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Nonlocal conservation laws (the signature feature being that the flux function depends on the solution through
the convolution with a given kernel) are extensively used in the modeling of vehicular traffic. In this work we
discuss the singular local limit, namely the convergence of the nonlocal solutions to the entropy admissible
solution of the conservation law obtained by replacing the convolution kernel with a Dirac delta. Albeit
recent counter-examples rule out convergence in the general case, in the specific framework of traffic models
(with anisotropic convolution kernels) the singular limit has been established under rigid assumptions, i.e. in
the case of the exponential kernel (which entails algebraic identities between the kernel and its derivatives)
or under fairly restrictive requirements on the initial datum. In this work we obtain general convergence
results under assumptions that are entirely natural in view of applications to traffic models, plus a convexity
requirement on the convolution kernels. We then provide a general criterion for entropy admissibility of the
limit and a convergence rate. We also exhibit a counter-example showing that the convexity assumption is
necessary for our main compactness estimate.
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1. Introduction

Consider a family of Cauchy problems for nonlocal conservation laws in the form

(1.1)

{
∂tuε + ∂x[V (uε ∗ ηε)uε] = 0
uε(0, ·) = u0

with ηε(x) :=
1

ε
η
(x
ε

)
.

In the previous expression, uε : R+×R→ R is the unknown, η : R→ R+ is a given convolution kernel,
the symbol ∗ represents the convolution with respect to the x variable only, ε > 0 is a parameter
and V : R → R a Lipschitz continuous function. We specify in the following the precise assumptions
imposed on V , η and u0, for the time being we just mention that existence and uniqueness results
for (1.1) can be established under fairly general assumptions, see for instance [16]. In the present work
we are concerned with the singular local limit ε → 0+: when ηε converges weakly∗ in the sense of
measures to the Dirac delta, (1.1) formally boils down to the conservation law Cauchy problem

(1.2)

{
∂tu+ ∂x[V (u)u] = 0
u(0, ·) = u0.

Existence and uniqueness results for so-called entropy admissible solutions of (1.2) date back to
Kružkov [18]. The nonlocal-to-local limit was first addressed by Zumbrun in [23] and Amorim, R.
Colombo and Teixeira in [2]. Zumbrun [23] showed that when ε → 0+ the family uε converges to the
entropy admissible solution u of (1.2) provided V (u) = u, η is an even function and the limit solu-
tion u is regular. In [2] the authors posed the general convergence question and exhibited numerical
experiments suggesting convergence of uε to the entropy admissible solution u. In [12] the authors pro-
vided some counter-examples showing that, in general, the family uε does not converge to the entropy
admissible solution of (1.2).

The analysis in [12] left open the possibility that convergence holds under specific assumptions. In
this respect, a natural target for the investigation of the local limit is the framework of traffic flow
models: indeed, in recent years, nonlocal conservation laws in the form (1.1) have been widely used
in the modeling of traffic, see for instance [3, 6, 13] and the references therein. In this framework,
the local counterpart (1.2) is the by now classical LWR model introduced in [20, 22]: u in this case
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represents the density of cars and V their speed. It is then natural to assume that the initial datum
u0 satisfies

(1.3) u0 ∈ L∞(R), 0 ≤ u0 ≤ 1,

where we have normalized to 1 the maximum possible car density, corresponding to bumper-to-bumper
packing. Also, note that the LWR model postulates that drivers choose their speed depending on
the car density, and, since the expected reaction to a traffic congestion is deceleration, the standard
assumptions imposed on the function V are

(1.4) V ∈ Lip(R), V ′ ≤ 0 on [0, 1].

The nonlocal convolution term in (1.1) models the fact that drivers choose their speed based on the
density of cars in a suitable neighborhood. The standard hypotheses imposed on η are then
(1.5)

η ∈ L1(R) ∩ L∞(R), supp η ⊆ R−, η ≥ 0, η non-decreasing on R−,
ˆ
R−

η(x)dx = 1.

The assumption supp η ⊆ R− models the fact that drivers choose their speed based on the downstream
car density only (i.e. they look forward, not backward), whereas the monotonicity condition takes into
account the fact that they pay more attention to closer vehicles.

We now focus on the analysis of nonlocal Cauchy problems satisfying (1.3),(1.4) and (1.5). Un-
der (1.4) and (1.5) nonlocal conservation laws (1.1) enjoy the maximum principle and, under some
more assumptions, propagation of monotonicity, see [3]. Keimer and Pflug [17] used these properties
to establish convergence in the local limit ε → 0+ for monotone initial data. Bressan and Shen [4, 5]
established convergence in the local limit in the case η(x) = 1]−∞,0](x)ex and under the assumption
that the initial datum has finite total variation and is bounded away from 0. A key point of the analysis
in both [4, 17] is that the total variation TotVar uε(t, ·) is a monotone non-increasing function of time.
Note furthermore that the assumption that the initial datum has bounded total variation is fairly nat-
ural in the conservation laws framework, see [14]. In our previous work [11] we established convergence
via an Olĕınik-type estimate under quite general assumptions on the kernel η, but requiring that the
initial datum u0 is bounded away from 0 and satisfies a fairly restrictive one-sided Lipschitz condition.
In [11] we also exhibit a counter-example showing that, if the initial datum attains the value 0 then it
may happen that for every t > 0 the total variation TotVar uε(t, ·) blows up as ε→ 0+: this rules out
total variation estimates and implies that the convergence proofs in [4, 11] cannot extend to general
initial data. A way out this obstruction has been recently found by Coclite, Coron, De Nitti, Keimer
and Pflug in [7]: rather than looking at the total variation of uε, they show that the total variation of
the convolution term

(1.6) wε(t, x) := uε ∗ ηε(t, x) =
1

ε

ˆ +∞

x
η

(
x− y
ε

)
uε(t, y)dy

is a monotone non-increasing function of time. This allows to extend the results by Bressan and
Shen [4, 5] to initial data attaining the value 0. Note, however, that the analysis in [4, 5, 7] is
restricted to the case of the exponential kernel η(x) = 1]−∞,0](x)ex. The proofs crucially rely on the
algebraic identity, with no analogue for general kernels,

(1.7) uε = wε − ε∂xwε if η(x) = 1]−∞,0](x)ex,

which is used to derive an equation for wε independent of uε and allows to reformulate (1.1) as a
system with relaxation.

Our first main result states that the fact that TotVar wε(t, ·) is a non-increasing function of time
is true under the sole minimal assumptions (1.4) and (1.5) combined with a convexity requirement,
namely

(1.8) η is convex on R−,

that we comment upon in the following.
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Theorem 1.1. Assume that u0, V and η satisfy (1.3), (1.4), (1.5) and (1.8), respectively, and let uε
be the solution of the Cauchy problem (1.1) and wε be as in (1.6). If TotVar u0 < +∞ then

(1.9) TotVarwε(t, ·) ≤ TotVarwε(0, ·) for every ε > 0 and a.e. t > 0.

Note that the right-hand side of (1.9) is then easily controlled by the inequality

(1.10) TotVar wε(0, ·) ≤ TotVar u0,

which directly follows from (1.6). The proof of Theorem 1.1 is independent from the one in [7] since
it does not rely on any variant of (1.7), and more delicate since the equation for wε is more involved,
see (3.1). Note furthermore that, by relying on (1.9), it is rather easy (see §5.1) to see that, up to
subsequences,

(1.11) wε → u strongly in L1
loc(R+ × R), uε

∗
⇀ u weakly∗ in L∞(R+ × R),

for some function u that is a distributional solution of the Cauchy problem (1.2). The problem of the
entropy admissibility of the limit is highly nontrivial and, even in the case of the exponential kernel
η(x) = 1]−∞,0](x)ex it was partially left open in [4] and treated specifically in [5, 7] by relying on
formula (1.7). In [11] the entropy admissibility follows from an Olĕınik-type estimate [21] whose proof
requires the one-sided Lipschitz condition on the initial datum. Our second main result establishes
entropy admissibility of the limit function under very minimal assumptions.

Theorem 1.2. Assume that u0, V and η satisfy (1.3) (1.4) and (1.5), respectively, and let wε be as
in (1.6), where uε is the solution of the Cauchy problem (1.1). Consider a sequence εk → 0+ and
assume that wεk → u in L1

loc(R+ × R) for some function u ∈ L∞(R+ × R); then u is the entropy
admissible solution of (1.2).

We explicitly point out that the convexity assumption (1.8) is not needed in the statement of
Theorem 1.2. Also, Theorem 1.2 only requires strong L1 compactness rather than total variation
bounds, and as such it provides a general entropy admissibility criterion for the limit, which replaces
the ad hoc arguments used in specific cases in [5, 7, 17] and might be useful in contexts where the
L1 compactness is obtained through weaker a priori estimates (see [10] for results in the case of the
exponential kernel). The following theorem collects our main convergence results.

Theorem 1.3. Assume that u0, V and η satisfy (1.3) (1.4) and (1.5), respectively, and let wε be as
in (1.6), where uε is the solution of the Cauchy problem (1.1). Let u be the entropy admissible solution
of (1.2). If (1.8) holds and TotVar u0 < +∞, then (1.11) holds true.

If furthermore η(ξ)ξ ∈ L1(R) then we have the convergence rate

(1.12) ‖u(t, ·)− wε(t, ·)‖L1(R) ≤ C(η, V )
[
ε+
√
εt
]
TotVar u0 for every ε > 0 and a.e. t > 0

for a suitable constant C(η, V ) only depending on η and V .

