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1 Introduction

In the renormalizable version of the Standard Model (SM), CP violation is controlled by
two parameters: the CKM phase and the QCD theta angle.1 The former is parametrized
by the following re-scaling invariant combination of the Yukawa matrices Y SM

u , Y SM
d

2J = Im det[Y SM
u Y SM

u
†
, Y SM

d Y SM
d
†]∏

i,j 6=i

(
(Ŷ SM
u )2

i − (Ŷ SM
u )2

j

)∏
i,j 6=i

(
(Ŷ SM
d )2

i − (Ŷ SM
d )2

j

) (1.1)

where (Ŷ SM
u )2

i , (Ŷ SM
d )2

i are the real eigenvalues of the hermitian matrices Y SM
u Y SM

u
†,

Y SM
d Y SM

d
†. The numerical value [1]

J ' 3.0× 10−5 (1.2)
1To be precise, there are two topological angles in the SM. However, because the electroweak theta angle

can be entirely hidden in the abelian sector (and ultimately ends up being the topological angle of QED), it
is practically irrelevant in collider experiments and can be ignored. It would be observable, for example, in
the presence of topological defects. On the contrary, the QCD theta angle is both un-removable, since the
associated gauge theory is intrinsically vector-like, as well as physical, because of the topological character
of non-abelian gauge theories.

– 1 –



J
H
E
P
0
7
(
2
0
2
1
)
2
0
3

is measured in a multitude of flavor-violating observables. Adopting the Wolfenstein param-
eterization of the CKM matrix one gets J = A2λ6

Cη(1+O(λ2
C)), and eq. (1.2) is understood

to be the result of small mixing angles controlled by the Cabibbo angle λC ' 0.23 and a
CP-odd parameter of order one, i.e. η ∼ 0.37.

The QCD theta angle is instead parametrized by the re-scaling invariant parameter:

θ̄ = θ −Arg (det[Yu] det[Yd]) . (1.3)

An important observable sensitive to θ̄ is the neutron electric dipole moment, dn. It is very
hard to make concrete predictions for dn due to the non-perturbative nature of low-energy
QCD. The best one can do analytically is to use naive dimensional analysis. Moving θ̄ in
the phase of the quark masses, and working at leading order in an expansion in powers
of the small quark masses over the QCD scale, which we approximately identify with the
proton mass mp, we estimate dn/e = cn[(mumd)/(mu +md)]θ̄/m2

p with cn expected to be
of order unity. An explicit calculation in chiral perturbation theory suggests |cn| may be as
large as ∼ 10.2 Currently, the most stringent bound on the neutron electric dipole moment
reads |dn|/e < 1.8× 10−26 cm at 90% CL [3]. The corrections to dn from the CKM phase
are so much smaller that dn can be interpreted as being dominated by θ̄. Allowing for |cn|
to be in the range 1− 10, the experimental bound translates roughly into

|θ̄| < O(0.5− 5)× 10−10. (1.4)

In the near future the experimental sensitivity is expected to improve by a factor of
order ten.

Now, the SM is only the low energy manifestation of a more fundamental description of
the subatomic world. The ultimate theory is expected to reproduce the SM parameters and
its particle content without fine-tunings, very much like the SM itself explains the values of
the pion mass and the muon lifetime. However, we have reviewed above that experiments
clearly indicate that the pattern of CP violation in the SM is highly non-generic. This
suggests that CP violation in the UV completion must also be non-generic. The UV
completion of the SM must apparently feature sizable CP-odd phases, in order to explain
J , and simultaneously justify (1.4), namely the absence of CP-violation in the strong sector.
What properties should the UV completion of the SM have in order to accommodate these
experimental facts without having to fine-tune its parameters? Identifying UV theories
with the correct characteristics is so challenging that a specific term has been coined:
the Strong CP Problem. Symmetry-based solutions of the Strong CP Problem include the
QCD axion [4–6], the massless up-quark [7–9], generalized parity [10–12], and CP-invariant
scenarios. In this paper we will focus on the latter.

Models belonging to the last class assume CP is exact in the UV and spontaneously
broken in some hidden sector. The non-trivial task is to communicate the breaking to the

2There is in fact an enhancement due to a chiral log and a numerical factor slightly larger than expected
by naive dimensional analysis. The authors of [2] find |cn| ∼ 8. That result is not the full QCD prediction,
however, since it does not include the contribution of the neutron-dipole counter-term, which is of course
incalculable within chiral perturbation theory.
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SM so as to guarantee that (1.2) and (1.4) are satisfied. The first concrete step towards
viable scenarios of this type was achieved in [13] and [14], where a class of models with a
tree-level CKM phase and a loop-induced θ̄ were identified. Most of the earlier constructions
however suffer from unacceptably large 2-loop effects to the topological angle [15]. Here
we will investigate in detail the predictions of the few scenarios that can structurally
ensure (1.4), which we call models of d-mediation and u-mediation. Other recent work on
scenarios of spontaneous CP breaking include [16–25].

We begin presenting the effective field theory description of the minimal models of
d-mediation and u-mediation in section 2. There we also point out a hidden and subtle
coincidence of scales that these scenarios must feature (see section 2.1). UV completions of
these models can explain such coincidence, as will be shown in a companion paper [26]. In
this work this coincidence will be taken for granted and the focus will be on the phenomenol-
ogy. A crucial step in assessing the viability of the models is estimating the irreducible
corrections to θ̄, namely those arising from the defining ingredients of these scenarios. This
is done in section 2.2, where both non-decoupling and decoupling contributions to θ̄ are an-
alyzed. The former dominate as the new physics mass is increased, whereas the latter may
be relevant for masses close to the weak scale. A generalization to scenarios with several
mediators is presented in section 2.3. Constraints from direct searches, electroweak tests
and flavor violation are collected in section 3. Our conclusions are presented in section 4.
The appendix contains a few technical details necessary to carry out our analysis.

2 d- and u-mediation

The basic assumption underlying the approach to the Strong CP Problem we study in this
paper is that CP is a good symmetry of the UV. This means that in the effective field
theory below some UV cutoff there exists a field basis in which all topological angles vanish
and all couplings are real. CP is spontaneously broken by a color-neutral sector, whose
relevant degrees of freedom are CP-odd scalars Σ with non-vanishing vacuum expectation
value, and then communicated to the SM via a mediator sector of ψ particles characterized
by a (CP-conserving) mass scale mψ. To keep the radiative corrections to the QCD theta
angle under control, the CP-odd scalars should interact with the SM only via couplings
that carry spurionic charges under the SM flavor symmetry; these couplings cannot involve
the doublet quark representation (q) [15]. Within a perturbative framework, these requests
are so significant that basically leave us with two (non-exclusive) options. Either Σ couple
to the singlet up (u) or the singlet down (d) quark representations. We will refer to
these scenarios as models of d− and u-mediation. It is also possible to consider linear
combinations of these two.

Explicitly, the Lagrangian of the minimal models with d-mediation consists of the
obvious kinetic terms, including the gauge interactions, a potential V (Σ, H) for the scalars,
plus the following Yukawa and mass terms3

−LdYuk = yuqHu+ ydqH̃d (2.1)
+ yψΣd+mψψψ

c + hc (d−mediation),
3Throughout the paper we use a 2-component Weyl notation for the fermions.
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where yu, yd, y,mψ are CP-even matrices in flavor space, the theta angles vanish by CP, and
ψ (ψc) has SM charges conjugate (equal) to d. Summation over the family and gauge indices
is understood. A completely analogous Lagrangian can be written for minimal models with
u-mediation. The only difference is that d in (2.1) is replaced by the electroweak singlet
up representation and ψ (ψc) should have SM charges conjugate (equal) to u:

−LuYuk = yuqHu+ ydqH̃d (2.2)
+ yψΣu+mψψψ

c + hc (u−mediation),

We emphasize that in either case Σ should be a family of at least two scalars. If there
was just one scalar, the CP-odd phase in its vacuum expectation value could be removed
from (2.1) via a re-definition of ψ and ψc, so no CKM phase would be induced. The fermions
ψ,ψc could come in a family of fields, as well, though this is not strictly necessary (we will
discuss this possibility in section 2.3). The scenario in (2.1) is a particular incarnation of
the Nelson-Barr class [13, 14], first proposed in [27].

As we will demonstrate in section 2.1, scenarios of d- and u-mediation ensure that the
corrections to the QCD theta parameter arising from the messenger sector are sufficiently
small. These are irreducible corrections, since they are due to the very same messenger
sector that is responsible for transferring CP violation to the SM, i.e. generating the CKM
phase. To avoid larger contributions to θ̄, some symmetry must be invoked to forbid qH̃ψc

in (2.1) (or qHψc in models with u-mediation). On the other hand, interactions of the
CP-violating sector with the leptons are basically unconstrained phenomenologically.

Other, reducible corrections to θ̄ generically arise from loops involving additional states,
but these can all be naturally suppressed [13]. As a concrete example let us consider
the corrections to θ̄ from loops involving excitations of the CP-violating sector in the
scenarios (2.1). All symmetries of the theory allow a quartic scalar interaction with the
Higgs doublet λmnΣ†mΣn|H|2 ⊂ V (Σ, H). Once this is taken into account it is easy to
verify that one obtains 1-loop corrections of the type [27]

θ̄ = cy
16π2 Im

[
〈Σ〉†λ 1

m2
Σ
y∗yt〈Σ〉

]
(2.3)

for some real number |cy| ∼ 1. These would be unacceptably large for generic couplings of
order one. However it is possible to naturally suppress (2.3) taking |y| � 1. Completely
analogous considerations hold for other reducible contributions to θ̄, such as those from the
gauge sector of the original model of [13].

