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An efficient method to address the three-dimensional modeling of the visco-elasto-plastic material behavior, 
specifically of bituminous conglomerates used in asphalt concrete production, is proposed. The method resorts 
to one of the most recent formulations for asphalt creep modeling, represented by the modified Huet-Sayegh 
fractional rheological model. The Grünwald-Letnikov representation of the fractional operator is adopted to treat 
the operator numerically in an efficient manner. Further, a coupling scheme between the creep model and elasto-

plasticity is proposed by adopting the additive decomposition of the total strain tensor. This enables the numerical 
assessment of the mechanical behavior for bituminous materials under short- to long-term loading. In this context, 
both constant strain rate tests, and creep recovery tests are numerically simulated.

Numerical analyses are conducted at the meso-scale with the aim to evaluate the development of inelastic strains 
in the binder during creep, due to the local interaction between the different material components.
1. Introduction

With the recent increase in computational power, the adoption and 
applicability of complex material models and complex geometries are 
becoming practicable. In this context, the evolution of numerical consti-

tutive models to simulate the mechanical behavior of building materials 
has reached today a remarkable level of development.

Materials such as cement concrete, or asphalt concrete are very hetero-

geneous media. They are, generally, studied at the homogeneous macro-

scale, when the assessment of their mechanical behavior is needed at the 
structural level. However, if local effects are to be accounted for, a meso-

mechanics approach is nowadays desirable and feasible. At a meso-scale 
level the heterogeneous nature of the material is explicitly modeled 
through its material constituents. Further, each phase is characterized by 
differentiated material properties and even different mechanical behav-

iors. Thus, it is expected that the interactions between the constituents 
determine the bulk-scale response.

The attractiveness of a meso-scale approach is mainly related to the 
possibility to investigate the development of local stresses and strains 
in the different material components. This is expected to provide useful 
insight into damage initiation and propagation, thus ultimately deter-

mining the material performance at the macro-scale. In this manner, 
design and control issues like mixture optimization, sampling, or, in the 
case of asphalt concrete, the contrast to raveling and rutting, can be 
more efficiently addressed at the scale of the constituents.

* Corresponding author.

The application to meso-mechanics for bituminous conglomerates dates 
back to the work by Rothenburg et al. [1]. Since then, various upgrades 
on this field have been made. Limited to the continuous modeling ap-

proach, primarily represented by the Finite Element Method (FEM), 
remarkable advancements are found in [2–6]. The effort in research has 
been twofold. On one side it has focused towards the development of 
appropriate constitutive response models that can capture the nonlin-

earities and the long-term effects typically associated to binder materials 
for asphalt concrete production, for a wide range of loading magnitudes 
and rates; on the other side, to the development of adequate geometry 
reconstruction techniques for solid-modeling related issues.

As regards the former aspect, various constitutive models have been 
developed to describe the visco-elastic behavior of asphalt materials. 
Specifically, a variety of one-dimensional rheological models exists in 
the literature describing the time and temperature dependence of the 
mechanical behavior of bituminous materials in the visco-elastic regime. 
The most frequently adopted mechanical models include some combi-

nations of linear spring and linear dashpot elements [7], leading to the 
generalized Voigt-Kelvin model (also in the form of the Burgers’ model), 
and the generalized Maxwell model. More recently, from the pioneering 
works by Gemant [8] and Bagley and Torvik [9] it was observed that 
the non-local nature of creep can be efficiently described by the frac-

tional derivative operator [10–14]. Thus, visco-elastic models based on 
fractional calculus are emerging as an alternative approach to more con-

solidated ones. They incorporate fractional derivative terms, also called 
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parabolic dashpot elements, or springpots, into the constitutive mod-

els to capture the typical non-local, memory-dependent behavior of the 
binder.

Research on the field of the visco-elasto-plastic modeling of bituminous 
materials or asphalt conglomerates, more generally, is more limited. 
Schwartz et al. [15] and Underwood and Kim [16] have developed a 
one-dimensional model based on the Schapery continuum damage for-

mulation [17]. A one-dimensional visco-elasto-plastic model combining 
a generalized Maxwell model and a hardening visco-plastic element 
has been proposed by Giunta and Pisano [18]. Darabi et al. [19] are 
the authors of a thermo-visco-elasto-damage model for asphalt concrete 
coupling Schapery’s nonlinear visco-elasticity [20], Perzyna-type visco-

plasticity [21] with a generalized Drucker–Prager-type yield surface 
[22], and Kachanov [23]’s damage theory. The model has been used 
to conduct three-dimensional meso-mechanical studies in [24]. Pasetto 
and Baldo [25] have formulated a three-dimensional visco-elasto-plastic 
model in the framework of associative plasticity and isotropic harden-

ing, for the irreversible plastic strains, and thermodynamically consis-

tent.