The convergence result in the above statement is a consequence of Theorem 1.1 and Theorem 1.2,
whereas to establish the convergence rate (1.12) we provide a fairly precise estimate on the entropy
dissipation rate of nonlocal solutions (see Proposition 5.1) and then rely on an argument due to
Kuznetsov [19].

To conclude we are left to discuss the role of the convexity assumption (1.8), which is the sole
hypothesis in our convergence results Theorem 1.1 and Theorem 1.3 that is not entirely standard in
traffic models. It turns out that, if the convexity assumption (1.8) is violated then the key estimate (1.9)
fails in general.

Theorem 1.4. Assume V (w) := 1− w and η := 1]−1,0[; then for every sequence {εn} satisfying

(1.13) εn > 0, εn+1 ≤
1

16
εn for every n ∈ N

the following holds. There are an initial datum u0 satisfying (1.3) and such that TotVar u0 < +∞
and a sequence {tn} such that for every n ∈ N
(1.14) tn > 0, TotVarwεn(t, ·) > TotVarwεn(0, ·) for a.e. t ∈ ]0, tn[.
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Some remarks are here in order. First, the function V (w) = 1 − w satisfies (1.4) and the func-
tion η = 1]−1,0[ satisfies (1.5), but does not satisfy the convexity condition (1.8). Second, the
counter-example given in Theorem 1.4 is in contrast with numerical evidence provided in [7, §5] and [17,
p. 1949] which suggested that, when V (w) := 1 − w and η := 1]−1,0[, TotVarwεn(t, ·) is a monotone
non-increasing function of time. The numerical elusiveness is mainly due to the need of a specific
choice of initial datum to enforce (1.14) rather than to the numerical viscosity issue discussed in [9].
Our choice of initial datum is through an explicit formula, see (6.5), which depends on the chosen
sequence {εn}. Third, we are reasonably confident that the basic ideas of our counter-example are not
restricted to the case η = 1]−1,0[ and could be extended to a rather general class of kernels violating
the convexity condition (1.8) but, for simplicity, we do not pursue this direction here. Finally, we refer
to §6.1 for an heuristic presentation of the counter-example.

Paper outline. In §2 we overview some known preliminary results, in §3, §4, §5 and §6 we establish
Theorems 1.1, 1.2, 1.3 and 1.4, respectively. For the reader’s convenience we conclude the introduction
by collecting the main notation used in paper.

Notation.

• 1E : the characteristic function of the measurable set E, i.e. 1E(x) = 1 if x ∈ E, 1E(x) = 0 if
x /∈ E;
• u ∗ η: the convolution of u and η, computed with respect to the x variable only, in other words

[u ∗ η](t, x) =
´
R η(x− y)u(t, y)dy;

• TotVaru0: the total variation of the function u0, see [1, §3.2];
• R−, R+: the negative and the positive real axes, respectively, i.e. R− =]−∞, 0], R+ = [0,+∞[;
• L1

loc(R+ × R): the space of functions u such that u ∈ L1(Ω) for every open bounded set
Ω ⊆ R+ × R;
• Lip: the space of Lipschitz continuous functions;
• C1,1: the space of continuously differentiable functions with Lipschitz continuous derivatives;
• o(t) as t→ 0: the Bachmann-Landau notation for any function g such that limt→0 g(t)/t = 0.

2. Preliminary results

Existence and uniqueness results for nonlocal conservation laws with anisotropic convolution kernels
have been obtained in several works under different assumptions, see for instance [3, 4, 6, 8]. We now
very slightly extend [8, Corollary 2.1]

Proposition 2.1. Assume that u0, V and η satisfy (1.3), (1.4) and (1.5), respectively; then

i) there is a unique distributional solution uε ∈ L∞(R+ × R) of the Cauchy problem (1.1). Also,

(2.1) 0 ≤ uε ≤ 1.

ii) uε ∈ C0(R+, L
1
loc(R)), namely the function uε admits a representative such that the map t 7→

uε(t, ·) is continuous from R+ to L1
loc(R) endowed with the strong topology.

iii) If u0 ∈ Lip(R), then uε ∈ Lip(R+ × R).

Proof. Concerning items i) and ii), the only difference with respect to [8, Corollary 2.1] is that in
that paper uniqueness is established in the more restrictive class uε ∈ L∞(R+×R)∩C0(R+, L

1
loc(R)).

However, one can use the same argument as in the proof of [15, Corollary 3.14] and [12, Proposition
2.3] and show that, owing to renormalization, any bounded distributional solution of (1.1) satisfies ii).
Item iii) is a straightforward consequence of the analysis in [8] and of classical results concerning the
method of characteristics. �

As an easy consequence of Proposition 2.1 we get

Corollary 2.2. Assume that u0, V and η satisfy (1.3), (1.4) and (1.5), respectively, and that wε is
given by (1.6), where uε is the solution of the Cauchy problem (1.1). Then
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i) wε ∈ Lip(R+ × R) and

(2.2) 0 ≤ wε ≤ 1;

ii) wε ∈ C0(R+, L
1
loc(R));

iii) if u0 ∈ Lip(R), then wε ∈ C1,1(R+ × R).

Proof. By combining (1.5), (1.6) and (2.1) we get the maximum principle (2.2). By differentiating (1.6)
we get

(2.3)
∂wε
∂x

=
1

ε

[
1

ε

ˆ +∞

x
η′
(
x− y
ε

)
uε(t, y)dy − η(0−)uε(t, x)

]
and

∂wε
∂t

= −1

ε

ˆ +∞

x
η

(
x− y
ε

)
∂y[uεV (wε)](t, y)dy

=
1

ε

[
η(0−)uεV (wε)(t, x)− 1

ε

ˆ +∞

x
η′
(
x− y
ε

)
uεV (wε)(t, y)dy

]
.

(2.4)

In the previous expression, η(0−) denotes the left limit of η at 0, which is well-defined since the
restriction of η to R− is a monotone function. By combining (2.3) and (2.4) and using (2.1) and (2.2)
we get

(2.5) |∂xwε(t, x)| ≤ 1

ε
η(0−), |∂twε(t, x)| ≤ 1

ε
η(0−) max

w∈[0,1]
|V (w)| for every (t, x) ∈ R+ × R,

that is wε ∈ Lip(R+ × R). Item ii) in the statement of Corollary 2.2 follows from item ii) of Proposi-
tion 2.1. To establish item iii) we recall item iii) in the statement of Proposition 2.1 and use again (2.3)
and (2.4). �

We now recall a couple of well-known facts concering functions of bounded total variation that we
need in the following. Assume v ∈ L∞(R) satisfies TotVar v < +∞; then

(2.6)

ˆ
R
|v(x− ξ)− v(x)|dx ≤ |ξ|TotVar v for every ξ ∈ R.

Also, let ρ ∈ L1(R) satisfy

(2.7) Cρ :=

ˆ
R
|ρ(ξ)ξ|dξ < +∞,

ˆ
R
ρ(ξ)dξ = 1

and set ρh(ξ) := h−1ρ(h−1ξ); then

(2.8) ‖v ∗ ρh − v‖L1(R) ≤ h CρTotVar v for every h > 0.

To conclude, we point out that, if η satisfies (1.5) then

ˆ
R
|η′(ξ)ξ|dξ = lim

R→+∞

ˆ 0

−R
|η′(ξ)ξ|dξ η

′≥0
= − lim

R→+∞

ˆ 0

−R
η′(ξ)ξdξ

integration by parts
= − lim

R→+∞
Rη(−R) + lim

R→+∞

ˆ 0

−R
η(ξ)dξ ≤ lim

R→+∞

ˆ 0

−R
η(ξ)dξ

(1.5)

≤ 1.

(2.9)
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3. Proof of Theorem 1.1

By combining (2.3) and (2.4) we get that the material derivative of wε is given by

(3.1) ∂twε + V (wε)∂xwε =
1

ε2

ˆ +∞

x
η′
(
x− y
ε

)
[V (wε(t, x))− V (wε(t, y))]uε(t, y)dy.

To avoid some technicalities, we first provide the proof of Theorem 1.1 under some further assumptions
on the initial datum u0 and the convolution kernel η. We then remove these assumptions by relying
on a fairly standard approximation argument.
Step 1: we impose the further assumptions u0 ∈ Lip(R), η ∈ C2(]−∞, 0[), η′′ ∈ L1(]−∞, 0[). Owing
to iii) in the statement of Corollary 2.2, this implies that wε ∈ C1,1(R+ × R). We set zε := ∂xwε and
point out that zε ∈ Lip(R+ × R). By differentiating (3.1) we get

∂tzε + ∂x(V (wε)zε) =
1

ε2

ˆ +∞

x

[
1

ε
η′′
(
x− y
ε

)(
V (wε(t, x))− V (wε(t, y))

)
+ η′

(
x− y
ε

)
V ′(wε(t, x))zε(t, x)

]
uε(t, y)dy.

(3.2)

Note that the right-hand side of the above expression is finite since wε and uε are both bounded
functions, and both η′′ and η′ are summable. Assume for a moment we have shown that

(3.3) TotVarwε(t, ·) =

ˆ
R
|zε(t, x)| < +∞ for every t > 0 and ε > 0;

then by multiplying (3.2) by s(t, x) := sign(zε(t, x)) and x-integrating over R we arrive at

d

dt

ˆ
R
|zε(t, x)|dx+

ˆ
R
∂x(V (wε)|zε|)dx =

1

ε2

ˆ
R
s(t, x)

ˆ +∞

x

[
1

ε
η′′
(
x− y
ε

)(
V (wε(t, x))−V (wε(t, y))

)
+ η′

(
x− y
ε

)
V ′(wε(t, x))zε(t, x)

]
uε(t, y)dydx.