In the rest of the paper we will study the models in eqs. (2.1) and (2.2) in the simplifying
limit |y| � 1. In this limit the fluctuations of the CP-breaking sector can be ignored,
see (2.3), and the corrections to θ̄ arise entirely from loops of the SM and the mediator
sector. The latter effects are irreducible and therefore fundamentally characterize this
approach to the Strong CP Problem.

2.1 Reproducing the SM: a coincidence of scales

Models of d− and u-mediation are very efficient at taming the irreducible corrections to θ̄,
as we will see in section 2.2. However, any construction of the type proposed in [13, 14]
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must satisfy a highly non-trivial condition in order to reproduce the SM at scales below
the messengers mass. Specifically, the two scales y〈Σ〉,mψ should be comparable to each
other [15]

Im(y〈Σ〉) ∼ Re(y〈Σ〉) ∼ mψ, (2.4)

within a few orders of magnitude, depending on the model. We will see shortly that
|y〈Σ〉| & |mψ| is necessary to generate a sizable CKM phase, whereas the more subtle
|y〈Σ〉| . |mψ| is required to reproduce the quark mass spectrum within a reliable pertur-
bative description. To appreciate the origin of (2.4) we focus on the model in eq. (2.1)
with |y| � 1, as anticipated above. The generalization to scenarios with a family of ψ’s is
presented in section 2.3.

The Yukawa part of the Lagrangian (2.1), under our assumption that the only remnant
of the CP-violating sector is the vacuum expectation value of Σ, can be written as

LdYuk

∣∣∣
frozen

= −yuqHu− ydqH̃d− ξ†ψd−mψψψ
c + hc (2.5)

= −yuqHu−
(
q ψ

)(ydH̃ 0
ξ† mψ

)(
d

ψc

)
+ hc,

where to save typing we introduced the column vector ξ:

ξ∗i = ymi〈Σm〉 (2.6)

In this setup CP violation is due entirely to ξ. In other words, there exists a field basis in
which yu, yd,mψ are real, the theta angles vanish, and the only complex quantity is ξ.

Because ψ,ψc are colored, collider bounds force them to lie above the TeV scale, see
section 3. It then makes sense to diagonalize the mass matrix neglecting the electroweak
scale in a first approximation. Performing the following SU(4) transformation(

d

ψc

)
→

1− ξξ†

|ξ|2
(
1− mψ

M

) ξ
M

− ξ†

M
m
M

( d

ψc

)
(2.7)

the Yukawa sector becomes

LdYuk

∣∣∣
frozen

→ −YuqHu− YdqH̃d− Y qH̃ψc −Mψψc + hc (2.8)

= −YuqHu−
(
q ψ

)(YdH̃ Y H̃

0 M

)(
d

ψc

)
+ hc

with (matrix multiplication is understood)

M2 = ξ†ξ +m2
ψ

Yu = yu

Yd = yd
[
1− ξξ†

|ξ|2
(
1− mψ

M

)]
Y = yd

ξ
M = Yd

ξ
mψ

.

(2.9)

After our unitary rotation (2.7) the heavy degrees of freedom have real masses M and
complex Yukawa couplings Y . At scales � |M | we integrate them out and recover the SM
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including higher-dimensional operators suppressed by inverse powers of M , see section 3.
The couplings Yu and Yd are the SM Yukawas, up to small loop effects. At the renor-
malizable level, CP violation is encoded in the complex matrix Yd, or more precisely in a
tree-level order CKM phase, and a radiatively generated theta angle θ̄. They will be our
focus next.

2.1.1 The CKM phase and perturbativity

A CKM phase compatible with (1.2) can be reproduced as long as ξ/mψ has imaginary
and real entries of comparable order of magnitude satisfying∣∣∣∣∣ ξmψ

∣∣∣∣∣ = |Y −1
d Y | & 1. (2.10)

Before proving (2.10) let us attempt to derive the CKM phase in the limit |ξ| � |M |, where
analytical calculations can be easily performed.

We go in the basis where Yu is diagonal, where the CKM matrix is the unitary matrix
that diagonalizes YdY †d = yd(1 − ξξ†/M2)y†d. For ξ = 0 the latter is just the orthogonal
matrix that diagonalizes ydy†d. Equivalently, the SM masses and mixing angles are deter-
mined by Yu = yu and Yd = yd and the CKM phase vanishes. We can thus express the
corresponding real CKM matrix using the Wolfenstein parametrization with η set to zero.
For non-zero |ξξ†| �M2 the mixing angles are corrected at order |ξ|2/M2 whereas a small
η ∝ Im[ξξ†/M2] is generated. Since the invariant J is linear in η, the real part of ξ can
only enter at subleading |ξ|4/M4 order. Now, plugging (2.9) in (1.1) and Taylor expanding
J in powers of ξξ†/M2 we obtain, at leading order,

J = A(1− ρ)ms

mb
λ4
C Im

[
ξ2ξ
†
3

M2

] [
1 +O

(
|ξ|2

M2 , λC

)]
(2.11)

= 4.1× 10−5 Im
[
ξ2ξ
†
3

M2

] [
1 +O

(
|ξ|2

M2 , λC

)]
.

In deriving (2.11) we also exploited the numerical relations md ∼ mbλ
4
C , ms ∼ mbλ

2
C ,

mu/mt ∼ λ7
C , mc/mt ∼ λ4

C (the masses are renormalized at ∼ 1TeV), and expanded in the
Cabibbo angle. The factor of ms/mb in (2.11) originates from the fact that the phases in
YdY

†
d are controlled by the off-diagonal elements of the hermitian matrix ydIm[ξξ†/M2]y†d,

and so they disappear when ms/mb,md/mb → 0.
Eq. (2.11) suggests that eq. (1.2) can be reproduced provided Im[ξ2ξ

†
3/M

2] ∼ 0.73. But
there is a serious problem with the estimate (2.11): it is not possible to satisfy |ξ2||ξ3|/M2 ∼
0.73 compatibly with the constraint |ξ|2 = M2 −m2

ψ ≤ M2! We should conclude that the
value of |ξ|/M needed to apparently reproduce the observed CKM phase with (2.11) is
too large for the perturbative expansion used to be reliable [28]. Some non-perturbative
technique must be employed to determine whether these models can or cannot generate
the CKM phase. And this is complicated by the fact that with |ξ| ∼ M the CKM mixing
angles are not just functions of yd, but can be significantly affected by ξ/M .

Fortunately there is a way to basically “integrate out” yd from the problem and obtain
necessary and sufficient conditions on ξ for Nelson-Barr models to reproduce the CKM
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phase. The argument goes as follows. We want to explicitly compute (1.1) using the tree-
level approximation Y SM

u,d = Yu,d. Employing eq. (2.9) and simple algebraic manipulations
we get

det [Hu, Hd] = det
[
hu, hd − Y Y †

]
(2.12)

= Y †
[
hu, [hu, hd]2

]
Y − Y †Y Y †hu [hu, hd]huY

− Y †h2
uY Y † [hu, hd]Y + Y †huY Y † {hu, [hu, hd]}Y,

where we defined Hu,d = Yu,dY
†
u,d and hu,d = yu,dy

†
u,d. In the first line of (2.12), Hd =

hd − Y Y † follows from (2.9). The second equality is a consequence of the fact that, for
any traceless matrix C, detC = Tr[C3]/3. In our case C = [hu, hd] −

[
hu, Y Y

†
]
, with

det [hu, hd] = 0 because hu,d are CP even. The non-vanishing terms in detC are traces
containing powers of

[
hu, Y Y

†
]
, and can therefore be written as Y †fY for some anti-

symmetric function f of hu,d. The next step towards our necessary and sufficient conditions
relies on the observation that the functions f can be equivalently re-written in terms of
Hu,d by re-using Hd = hd−Y Y †. Note that this replacement should be carried out uniquely
in f , and not in the Y, Y † of (2.12), otherwise we would obviously get back to the left-
hand side of (2.12). This replacement leads us to an important relation, which we write as
follows

det [Hu, Hd] = I2,1 + Y †Y I1,2 + Y †H2
uY I1,0 − Y †HuY I1,1 (d−mediation) (2.13)

where

I2,1 = Y †
[
Hu, [Hu, Hd]2

]
Y (2.14)

I1,2 = Y †Hu [Hu, Hd]HuY

I1,1 = Y † {Hu, [Hu, Hd]}Y
I1,0 = Y † [Hu, Hd]Y.

Because, within a tree-level approximation, Yu,d are the SM Yukawa matrices, we can
express them in a convenient form, say taking a diagonal Yu = Ŷu and writing Yd = V ∗Ŷd,
where V is the CKM matrix in the Wolfenstein parametrization.4 Then eq. (2.13) must be
interpreted as a constraint on the coupling Y , or equivalently on ξ/mψ. As promised, the
dependence on yd is included but implicit, i.e. yd has been integrated out.