Fractional models for visco-elasticity and visco-elasto-plasticity have 
been proposed in [26–29] in a one-dimensional form. A 3D extension 
of a fractional visco-elastic model for bitouminous materials has been 
developed in [30] to simulate the mechanical behavior of mesoscopic, 
idealized in geometry, porous asphalt mixtures.

In relation to the aspect related to the geometrical reconstruction of 
asphalt at the scale of its constituents, the meso-mechanics approach en-

compasses the definition of a Representative Elementary Volume (REV). 
It represents also a control volume for the random distribution of inclu-

sions of various shape and size. This challenging task has been more 
and more assisted by imaging processing technologies, able to capture 
the real asphalt concrete mixture geometry [31–39]. However, tech-

niques such as 3D laser scanner or industrial computed tomography 
have a limit in the number of samples that they can treat, so restrict-

ing the number of corresponding models than can be generated out of 
the scanned images. More versatile tools are represented by random ag-

gregate distribution algorithms. This method allows the reconstruction 
of an unlimited number of realizations of inclusions within a control 
volume, based on minimum distance procedures. This is achieved by 
generating and randomly packing aggregates avoiding overlapping.

Aggregates can assume, in the simplest case, ideal shapes, like spheres or 
ellipsoids [40–44], or more realistic irregular polyedral shapes [45–49]. 
A common challenge to most existing random distribution algorithms is 
the difficulty to meet an optimum aggregate packing density, or to reach 
the prescribed aggregate volume ratio as it is found in the real speci-

mens. Thus, an effort has been made by more recent studies towards 
the development of approaches that can randomly pack inclusions in 
compliance with predefined grading curves [50–52].

This work aims to address both aspects involving asphalt concrete mod-

eling, the rheological and the geometrical one, in a novel manner. To 
the authors’ best knowledge, no prior studies have utilized a fractional 
visco-elastic model in conjunction with plasticity to predict the three-

dimensional mechanical behavior of asphalt concrete, incorporating a 
realistic 3D representation of the material’s mesostructure.

The fractional formulation for visco-elasticity has been recently intro-

duced in the literature, but more on a one-dimensional space. When a 
3D extension of a fractional model is considered, numerical analyses are 
conducted on a simplified idealized geometry, or inelastic effects due to 
plasticity are not taken into account in the constitutive model. Building 
on this perspective, the present work aims to develop a more compre-

hensive approach to asphalt material modeling. This approach seeks to 
be complete both in terms of the constitutive modeling of the material 
and the accurate representation of its complex geometry, characteristic 
of a multi-phase composite geomaterial.

With this objective in mind, the present study introduces a numerical 
coupling scheme between creep and elasto-plasticity within a three-
2

dimensional formulation. Long-term effects are accounted for utilizing 
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a fractional model for visco-elasticity. This approach is specifically se-

lected for its requisite capability to explain laboratory measured re-

sponse data at a reasonable computational cost. Differently, inelastic 
plastic effects are determined within the framework of associative plas-

ticity. Further, realistic inclusions in the conglomerate are reconstructed 
using Bézier’s polynomial approximation of ideal ellipsoid surfaces. 
Their random location within the control volume and the random spac-

ing between particles are consistent with a given grading curve and 
degree of asphalt macro-porosity, achieved through a specific numer-

ical tool developed in this study.

2. Meso-scale reconstruction

Realistic meso-scale geometries for composite samples can be ob-

tained in different manners. Two main techniques are, generally, worth 
mentioning: the reconstruction via X-ray computed tomography (CT) re-

sults, and the simulation via random distribution algorithms. The first 
method is to be adopted when the real shape and distribution of in-

clusions inside the sample are pursued. For this reason, a real sample 
must be available and scanned by means of a CT machine. The second 
method, here selected, is an attractive alternative when many sample 
realizations, equally possible, are needed of a REV of a composite ma-

terial, with given grading curve and aggregate volume fraction.