By relying on Fubini’s theorem we rewrite the above equality as

d

dt
TotVarwε(t, ·) =

d

dt

ˆ
R
|zε(t, x)|dx =

1

ε2

ˆ
R
uε(t, y)σ(t, y)dy,(3.4)

where

σ(t, y) :=

ˆ y

−∞

1

ε
η′′
(
x− y
ε

)(
V (wε(t, x))−V (wε(t, y))

)
s(t, x)dx+

ˆ y

−∞
η′
(
x− y
ε

)
V ′(wε(t, x))|zε(t, x)|dx.

By using the integration by parts formula we arrive at

(3.5) σ(t, y) :=

ˆ y

−∞

1

ε
η′′
(
x− y
ε

)[(
V (wε(t, x))− V (wε(t, y))

)
s(t, x)− γ(t, x, y)

]
dx,

where

γ(t, x, y) := −
ˆ y

x
V ′(wε(t, ξ))|zε(t, ξ)|dξ.

Note that γ ≥ 0 since x ≤ y and V ′ ≤ 0. Also,

|V (wε(t, x))− V (wε(t, y))| ≤
∣∣∣∣ˆ x

y
V ′(wε(t, ξ))zε(t, ξ)dξ

∣∣∣∣ ≤ γ(t, x, y)

and by recalling (3.5) and the inequality η′′ ≥ 0 we conclude that σ(t, y) ≤ 0. By plugging this
inequality into (3.4) and recalling that uε ≥ 0 owing to (2.1) we conclude that the right-hand side
of (3.4) is nonpositive, which in turn yields (1.9).
Step 2: we establish (3.3) under the assumptions that u0 ∈ Lip(R) and η ∈ C2(] − ∞, 0[), η′′ ∈
L1(] −∞, 0[). We recall that zε = ∂xwε and it is bounded by the first inequality in (2.5). Next, we
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fix R > 0, multiply (3.2) by s(t, x) := sign(zε(t, x)) and x-integrate over the interval ] − R,R[. By
performing a change of variables and applying Fubini’s theorem we arrive at

d

dt

ˆ R

−R
|zε(t, x)|dx+

ˆ R

−R
∂x(V (wε)|zε|)(t, x)dx ≤ 1

ε2

ˆ
R−

η′′(ξ)

ˆ R

−R

∣∣V (wε(t, x))−V (wε(t, x− εξ))
∣∣dxdξ︸ ︷︷ ︸

:=T1

+
1

ε

ˆ
R−

η′(ξ)

ˆ R

−R
|V ′(wε(t, x))||zε(t, x)|uε(t, x− εξ)dxdξ︸ ︷︷ ︸

:=T2

.

(3.6)

Note that

T1 ≤
1

ε2

ˆ
R−

η′′(ξ)

ˆ R+εξ

−R

∣∣V (wε(t, x))−V (wε(t, x− εz))
∣∣dxdξ︸ ︷︷ ︸

T11

+
1

ε2

ˆ
R−

η′′(ξ)

ˆ R

R+εξ

∣∣V (wε(t, x))−V (wε(t, x− εz))
∣∣dxdξ.︸ ︷︷ ︸

T12

(3.7)

We have

(3.8) T12

(2.2)

≤ −2

ε
max
w∈[0,1]

|V (w)|
ˆ
R−

η′′(ξ)ξdξ
integration by parts, (2.9)

=
2

ε
max
w∈[0,1]

|V (w)|η(0−).

To control the term T11, we point out that, if ξ ≤ 0 and x ∈] − R,R + εξ[, then both x and x − εξ
belong to the interval ]−R,R[. This implies that

(3.9) T11 ≤
1

ε
‖V ′‖L∞

(ˆ
R−

η′′(ξ)|ξ|dξ
)(ˆ R

−R
|zε(t, x)|dx

)
=

1

ε
‖V ′‖L∞η(0−)

ˆ R

−R
|zε(t, x)|dx.

We also have

(3.10) T2

(2.1)

≤ 1

ε
η(0−) ess sup

w∈]0,1[
|V ′(w)|

ˆ R

−R
|zε(t, x)|dx.

We plug (3.8) and (3.9) into (3.7), combine them with (3.6) and (3.10), recall (2.5) and apply Gronwall’s

Lemma. We obtain a bound on
´ R
−R |zε(t, x)|dx which does not depend on R (albeit it depends on ε).

By sending R→ +∞ we establish (3.3).
Step 3: we remove the assumptions u0 ∈ Lip(R) and η ∈ C2(] −∞, 0[), η′′ ∈ L1(] −∞, 0[). We fix
u0 and η as in the statement of Theorem 1.1 and term uε the solution of the Cauchy problem (1.1)
and wε the corresponding convolution terms. Next, we construct suitable sequences {u0n} and {ηn}
satisfying the assumptions of Theorem 1.1, the further conditions u0n ∈ Lip(R), ηn ∈ C2(] −∞, 0[),
η′′n ∈ L1(]−∞, 0[) and such that

(3.11) u0n
∗
⇀ u0 weakly∗ in L∞(R), TotVaru0n ≤ TotVaru0, lim

n→+∞
‖un0 − un‖L1(R) = 0

and that

(3.12) ηn → η strongly in L1(R), {ηn(0)} is uniformly bounded.

We can for instance define u0n by convolving u0 with a suitable family of convolution kernels {ρn} and
then use (2.8) to obtain the last condition in (3.11).
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We term uεn the sequence of solutions of the Cauchy problem (1.1) and wεn the corresponding
sequence of convolution terms. By recalling (2.1) and by combining (2.5) with (3.12) and the Ascoli-
Arzelà theorem we get that

uεn
∗
⇀ vε weakly∗ in L∞(R− × R), wεn → pε in C0(K), for every K ⊆ R− × R compact

for suitable functions vε ∈ L∞(R−×R) and pε ∈ Lip(R−×R). Owing to (3.12) we can pass to the limit
in the equality wεn(t, x) =

´
R− ηn(ξ)uεn(t, x−εξ)dξ and arrive at pε(t, x) =

´
R− η(ξ)vε(t, x−εξ)dξ. Also,

by passing to the limit in the distributional formulation we infer that vε is a bounded distributional
solution of the Cauchy problem (1.1) and by uniqueness this implies vε = uε, pε = wε. By applying
Step 1 to the sequence wεn, recalling the lower semicontinuity of the total variation and then passing
to the limit we arrive at

(3.13) TotVarwε(t, ·) ≤ lim inf
n→+∞

TotVarwεn(0, ·).

By combining (3.11) with (3.12) and (2.3) we get

lim
n→+∞

TotVarwεn(0, ·) = TotVarwε(0, ·)

and by plugging the above equality into (3.13) we get (1.9).

4. Proof of Theorem 1.2

We need the following lemma.

Lemma 4.1. Let η satisfy (1.5) and assume that {vk} is a pre-compact sequence in L1
loc(R+×R) such

that ‖vk‖L∞ ≤ Λ for some Λ > 0 and for every k. Set

Fkε(t, x) :=

ˆ +∞

x

1

ε
η

(
x− y
ε

)
|vk(t, y)− vk(t, x)|dy;

then the family {Fkε} converges to 0 as ε→ 0+ in L1
loc(R+ × R), uniformly in k. In other words, for

every r, T,M > 0, there is ε̃ > 0, depending on r, T and M only, such that if ε ≤ ε̃, thenˆ T

0

ˆ M

−M
|Fkε(t, x)|dxdt ≤ r for every k.

Proof. We proceed according to the following steps.
Step 1: we rely on the Fréchet-Kolmogorov theorem and infer that the sequence {vk} is equicontinuous
in L1

loc. In particular, for every T > 0, L > 0 and ν > 0 there is τ̃(T, L, ν) > 0 such that, if
|τ | < τ̃(T, L, ν), then

(4.1)

ˆ T

0

ˆ L−τ

−L+τ
|vk(t, x+ τ)− vk(t, x)|dxdt ≤ ν for every k.

Step 2: we now fix δ > 0, choose R > 0 in such a way that
´ −R
−∞ η(z)dz < δ and point out that

ˆ T

0

ˆ M

−M
|Fkε(t, x)|dxdt

ξ=x−y
ε=

ˆ T

0

ˆ M

−M

ˆ
R−

η(ξ)|vk(t, x− εξ)− vk(t, x)|dξdxdt

Fubini
=

ˆ 0

−R
η(ξ)

ˆ T

0

ˆ M

−M
|vk(t, x− εξ)− vk(t, x)|dxdtdξ

+

ˆ −R
−∞

η(ξ)

ˆ T

0

ˆ M

−M
|vk(t, x− εξ)− vk(t, x)|dxdtdξ

(4.1)

≤ ν + 4δTM ‖vk‖L∞︸ ︷︷ ︸
≤Λ

(4.2)

provided L = M + 1 and εR < min{τ̃(T, L, ν), 1}. By the arbitrariness of ν and δ this concludes the
proof of Lemma 4.1. �

We are now ready to provide the actual proof of Theorem 1.2.
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Proof of Theorem 1.2. We fix an entropy-entropy flux pair (α, β) for (1.2), namely α, β : R → R are
two C2 functions satisfying α′′ ≥ 0, β′(u) = α′(u)[V (u) + uV ′(u)]. Also, we fix φ ∈ C∞c (R+ × R)
satisfying φ ≥ 0. By the arbitrariness of (α, β) and φ, the proof of Theorem 1.2 boils down to the
proof of the inequality

(4.3) Dα(φ) :=

¨
R+×R

[
α(u)∂tφ+ β(u)∂xφ

]
dxdt+

ˆ
R
α(u0(x))φ(0, x)dx ≥ 0.