One can then easily solve (2.13) via numerical integration. The parameter ξ is defined
by 2 angles, a modulus and three phases. However the overall phase can be removed by
a vector-like rotation of the mediators, so in practice only two of its phases are physical.
Scanning over 300 angles and phases we obtain the |ξ|/mψ Vs η plot shown in the upper
part of figure 1. For models of d-mediation (where (2.13) has been derived) we find that
|ξ|/mψ & 2 is necessary. The analytical approximation (2.11) works very well for |ξ| �M

but becomes inadequate rather quickly as ξ increases and fails to account for the large
4The ∗ is a consequence of our non-standard definition of the Yukawa interaction.
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spread seen in the upper part of figure 1. The numerical analysis also shows that ξ1 is
not very important and that ξ2, ξ3 should be comparable in size and have large phases.
The irrelevance of ξ1 is an expected consequence of our choice of basis, since the last
equation in (2.9) says that ξ1 appears in (2.13) multiplied by the smallest of the down-type
Yukawas or larger powers of the Cabibbo angle. The main players are clearly ξ2, ξ3, as
anticipated by (2.11). To obtain the observed J from (2.13), the CP contributions due to
terms ∝ Im[ξξ†/m2

ψ] in the structures Y ∗2 f23Y3 should win over the terms ∝ η in terms like
Y ∗3 λ

2
Cf23Y3 (see, e.g., the expression of the invariant I2,1 in appendix A). This requires

Im [ξ2ξ
∗
3 ]

ξ3ξ∗3

(Ŷd)2

(Ŷd)3
& λ2

C . (2.15)

Because we approximately have (Ŷd)2/(Ŷd)3 ∼ λ2
C , we see that (2.15) is satisfied for

|ξ2| ∼ |ξ3|. This condition is visible in the lower-left plot of figure 1. Barring acciden-
tal correlations between yu, yd and ξ, these findings imply that in a generic basis all entries
in ξ should be comparable and satisfy |Re[ξ]| ∼ |Im[ξ]| & mψ. This proves our claim (2.10).

In u-mediation, a completely analog procedure leads to a relation similar to (2.13)
with the replacement u↔ d. The field basis we adopt is now the one with Yd diagonal and
Yu = V tŶu. Only for very few choices of angles and |ξ|/mψ & 20 we can reproduce the
CKM phase, as visible from the top-right plot of figure 1. The basic reason can be traced
back to the larger mass hierarchy of the up-quark sector. As a consequence, for example, in
the u-mediation version of (2.11) one finds a more significant mc/mt suppression replaces
ms/mb. As before, ξ1 is irrelevant, but to satisfy the analog of (2.15) one must have
|ξ3|/|ξ2| . mc/(mtλ

2
C) ∼ 0.07 ∼ λ2

C . This expectation is confirmed by the bottom-right
plot of figure 1. We conclude that models of u-mediation can reproduce the observed
CKM phase provided their UV completion features some sort of anti-correlation between
yu and ξ.

Eq. (2.10) is our first step towards (2.4). Analyzing the effective theory below M

carefully, one finds there is also an upper bound on |ξ|/|mψ|. This is in fact a necessary
condition if the effective theory has to reproduce the observed SM particle spectrum. When
|mψ|/|ξ| → 0 the heavy state becomes a combination of ψ and one component of the d’s,
with a large Dirac mass M ∼ |ξ|. The two orthogonal d components have independent
Yukawa couplings with only two q’s, whereas the remaining q together with ψc form a
massless Dirac with an anomalous axial symmetry. This is the SM with a massless down-
quark! We can confirm this observing that

det(Yd) = det(yd)
mψ

M
, (2.16)

or perhaps more easily noting that in the limit |mψ|/|ξ| → 0 the SM Yukawa matrix
Yd in (2.9) becomes rank 2, lim|mψ |/|ξ|→0 Yd = yd

[
1− ξξ†/|ξ|2

]
. We see that the limit

mψ/|ξ| → 0 is phenomenologically unacceptable. Clearly there should be a lower bound
on mψ/|ξ|. Let us see what this is. For small but non-vanishing |mψ|/|ξ| � 1 the mass of
the down quark is of order md ∼ (ŷdv/

√
2)(mψ/|ξ|), where ŷd denotes a typical eigenvalue

of yd and we used M ∼ |ξ|. It is not possible to establish a firm bound on mψ/|ξ| this way,
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Figure 1. Value of the CP-odd parameter η of the Wolfenstein parametrization of the CKM (recall
that J = A2ηλ6

C [1 +O(λ2
C)]) in models of d-mediation (left) and u-mediation (right). In the upper

plots we generated 300 models with random values for the direction (2 angles) and the 2 physical
phases of ξ, and kept an arbitrary dependence on the modulus |ξ|/mψ. Note the difference in the
scale of the x-axis between the two plots. In the lower plots we also scanned over the modulus
in the range 0 < |ξ|/mψ < 5 (d-mediation), 20 < |ξ|/mψ < 40 (u-mediation), and kept |ξ3|/|ξ|
arbitrary. The red line indicates the real world value J ' 3.0 × 10−5 and the cyan lines are the
models’ predictions.

however, because the value of ŷd is model-dependent and can in principle range between
(Ŷd)d and the non-perturbative ∼ 4π.

A robust, model-independent bound on mψ/|ξ| can instead be derived from the UV
description above M . Inspecting the field basis (2.8) we see that the coupling Y between
the heavy fermionic state and the SM quark doublet becomes parametrically large when
|ξ| � |mψ|, see the third line in (2.9). When mψ is too small it becomes non-perturbative,
say |Y | > 4π, and we lose predictivity. Because figure 1 showed that |ξi| ∼ |ξj | is necessary
to reproduce the CKM phase, the constraint |Y | � 4π may be expressed as

∣∣∣∣∣ ξmψ

∣∣∣∣∣ = |Y −1
d Y | � 4πv√

2mb

∼ 103 (d−mediation). (2.17)

Accidentally, this upper bound is numerically comparable to what one finds requiring the
low energy theory reproduces the observed down-quark mass with ŷd ∼ (Ŷd)b, despite the

– 9 –



J
H
E
P
0
7
(
2
0
2
1
)
2
0
3

two bounds have very different meaning. In the next subsection we will be able to quantify
the perturbativity bound by inspecting the value of θ̄ predicted by these models.

In models with u-mediation |ξ|/|mψ| . mt/mu ∼ 105 is at least necessary to obtain a
realistic spectrum if ŷu ∼ (Ŷu)t, from the effective field theory point of view. A stronger
bound on |ξ|/mψ applies however because we found that the condition |ξ3| . λ2

C |ξ| is
necessary to reproduce the CKM phase, see figure 1. Hence, the UV description is non-
perturbative unless |Y | � 4π, or more explicitly (Ŷu)c|ξ|/mψ � 4π and simultaneously
λ2
C(Ŷu)t|ξ|/mψ � 4π. The latter provides the most stringent bound, which reads∣∣∣∣∣ ξmψ

∣∣∣∣∣ = |Y −1
u Y | � 4πv√

2mt λ2
C

∼ 300 (u−mediation). (2.18)

A concrete manifestation of this non-perturbativity problem is seen in potentially large
radiative corrections to the θ̄ parameter when matching to the SM at scales ∼ M , which
we analyze below.

The coincidence (2.4), expressed more rigorously by the combination of figure 1
and (2.17) (or (2.18)) cannot be explained within our effective field theory description.
However it is important to appreciate that such relation is key to the viability of these
models, since without it the low energy theory does not reduce to the SM. In the ab-
sence of a robust explanation of (2.4) this solution of the Strong CP Problem is severely
fine-tuned, and hence not convincing. It is reassuring that UV completions where (2.4)
naturally emerges exist, see [26].

2.2 Irreducible contributions to θ̄

Provided (2.10) and (2.17) (or |ξ|/mψ & 20 and (2.18) for u-mediation) are satisfied, the
effective field theory below M reproduces the SM up to irrelevant operators suppressed
by inverse powers of M . The measured SM Yukawa couplings, including all radiative
corrections, are given by

Y SM
u = FuYu (2.19)
Y SM
d = FdYd,

where Fu,d = 1 + O(Y Y †, Yu,dY †u,d) are 3 by 3 matrices functions of Yu, Yd, Y , M . The
structure shown in (2.19) may be understood taking advantage of the spurionic flavor
charges of the SM Yukawas, for instance in the field basis in (2.8). That is, we interpret
Y, Yu, Yd as fields transforming under fictitious (spurious) flavor symmetries that leave (2.8)
invariant:

Yu → U∗q YuU
†
u (2.20)

Yd → U∗q YdU
†
d

Y → U∗q Y,

where Uq,u,d are SU(3) matrices. The Yukawas Y SM
u,d in the effective field theory must be

dimensionless combinations of the couplings of our theory that transform precisely as Yu,d.
This takes us to (2.19).

– 10 –



J
H
E
P
0
7
(
2
0
2
1
)
2
0
3

The SM topological angle, obtained by matching (2.8) with the SM at the scale M , is
given by (1.3):

θ̄ = θ − Im ln(det[Y SM
u ]det[Y SM

d ]) (2.21)
= θ − Im ln(det[Fu]det[Fd]),

where we used that det[Yu,d] are real, see (2.9) and (2.16). There are no tree-level contribu-
tions because the complex mass matrix of the colored fermions (see for example (2.5)) has
real determinant. In other words, this model is in the Nelson-Barr class. Of course the same
is true in (2.8), since the unitary matrix in (2.7) has unit determinant. In our language,
this just follows from the absence of tree-level flavor-invariant, CP-odd combinations of
the parameters.

We can estimate the radiative contributions to θ̄ using the same trick as above. Contri-
butions to θ̄ must be obviously CP-odd combination of our couplings but, importantly, also
invariant under spurious SU(3) rotations. This is because as we have seen its expression
must be written in the flavor-invariant combinations θ, det[Fu], det[Fd]. In addition, there
can be a dependence on the electroweak scale v ' 246GeV, but for the moment let us work
at leading order in the latter and set v = 0.