In this Section a procedure to numerically reconstruct a realistic meso-

scale solid model is discussed. It consists in the following main steps:

- Development of a random distribution algorithm for the inclusions, 
in agreement with a given grading curve and a given aggregate 
volume fraction;

- Reconstruction of the inclusion shape;

- Reconstruction of the surrounding matrix phase.

2.1. Random distribution algorithm for solid inclusions

It is assumed that the inclusions are roundish. Thus, they can ideally 
be approximated by means of circumscribed ellipsoid shapes of different 
dimensions, in agreement with the material grading curve. At each itera-

tion a new ellipsoid inclusion is added into the virtual sample, typically 
represented by the cubic or cylindrical real volume of the specimen. 
This control volume bounds the space where a new aggregate can be lo-

cated. On the control volume a check is performed of non-overlapping 
between each new inclusion with the previous ones. A complete descrip-

tion of this technique can be found in [50]. The current study adopts this 
methodology, enhancing it by incorporating a compaction algorithm 
designed to simulate aggregate sedimentation during the mixing pro-

cess under the influence of gravity. This enhancement to the method 
previously developed by the same authors is illustrated in Fig. 1, pre-

sented here in a simplified 2D format. During the iterative procedure 
in which a new ellipsoid inclusion is added within the control volume, 
the compaction algorithm is activated every 𝑚 new added inclusions 
(see Fig. 1 a)). First, the existing inclusions are ordered from the lower 
to the upper along the coordinate direction of the gravity acceleration 
vector (Fig. 1 b)); next, each inclusion is projected along this direction, 
and the maximum distance between inclusions, to avoid overlapping in 
case of their translation along the same direction, is evaluated (Fig. 1 c)); 
finally, aggregates motion along the gravity direction is accomplished, 
based on the previously computed maximum distances.

An example of the performance of the proposed random aggregate al-

gorithm, inclusive of this improved compaction technique, is reported 
in Fig. 2 a).

For this specific example, the reference grading curve of a cylindri-

cal sample provided in [53] is used as a comparison for the numerical 
simulation. A cut-off nominal diameter equal to 4 mm has been nec-

essarily assumed in order to limit the grain size of the solid model to 
the explicit representation of aggregates with nominal diameter equal 

or greater to the chosen cut-off size. This leads to a specific target ratio 
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Fig. 1. Compaction procedure in 2D space. Initial sequence, after adding 𝑚 = 4
inclusions a); numbering of inclusions from the lower to the upper b); aggregates 
projection along the direction of the gravity acceleration vector c); performed 
compaction d).

between the coarse aggregate volume fraction and the sample volume, 
which corresponds to 𝑎∕𝑠 = 0.65 for the specific benchmark test. A re-

alization of the distribution of spherical particles obtained by using the 
proposed technique is reported in Fig. 2 b), with the corresponding com-

parison between the real and the simulated grading curve characterizing 
the sample.

2.2. Reconstruction of the inclusion shape

Normally, real inclusions are roundish, if not edgy polyhedral, be-

cause they come from crushed stone or gravel. Thus, the shape of real ag-

gregates can be very complex. If roundish, however, the ellipsoid model 
can be adopted in good approximation as a reference circumscribed reg-

ular volume, as depicted in Fig. 3. To produce realistic roundish solid 
shapes of the conglomerate inclusions, a modification of the ideal ellip-

soid geometry is obtained by using the Bézier’s polynomial formulation. 
The Bézier curve is a parametric spline that finds broad application in 
computer graphics. It allows to represent a very complex geometry start-

ing from two anchor points, and some control points. The generalized 
primitive Bézier function of order 𝑛 can be construed starting from Bern-

stein basis polynomials as

b =
𝑛∑
𝑖=0

𝑛!
𝑖!(𝑛− 𝑖)𝑖

𝑡𝑖(1 − 𝑡)𝑛−𝑖x𝑖 (1)

where x0 and x𝑛 are the coordinates of the anchor points with respect 
to a global reference system; x𝑖 (with 𝑖 ≠ 0, 𝑛) are those of the control 
points, and 0 ≤ 𝑡 ≤ 1 is the percentage progress of the curve.

A Bézier -type approximation of a 2D section profile of a real aggregate 
shape is reported in Fig. 4, as an example. The red solid line is the poly-

nomial; the magenta markers are the anchor points, and the yellow ones 
are the control points. It is noted with this example that the Bézier poly-

nomials are able to satisfactorily reproduce a complex geometry with a 
limited number of control points.