Note that in particular (4.3) implies that u is a distributional solution of (1.2). Indeed, by choosing
(α(u), β(u)) = (u, uV (u)) and (α(u), β(u)) = (−u,−uV (u)) we get the inequalities ∂tu + ∂x[uV ] ≤ 0
and ∂tu+ ∂x[uV ] ≥ 0, respectively, which are satisfied in the sense of distributions, and from this we
infer (1.2).

To establish (4.3) we set ηε(ξ) := 1
εη
(
ξ
ε

)
, choose a sequence {εk} and set

(4.4) Dεk
α (φ) :=

¨
R+×R

[
α(wεk)∂tφ+ β(wεk)∂xφ

]
dxdt+

ˆ
R
α(wεk(0, x))φ(0, x)dx.

We recall that by assumption wεk → w in L1(]0, T [×R) and that wεk(0, x) = u0 ∗ ηεk → u0 in L1(R).
This implies that limk→+∞D

εk
α (φ) = Dα(φ) and hence that establishing (4.3) amounts to show that

(4.5) lim
k→+∞

Dεk
α (φ) ≥ 0.

To establish (4.5) we proceed according to the following steps.
Step 1: we write Dεk

α (φ) in a more convenient form. To this end we consider the equation at the first
line of (1.1), convolve it with ηεk and then multiply the result times α′(wεk). We arrive at

∂tα(wεk) + α′(wεk)∂x
[
[V (wεk)uεk ] ∗ ηεk

]
= 0.

Next, we multiply the above equation times φ and integrate over R+×R. Owing to the integration by
parts formula this yields

(4.6)

¨
R+×R

α(wεk)∂tφ+ [(V (wεk)uεk) ∗ ηεk ]∂x[α′(wεk)φ]dxdt+

ˆ
R
α(wεk(0, x))φ(0, x)dx = 0.

We now point that, owing to the equality β′(u) = α′(u)[V (u) + uV ′(u)], we have

¨
R+×R

β(wεk)∂xφ dxdt = −
¨

R+×R
β′(wεk)∂xwεkφ dxdt

= −
¨

R+×R
α′(wεk)[V (wεk) + wεkV

′(wεk)]∂xwεkφ dxdt

= −
¨

R+×R
α′(wεk)∂x[V (wεk)wεk ]φ dxdt =

¨
R+×R

V (wεk)wεk∂x[α′(wεk)φ]dxdt.

(4.7)

By comparing (4.4) with (4.6) and using (4.7) we then get

Dεk
α (φ)

(4.6),(4.7)
=

¨
R+×R

[
V (wεk)wεk − [V (wεk)uεk ] ∗ ηεk

]︸ ︷︷ ︸
Sε(t,x)

∂x[α′(wεk)φ]dxdt

=

¨
R+×R

Sε(t, x)α′(wεk)∂xφdxdt+

¨
R+×R

Sε(t, x)∂x[α′(wεk)]φdxdt︸ ︷︷ ︸
T
εk
1

.
(4.8)
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Note that

T εk1 =

¨
R+×R

ˆ +∞

x
∂x[α′(wεk)](t, x)φ(t, x)

1

εk
η

(
x− y
εk

)
uεk(t, y)

[
V (wεk(t, x))− V (wεk(t, y))

]
dydxdt

=

¨
R+×R

uεk(t, y)ωεk(t, y)dydt,

(4.9)

provided

ωεk(t, y) :=

ˆ y

−∞
∂x[α′(wεk)](t, x)φ(t, x)

1

εk
η

(
x− y
εk

)[
V (wεk(t, x))− V (wεk(t, y))

]
dx

=

ˆ y

−∞
∂x[α′(wεk)](t, x)V (wεk(t, x))︸ ︷︷ ︸

∂xI(wεk )

φ(t, x)
1

εk
η

(
x− y
εk

)
dx

− V (wεk(t, y))

ˆ y

−∞
∂x[α′(wεk)](t, x)φ(t, x)

1

εk
η

(
x− y
εk

)
dx.

In the previous expression, we have chosen the C1 function I in such a way that I ′(u) = α′′(u)V (u).
By applying the integration by parts formula we then get

ωεk(t, y) =I(wεk(t, y))φ(t, y)
η(0)

εk
−
ˆ y

−∞
I(wεk(t, x))∂x

[
φ(t, x)

1

εk
η

(
x− y
εk

)]
dx

− V (wεk(t, y))

[
α′(wεk(t, y))φ(t, y)

η(0)

εk
−
ˆ y

−∞
α′(wεk(t, x))∂x

[
φ(t, x)

1

εk
η

(
x− y
εk

)]
dx

]
=

ˆ y

−∞

[
I(wεk(t, y))− I(wεk(t, x))

]
∂x

[
φ(t, x)

1

εk
η

(
x− y
εk

)]
dx

− V (wεk(t, y))

ˆ y

−∞

[
α′(wεk(t, y))− α′(wεk(t, x))

]
∂x

[
φ(t, x)

1

εk
η

(
x− y
εk

)]
dx

= G1
εk

(t, y) +G2
εk

(t, y) + Pεk(t, y),

(4.10)

provided

G1
εk

(t, y) :=

ˆ y

−∞

[
I(wεk(t, y))− I(wεk(t, x))

] 1

εk
η

(
x− y
εk

)
∂xφ(t, x)dx(4.11)

G2
εk

(t, y) = −V (wεk(t, y))

ˆ y

−∞

[
α′(wεk(t, y))− α′(wεk(t, x))

] 1

εk
η

(
x− y
εk

)
∂xφ(t, x)dx

and

Pεk(t, y) : =

ˆ y

−∞
H(wε(t, x), wε(t, y))φ(t, x)∂x

[
1

ε
η

(
x− y
ε

)]
dx

=
1

ε2

ˆ y

−∞
H(wε(t, x), wε(t, y))φ(t, x)η′

(
x− y
ε

)
dx,

(4.12)

where

(4.13) H(a, b) := I(b)− I(a)− V (b)(α′(b)− α′(a)).

By plugging (4.11) and (4.12) into (4.10) and then recalling (4.8) and (4.9) we then arrive at

(4.14) Dεk
α (φ) =

¨
R+×R

Sε(t, x)α′(wεk)∂xφdxdt+

¨
R+×R

uεk(t, y)[G1
εk

(t, y)+G2
εk

(t, y)+Pεk(t, y)]dydt
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Step 2: we establish (4.5).
Step 2A: we show that
(4.15)

Dεk
α (φ) ≥

¨
R+×R

Sε(t, x)α′(wεk)∂xφdxdt︸ ︷︷ ︸
T
εk
2

+

¨
R+×R

uεk(t, y)G1
εk

(t, y)dydt︸ ︷︷ ︸
T
εk
3

+

¨
R+×R

uεk(t, y)G2
εk

(t, y)]dydt︸ ︷︷ ︸
T
εk
4

.

Owing to (4.14) and since uεk ≥ 0 it suffices to show that Pεk ≥ 0. To this end we recall (4.12)
and (4.13) and that I ′(u) = α′′(u)V (u). We point out that

∂H

∂a
(u, b) = −I ′(u) + V (b)α′′(u) = α′′(u)[V (b)− V (u)]

and by recalling that α′′ ≥ 0 and that V ′ ≤ 0 we conclude that the last expression is non-positive if
u ≤ b and non-negative if u ≥ b. This implies that u = b is a minimum for H(u, b) and since H(b, b) = 0
we obtain the inequality H(a, b) ≥ 0 for every (a, b) ∈ R2. By plugging this information into (4.12)
and recalling that φ ≥ 0 and that η′ ≥ 0 by (1.5), we conclude that Pεk ≥ 0.
Step 2B: to establish (4.5) it suffices to show that the right-hand side of (4.15) vanishes in the k → +∞
limit. To this end we recall the explicit expression (4.8) of Sεk and point out that

Sεk(t, x) =

ˆ +∞

x

1

εk
η

(
x− y
εk

)[
wεk(t, x)V (wεk(t, x))− uεk(t, y)V (wεk(t, y))

]
dy

=

ˆ +∞

x

1

εk
η

(
x− y
εk

)
uεk(t, y)

[
V (wεk(t, x))− V (wεk(t, y))

]
dy.

(4.16)

Owing to (2.1), ‖uεk(t, y)‖L∞ ≤ 1; by applying Lemma 4.1 with vk := V (wεk) we get that Sεk converges
to 0 in L1

loc(R+ × R). Since φ is compactly supported, this implies that limk→+∞ T
εk
2 = 0. We now

show that limk→+∞ T
εk
3 = 0. To this end, we point out that

|T εk3 |
(4.11),(4.15)

≤
¨

R+×R
uεk(t, y)

ˆ y

−∞

∣∣I(wεk(t, y))− I(wεk(t, x))
∣∣ 1

εk
η

(
x− y
εk

)
|∂xφ(t, x)|dxdydt

Fubini
=

¨
R+×R

|∂xφ(t, x)|
ˆ +∞

x
uεk(t, y)︸ ︷︷ ︸
≤1 by (2.1)

∣∣I(wεk(t, y))− I(wεk(t, x))
∣∣ 1

εk
η

(
x− y
εk

)
dydxdt.