The leading CP-odd flavor-invariant combination of our couplings is the one with
fewer insertions of Yukawas. Up to a factor of order unity, and the appropriate power
of the loop factor 1/16π2 needed to match the powers of couplings, such combination
coincides with the value of θ̄ at the matching scale. With Y = 0 we have the SM and the
first correction to θ̄, analytic in the couplings, is very suppressed (see [29] and the earlier
literature [30, 31]). Potentially large corrections must involve Y . Eq. (2.20) shows that
all the invariants are products of basic invariants built out of two powers of Y and several
Yu, Yd (see appendix A for a few examples). The CP-odd flavor-invariant with the smallest
number of Yu,d insertions is (see I1,0 in appendix A)

θ̄
∣∣∣
analy

= canaly

( 1
16π2

)3
Im
(
Y †
[
YdY

†
d , YuY

†
u

]
Y
)

(2.22)

∼
( 1

16π2

)3
λ2
C Ŷ

2
t Ŷ

3
b Ŷs

Im[ξiξ∗j ]
m2
ψ

∼ 6× 10−18 Im[ξiξ∗j ]
m2
ψ

(d−mediation).

For the numerical estimate of (2.22) we went in the basis in which Yu is diagonal, where Yd
is unitary up to CKM rotations, took λC ∼ 0.23 for the Cabibbo angle and renormalized
the couplings at 1TeV. The factor λ2

C arises because the result is proportional to the 23
element of the CKM. In terms of familiar Feynman diagrams, this contribution to the
QCD topological angle arises from 3-loop corrections to Fu,d as well as direct corrections
to θ, with virtual fermions and the Higgs. Had we considered scenarios with unsuppressed
couplings between the q’s and the messengers we would have found unacceptably large
2-loop corrections to θ̄ [15]. Imposing |θ̄| < 10−10 on (2.22) one obtains a lower bound
on |m|/|ξ| a bit looser than (2.17). All other (subleading) flavor-invariants lead to weaker
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constraints. Non-perturbative values of the coupling Y would imply unacceptably large
corrections to θ̄.

Because in eq. (2.22) we neglected powers of v, that expression represents only the lead-
ing non-decoupling contribution to θ̄, which dominates if M is sufficiently large compared
to the weak scale. When matching the UV theory to the SM at scales ∼ M , however,
one also finds additional threshold contributions that decouple as 16π2v2/M2 → 0. To
estimate the leading decoupling effect we should allow θ̄ to depend on v, in which case
its expression should respect the same selection rules (2.20) plus the additional spurious
symmetry v → −v, (Y, Yu, Yd)→ −(Y, Yu, Yd).

An important complication found when estimating the decoupling contributions is
that these can be non-analytic in the couplings Yu,d. Indeed, after electroweak symmetry
breaking the Yukawas may appear not only as couplings, but also as masses. On the other
hand, θ̄ is necessarily analytic in Y because such a coupling does not control the large mass
M directly, but rather a small mixing angle of order Y v/M . We thus learn that the most
general expression for θ̄, again leading in Y , reads

θ̄ = Im
[
Y †f

(
YdY

†
d , YuY

†
u ,

v2

M2

)
Y

]
(2.23)

= Im
[
Y †f0

(
YdY

†
d , YuY

†
u , 0

)
Y
]

+ v2

M2 Im
[
Y †f1

(
YdY

†
d , YuY

†
u ,

v2

M2

)
Y

]
+O

(
v4

M4

)
,

where f is an unknown anti-symmetric 3 by 3 matrix, f t = −f . The leading effect con-
trolled by the term f0 is precisely (2.22). The main one proportional to v2/M2 is the
decoupling effect we want to estimate. As explained above, f1 can have a residual non-
analytic dependence on v2 that we cannot Taylor expand. Because this dependence is in
principle arbitrarily complicated, it is not possible to find an explicit form of f1 based solely
on symmetry arguments. We can however reliably estimate the order of magnitude.

Anti-symmetry of f requires that f1 depends on both YdY †d , YuY †u . Some of this depen-
dence could be hidden in logarithms of the masses; and these are precisely the quantities
that are not constrained by our selection rules. Importantly, though, f1 should be propor-
tional to at least one power of YdY †d and one power of YuY †u . The reason is that if the whole
dependence of f1 on, say, the up-type Yukawa was in the unknown non-analytic terms, then
θ̄ would be singular in the limit YuY †u → 0. And this cannot be the case because such IR
divergences do not appear in matching the Wilson coefficients of an effective theory. We
conclude that the leading decoupling contributions scale similarly to (2.22)

θ̄
∣∣∣
nonanaly

∼ cnonanaly

( 1
16π2

)2 v2

M2λ
2
C Ŷ

2
t Ŷ

3
b Ŷs

Im[ξiξ∗j ]
m2
ψ

(2.24)

∼ cnonanaly 5× 10−17
(TeV
M

)2 Im[ξiξ∗j ]
m2
ψ

(d−mediation),

up to logarithms of the masses that we cannot estimate using spurion techniques, which
have been included in cnonanaly. In appendix B we perform a more standard loop analysis
in the mass basis and confirm this result, see (B.12).
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The powers of 1/16π2 in (2.24) are different from those of (2.22) because the decoupling
effect is proportional to a mass squared (or analogously to ∝ v2/M2), rather than a coupling
squared. One can easily appreciate why the number of loops (and hence 1/16π2’s) in (2.24)
is one less than (2.22) by re-instating the powers of ~ and observing that the Yukawa cou-
plings scale as ∼ ~−1/2, whereas v2 ∼ ~, M ∼ ~0. As a result, at least at the leading order,
the main qualitative difference between non-decoupling (2.22) and decoupling (2.24) contri-
butions is the formal replacement 1/(16π2)→ v2/M2, which indicates that decoupling ef-
fects are parametrically less relevant than the non-decoupling ones whenM & 4πv ∼ 3TeV.
More precisely, the experimental bound (1.4) reads |ξ|/mψ . (800−900)(M/TeV) for num-
bers cnonanaly of order unity.

Yet, we argued above that cnonanaly may contain large logs of the mass ratios (dimen-
sional analysis is enough to show this does not occur in canaly). Those that may in principle
impact our estimate are the logs of the largest available mass, namely M2. Inspecting the
relevant diagrams one sees there are at most 3 powers of large logs. This is compatible
with the SM computation of [29], which is one loop higher. As a conservative estimate, we
may thus take cnonanaly ∼ ln3M2/m2

b and the bound becomes |ξ|/mψ . 30(M/TeV). In
section 3 we will see that electroweak constraints lead to bounds on the very same quantity
that are comparable to this one, and obviously much more accurate theoretically than our
order one estimate (2.24). A genuine 2-loop computation would be necessary to determine
the value of cnonanaly as well as whether (B.12) can realistically compete with the bounds
of section 3. This calculation is however beyond the scope of the present paper.

In models with u-mediation, repeating an analysis completely analogous to the one
leading to (2.22), we find

θ̄
∣∣∣
analy

∼
( 1

16π2

)3
Im
(
Y †
[
YdY

†
d , YuY

†
u

]
Y
)

(2.25)

∼ λ2
C Ŷ

2
b Ŷ

3
t Ŷc

(16π2)3
Im[ξ2ξ

∗
3 ]

m2
ψ

∼ 5× 10−15 Im[ξ2ξ
∗
3 ]

m2
ψ

(u−mediation).

As it was for models of d-mediation, |θ̄| < 10−10 gives a constraint consistent with the
perturbative bound, see (2.18), but a bit milder (recall that |ξ3| ∼ λ2

C |ξ| here). Analogously
to (2.24), decoupling corrections are of the same order as (2.25) up to the replacement
1/(16π2)→ v2/M2 and possibly large logs. The bound on |ξ/mψ| from the electroweak T
parameter analyzed in section 3 is stronger and more accurate.

2.3 Generalization to more families of mediators

The results of sections 2.1 and 2.2 can be generalized to the case in which the mediators
appear in different families with index a, b = 1, · · · , nψ. We limit our analysis to scenarios
where mψ has non-degenerate eigenvalues and all the mediators ψa, in the basis in which
mψ is diagonal, mix with the SM fermions. This is equivalent to saying that

ξ∗ia = ymia〈Σm〉 (2.26)
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is non-vanishing for any i when mψ is diagonal. The special rotation that removes the
mass mixing (before electroweak symmetry breaking) now is(

d

ψc

)
→
(

A ξ(M †)−1

−m−1
ψ ξ†A m†ψ(M †)−1

)(
d

ψc

)
(2.27)

where the condition AA†=1− ξ(MM †)−1ξ†=[1 + ξ(mψm
†
ψ)−1ξ†]−1 is necessary to ensure

this transformation is unitary (the second equality is a consequence of the first and our defi-
nition ofM , see below). The solution can be formally written as A=[1− ξ(MM †)−1ξ†]1/2R,
with R a 3 by 3 unitary matrix. After this rotation is performed the Yukawa and mass
terms look formally as in (2.8), where summation over indices is always understood. The
masses and couplings of (2.8), in matrix notation, now explicitly read

MM † = ξ†ξ +mψm
†
ψ

Yu = yu

Yd = ydA

Y = ydξ(M †)−1 = YdA
−1ξ(M †)−1.

(2.28)

In models with u-mediation the very same results hold except for the replacement d↔ u.
The reminder of this subsection applies to both scenarios.