Without lack in generality, the same concept can be extended to the 
3D space. To obtain realistic aggregate volumes, several anchor points, 
randomly distributed over the ideal ellipsoid surface, are defined. Fur-

ther, the control points are chosen, again, randomly among the points 
external to the ellipsoid surface.

Nevertheless, Fig. 5 shows that not all the random configurations for 
the control points are admissible. Indeed, the external ellipsoidal surface 
constitutes a constraint to the polynomials. The proposed procedure has 
3

been implemented with a script programmed in Python language, able 
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to generate an .STL file containing information on the final inclusion 
shapes.

In Fig. 6 a) various examples of different solid geometries, generated 
by applying the Bézier approximation to four ideal ellipsoid surfaces of 
different dimensions and orientations, are presented. Fig. 6 b) reports a 
complete reconstruction of a random aggregate distribution compliant 
with a prescribed grading curve, for a cylindrical sample of diameter 
𝑑 = 100 mm and height ℎ = 30 mm. It is a result of the adoption of 
the random numerical tool illustrated in the previous sub-section 2.1, 
and the outer surface modification procedure proposed in the present 
sub-section.

2.3. Reconstruction of the surrounding matrix phase

In the case of a cementitious material, a “matrix” includes the binder 
material and the finer aggregate fraction, which is not explicitly repre-

sented as “aggregate” for computational reasons. In concrete asphalt 
materials the binder can be regarded as a thin layer surrounding the ag-

gregates, and adhering to their outer surface, having viscous properties.

From the solid modeling viewpoint, the sketch on how to generate the 
matrix volume is shown in Fig. 7 in a 2D space and for circular inclu-

sions, for sake of simplicity.

After applying the random aggregate distribution procedure and the 
outer surfaces distortion, all the inclusions are located into the three-

dimensional control volume (Fig. 7 a). Next, starting from the center

of each inclusion, an offset of its outer surface is performed, in order 
to reconstruct for each inclusion a twin external surface at a desired 
thickness from the original one. The thickness value is assigned in re-

lation to the average binder thickness surrounding aggregates in a real 
sample (Fig. 7 b). In order to remove all the overlapping parts of sur-

faces and volumes associated to the twin geometry, boolean operations 
are conducted in a CAD environment (Fig. 7 c). Finally, the resulting 
outer surfaces are smoothed to remove any unrealistic sharp edge, as 
depicted in Fig. 7 d). This last procedure is crucial, in order to meet 
the target degree of macroporosity that generally characterizes concrete 
asphalt. This is obtained by varying the smoothing parameters accord-

ingly, at the point that macroporosity between inclusions can be present 
or not (see Fig. 8). If present, it can reach any desired degree by simply 
adjusting the smoothing parameters. In this context, Fig. 9 shows sim-

ulated concrete asphalt samples of different degrees of macroporosity, 
obtained by using the proposed technique, and, more specifically, dif-

ferent smoothing parameters for the last operation. It is underlined that 
the boolean operation between surfaces and volumes, together with the 
surface smoothing procedure, can be performed by using different free 
software, able to work with a single-surface triangulated mesh, such as 
Meshlab [54] or Meshmixer [55] by Autodesk®.

The solid geometry produced by means of the procedure illustrated in 
this Section is finally mesh discretized in space, to conduct FEM-based 
mechanical analyses on concrete asphalt.

3. Visco-elasto-plastic model

A coupled visco-elasto-plastic model is proposed to reproduce the 
mechanical behavior of the matrix material (bituminous binder), and 
its characteristic evolution in time under different loading conditions. 
A time-fractional non-local formulation is adopted for modeling the 
material visco-elasticity, as described in sub-section 3.1. A classic elasto-

plastic formulation is used to model the unrecoverable strain evolution, 
as discussed in sub-section 3.2.

In sub-section 3.3 a possible coupling scheme between visco-elasticity 
and elasto-plasticity is finally proposed.

3.1. Visco-elastic formulation

Bituminous materials exhibit a time dependent mechanical behav-
ior, which is influenced mainly by the load level, the loading time and 
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Fig. 2. Comparison between real [53] and simulated grading curve a); simulated random distribution of spherical inclusions in a cylindrical control volume b).
Fig. 3. Ideal ellipsoid shape a); example of a real aggregate shape b); ideal 
ellipsoid volume circumscribed to a real aggregate shape.