Since φ is compactly supported, by applying Lemma 4.1 with vk := I(wεk) we conclude that T εk3
vanishes in the ε → 0+ limit. By relying on an analogous argument we show that limk→+∞ T

εk
4 = 0

and owing to (4.15) this concludes the proof of (4.5). �

5. Proof of Theorem 1.3

5.1. Convergence proof. Let u be the entropy admissible solution of (1.2), we now establish (1.11).
Step 1: we show that the family {wε} is pre-compact in the strong topology of L1

loc(R+×R). To this
end, we point out that, for every T > 0, we have

(5.1)

ˆ T

0

ˆ
R
|∂xwε|(t, x)dxdt

(1.9)

≤ TTotVarwε(0, ·)
(1.10)

≤ T TotVar u0
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and ˆ T

0

ˆ
R

∣∣∣∣ 1

ε2

ˆ +∞

x
η′
(
x− y
ε

)
[V (wε(t, x))− V (wε(t, y))]uε(t, y)dy

∣∣∣∣ dxdt
ξ=x−y

ε=
1

ε

ˆ T

0

ˆ
R

∣∣∣∣ˆ
R−

η′(ξ)[V (wε(t, x− εξ))− V (wε(t, y))]uε(t, x− εξ)dξ
∣∣∣∣ dxdt

≤ 1

ε

ˆ T

0

ˆ
R−
|η′(ξ)|

ˆ
R
|V (wε(t, x− εξ))− V (wε(t, y))||uε(t, x− εξ)|dxdξdt

(2.1),(2.6)

≤ T sup
t∈]0,T [

TotVar[V ◦ wε(t, ·)]
ˆ
R−
|η′(ξ)ξ|dξ

(2.2)

≤ T ess sup
w∈]0,1[

|V ′(w)| sup
t∈]0,T [

TotVarwε(t, ·)
ˆ
R−
|η′(ξ)ξ|dξ

(1.9),(1.10)

≤ T ess sup
w∈]0,1[

|V ′(w)|TotVaru0

ˆ
R−
|η′(ξ)ξ|dξ

(2.9)

≤ T sup
w∈]0,1[

|V ′(w)|TotVaru0.

Owing to (3.1) and recalling (5.1), this implies that
´ T

0

´
R |∂twε|dxdt is also bounded uniformly in ε.

We recall (2.2) and by applying the Helly-Kolmogorov-Fréchet compactness theorem we eventually get
the desired pre-compactness result.
Step 2: fix a sequence εk → 0+, then owing to Step 1 and up to subsequences wεk → u in L1

loc(R+×R)
for some function u ∈ L∞(R+×R). Owing to Theorem 1.2, u is the entropy admissible solution of (1.2)
and by the uniqueness of such solution this yields the first convergence result in (1.11).

Step 3: let u be as in Step 2, we now show that uε
∗
⇀ u weakly∗ in L∞(R+ × R). Owing to (2.1),

the family {uε} is pre-compact in L∞(R+ × R) endowed with the weak∗ topology. To conclude, it
suffices to show that any accumulation point v satisfies v = u. To this end, we recall that, for any
ϕ ∈ C∞c (R+ × R) we have the identity¨

R+×R
ϕwεdxdt =

¨
R+×R

ϕ[uε ∗ ηε]dxdt =

¨
R+×R

[ϕ ∗ η̌ε]uεdxdt provided η̌ε(x) := ηε(−x).

By passing to the limit in the above inequality and using Step 2 and the arbitrariness of ϕ we then
arrive at v = u.

5.2. Proof of the convergence rate (1.12). We first introduce the so-called Kružkov’s entropy-
entropy flux pairs

(5.2) αc(u) := |u− c|, βc(u) = sign(u− c)[V (u)u− V (c)c], c ∈ R

and establish a preliminary result.

Proposition 5.1. Assume that u0, V and η satisfy (1.3) (1.4) and (1.5), respectively, and let wε be
as in (1.6), where uε is the solution of the Cauchy problem (1.1). If η(ξ)ξ ∈ L1(R) there is a constant
K > 0 which only depends on V and η and satisfies the following properties. Fix ε > 0, then there is
a function Eε ∈ L1

loc(R+ × R) such that

(5.3) Dε
c(φ) :=

¨
R+×R

[
αc(wε)∂tφ+ βc(wε)∂xφ

]
dxdt ≥ −

¨
R+×R

Eε|∂xφ|dxdt

for every c ∈ R and every test function φ ∈ C∞c (]0,+∞[×R), φ ≥ 0; also,

(5.4)

ˆ
R
|Eε(t, x)|dx ≤ KεTotVarwε(t, ·) for a.e. t ∈ R+.

Proof. We fix a test function φ ∈ C∞c (]0,+∞[×R), φ ≥ 0 and proceed according to the following steps.
Step 1: we fix a (classical) entropy-entropy flux pair, i.e. α, β ∈ C2(R) satisfy α′′ ≥ 0 and β′(u) =
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α′(u)[uV ′(u) + V (u)]. We recall (4.4) and (4.15) and conclude that

(5.5) Dε
α(φ) ≥ − max

w∈[0,1]
|α′(w)|

¨
R+×R

|Sε(t, x)||∂xφ|dxdt+

¨
R+×R

uεk(t, y)[G1
ε(t, y) +G2

ε(t, y)]dydt,

where Sε, G
1
ε, G

2
ε are as in (4.16) and (4.11), respectively. We now set L(u) := I(u)− α′(u)V (u) and,

recalling the equality I ′(u) = α′′(u)V (u), conclude that L′(u) = −α′(u)V ′(u). We then point out that

(G1
ε +G2

ε)(t, y) =

ˆ y

−∞

[
L(wε(t, y))− L(wε(t, x))

]1
ε
η

(
x− y
ε

)
∂xφ(t, x)dx

+

ˆ y

−∞
α′(wε(t, x))

[
V (wε(t, y))− V (wε(t, x))

]1
ε
η

(
x− y
ε

)
∂xφ(t, x)dx,

which owing to Fubini’s theorem and by recalling (2.1) yields

¨
R+×R

(G1
ε +G2

ε)(t, y)uε(t, y)dydt

≥−
¨

R+×R
|∂xφ|(t, x)

ˆ +∞

x

∣∣L(wε(t, y))− L(wε(t, x))
∣∣1
ε
η

(
x− y
ε

)
dydxdt

− max
w∈[0,1]

|α′(w)|
¨

R+×R
|∂xφ|(t, x)

ˆ +∞

x

∣∣V (wε(t, y))− V (wε(t, x))
∣∣1
ε
η

(
x− y
ε

)
dydxdt

L′=−α′V ′
≥ −2 max

w∈[0,1]
|α′(w)| ess sup

w∈]0,1[
|V ′(w)|

¨
R+×R

|∂xφ|(t, x)

ˆ +∞

x

∣∣wε(t, y)− wε(t, x)
∣∣1
ε
η

(
x− y
ε

)
dydxdt.

(5.6)

Step 2: we fix c ∈ R and consider the Kružkov’s entropy-entropy flux pairs defined in (5.2). We
construct a sequence (αn, βn) of C2 entropy-entropy flux pairs such that αn → αc and βn → βc as
n→ +∞ in C0(R) and |α′n| ≤ 1 for every n. By comparing (4.4) and (5.3) and recalling that φ(0, ·) ≡ 0
we get that Dε

αn(φ) → Dε
c(φ) as n → +∞. By passing to the limit in (5.5) and using (5.6) we arrive

at the inequality

Dε
c(φ) ≥ −

ˆ T

0

ˆ
R
|Sε(t, x)||∂xφ|dxdt

−
¨

R+×R
|∂xφ|(t, x) 2 ess sup

w∈]0,1[
|V ′(w)|

ˆ +∞

x

∣∣wε(t, y)− wε(t, x)
∣∣1
ε
η

(
x− y
ε

)
dy︸ ︷︷ ︸

Aε(t,x)

dxdt.