An analysis similar to the one performed in section 2.1.1 says that Im[(AA†)ij ] & 1 is
necessary to reproduce (1.2). This of course means that Im[ξξ†] & |mψ|2. Also, |mψ| � |ξ|
would signal a non-perturbative regime. To see this we multiply AA† on the left by ξ† and
on the right by ξ, and use the definition of MM †, to obtain

ξ†AA†ξ = mψm
†
ψ[1− (MM †)−1(mψm

†
ψ)]. (2.29)

From this follows that if one eigenvalue of mψm
†
ψ is much smaller than |ξ†ξ| the matrix

AA† develops a null vector or, in other words, the rank of A becomes smaller than 3. To
see this let us go in the basis in which mψ is diagonal and suppose that [mψ]â = 0 for some
a = â. Eq. (2.29) then reads [ξ∗]iâ[AA†]ij [ξ]jâ = 0, which implies [ξ]jâ is a null eigenvector
because of our hypothesis (2.26). We may rephrase this stating that det[mψ] = 0 implies
det[A] = 0. In the same limit the last equation in (2.28) shows that Y becomes non-
perturbative. These considerations demonstrate that the coincidence ξ ∼ mψ (see (2.4))
must be realized even in the general case with more families of mediators. With nψ > 1 it
is more appropriate to express it as2 . |Y −1

d Y | � 103 (d−mediation)
20 . |Y −1

u Y | � 300 (u−mediation).
(2.30)

As in section 2.1.1, |Y −1
d Y | (or |Y −1

u Y |) must be at least of order one in order for J to be
reproduced and simultaneously cannot be much larger than quoted otherwise the theory
becomes non-perturbative. The perturbative bounds are analogous to (2.17) and (2.18).
However, as opposed to what happened with a single family, we will now show that (1.4)
sets more stringent upper limits than (2.30).
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In the case nψ > 1 the derivation of θ̄ deserves some care because the new family index
allows us to build more flavor-invariants involving the mass matrixM . It is not immediately
obvious that large corrections to the theta angle can be avoided. For brevity we will
analyze the non-decoupling effects only; the decoupling corrections can be estimated as in
the previous section. We will prove that there are no (non-decoupling) 2-loop corrections
to θ̄ and that (non-decoupling) 3-loop contributions are under control, exactly as it was
in the one-family models of section 2.2. The basic ingredients, along with their spurious
transformations, are

Yu → U∗q YuU
†
u (2.31)

Yd → U∗q YdU
†
d

Y → U∗q Y U
†
ψc

M → U∗ψMU †ψc ,

where Uq,u,d and Uψ,ψc are SU(3) and SU(nψ) flavor matrices, respectively. As before, we
are interested in corrections proportional to Y . To warm up, it is straightforward to see
that there is no correction to θ̄ at 1-loop order. Indeed, the unique combination O(Y 2)
that is invariant under rotations of the SM fermions is Y †Y . Similarly, the mass can only
enter via M †M , which is invariant under ψ rotations. Now, the class of flavor-singlets one
can build out of these two objects are just traces of Y †Y and (dimensionless functions of)
M †M . Anything of this form will be automatically real and CP-even, however, since such
matrices are hermitian. Hence there cannot be 1-loop corrections to θ̄.

Let us then move to the 2-loop order, considering first only combinations of Y,M . For
this task it is convenient to make use of some group theory. Since the building blocks are
hermitian nψ × nψ matrices they can be expanded in a basis of SU(nψ) generators TA.
Explicitly,

hATA ≡ Y †Y − 1
nψ

tr[Y †Y ], (2.32)

and similarly for M †M . The trace parts are real and contribute to θ̄ at subleading order.
Here we are interested in the leading contribution to the topological angle, so they can be
safely neglected. With this notation, our 2-loop effects must be of the form

hAhB FAB(M †M), (2.33)

where the dimensionless function FAB is symmetric and traceless. The key observation is
that CP violation in the SU(nψ) space acts as TA → (TA)∗ = ηABTB on the generators
and thus as hA → ηABhB on the adjoints, where ηAB can be chosen to be diagonal and sat-
isfying ηACηCB = δAB. Its explicit form depends on nψ. For example ηAB = diag(1,−1, 1)
in SU(2). From the algebra follows that the completely symmetric tensor dABC is CP-even,
whereas the structure function fABC is CP-odd. We conclude that all SU(nψ)-invariant
combinations of adjoints are automatically CP-even unless the expression contains an odd
number of fABC . In particular, the combination (2.33) cannot contain the structure func-
tions and is therefore CP-even: there is no 2-loop effect at O(Y 4). The absence of (non-
decoupling) 2-loop contributions involving both Y and Yu,d is even easier to understand.
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This class of flavor-invariants consists of traces of Yu,dY †u,d, Y F (M †M)Y †, which are again
real by hermiticity, and hence CP-even.

We have thus demonstrated that there are no non-decoupling 2-loop contributions to
θ̄ in these models. The first effects arise at 3-loops. Those due to Y,M are constrained
by the SU(nψ) arguments given above. To get a non-vanishing combination at most one
index of the structure function can be contracted with hA or a function of the masses, as
these are all necessarily symmetric. The unique option is

hAhBhCFA
′B′C′fAA

′A′′fBB
′B′′fCC

′C′′dA
′′B′′C′′ , (2.34)

with FA
′B′C′ a dimensionless function of M †M . (Note that the SM invariant

Im det[YuY †u , YdY
†
d ] is precisely of this form.) A parametric estimate gives

θ̄
∣∣∣
nψ≥3

∼


(

1
16π2

)3
Ŷ 4
b Ŷ

2
s

(
|Y −1
d Y |

)6
∼ 10−21

(
|Y −1
d Y |

)6
(d−mediation)(

1
16π2

)3
Ŷ 4
t Ŷ

2
c

(
|Y −1
u Y |

)6∼ 10−12 (|Y −1
u Y |

)6 (u−mediation),
(2.35)

where we assumed all numerical factors are of order unity apart from the usual powers
of 1/4π. The bound (1.4) translates into much more stringent constraints than quoted
in (2.30), because of the large powers of Y involved. Importantly, though, this 3-loop
contribution does not exist if nψ ≤ 2, for the very same reason the SM with less than 3
generations has no Jarlskog invariant: the totally symmetric tensor vanishes and (2.35)
cannot be built in those cases. More model-independent contributions, which exist also for
nψ = 2, must involve the SM Yukawas. The larger ones are proportional to the up-type
Yukawa. The key building blocks are Y †Y = hATA + trace, Y †YuY †uY = hAu T

A + trace,
and F (M †M) = FATA + trace. There is a unique way the indices of the CP-odd function
fABC can be contracted: fABChAhBu FC(M †M). Including an appropriate number of the
loop 1/16π2 factors, the latter CP-odd invariant can equivalently be written as

θ̄
∣∣∣
nψ≥2

∼
( 1

16π2

)3
Im tr

([
Y †YuY

†
uY, Y

†Y
]
F (M †M)

)
(2.36)

∼


(

1
16π2

)3
λ2
C Ŷ

2
t Ŷ

3
b Ŷs

(
|Y −1
d Y |

)4
∼ 6× 10−18

(
|Y −1
d Y |

)4
(d−mediation)(

1
16π2

)3
Ŷ 4
t Ŷ

2
c

(
|Y −1
u Y |

)4 ∼ 10−12 (|Y −1
u Y |

)4 (u−mediation).

The numerical bound on |Y −1
d Y | (and |Y −1

u Y |) following from (1.4) is a bit stronger than
in the case of a single family of ψ,ψc, see (2.22) and (2.25), again because of the larger
power of the new Yukawa.

3 Experimental signatures

The mediators ψ,ψc are constrained by direct and indirect collider searches (for models of
d-mediation see for example [23, 25]). In this section we study both d− and u-mediation
and provide a qualitative assessment of the most stringent bounds for scenarios with one
and two families of mediators, including those arising from radiative effects controlled by
Y . We will see the latter are actually very relevant phenomenologically.
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As shown in (2.9) for a single family and (2.28) for more families, Y can be written as
the d-type (or u-type) Yukawa multiplied on the right by a flavor-violating matrix. The
latter is simply [Y −1

d Y ]i = ξi/mψ (or [Y −1
u Y ]i = ξi/mψ) if a single family is considered,

or more generally [Y −1
d Y ]ia (or [Y −1

u Y ]ia). In models of d-mediation we have argued in
section 2.1.1 that Y −1

d Y must have entries of comparable size in order to reproduce the
CKM. Therefore, for simplicity we treat it as a single coupling

[Y −1
d Y ]ia = |Y −1

d Y | i = 1, 2, 3 (3.1)

when quantifying the numerical bounds below. In other words, we will assume the only
hierarchies involved in our calculations are those due to the quark masses and powers of the
Cabibbo angle, and instead ignore possible cancellations in the sum of different [Y −1

d Y ]ia’s.
The results of section 2.1.1 reveal that in scenarios of u-mediation the CKM is repro-

duced provided [Y −1
u Y ]ia has a i = 3 component suppressed by ∼ λ2

C compared to the
others. Our analysis will therefore be performed assuming that

[Y −1
u Y ]ia = |Y −1

u Y | ×

1 i = 1, 2
λ2
C i = 3

(3.2)

where |Y −1
u Y | is the parameter we will constrain, similarly to d-mediation. A more rigorous

study of the phenomenology would require a numerical scan, but this is beyond the scope
of our qualitative analysis.

Finally, when estimating the bounds on scenarios with two families for simplicity we
take

M1 = M2 = M. (3.3)

We will come back to the implications of this simplifying assumption below.

3.1 d-mediation

In models of d-mediation the ψ,ψc behave similarly to a heavy b-quark: they are pair-
produced and decay promptly into quarks and vector bosons or the Higgs boson. Current
direct searches imply mψ & 1400 GeV for a single family [32].