Fig. 4. Bézier -type approximation of a real aggregate shape in 2D space.

Fig. 5. Random positioning of the control points over the ideal ellipsoid surface: 
discarded configuration; a) admissible configuration b).

temperature. The adopted model for the visco-elastic formulation of the 
binder in the present work corresponds to the Modified Huet-Sayegh 
(MHS) fractional model [11,60]. The introduction of the fractional 
derivative mathematical operator in the constitutive law requires the 
development of appropriate computational strategies to be addressed in 
an efficient way [56–59]. The model itsef represents an upgrade to the 
original Huet-Sayegh (HS) model [10], for the additional linear dashpot 
in series with the HS unit (see Fig. 10). This accounts for an improved 
performance of the model itself in the low frequency region, when ad-

dressing visco-elasticity in the frequency domain [11]. Indeed, whereas 
4

the original model is characterized at the lower frequency region by a 
Fig. 6. Different aggregate realizations possible by adopting the Bézier approx-

imation a); complete realization of a set of aggregates, randomly placed within 
a cyilindrical control volume and approximated in shape by adopting the Bézier 
technique b).

limiting non-zero rubbery shear modulus 𝐺0, the MHS can approach a 
limiting value close to zero thanks to the additional dashpot element. As 
regards the HS unit, it consists in two parabolic dashpots placed in se-

ries with a linear spring operating at a shear modulus (𝐺∞-𝐺0), where 
𝐺∞ is the instantaneous shear modulus. 𝐺∞ and 𝐺0 represent the mod-

uli at high frequency values (i.e. short loading times), and near zero 
frequency (i.e. very long loading times), respectively. This set is in par-

allel with another linear spring operating at the rubbery modulus of the 
material 𝐺0. Based on the 1D rheological model in Fig. 10, the additive 
decomposition of the total visco-elastic strain 𝜀𝑣𝑒 yields

𝜀𝑣𝑒 = 𝜀𝑒 +
(
𝜀1 + 𝜀2 + 𝜀𝐿𝐷

)
= 𝜀𝑒 + 𝜀𝑣, (2)

where 𝜀𝑒 is the strain in the two parallel springs, 𝜀LD the strain in the 
linear dashpot, 𝜀𝑖 (with 𝑖 = 1, 2) the strains in the parabolic dashpots, 
and 𝜀𝑣 the viscous part of the total visco-elastic strain.

The parabolic dashpot is described by the following fractional differen-

tial constitutive law in function of time 𝑡 [8,9]

𝜎I(𝑡) = 𝜂𝑖𝜏
𝑚𝑖−1
𝑖

𝐷
𝑚𝑖

𝑡0 ,𝑡
[𝜀𝑖(𝑡)]; 𝑖 = 1,2 (3)

where 𝜂𝑖, 𝜏𝑖 and 𝑚𝑖 are parameters of the parabolic dashpots; 𝜎I is the 
stress in the first branch of the MHS unit (see Fig. 10).

Specifically, the time constant 𝜏𝑖 is related to the damping coefficient 𝜂𝑖
through the constant 𝛿𝑖 as

𝛿𝑖 =
𝜏𝑖(𝐺∞ −𝐺0)

𝜂𝑖
. (4)

In Eq. (3) 𝐷
𝑚𝑖

𝑡0 ,𝑡
[𝑓 (𝑡)] is the fractional operator of order 𝑚𝑖 ∈ ℝ+; 0 ≤
𝑚𝑖 ≤ 1. The non-integer differential operator is a particularly versatile 
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Fig. 7. Adopted procedure for matrix reconstruction in a 2D space, and for circular inclusions: initial configuration of randomly distributed inclusions a); offset 
around aggregates b); boolean operation between offset surfaces c); smoothing of surfaces d).

Fig. 8. Matrix reconstruction with different amount of surrounding binder ma-

terial: without internal macroporosity a); with internal macroporosity b).