We now set Eε := Sε +Aε and by recalling (4.16) point out thatˆ
R
|Sε(t, x)|dx =

ˆ
R

ˆ +∞

x
|uε(t, y)|︸ ︷︷ ︸
≤1 by (2.1)

∣∣V (wε(t, y))− V (wε(t, x))
∣∣1
ε
η

(
x− y
ε

)
dydx

ξ=x−y
ε

≤
ˆ
R

ˆ
R−

∣∣V (wε(t, x− εξ))− V (wε(t, x))
∣∣η(ξ)dξdx

Fubini
=

ˆ
R−

η(ξ)

ˆ
R

∣∣V (wε(t, x− εξ))− V (wε(t, x))
∣∣dxdξ

≤ ess sup
w∈]0,1[

|V ′(w)|
ˆ
R−

η(ξ)

ˆ
R

∣∣wε(t, x− εξ)− wε(t, x)
∣∣dxdξ

(2.6)

≤ ε ess sup
w∈]0,1[

|V ′(w)|TotVar[wε](t, ·)
ˆ
R−

η(ξ)|ξ|dξ︸ ︷︷ ︸
Cη

≤Cηε ess sup
w∈]0,1[

|V ′(w)|TotVarwε(t, ·).
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By relying on the same computations we control the integral of |Aε| and eventually arrive at (5.4). �

We now establish the proof of (1.12). We follow an argument due to Kuznetsov [19], which in turn
relies on the doubling-of-variables technique by Kružkov [18]. We detail the argument for the sake
of completeness. First, we apply Proposition 5.1 and recall that u is an entropy admissibile solution
of (1.2); we conclude that for every test function φ ∈ C∞((]0,+∞[× R)2), φ ≥ 0 we have

¨
R+×R

[
|wε(t′, x′)− u(t, x)|∂t′φ+ q(wε(t

′, x′), u(t, x))∂x′φ
]
dx′dt′ ≥ −

¨
R+×R

E(t′, x′)|∂x′φ|dt′dx′

¨
R+×R

[
|wε(t′, x′)− u(t, x)|∂tφ+ q(wε(t

′, x′), u(t, x))∂xφ
]
dxdt ≥ 0,

(5.7)

provided q(a, b) = sign(a− b)
(
aV (a)− bV (b)

)
. We now choose the test function φ by setting

(5.8) φ(t, x, t′, x′) = ψ

(
t+ t′

2

)
χ

(
x+ x′

2

)
γν1(t− t′)γν2(x− x′),

where ψ ∈ C∞c (]0,+∞[), χ ∈ C∞c (R) satisfy ψ, χ ≥ 0. Also, ν1, ν2 > 0 are two parameters and we
have used the notation γνi(x) := ν−1

i γ(ν−1
i x), where γ is a standard convolution kernel satisfying

γ ∈ C∞c (]− 1, 1[), γ ≥ 0,

ˆ
R
γ = 1.

We plug (5.8) into (5.7), integrate the first equation with respect to dxdt and the second equation with
respect to dx′dt′ and add the resulting equations; we get

(5.9)

˘
(R+×R)2

[
|wε−u|ψ′χ+q(wε, u)ψχ′

]
γν1γν2dx

′dt′dxdt ≥ −
˘

(R+×R)2
Eε(t′, x′)|∂x′φ|dx′dt′dxdt,

where we used the equalities ∂tφ + ∂t′φ = ψ′χ γν1γν2 and ∂xφ + ∂x′φ = ψχ′ γν1γν2 . In the previous
expression and in the following if not otherwise specified the functions χ and χ′ are evaluated at
(x+ x′)/2 and the functions γν1 and γν2 at t− t′ and x− x′, respectively. To control the right-hand
side of (5.9), we first of all point out that

(5.10) |∂x′φ(t, x, t′, x′)| ≤ 1

2
‖ψχ′‖C0γν1γν2 + ‖ψχ‖C0γν1

1

ν2
2

∣∣∣∣γ′(x− x′ν2

)∣∣∣∣ .
Next, we choose t1 and t2 such that supp ψ ⊆]t1, t2[ and arrive at

˘
(R+×R)2

Eε(t′, x′)|∂x′φ|dxdtdx′dt′ ≤
ˆ t2+ν1/2

t1−ν1/2

ˆ
R
Eε(t′, x′)

(¨
R+×R

|∂x′φ|dxdt
)
dx′dt′

(5.10)

≤
ˆ t2+ν1/2

t1−ν1/2

ˆ
R
Eε(t′, x′)

[
1

2
‖ψχ′‖C0 + ‖ψχ‖C0

‖γ′‖L1

ν2

]
dx′dt′

(5.4)

≤ Kε[t2 − t1 + ν1]

[
1

2
‖ψχ′‖C0 + ‖ψχ‖C0

‖γ′‖L1

ν2

]
ess sup
t∈R+

TotVarwε(t, ·)

(1.9),(1.10)

≤ Kε[t2 − t1 + ν1]

[
1

2
‖ψχ′‖C0 + ‖ψχ‖C0

‖γ′‖L1

ν2

]
TotVaru0.

(5.11)

We now let ν1 → 0+ and then consider a sequence ψn such that

ψn
∗
⇀ 1]t1,t2[ weakly∗ in L∞(R+), ‖ψn‖C0 ≤ 1
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and by taking the n → +∞ limit in both (5.9) and (5.11) and recalling that wε, u ∈ C0(R+, L
1
loc(R))

we arrive at¨
R2

|wε(t2, x′)− u(t2, x)|χγν2dxdx′ −
¨

R2

|wε(t1, x′)− u(t1, x)|χγν2dxdx′

≤
ˆ t2

t1

¨
R2

q(wε, u)χ′γν2dxdx
′dt+Kε[t2 − t1]

[
1

2
‖χ′‖C0 + ‖χ‖C0

‖γ′‖L1

ν2

]
TotVaru0.

(5.12)

Assume ‖χ‖C0 ≤ 1; then we have

¨
R2

|wε(t2, x′)− wε(t2, x)|χγν2dxdx′
ξ=x−x′

ν2

≤
ˆ
R
γ(ξ)

ˆ
R
|wε(t2, x− ν2ξ)− wε(t2, x)|dxdξ

(2.6)

≤ Cγν2TotVarwε(t2, ·)
(1.9),(1.10)

≤ Cγν2TotVaru0

(5.13)

and analogously ¨
R2

|wε(t1, x′)− wε(t1, x)|χγν2dxdx′ ≤ Cγν2TotVaru0.(5.14)

We now point out thatˆ
R
|wε(t2, x)− u(t2, x)|

ˆ
R
χγν2dx

′dx =

¨
R2

|wε(t2, x)− u(t2, x)|χγν2dxdx′

≤
¨

R2

|wε(t2, x)− wε(t2, x′)|χγν2dxdx′ +
¨

R2

|wε(t2, x′)− u(t2, x)|χγν2dxdx′
(5.15)

and that ¨
R2

|wε(t1, x′)− u(t1, x)|χγν2dxdx′ ≤
¨

R2

|wε(t1, x′)− wε(t1, x)|χγν2dxdx′

+

ˆ
R
|wε(t1, x)− u(t1, x)|

ˆ
R
χγν2dx

′dx.

(5.16)

By plugging the above inequalities into (5.12) and recalling (5.13), (5.14) and the inequality χ ≤ 1 we
arrive at ˆ

R
|wε(t2, x)− u(t2, x)|

ˆ
R
χγν2dx

′dx ≤ 2Cγν2TotVaru0

+

ˆ
R
|wε(t1, x)− u(t1, x)|

ˆ
R
χγν2dx

′dx+

ˆ t2

t1

¨
R2

q(wε, u)χ′γν2dxdx
′dt

+Kε[t2 − t1]

[
1

2
‖χ′‖C0 +

‖γ′‖L1

ν2

]
TotVaru0

and by using the inequalityˆ
R
|wε(0, x)− u0(x)|

ˆ
R
χγν2dx

′dx ≤
ˆ
R
|wε(0, x)− u0(x)|dx

(1.6)
= ‖u0 ∗ ηε − u0‖L1

(2.8)

≤ CηεTotVaru0

(5.17)

and letting t1 → 0+ we getˆ
R
|wε(t2, x)− u(t2, x)|

ˆ
R
χγν2dx

′dx ≤ 2Cγν2TotVaru0

+ CηεTotVaru0 +

ˆ t2

0

¨
R2

q(wε, u)χ′γν2dxdx
′dt+Kεt2

[
1

2
‖χ′‖C0 +

‖γ′‖L1

ν2

]
TotVaru0.

(5.18)
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Assume for a moment we have shown that

(5.19)

ˆ
R
|wε(t, x)− u(t, x)|dx < +∞ for every t ∈ R+;

then we can consider a sequence of test functions {χn} such that χn
∗
⇀ 1 weakly∗ in L∞(R), 0 ≤ χn ≤ 1

and ‖χ′n‖C0 → 0+ as n→ +∞. By passing to the n→ +∞ limit in (5.18) we arrive atˆ
R
|wε(t2, x)− u(t2, x)|dx ≤ 2Cγν2TotVaru0 + CηεTotVaru0 +Kεt2

‖γ′‖L1

ν2
TotVaru0

and by choosing ν2 =
√
εt2 and by relying on the arbitrariness of t2 we get (1.12). We are thus left to

establish (5.19): to this end, we recall that q(a, b) = sign(a − b)
(
aV (a) − bV (b)), which implies that

|q(wε, u)| ≤ ess supw∈]0,1[{|V (w)|+ |V ′(w)|}|wε(t, x)− u(t, x′)|. We can then choose a test function1 χ

such that |χ′| ≤ χ and conclude thatˆ t2

0

¨
R2

q(wε, u)χ′γν2dxdx
′dt ≤ ess sup

w∈]0,1[
{|V (w)|+ |V ′(w)|}

ˆ t2

0

¨
R2

|wε(t, x)− u(t, x′)|χγν2dxdx′dt.

By controlling the above term with the same argument as in (5.16), applying Grönwall’s lemma and
recalling (5.17) we establish a bound on the left-hand side of (5.18) independent of χ, and this eventually
implies (5.19) by the arbitrariness of t2.

