat F ⊆ F ′, Z ⊆ Z ′. In order to conclude the proof, we show that if

w(F ) ≤
7
3

(
SA1(T , w)− SA0(T − F − Z, w)

)
,

then

w(F ′) ≤
7
3

(
SA1(T , w)− SA0(T − F ′ − Z ′, w)

)
.

Let x denote the optimal solution to SA0(T − F − Z, w). For simplicity, we restrict to the case where F ′ is obtained
from F by adding a single vertex v (such that xv ≥

1
2 ): the general case follows by the same argument.

We have that x, restricted to coordinates V (T − F ′ − Z ′), is a feasible solution of SA0(T − F ′ − Z ′, w). Hence,

SA0(T − F − Z, w) ≥ w(v)xv + SA0(T − F ′ − Z ′, w),

since the vertices in Z ′ do not affect the optimal value SA0(T − F ′ − Z ′, w). But then we have:

w(v) ≤ 2w(v)xv ≤ 2
(
SA0(T − F − Z, w)− SA0(T − F ′ − Z ′, w)

)
≤

7
3

(
SA0(T − F − Z, w)− SA0(T − F ′ − Z ′, w)

)
,

hich is easily seen to imply our claim since F ′ = F ∪ {v}. □

Lemma 16. After the first phase of Algorithm 1,

SA0(T − F − Z, w) = w(T − F − Z)/3.

Proof. The proof is the same as [14, Lemma 6], and due to [10], but we include it here for completeness. Let T ′ = T−F−Z .
Suppose xv = 0 for some v ∈ V (T ′). Since every vertex of T ′ is contained in a triangle, v is in some triangle vab of T .
hus, xa+ xb ≥ 1, and so max(xa, xb) ≥ 1/2, which contradicts that neither a nor b are in F . Thus xv > 0 for all v ∈ V (T ′).

Now, notice that the following is the dual linear program of SA0(T ′, w): max {1Ty :
∑
△:u∈△ y△ ≤ wu for u ∈ V (T ′), y ≥ 0},

where y has a coordinate for each triangle of T ′. By primal–dual slackness, if y is an optimal solution to the dual, then∑
△:u∈△ y△ = wu for all u ∈ V (T ′). Therefore,

w(V (T ′)) =
∑

u∈V (T ′)

∑
△:u∈△

y△ =
∑
△∈△(T ′)

y△
∑
u∈△

1 = 3
∑
△∈△(T ′)

y△ = 3SA0(T ′, w),

as required. □

Lemma 17. Let F ′ be the set output by Algorithm 2 on input (T ′ := T − F − Z, w,U0 := ∅,W = V (T ′)). Then F ∪ F ′ is a
feedback vertex set of T and w(F ′) ≤ 9

4SA0(T ′, w).

Proof. Algorithm 2 partitions V (T ′) into layers Si ∪ Ui for i = 1, . . . , ℓ, for some ℓ > 0. By symmetry, we may assume
hat the total weight of the even layers is at least the total weight of the odd layers. That is, w(L0) ≥ w(L1), using the
otation of the algorithm. Then the output F ′ consists of the union of all odd layers, i.e. L1, and of the sets Fi, for i even.
y construction, Fi is an FVS of T ′[Si ∪ Ui], for each i. Since all triangles in T ′ are contained in three consecutive layers,
′ is an FVS of T ′. Hence, F ∪ F ′ is an FVS of T . Moreover, since w(Fi) ≤ w(Si ∪ Ui)/2 for each i = 1, . . . , ℓ, we have
(∪j evenFj) ≤ 1

2w(L0)

w(F ′) = w(L1)+ w(∪j evenFj) ≤ w(V (T ′))− w(L0)+
1
2
w(L0) ≤

3
4
w(V (T ′)) =

9
4
SA0(T ′, w),

where the last equality follows from Lemma 16. □
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5. Proofs of the main theorems

Given the results we have already established, it is now easy to prove the correctness of Algorithm 1.

roof of Theorem 2. By Lemma 17, F ∪ F ′ is a feedback vertex set of T . It remains to show the approximation
uarantee. Recall that F = {v : xv ≥ 3/7} where x is an optimal solution for SA1(T , w). By Lemma 15, w(F ) ≤

7
3 (SA1(T , w) − SA0(T − F − Z, w)). Since x restricted to T − F − Z is feasible for SA1(T − F − Z), Lemma 17 implies
hat w(F ′) ≤ 9

4SA0(T − F − Z, w) ≤ 7
3SA0(T − F − Z, w). Adding these two inequalities yields

w(F ′)+ w(F ) ≤
7
3
SA1(T , w) ≤

7
3
OPT(T , w),

s required. □

We are now ready to derive Theorem 1 from Theorem 2.

roof of Theorem 1. The fact that the integrality gap of SA1 for FVST is at most 7/3 follows from Theorem 2. For the
other inequality, on one hand note that for every tournament T , the all 3

7 -vector is feasible for SA1(T ) (by setting xuv = 1
7

for all uv). On the other hand, Proposition 3 shows that for a random n-node tournament T , OPT(T , 1T ) = n − O(log n)
ith high probability. □

. Conclusion

In this paper we give a simple 7/3-approximation algorithm for FVST, based on performing just one round of the
herali–Adams hierarchy on the basic relaxation. It is a bit of a miracle that SA1(T ) already ‘‘knows’’ a remarkable
mount of structure about feedback vertex sets in tournaments. It is unclear how much more knowledge SAr (T ) acquires
s r increases, but our approach naturally begs the question of whether performing a constant number of rounds of
herali–Adams leads to a 2-approximation for FVST. This would solve the main open question from Lokshtanov et al. [13].
We suspect that performing more rounds does improve the approximation ratio, but the analysis becomes more

omplicated. Indeed, it could be that SA2(T ) already gives a 9/4-approximation algorithm for FVST, since our layering
procedure has a 9/4-approximation factor. Note that SA2(T ) does contain new inequalities such as xa + xb + xc ≥
+ xab + xac + xcb − xabc , for all abc ∈ △(T ), which may be exploited.
As further evidence, for the related problem of cluster vertex deletion [2], we showed that one round of Sherali–Adams

has an integrality gap of 5/2, and for every ε > 0 there exists r ∈ N such that r rounds of Sherali–Adams has integrality
gap at most 2+ε. Indeed, this work can be seen as unifying the approaches of Mnich et al. [14] and some of the polyhedral
results of our work on cluster vertex deletion [2,3].
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