The relevant couplings of the ψ,ψc to the SM can be read off directly from (2.8) (see
also section 2.3). With the flavor indices shown explicitly, including those of ψ,ψc (a, b),
this is LdYuk ⊃ −YiaqiH̃ψca −Mabψaψ

c
b . Integrating out the heavy fermion at tree-level,

below the scale Ma we find (after a field re-definition of the quark doublet) a correction to
the SM Lagrangian:

δL(tree)
SM = 1

v2

[
c̄ik(Yd)kjqiH̃dj |H|2 + hc

]
(3.4)

− 1
2v2 c̄ji

[
q†i σ̄

µqj H
†i
←→
DµH + q†iσ

aσ̄µqj H
†σai
←→
DµH

]
c̄ij = v2

2

(
Y

1
M †M

Y †
)
ij
.
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An equivalent description of the following effects can be given in terms of the (flavor-
violating) couplings in the mass basis (see appendix B.1).

The second line of (3.4) gives rise to (flavor-violating) corrections to the Z0-couplings
of the down left-handed quarks. In the mass basis Y reduces to Ŷd multiplied by an anarchic
matrix on the right. The constraint on the flavor-diagonal components of c̄ is therefore
dominated by that on the bottom. In the mass basis it reads

|c̄33| . 0.008, (3.5)

(see e.g. [33] and note that in our model c̄ii < 0). Other precision electroweak measurements
are very weakly affected because of the small couplings involved.

All couplings in (3.4) contribute to ∆F = 1 and ∆F = 2 transitions. Because of the
strongly hierarchical structure inherited from the SM Yukawas, however, flavor-violating
observables are far less crucial than in most scenarios of physics beyond the SM. The most
constrained ∆F = 2 operators involve the left-handed down sector:

LEFT ⊃ −Cdij;kl (dL)†i σ̄
µ(dL)j (dL)†kσ̄µ(dL)l. (3.6)

The coefficient is corrected at tree-level δCdij;kl = c̄jic̄lk/(2v2), from the second line of (3.4)
via a Z0 exchange, and also receives a 1-loop contribution from the exchange of the
electroweak gauge bosons, of order δCd ∼ c̄g2λ2

C/(16π2v2). The main bound on (3.6)
in our model is currently due to Bs − Bs mixing, and conservatively reads |Cd32;32| .
6.7× 10−12 GeV−2 (in the mass basis and when renormalized at M ∼ 1TeV), see e.g. [34].
The resulting bound on |Y −1

d Y |/M is weaker than (3.5). Operators in the ∆F = 2 class
are also induced by the first line of (3.4); however their coefficients are down by larger
factors of the SM Yukawas. More importantly, at 1-loop the effective field theory below M

features additional ∆F = 2 interactions of the form LEFT ⊃ −Cij;kl q†i σ̄µqj q
†
kσ̄µql, with

coefficients (again in the mass basis in which M †M is diagonal)

C
(1−loop)
ij;kl = 1

8
1

(4π)2Y
∗
iaYjaY

∗
kbYlb

lnM2
b /M

2
a

M2
b −M2

a

. (3.7)

The dominant constraints on these come again from Bs−Bs mixing and directly compete
with (3.6). Importantly, (3.7) has a different parametric dependence than the corrections
δCd mentioned above, i.e. it is controlled by |Y −1

d Y |/
√
M rather than |Y −1

d Y |/M , and starts
to dominate for masses M & 4πv ∼ 3TeV. It even becomes more important than (3.5) at
around M & 18TeV.

Let us next move to ∆F = 1 observables. Among the most relevant operators are

LEFT ⊃ (C9)ij(dL)iγµ(dL)j `γµ`+ (C10)ij(dL)iγµ(dL)j `γµγ5`, (3.8)

with ` any of the charged leptons and (C9)ij =+c̄ji(1−4 sin2 θw)/(2v2), (C10)ij =−c̄ji/(2v2).
These follow from the second line of (3.4), integrating out the Z0, and contribute to rare K,
B meson decays, most notably B → Xs`¯̀, Bs → `¯̀, and ε′/ε. Conservatively requiring the
new physics contribution lies within one sigma from the SM prediction (see, e.g., [35, 36])
we obtain bounds that are somewhat comparable numerically and a bit stronger than those
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derived from Bs−Bs mixing. However, they have the very same parametric dependence on
|Y −1
d Y |/M as (3.5), and all turn out to be weaker than the latter. Loop-induced ∆F = 1

observables, say B → Xsγ, lead to subleading bounds.
Finally we should not forget the constraints coming from the non-observation of the

neutron electric dipole moment dn. We estimated the dominant non-decoupling contribu-
tions to the θ̄ parameter for one family of mediators in (2.22) and for two families in (2.36).
Because we did not compute the order one number in front of those expressions we allow
for an unknown overall factor ranging within [0.1, 10]. For one family only the most con-
servative bound, |Y −1

d Y | . 860, wins over the perturbative constraint (2.17). On the other
hand, for two families of mediators (1.4) roughly translates into |Y −1

d Y | ≤ 60+100
−30 , which is

always stronger than (2.17). Other contributions to dn are induced by higher-dimensional
operators. However, these give small corrections [15]. For example, quark dipole interac-
tions first arise at 2-loops and are suppressed by the small light quark masses.

As anticipated at the beginning of this section, we collect all the constraints in a single
plot assuming that Y −1

d Y has anarchic entries of comparable size |Y −1
d Y |. When plotting

the bounds on the 2-family model we also take degenerate masses as in (3.3). The mass
degeneracy effectively increases the Wilson coefficients c̄ij by a factor of 2, thus making
the electroweak and flavor constraints stronger than in the single family model.

The results are shown in figure 2 for one family of mediators (left) and two families
(right). We see that direct searches as well as electroweak precision tests and flavor data
have already started to constrain our scenarios, though a sizable portion of accessible
parameter space aroundM & 1TeV is still available. Remarkably, in the 2-family model the
most significant constraint on the coupling constant comes from the 3-loop contribution to
the neutron electric dipole moment. To make a more quantitative assessment of the allowed
parameter space it would therefore be necessary to calculate the numerical coefficient in
front of (2.36).

3.2 u-mediation

In models of u-mediation collider searches currently imply mψ & 1200 GeV [37]. In this
regime it is appropriate to describe the electroweak and flavor constraints in terms of an
effective field theory, as done for d-mediation.

The strongest constraint from electroweak observables arises due to radiative correc-
tions to the T̂ parameter. In the effective field theory this corresponds to the dimensionless
coefficient of |H†DµH|2/v2. The main contributions are of order Y 2Ŷ 2

t and Y 4. Consid-
ering an arbitrary number of mediators’ families, in the basis in which M is diagonal we
obtain:

T̂ = 3
16π2Y

∗
3aY3a

m2
t

M2
a

(
ln M

2
a

m2
t

− 1
)

(3.9)

+ 3
64π2

v2

M2Y
∗
iaYjaY

∗
jbYib

lnM2
b /M

2
a

M2
b −M2

a

.

Since S is very small we find that the 95% CL bound of [38] simply reduces to ∆T =
4πT̂/e2 < 0.1. Other electroweak observables lead to weaker bounds. In particular, correc-
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Figure 2. Summary of the most relevant experimental constraints for models of d-mediation with
one (left) or two (right) families of ψ,ψc. We show direct searches in light blue, electroweak bounds
in yellow (“EW”, see (3.5)), constraints from flavor violation in light green (“FV”, in particular
those due to the ∆F = 1 transitions discussed below (3.8) are visible at lower mass and the Bs−Bs
mixing constraint imposed on C(1−loop) dominates at larger M), and the bound from the neutron
electric dipole moment in magenta (“nEDM”) with a rough estimate of the error band (dashed
lines). As seen in section 2.1.1, |Y −1

d Y | is also subject to a lower bound (see hatching), required
in order for these models to be able to reproduce the CKM phase, and an upper bound, from
perturbativity (see the grey region). See the text for details.

tions to the couplings of the up-type quarks to Z0, most importantly those of the charm,
are very small.

The dominant ∆F = 2 effects show up in the radiative K0, Bd, Bs meson oscilla-
tions. The associated operator is again the one in (3.6) with the Wilson coefficient (3.7),
where of course now Y ∝ Yu. Using respectively |Cd21;21| . 2.0 × 10−15 GeV−2,
|Cd32;32| . 6.7× 10−12 GeV−2, |Cd31;31| . 8.0×10−13 GeV−2 [34] we find comparable bounds
on |Y −1

u Y |/
√
M , though Bs − Bs mixing slightly wins. This constraint is comparable to

the one coming from (3.9) at large M . Among the ∆F = 1 observables, by far the most
constraining turns out to be B → Xsγ. In the effective field theory the associated operator
is first generated at 1-loop [39]

LEFT ⊃ −
1
9

e

16π2

(
Y

1
M †M

Y †
)

23
mb sLσ

µνbR Fµν . (3.10)

The bound on |Y −1
u Y |/M derived from [39] is weaker than the one due to the electroweak

T parameter as well as Bs −Bs mixing (already at M & 100GeV).
Similarly to models of d-mediation, the constraints due to the neutron electric dipole

are dominated by (2.25) for one generations of mediators and by (2.36) for two generations.
Following the same logic of subsection 3.1 we find that in the former case only the most con-
servative bound on θ̄ is more stringent than the perturbativity requirement (2.18), whereas
for two generations (1.4) translates, under our hypothesis (3.2), into |Y −1

u Y | ≤ 13+22
−7 .