6. Proof of Theorem 1.4

In §6.1 we provide an overview of the construction of the counter-example, and we describe the basic
ideas involved. Next, in §6.2, §6.3 and §6.4 we detail the construction. Throughout this section we
assume V (w) = 1− w, η = 1]−1,0[, which implies that (1.6) and (2.3) boil down to

(6.1) wε(t, x) :=
1

ε

ˆ x+ε

x
u(t, y)dy and

∂wε
∂x

(t, x) =
uε(t, x+ ε)− uε(t, x)

ε
,

respectively. Note that, since both V and η are now fixed, the construction of the counter-example
boils down to the construction of the initial datum u0.

6.1. Outline. Our construction is reminiscent of the one in [11], in particular we assume that u0(x) = 1
for a.e. x > 0, which implies that uε(t, x) = 1 for a.e. (t, x) such that x > 0. Also, as in [11] the
total variation increase mechanism is triggered by a countable number of “building blocks” located
on the negative real axis. The building block we use here, however, is different from the one in [11],
and capturing the total variation increase mechanism requires a finer analysis. We now provide an
handwaving description of the main ideas involved, and we refer to the following paragraphs for the
rigorous argument.

The basic building block is represented in Figure 1 and consists of two rectangles of height h and
length `, located at distance 2` and 6` from the origin, respectively. In other words,

(6.2) vh`(x) :=


0 x < −7`
h −7` < x < −6`
0 −6` < x < −3`
h −3` < x < −2`
0 x > −2`

` ∈]0, 1[, h ∈]0, 1[.

We now fix ε > 0, set u0(x) = vh`(x) +1]0,+∞[(x) and consider the Cauchy problem (1.1); let wε be as
in (1.6), then it is fairly easy to see that

(6.3) lim
x→−∞

wε(t, x) = 0, lim
x→+∞

wε(t, x) = 1 for every t ≥ 0 and every ε > 0.

1Note that, technically speaking, the only compactly supported function satisfying the inequality |χ′| ≤ χ is the
constant 0. However, one can use an easy approximation argument and show that the inequality (5.18) holds for instance
for any function in the Schwartz space S(R).
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Figure 1. In red the building block vh` triggering the total variation increase for ε = 4`

b

a

Assume that ε = 4`; by using formula (6.1) we realize (see equation (6.13)) that wε(0, ·) is a monotone
non-decreasing function and hence TotVar wε(0, ·) = 1 by (6.3). Assume for a moment that we have
shown that, for some time t > 0, we have ∂xwε(t, ·) < 0 on some interval, then by using (6.3) we infer
TotVar wε(t, ·) > 1, that is we have an increase of the total variation.

To establish the inequality ∂xwε(t, ·) < 0 we rely on (6.1) and on the method of characteristics.
More precisely, in the following we term Xε(t, s, ξ) the solution of the Cauchy problem

(6.4)


dXε

dt
= 1− wε(t,Xε)

Xε(s, s, ξ) = ξ,

in other words Xε(·, s, ξ) is the characteristic line that attains the value ξ at time t = s. Note that the
equation at the first line of (1.1) implies that, if u0(x) = 0 then uε(t,Xε(t, 0, x)) = 0 for every t, that
is uε vanishes along the whole characteristic starting at x. Also, if u0(y) > 0 then uε(t,Xε(t, 0, y)) > 0
for every t. In particular this yields that if x ∈]− 2`, 0[ and y ∈]− 7`,−6`[ then uε(t,Xε(t, 0, x)) = 0
and uε(t,Xε(t, 0, y)) > 0 for every t, respectively. The key observation is now that, since one can
show that wε(0,−6`) < wε(0,−2`) then the initial speed of the characteristic Xε(·, 0,−6`) is greater
than the initial speed of the characteristic Xε(·, 0,−2`). Let us now consider a point y just at the left
of −6`, then u0(y) = h > 0 and hence uε(t,Xε(t, 0, y)) > 0 for every t. On the other hand, let us
consider the point Xε(t, 0, y) + ε and recall that ε = 4`: since the characteristic line Xε(·, 0,−2`) is
slower than Xε(·, 0, y), then the value Xε(t, 0, y) + ε overtakes Xε(·, 0,−2`), and this in turn implies
that uε(t,Xε(t, 0, y) + ε) = 0. Summing up, we have uε(t,Xε(t, 0, y)) > 0 and uε(t,Xε(t, 0, y) + ε) = 0,
and owing to (6.1) this yields ∂xwε(t,Xε(t, 0, y)) < 0.

To complete the construction we fix a sequence εn, construct a corresponding sequence of building
blocks vhn`n with εn = 4`n, and juxtapose them on the negative real axis, in other words

(6.5) u0(x) :=

∞∑
n=1

vhn`n(x) + 1]0,+∞[(x), `n := εn/4.

The main obstruction we have now to tackle is that the previous considerations show that the building
block vhn`n triggers a total variation increase at scale εn = 4`n, but these considerations fail when
εn 6= 4`n. Hence, at a given scale εn it may in principle happen that the total variation increase given
by building block vhnεn/4 is smaller than the total variation decrease triggered by the other building
blocks in u0, and that the overall effect is that the total variation decreases. To rule out this possibility,
we have to rely on a finer analysis and make the previous qualitative considerations quantitative.
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6.2. Preliminary results. We recall (6.4). Note that, by the equation at the first line of (1.1), we
have

(6.6)

ˆ Xε(t,s,ξ2)

Xε(t,s,ξ1)
uε(t, y)dy =

ˆ ξ2

ξ1

uε(s, y)dy for every s, t ∈ R, ξ1 < ξ2,

that is the mass between two characteristic lines is always conserved. We now recall some basic
properties established in [11].

Lemma 6.1. Fix ε > 0 and assume u0 ∈ L1
loc(R) satisfies 0 ≤ u0 ≤ 1 and u0(x) = 1 for a.e. x > 0.

Then uε(t, x) = 1 for every t ≥ 0 and a.e. x > 0 and

(6.7) Xε(t, 0, 0) = 0 for every t ≥ 0.

Also,

(6.8)
dXε

dt
(t, s, ξ) ≥ 0, for every ξ ∈ R, t, s ∈ R.

We also have

Lemma 6.2. Under the same assumptions as in Lemma 6.1, assume furthermore that there is x0 < 0
such that u0(x) = 0 for a.e. x < x0. Then for every ε > 0 we have

(6.9) wε(t, x) = 0 for every t > 0, x < x0 − ε, wε(t, x) = 1 for every t > 0, x > 0.

Proof. Owing to (6.8), uε(t, x) = 0 for a.e. x < x0, t ≥ 0 and ε > 0. This yields the first equation
in (6.9). The second equation follows from the equality uε(t, x) = 1 for every t ≥ 0 and a.e. x > 0. �

Note that (6.9) yields (6.3).

6.3. Analysis of the basic building block. The following two lemmas deal with the case ` = 4ε.

Lemma 6.3. Set

(6.10) u0(x) = vh`(x) + s(x) + 1]0,+∞[(x),

where vh` is the same as in (6.2) and s ∈ L∞(R) satisfies

(6.11) 0 ≤ s ≤ 1, s(x) = 0 for a.e. x /∈]− δ, 0[, δ < 2`.

If ε = 4`, then TotVarwε(0, ·) = 1.

Proof. We recall the formula
(6.12)

TotVarwε(t, ·) = lim
x→+∞

wε(t, x)− lim
x→−∞

wε(t, x) + 2

ˆ
R

[
∂wε
∂x

(t, x)

]−
dx

(6.3)
= 1 + 2

ˆ
R

[
∂wε
∂x

(t, x)

]−
dx,

where [·]− denotes the negative part. Next, we point out that

(6.13)
∂wε(0, x)

∂x
=



0 x < −7`− ε
h

ε
−7`− ε < x < −7`

0 −7` < x < −6`
u0(x+ ε)

ε
−6` < x < −4`

1− u0(x)

ε
−4` < x < 0

0 x > 0,

which yields ∂wε(0, ·)/∂x ≥ 0 and hence concludes the proof owing to (6.12). �

We now quantify the total variation increase triggered by the initial datum in (6.10).
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Lemma 6.4. Under the same assumptions as in Lemma 6.3, we have

(6.14) TotVarwε(t, ·) ≥ 1 + 2

(
2− h

4

)
ht+ o(t) t→ 0+.

Proof. We proceed according to the following steps.
Step 1: we focus on Xε(t, 0,−2`). Since

wε(0,−2`)
(6.1),(6.10)

≥ 1

ε

ˆ −2`+ε

0
1 dy = 1− 2`

ε

(6.4)
=⇒ dXε(t, 0,−2`)

dt

∣∣∣∣
t=0

≤ 2`

ε
,

then

(6.15) Xε(t, 0,−2`) ≤ −2`+
2`

ε
t+ o(t)

ε=4`
= −2`+

1

2
t+ o(t) t→ 0+.

Step 2: we focus on Xε(t, 0,−6`). Note that

wε(0,−6`)
(6.2)
=

h`

ε
=⇒ dXε(t, 0,−6`)

dt

∣∣∣∣
t=0

= 1− h`

ε
,

and by recalling that ε = 4` this yields

(6.16) Xε(t, 0,−6`) + ε = −2`+

(
1− h

4

)
t+ o(t) t→ 0+.