Fig. 9. Different solid geometries of a composite sample of concrete asphalt at 
the meso-scale reconstructed by using the proposed method, for different levels 
of internal macroporosity: cubic samples without internal macropores a), b); 
cubic samples with high internal macroporosity c), d); cylindrical sample with 

Fig. 10. The rheological Modified Huet-Sayegh visco-elastic model.

device in capturing visco-elasticity, by adjusting the material behavior

as intermediate between a purely linear elastic behavior (for 𝑚𝑖 = 0), 
and a purely linear viscous one (for 𝑚𝑖 = 1). Various definitions exist in 
the literature for this mathematical operator [56,57]. The present work 
adopts the Grünwald-Letnikov (GL) representation, which is computa-

tionally efficient. In this context, the numerical approximation of the 
fractional term in this manner is extensively treated in [61,62]. By in-

troducing the time discretization Δ𝑡, and by setting 𝑡0 = 0, the fractional 
term can be construed as [61,62]

𝐷𝑚
𝑡0 ,𝑡

[𝑓 (𝑡)] = lim
Δ𝑡→0

Δ𝑡−𝑚
𝑁∑
𝑗=0

b𝑗𝑓 (𝑡− 𝑗Δ𝑡), (5)

where the b𝑗 coefficients can be recast in a recursive form by resorting 
to the properties of the Gamma function as

b𝑗 =
Γ(𝑗 −𝑚)

Γ(−𝑚)Γ(𝑗 + 1)
= 𝑗 −𝑚− 1

𝑗
b𝑗−1; b0 = 1. (6)

Clearly, in Eq. (6) it is: (𝑗 − 𝑚 − 1)∕𝑗 < 1, hence the fading memory 
feature of the fractional operator. Thus, the sum of terms in Eq. (5) can 
be conveniently truncated up to a value 𝑁 , large enough to include all 
and only the first meaningful terms. In this manner, this sum handles 
the non-locality in time of the operator itself. From Eq. (5) and Eq. (3)

a recursive definition for the strain components 𝜀1
𝑛+1 and 𝜀2

𝑛+1 at the 
parabolic dashpots is derived

𝜀𝑖
𝑛+1 =

Δ𝑡𝑚𝑖

𝜂𝑖𝜏
𝑚𝑖−1
𝑖

𝜎I
𝑛+1 −

𝑁∑
𝑗=1

b(𝑚𝑖)𝑗 𝜀𝑖
𝑛+1−𝑗 . 𝑖 = 1,2 (7)

It is noted from Eq. (7) that the calculation of the strain components per-

taining to the parabolic dashpots requires the storage of the past strain 
history up to the 𝑁 -th term for each fractional element. Different 𝑁 val-

ues are generally required for different 𝑚 order values of the parabolic 
dashpots. Under strain controlled conditions, an expression for the stress 
in the MHS unit is derived by considering Eq. (2) and Eq. (7) [30]. That 
is,

𝜎𝑛+1 =
[

𝜒

1 + 𝜒𝐺0
+ Δ𝑡

𝜂3

]−1
⋅[

𝜀𝑣𝑒
𝑛+1 − 𝜀LD

𝑛
+ 1

1 + 𝜒𝐺0

(
𝑁∑
𝑗=1

b𝑗 (𝑚1) 𝜀1𝑛+1−𝑗 +
𝑁∑
𝑗=1

b𝑗 (𝑚2) 𝜀2𝑛+1−𝑗

)]
,

(8)
5

moderate internal macroporosity e), f).
 in which the following parameter is introduced



G. Mazzucco, B. Pomaro, V.A. Salomoni et al.

𝜒 = 1
𝐺∞ −𝐺0

+ Δ𝑡𝑚1

𝜂1𝜏
𝑚1−1
1

+ Δ𝑡𝑚2

𝜂2𝜏
𝑚2−1
2

. (9)

The strain of the linear dashpot is updated as

𝜀LD
𝑛+1 =

Δ𝑡
𝜂3

𝜎𝑛+1 + 𝜀LD
𝑛
. (10)

For the generalization of the model in 3D space, the reader is referred 
to [30]. Further, the strain tensor and the stress tensor are divided into 
their deviatoric and hydrostatic part as

𝝈𝑛+1 =𝐺𝐌𝐆𝜺
𝑣𝑒
𝑛+1 +𝐾𝐌𝐊𝜺

𝑣𝑒
𝑛+1, (11)

where 𝜺𝑣𝑒 is the visco-elastic strain tensor in Voigt notation; 𝐺 and 𝐾
are the shear and bulk modulus of the binder, respectively, and

𝐌𝐆 =
(
𝐒 𝟎
𝟎 I

)
; 𝐌𝐊 =

(
𝟏 𝟎
𝟎 𝟎

)
(12)

are the dimensionless deviatoric and hydrostatic constitutive matrix, re-

spectively; 𝟎 is the zero 3 by 3 matrix, I the identity matrix, 𝟏 the unit 
matrix, and 𝐒 is defined as