All bounds are collected in figure 3. The main conclusions are similar to those drawn for
theories of d-mediation. Yet, the parameter space of models of u-mediation is significantly
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Figure 3. Summary of the most relevant experimental constraints on models of u-mediation with
one (left) or two (right) families of ψ,ψc. To reproduce the CKM we imposed the structure (3.2).
We show direct searches in light blue, electroweak in yellow (“EW”, see (3.9)), flavor violation in
light green (“FV”, from Bs−Bs mixing), the neutron electric dipole moment (“nEDM”) in magenta.
The lower and upper bounds from section 2.1.1 are identified by the hatching and the grey region.
See the text for details.

reduced by the lower bound |Y −1
u Y | & 20 necessary to reproduce the CKM phase, see

figure 1. In particular, u-mediation with two or more families appears to be basically
excluded; a thorough numerical scan and an explicit computation of (2.36) should tell us if
some region of the parameter space is still allowed. Another, far less concrete, reason why
u-mediation is less attractive is perhaps that d-mediation can be easily embedded into a
grand-unified picture, where in terms of SU(5) representations would be more appropriately
called 5-mediation. On the other hand, u-type quarks come in the same multiplet as the
doublets q, which we saw should not mix with the mediators otherwise θ̄ gets too large,
and this generates a tension between models of 10-mediation and (1.4).

4 Conclusions

The Strong CP Problem remains one of the biggest challenges for physics beyond the
Standard Model. In this paper we discussed an approach based on the idea of spontaneous
CP violation.

CP violation in the renormalizable SM is incapsulated into the CKM phase and the
topological angles. There is a fundamental difference between these two. The CKM phase
appears in flavor-violating observables whereas the topological angles control CP violation
in flavor-invariant processes. A robust way to produce a sizable CKM phase and a small
QCD angle is therefore communicating the spontaneous violation of CP via flavor-violating
couplings [15]. Within a perturbative four-dimensional framework this can be achieved via
complex mixings of the quarks with colored mediators. These are the so-called Nelson-Barr
scenarios. Depending on the type of quark involved we speak of q−, u− or d-mediation.
The dominant source of CP violation however cannot come from models of q-mediation
because in that case the radiative corrections to θ̄ are unacceptably large.
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We analyzed Nelson-Barr models with d− and u-mediation, where vector-like fermionic
mediators mix respectively with the singlet d− or u-quarks. We showed that these theo-
ries can reproduce the pattern of CP-violation as well as the fermion masses observed in
Nature provided the two effective scales of the model, a CP-even mass mψ and a CP-odd
mass mixing ξ between the mediators and the SM quarks, have comparable size. More
quantitatively, combining the requirement (2.10), necessary to have a sizable CKM (see
figure 1 for a more precise determination), with the perturbativity bounds (2.17) or (2.18)
we have

2 .

∣∣∣∣∣ ξmψ

∣∣∣∣∣� 103 (d−mediation) (4.1)

20 .

∣∣∣∣∣ ξmψ

∣∣∣∣∣� 300 (u−mediation).

It is important to stress that, while scenarios of d-mediation can generate the CKM phase
with generic complex vectors ξ with entries of comparable order, models of u-mediation re-
quire some sort of anti-correlation between ξ and yu. This makes such scenarios less generic
than models of d-mediation. With several generations of mediators the coincidence (4.1)
is more properly expressed as in (2.30).

Behind the perturbativity (upper) bound in (4.1) is the phenomenological require-
ment of reproducing the observed quark masses. Specifically, perturbative scenarios of
u-mediation are precluded to have mψ/|ξ| � 1 because in that regime they feature a very
light up-quark, a mixture of one q and ψc, of mass mu ∼ (ŷuv/

√
2)(mψ/|ξ|). However we

should note in passing that, if we allowed ourselves to speculate freely, we could address
the Strong CP Problem by simply taking mψ/|ξ| < 10−10 [mu]obs

√
2/(ŷuv) irrespective of

whether CP was a good symmetry in the UV or not. That is, the very structure of the
quark-mediator mixing characterizing Nelson-Barr scenarios realizes an interesting “mass-
less up-quark” solution of the Strong CP Problem, without flavor symmetries and with
a sharp prediction: a heavy vector-like quark of mass M ∼ |ξ|. All of this would be
phenomenologically relevant if the massless up-quark solution was a viable option, which
probably is not [40, 41]. In this paper we worked under the hypothesis that having a
massless up-quark is not acceptable, and focused on scenarios that address the Strong CP
Problem via spontaneous CP violation. It is following this reasoning that we derived the
upper bound in (4.1).

The coincidence (4.1) is a structural property of Nelson-Barr models, rooted in the way
CP violation is communicated to the SM. Experimental constraints, including (1.4), push
the scales |ξ|,mψ even closer. Such coincidence cannot be addressed via the effective field
theory formalism employed here. Rather, it represents a constraint on the UV completion.
In a subsequent paper we will show how (4.1) can emerge from realistic UV models [26].

In scenarios with d− and u-mediation, as opposed to other types of mediation, the
irreducible contributions to the θ̄ parameter are suppressed up to an acceptable level. We
showed that non-decoupling corrections to θ̄ do not arise before 3-loop order and decou-
pling contributions, non-analytic in the SM Yukawa couplings and potentially relevant for
mediators’ masses below ∼ 4πv, are generated already at 2-loop order. If a single family of
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mediators is considered, these effects are safely below the current bound (1.4) for param-
eters in the range (4.1). The corrections to θ̄ become gradually larger as more families of
mediators are added and result in more stringent constraints on |ξ|/mψ than electroweak
and flavor-violating observables as soon as the mediators are beyond the reach of direct
searches. In the case of three or more families, for example, models of d-mediation are
forced to have |ξ/mψ| . 50, see (2.35), whereas models of u-mediation in that case are
basically excluded.
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A Flavor invariants

The invariants In,m of (2.14) can be systematically expanded in powers of the Cabibbo
angle employing the numerical relations mu/mt ∼ λ7

C , mc/mt ∼ λ4
C and md/mb ∼ λ4

C ,
ms/mb ∼ λ2

C . In the field basis in which the up Yukawa is diagonal (Yu = Ŷu and
Yd = V ∗Ŷd) the leading terms are

I2,1 = Y †
[
Hu, [Hu, Hd]2

]
Y (A.1)

= 2Ŷ 4
t Ŷ

2
c Ŷ

4
b Ŷ

2
s

[
1 +O

(
λ2
C

)]
×
[
−A2η

(
|ξ2|2

m2
ψ

+ 2 |ξ3|2

m2
ψ

)
λ6
C −A2η

Ŷd

Ŷs
λ5
C Re

(
ξ2ξ
†
1

m2
ψ

)
−A2η

Ŷs

Ŷb
λ4
C Re

(
ξ3ξ
†
2

m2
ψ

)

+ A(1− ρ) Ŷs
Ŷb
λ4
C Im

(
ξ3ξ
†
2

m2
ψ

)
+A

Ŷd

Ŷb
λ3
C Im

(
ξ3ξ
†
1

m2
ψ

)
+A2ρ

Ŷd

Ŷs
λ5
C Im

(
ξ1ξ
†
2

m2
ψ

)]
,

I1,2 = Y †Hu [Hu, Hd]HuY (A.2)

= 2Ŷ 4
t Ŷ

2
c Ŷ

4
b

[
A
Ŷs

Ŷb
λ2
C Im

(
ξ3ξ
†
2

m2
ψ

)] [
1 +O

(
λ2
C

)]
,

I1,1 = Y † {Hu, [Hu, Hd]}Y (A.3)

= 2Ŷ 4
t Ŷ

4
b

[
A
Ŷs

Ŷb
λ2
C Im

(
ξ3ξ
†
2

m2
ψ

)] [
1 +O

(
λ2
C

)]
,

I1,0 = Y † [Hu, Hd]Y (A.4)

= 2Ŷ 2
t Ŷ

4
b

[
A
Ŷs

Ŷb
λ2
C Im

(
ξ3ξ
†
2

m2
ψ

)] [
1 +O

(
λ2
C

)]
.

In calculating (2.13) the subleading terms are crucial because huge cancellations occur.
For example, the invariants I1,1, I1,0 are not proportional to m2

c at leading order, but their
sum in (2.13) is. Similarly, several other important cancellations take place.
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There are five more CP-odd flavor invariants one can build out of Hu, Hd, and Y ,
but I1,2, I1,1, I1,0 are the most relevant to our paper. Importantly, the largest ones in size
(see I1,0, I1,1) have a similar dependence on A(Ŷs/Ŷb)λ2

C Im(ξ3ξ
†
2/m

2
ψ). This explains the

similarity in the factors in front of (2.22), (2.24), (2.36).

B In the mass basis

B.1 Diagonalization

After electroweak symmetry breaking there appear a new mass mixing of order Y v/M in
the down sector, see (2.8). We introduce the 4-family vectors

D =
(
qd
ψ

)
Dc =

(
d

ψc

)
(B.1)

and diagonalize the mass matrix via SU(4) rotations D → UDD, Dc → UDcD
c,

U tD

(
Ydv√

2
Y v√

2
0 M

)
UDc = M̂d. (B.2)

The resulting couplings to W±, Z0 and the Higgs boson h (defined as Ht = (0, v + h)/
√

2
in the unitary gauge) read:

LW = − g√
2
Viα[qu]†i σ̄

µDα W
+
µ + hc (B.3)

LZ = − g

2cw

[
[qu]†i σ̄

µ[qu]i −ZαβD†ασ̄µDβ − 2s2
wJ

µ
em

]
Zµ

Lh = − [M̂u]ij
v

[qu]iujh− [Y]αβDαD
c
βh+ hc

where Jµem is the flavor-diagonal QED current of qu, u,D,Dc, and

Viα = [U †qu ]ij [UD]jα (B.4)

Zαβ = [U †D]αi[UD]iβ
= δαβ − [U∗D]4α[UD]4β

[Y]αβ = [M̂d]αβ
v

− M

v
[UD]4α[UDc ]4β .