Step 3: by comparing (6.15) and (6.16) we get that Xε(t, 0,−6`) + ε > Xε(t, 0,−2`) for t > 0 small
enough and this in turn implies that

Xε(0, t,Xε(t, 0,−2`)− ε)) ∈]− 7`,−6`[

for t sufficiently small. Since for every y ∈]− 7`,−6`[ we have

wε(0, ·) =
h`

ε

ε=4`
=

h

4
=⇒ dXε(t, 0, y)

dt

∣∣∣∣
t=0

= 1− h

4
=⇒ Xε(t, 0, y) = y +

(
1− h

4

)
t+ o(t) t→ 0+

then owing to (6.15) we get

(6.17) Xε(0, t,Xε(t, 0,−2`)− ε) ≤ −6`+

(
−1

2
+
h

4

)
t+ o(t) = −6`+

(
−2 + h

4

)
t+ o(t) t→ 0+.

Step 4: since 2` − δ > 0 by assumption, then Xε(t, 0,−2`) < Xε(t, 0,−6`) + ε < Xε(t, 0,−δ) for
sufficiently small t > 0. On the other hand, uε(t, x) = 0 for every x ∈]Xε(t, 0,−2`), Xε(t, 0,−δ)[.
Step 5: we point out that, for every ξ ∈]− 7`,−6`[ we have uε(t,Xε(t, 0, ξ)) > 0. On the other hand,
if Xε(t, 0, ξ) + ε ∈]Xε(t, 0,−2`), Xε(t, 0,−δ)[, then by Step 4 we have uε(t,Xε(t, 0, ξ) + ε) = 0 and
hence

(6.18)
∂wε
∂x

(t,Xε(t, 0, ξ)) =
uε(t,Xε(t, 0, ξ) + ε)− uε(t,Xε(t, 0, ξ))

ε
= −uε(t,Xε(t, 0, ξ))

ε
< 0.

Step 6: by combining the previous steps we have that, if ξ ∈]Xε(0, t,Xε(t, 0,−2`)−ε),−6`[, then (6.18)
holds true. This implies that

ˆ
R

[
∂wε
∂x

(t, x)

]−
dx ≥ −

ˆ Xε(t,0,−6`)

Xε(t,0,−2`)−ε

∂wε
∂x

(t, x)dx
(6.18)

=
1

ε

ˆ Xε(t,0,−6`)

Xε(t,0,−2`)−ε
uε(t, y)dy

(6.6)
=

1

ε

ˆ −6`

Xε(0,t,Xε(t,0,−2`)−ε)
u0(t, y)dy

(6.17)

≥
(

2− h
4

)
ht+ o(t) t→ 0+

and by recalling (6.12) this yields (6.14). �

In the following lemma we consider the case ` > max{ε+ δ, 2ε}.
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Lemma 6.5. Assume ` > max{ε+ δ, 2ε} and that u0 is given by (6.10) with s satisfying (6.11); then

(6.19)

ˆ −2`

−7`−ε

∣∣∣∣∂wε∂x
(0, x)

∣∣∣∣ dx = 4h

and

(6.20)

ˆ Xε(t,0,−2`)

Xε(t,0,−7`)−ε

∣∣∣∣∂wε∂x
(t, x)

∣∣∣∣ dx ≥ 4h+ o(t) as t→ 0+.

Proof. By using the inequality `− δ > ε we get

∂wε
∂x

(0, x) =
u0(x+ ε)− u0(x)

ε
=



h/ε −7`− ε < x < −7`
0 −7` < x < −6`− ε
−h/ε −6`− ε < x < −6`
0 −6` < x < −3`− ε
h/ε −3`− ε < x < −3`
0 −3` < x < −2`− ε
−h/ε −2`− ε < x < −2`

wε(0,−7`− ε) = 0 = wε(0,−2`)

and this yields (6.19). We are left to establish (6.20). We point out that

Xε(t, 0,−6`) + ε < Xε(t, 0,−3`), Xε(t, 0,−2`) + ε < Xε(t, 0,−δ)
provided t is sufficiently small. The above inequalities imply

wε(t,Xε(t, 0,−6`)) = 0 = wε(t,Xε(t, 0,−2`))

and, since we also have wε(t,Xε(t, 0,−7`) − ε) = 0 = wε(t,Xε(t, 0,−3`) − ε) for t sufficiently small,
this in turn yieldsˆ Xε(t,0,−2`)

Xε(t,0,−7`)−ε

∣∣∣∣∂wε∂x
(t, x)

∣∣∣∣ dx ≥ 2 sup{wε(t, x), x ∈]Xε(t, 0,−7`)− ε,Xε(t, 0,−6`)[}

+ 2 sup{wε(t, x), x ∈]Xε(t, 0,−3`)− ε,Xε(t, 0,−2`)[}

≥ 2wε(t,Xε(t, 0,−7`) + 2wε(t,Xε(t, 0,−3`)

(6.21)

for t sufficiently small. To evaluate wε(t,Xε(t, 0,−7`)) we point out that, since η = 1]−1,0[ and
V (w) = 1− w, the equation (3.1) for the material derivative of wε boils down to

∂twε + [1− wε]∂xwε = uε(t, x+ ε)
wε(t, x+ ε)− wε(t, x)

ε
.

Since ` > 2ε, then wε(0,−7`) = h = wε(0,−7`+ ε) and hence by the above formula

dwε(t,Xε(t, 0,−7`))

dt

∣∣∣∣
t=0

= 0 =⇒ wε(t,Xε(t, 0,−7`)) = h+ o(t) t→ 0+.

By analogous considerations we get wε(t,Xε(t, 0,−3`)) = h + o(t) t → 0+ and by plugging these
equalities into (6.21) we arrive at (6.20). �

6.4. Conclusion of the proof of Theorem 1.4. We fix a sequence {εn} satisfying (1.13) and we
take the same intial datum u0 as in (6.5), where {hn} is any sequence such that 0 ≤ hn ≤ 1 and the
series

∑∞
n=1 hn converges. We now show that, for any n ∈ N, we can find tn > 0 satisfying (1.14).

Step 1: if n = 1 we set s(x) :=
∑∞

k=2 vhk`k(x), which satisfies (6.11) provided δ := 8`2 < 2`1. Since
`2 = ε2/4, `1 = ε1/4, this inequality boils down to 2ε2 < ε1/2, which is satisfied owing to (1.13).
By combining Lemma 6.3 and Lemma 6.4 we then get that (1.14) holds true for n = 1 and some t1
sufficiently small.
Step 2: we now fix n > 1 and evaluate TotVarwεn(t, ·) for t = 0 and for t → 0+. The basic idea to
do so is that we separately consider the contribution to the total variation of each of the first n − 1
building blocks and then the contribution of all the remaining ones. It turns out that to each of the
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first n− 1 building blocks we can apply Lemma 6.5 and hence conclude that for each of them the total
variation can decrease at most of o(t). We can apply Lemma 6.3 and Lemma 6.4 to the remaining
blocks and conclude that their total variation increases of some factor proportional to t. By adding
the two contributions, we arrive at (1.14). We now provide the technical details.
Step 2A: we show that each of the first n− 1 evolve independently of the rest of the solution, at least
for sufficiently small t > 0. To this end, we point out that, for every k = 1, . . . , n− 1,

(6.22) 8`k+1 + εn = 2εk+1 + εn
(1.13)
<

1

8
εk +

1

16
εk =

3

16
εk <

1

4
εk = `k < 2`k.

This implies that −7`k+1−εn > −2`k and hence that Xεn(t, 0,−7`k+1)−εn > Xεn(t, 0,−2`k) provided
t is sufficiently small. In particular, for any such t we have

(6.23) TotVarwεn(t, ·) =
n−1∑
k=1

ˆ Xεn (t,0,−2`k)

Xεn (t,0,−7`k)−εn

∣∣∣∣∂wεn∂x
(t, x)

∣∣∣∣ dx+

ˆ 0

Xεn (t,0,−7`n)−εn

∣∣∣∣∂wεn∂x
(t, x)

∣∣∣∣ dx.
Step 2B: we now fix k = 1, . . . , n − 1 and evaluate the k-th term in the sum in (6.23). We set
s(x) :=

∑∞
j=k+1 vhj ,`j (x) and δ := 8`k+1. Owing to (6.22) and to (1.13) we have `k > max{2εn, εn+δ}.

By repeating the same argument as in the proof of Lemma 6.5 we then get

(6.24)

ˆ −2`k

−7`k−εn

∣∣∣∣∂wεn∂x
(0, x)

∣∣∣∣ dx = 4hk,

ˆ Xεn (t,0,−2`k)

Xεn (t,0,−7`k)−εn

∣∣∣∣∂wεn∂x
(t, x)

∣∣∣∣ dx ≥ 4hk + o(t) t→ 0+.

Step 2C: we control the second term in (6.23). We set s(x) :=
∑∞

j=n+1 vhj`j (x) and δ := 8`n+1 and

point out that δ < 2`n by (1.13). By applying Lemma 6.3 and Lemma 6.4 we get
(6.25)ˆ 0

−7`n−εn

∣∣∣∣∂wεn∂x
(0, x)

∣∣∣∣ dx = 1

ˆ 0

Xεn (t,0,−7`n)−εn

∣∣∣∣∂wεn∂x
(t, x)

∣∣∣∣ dx = 1+2

(
2− hn

4

)
hnt+o(t) t→ 0+.

Step 2D: we plug (6.24) and (6.25) into (6.23) and conclude that TotVarwεn(0, ·) = 4
∑n−1

k=1 hk + 1
and that

TotVarwεn(t, ·) ≥ 4
n−1∑
k=1

hk + 1 + 2

(
2− hn

4

)
hnt+ o(t) t→ 0+,

which establishes (1.14).
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