𝐒 =
⎛⎜⎜⎝
4∕3 −2∕3 −2∕3
−2∕3 4∕3 −2∕3
−2∕3 −2∕3 4∕3

⎞⎟⎟⎠ . (13)

For asphalt mixture materials, studies by researchers [12,70] have 
demonstrated that under hydrostatic pressures typically experienced 
from tire contact stresses, the material exhibits a more pronounced 
time-dependent deformation behavior in shear than in the volumetric 
component. Consequently, the shear deformation component of the ma-

terial is modeled as time-dependent, while the volumetric deformation 
component is treated as time-independent.

The adoption of an elastic bulk modulus and a viscoelastic shear mod-

ulus is widely accepted in modeling the response of asphalt concrete 
conglomerates [63]. Given the highly incompressible nature of bitumen, 
this approach provides a suitable representation, particularly for mod-

eling the behavior of the binder [30]. Thus, in the proposed model it is 
assumed that the time dependent behavior applies solely to the shear 
modulus, 𝐺, while the bulk modulus, 𝐾 , can be treated as time inde-

pendent.

The material parameters in the 3D formulation are taken as

𝐺0 =
3𝐸0𝐾

9𝐾 −𝐸0
; 𝐺∞ =

3𝐸∞𝐾

9𝐾 −𝐸∞
; 𝜂𝑖𝐺 =

𝜂𝑖

3
; 𝑖 = 1,2,3. (14)

For modeling asphalt concrete response it is accepted that: 𝛿1 = 𝛿

and 𝛿2 = 1, in agreement with [10]. Thus, the material parameters of 
the MHS model can be reduced to 8 calibrating parameters: 𝐸∞, 𝐸0, 
the Poisson’s ratio 𝜈, 𝑚1, 𝑚2, 𝜏1 = 𝜏2 = 𝜏 , 𝛿1 and the fading memory 
length 𝑁 .

With the above simplifying assumptions, the visco-elastic stress can be 
obtained by generalization in 3D of Eq. (8) [30], that is

𝝈𝑛+1 =
(

𝜒𝐺

1 + 𝜒𝐺𝐺0
+ Δ𝑡
𝜂3𝐺

)−1 (
𝐌𝐆𝜺

𝑣𝑒
𝑛+1 −𝐌𝐆𝜺

LD
𝑛

+Ψ
)
+𝐾𝐌𝐊𝜺

𝑣𝑒
𝑛+1

(15)

with

Ψ= 1
1 + 𝜒𝐺𝐺0

[
𝐌𝐆

𝑁∑
𝑗=1

b𝑗 (𝑚1) 𝜺1𝑛+1−𝑗 +𝐌𝐆

𝑁∑
𝑗=1

b𝑗 (𝑚2) 𝜺2𝑛+1−𝑗

]
. (16)

The visco-elastic consistent tangent operator is obtained as [30]

C𝑣𝑒 =
[

𝜒𝐺

1 + 𝜒𝐺𝐺0
+ Δ𝑡
𝜂3𝐺

]−1
𝐌𝐆 +𝐾𝐌𝐊, (17)

where 𝜒𝐺 is derived from Eq. (9), by replacing to 𝜂 𝜂𝐺 from Eq. (14).
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Finally, the viscous strain tensor at the current time step 𝜺𝑣
𝑛+1 can be
Computers and Structures 305 (2024) 107535

Table 1

Constitutive parameters used for the sensitivity analysis on pa-

rameter 𝑁 : sample a) and sample b).

𝐸∞ 180.00 MPa

𝐸0 0.20 MPa

𝜈 0.40 MPa

𝑓𝑦 1.50 MPa

𝐻𝑝 −0.50 MPa

𝑚1 0.80
𝑚2 0.30
𝛿1 0.80
𝛿2 0.80
𝜂3 10 × 108

𝜏1 2.00 s

𝜏2 2.00 s

a)

𝐸∞ 300.00 MPa

𝐸0 0.01 MPa

𝜈 0.42 MPa

𝑓𝑦 2.50 MPa

𝐻𝑝 −0.50 MPa

𝑚1 0.90
𝑚2 0.40
𝛿1 0.95
𝛿2 0.95
𝜂3 15 × 108

𝜏1 1.50 s

𝜏2 1.50 s

b)

obtained as

𝜺
𝑣
𝑛+1 = 𝜺

𝑣𝑒
𝑛+1 − (C𝑣𝑒)−1 𝝈𝑛+1. (18)