Explicit expressions for V,Z,Y can be derived as an expansion in Y v/M (see for exam-
ple [23]). We show here only the leading order:

UD =

 U Y ∗v√
2M

− Y tv√
2MU 1

[1+O(Y 2v2/M2)
]
, UDc =

(
U ′ 0
0 1

)[
1+O(Y 2v2/M2)

]
(B.5)

with U t(YdY †d )U∗ = U ′†(Y †d Yd)U ′ = 2M̂2
d/v

2.
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B.2 Decoupling contributions to θ̄

We describe here the irreducible, decoupling contributions to θ̄ in models of d-mediation.
All estimates in this section are obtained working in the electroweak basis in which Yu is
diagonal. In this case one effectively has Uqu = Uu = 1 and the expressions in (B.4) are all
controlled by V = UD and UDc ; also, at leading order the matrix U should be identified
with the 3-dimensional CKM matrix, see (B.5).

First off, it is easy to see that there are no 1-loop corrections to θ̄, similarly to the
SM. CP violation at 2-loops may arise due to loops of the W±, Z0 or the Higgs h. These
can again contribute via corrections to the Yukawas (2.19) or direct contributions to θ.
Inspecting the couplings of (B.3) we see that 2-loop diagrams with fermions and W± (we
will refer to these as W± −W± diagrams) generate corrections directly to θ of the form

θ̄
∣∣∣
nonanaly,WW

=
(

g2

16π2

)2

Im ([V ]iα[V ∗]iβ [V ]jβ [V ∗]jα) F ij;αβ1WW (B.6)

+
(

g2

16π2

)2

Im ([V ]iα[V ∗]iβ [V ]4β [V ∗]4α) F i;αβ2WW ,

with i, j = 1, 2, 3 and α, β = 1, 2, 3, 4. Here Viα a generalization of the CKM matrix
and F1WW,2WW are real functions of the masses (squared) indicated by the corresponding
indices. A sum over families is understood, though the imaginary prefactor is non-zero only
when i 6= j and α 6= β. The functions F1WW,2WW are constrained by a number of physical
considerations. By unitarity of the 4 by 4 matrix Vαβ , eq. (B.6) vanishes unless F1WW,2WW

depend on both m2
α and m2

β . Indeed, if the dependence on m2
α was absent one could sum

over α and obtain a vanishing expression because of a generalized GIM mechanism. Similar
logic applies to β. On the other hand, if no dependence on m2

j (or equivalently m2
i ) exists

we may replace [V ]jβ [V ∗]jα = δαβ − [V ]4β [V ∗]4α in the above expression. The δαβ does
not contribute but the reminder does not vanish. In practice, we can split eq. (B.6) into
a piece that has a non-trivial dependence on both i 6= j (F1WW ) and one that does not
depend on one of the two, say on j (F2WW ).

Incidentally, the contribution ∝ F2WW has exactly the same structure obtained in
2-loop corrections to θ̄ from diagrams with fermions, one W± and one Z0 (W± − Z0 for
short), up to an irrelevant correction:

θ̄
∣∣∣
nonanaly,WZ

=
(

g2

16π2

)2

Im ([V ]iα[V ∗]iβ [V ]4β [V ∗]4α) F i;αβWZ . (B.7)

To prove this observe that the W± − Z0 loop is proportional to (see (B.3))∑
σ

Im ([V ]iβ [V ∗]iγ [Z]σγ [Z∗]σβ) F ′
i;βγσ
WZ (B.8)

= Im ([V ]iβ [V ∗]iγ [V ]4β [V ∗]4γ)
[∑
σ

|V4σ|2F ′iβγσWZ − F ′
iβγγ
WZ − F ′

iβγβ
WZ

]
≡ Im ([V ]iβ [V ∗]iγ [V ]4β [V ∗]4γ)F i;βγWZ .
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For the same reason explained above, FWZ must depend on m2
i ,m

2
β ,m

2
γ otherwise the sum

vanishes. The resulting structure is the one in (B.7), as promised. The loop diagrams with
only fermions and Z0 vanish because

Im ([Z]αβ [Z∗]αγ [Z]σγ [Z∗]σβ) = 0 (no sum), (B.9)

as can be seen from the explicit expression of [Z]αβ given in (B.3).
Diagrams with virtual Higgs bosons also contribute, but we will see below they are sub-

leading. Before showing this we discuss a key constraint that the functions F1WW,2WW,WZ

are subject to. Because there cannot occur IR divergences in matching the UV to the
SM effective field theory below the scale M , F1WW,2WW,WZ must be well-behaved when
M2 � m2

i,j ,m
2
α,β ,m

2
W . Hence

F ij;αβ1WW = min
(
m2
i

m2
W

,
m2
j

m2
W

)
min

(
m2
α

m2
W

,
m2
β

m2
W

)
F̃1WW

(
m2
i

m2
α

,
m2
j

m2
α

,
m2
β

m2
α

,
m2
W

m2
α

)
(B.10)

F i;αβ2WW = m2
i

m2
W

min
(
m2
α

m2
W

,
m2
β

m2
W

)
F̃2WW

(
m2
i

m2
α

,
m2
β

m2
α

,
m2
W

m2
α

)

F i;αβWZ = m2
i

m2
W

min
(
m2
α

m2
W

,
m2
β

m2
W

)
F̃WZ

(
m2
i

m2
α

,
m2
β

m2
α

,
m2
W

m2
α

,
m2
Z

m2
α

)
,

with the powers ofm2
i,α/m

2
W ensuring that F1WW,2WW,WZ be regular when any of the quark

masses involved vanishes. Of course this does not mean that the result is inevitably propor-
tional tom2

u orm2
d, because the CP-odd factor Im ([V ]iα[V ∗]iβ [V ]jβ [V ∗]jα) is non-vanishing

only for specific combinations of indices, the dominants of which do not necessarily involve
the first generation. Actually (B.10) demonstrates that the dominant contributions to θ̄
arise from diagrams in which the heavier generations run in the loop. Finally, the end result
for θ̄ should clearly be regular as g → 0. This tells us that F̃1WW,2WW,WZ are analytic in
the vector boson masses. The dominant contributions can be calculated for m2

W /M
2 → 0.

As a check of our arguments, one can verify that (B.6) together with (B.10) reproduce
the structure of the non-analytic contributions to θ̄ found in the SM [42]. The unitarity of
the CKM matrix however forces a non-trivial cancellation at 2-loops. Such degeneracy is
lifted in diagrams with an additional strong coupling (or photon) loop, and so the actual
end result is down by a factor g2

s/16π2 compared to (B.6). In our case no such cancellation
takes place because there is no “heavy top quark” to compensate for the fourth d-type
family. For this reason θ̄ is already corrected at 2-loops.

We have all the tools to estimate the size of the non-analytic contributions to θ̄. We
begin considering contributions to F1WW , where both i, j 6= i appear. The largest mass
factor from (B.10) is obtained when i = 3, j = 2 and α = 4, β = 3. The proportionality to
(m2

c/m
2
W )(m2

b/m
2
W ) renders such corrections rather innocuous. In addition, (B.6) turns out

to be very small as well. Using the approximate expressions for V derived in appendix B,
and recalling that Y can be written as a function of the SM Yukawa Yd and ξ/mψ as
in (2.9), we find that Im ([V ]34[V ∗]33[V ]23[V ∗]24) ∼ (mb/M)λ2

C(ms/M)(|ξ|2/m2
ψ). Even

including potentially large logs, the resulting contribution to |θ̄| is at most numerically
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comparable to (2.22) for M ∼ 1TeV. The effect becomes subleading with (TeV/M)2 as
soon as the mediator mass is above the TeV, which has to be the case because of direct
searches (see section 3).

Next we turn to an estimate of theW±−W± loops controlled by F2WW , or analogously
of the W± − Z0 loop in eq. (B.7), which we argued to be comparable parametrically. In
this case the largest mass enhancement is obtained with i = 3, α = 4, β = 3, when the
fermions running in the loop are the top, the bottom, and the heavy fermion. This is much
larger than the effect proportional to F1WW that we just analyzed. On the other hand,

Im ([V ]34[V ∗]33[V ]43[V ∗]44) ∼ λ2
C

mbms

M2
Im[ξ2ξ

∗
3 ]

m2
ψ

(B.11)

is comparable to the imaginary part found above. The final result is thus expected to be
of order

θ̄
∣∣∣
nonanaly,WZ

= cnonanaly

(
g2

16π2

)2
m2
t

m2
W

m2
b

m2
W

λ2
C

mbms

M2
Im[ξiξ∗j ]
m2
ψ

(B.12)

∼ cnonanaly 10−16
(TeV
M

)2 Im[ξiξ∗j ]
m2
ψ

.

We discussed it below (2.24). Here we just observe that an independent way to understand
the necessity of factors of quark masses in front of (2.24) is to note that when all SM
fermions are degenerate we can put Vij in diagonal form, in which case (B.6) vanishes.

Loops with fermions and 2 virtual Higgses, or one Higgs and one W±, or one Higgs
and one Z0 are respectively controlled by (no sum over indices is implied)

Im ([Y]αβ [Y∗]αγ [Y]σγ [Y∗]σβ) (B.13)

Im ([V ]iβ [V ∗]iγ [Y]γσ[Y∗]βσ)

Im ([Z]αβ [Z∗]αγ [Y]γσ[Y∗]βσ) = |V4α|2 Im ([V4β [V ∗]4γ [Y]γσ[Y∗]βσ) .

We inspected these structures and found that a non-vanishing correction to θ or Fu,d
in (2.19) can only be obtained if subleading terms in the mixing ∼ Y v/M between ψ and
the SM are taken into account. As a result corrections to θ̄ due to loops of the Higgs boson
are always smaller than in (B.12).
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