3.1.1. Parametric study of the truncation parameter 𝑁 to approximate the 
fractional derivative term

The parameter 𝑁 is the truncation value used to evaluate the frac-

tional term in Eq. (5). By specifying the number of terms required to 
adequately approximate the fractional derivative within the GL repre-

sentation, 𝑁 essentially encapsulates the memory principle inherent in 
the fractional operator. While the determination of parameter 𝑁 is con-

tingent upon specific cases, exceeding a certain threshold value typically 
leads to solution stabilization.

To evaluate the solution’s dependency on the selection of parameter 𝑁 , 
a relaxation test is conducted numerically. Two distinct samples, labeled 
as a) and b) in Table 1, are simulated using different constitutive param-

eters, as delineated in Table 1. Beginning from an unloaded state (zero 
stress), a prescribed vertical displacement is applied to the samples, pro-

gressively increasing until a maximum vertical strain of 𝜀33 = 0.01 is 
achieved over a duration of 12.5 s. Subsequently, the displacement is 
maintained constant, and the analysis is extended over a total duration 
of 500 s. 𝑁 takes values in the range from 100 to 3500 for both samples 
(Fig. 11). Clearly, the variation in constitutive parameters yields dis-

tinct relaxation behaviors for the two samples, leading to corresponding 
changes in the solution at different values of 𝑁 . Further, it is apparent 
from the same figure that the solution stabilizes for both samples when 
𝑁 exceeds 1500. Consequently, a value of 𝑁 = 2500 has been selected 
for the numerical analyses conducted in this study.

3.2. Elasto-plastic formulation

For modeling the instantaneous plastic behavior of the binder ma-

terial, an associative flow rule is considered [25]. Specifically, a rate 
independent Von Mises failure criterion is assumed, according to which 
the yield function in the stress space is defined as

𝑓 (𝝈𝑝, 𝜅) =
√

3𝐽 ′
2 − 𝜎𝑦(𝜅) ≤ 0, (19)

where 𝝈𝑝 is the instantaneous stress, 𝐽 ′
2 the deviatoric stress second in-

variant; 𝜎𝑦(𝑘) = 𝜎
𝑦

0 +𝐻
𝑝𝑘 is the yield stress in the case of linear isotropic 

hardening with constant hardening/softening modulus 𝐻𝑝 , and 𝜅 is the 
adopted internal variable.

This formulation is particularly suitable for the limited number of re-

quired constitutive parameters. It is underlined that, without lack in 
generality, the proposed visco-elasto-plastic model can handle more 
complex elasto-plastic models.

In the assumption of an associative flow rule, the evolution of the plas-

tic strain 𝜺𝑝 is evaluated in function of a plastic potential 𝑔 equal to the 

yield function 𝑓 (𝝈𝑝, 𝜅) as
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Fig. 11. Results of relaxation tests performed at varying values of 𝑁 for sample a) and sample b).
𝜺
𝑝 = 𝛾

𝜕𝑔

𝜕𝝈𝑝
, (20)

where 𝛾 is the plastic multiplier. The evolution in time of the internal 
variable is evaluated as

�̇� =

𝑡

∫
0

√
2
3
||𝜺𝑝||𝑑𝑡 (21)

in agreement with [64].

The elasto-plastic problem is solved by using the classical elastic 
predictor- plastic corrector scheme. Specifically, a trial stress is assumed 
as

𝝈
𝑇 𝑟
𝑛+1 = C(𝑡𝑛)𝜺

𝑣𝑒,𝑇 𝑟

𝑛+1 = C
(
𝜺𝑛+1 − 𝜺

𝑝
𝑛

)
, (22)

where C(𝑡𝑛) = C is the elastic constitutive tensor at time 𝑡𝑛 , and 𝜺𝑣𝑒,𝑇 𝑟
is the trial visco-elastic strain tensor. Next, the return mapping (RM) 
7

scheme is performed to correct the trial stress if the plastic check 
𝑓 (𝝈𝑇 𝑟
𝑛+1, 𝜅𝑛) ≤ 0 fails. This leads to the solution of the non-linear sys-

tem

b =
⎧⎪⎨⎪⎩
𝑓 (𝝈𝑝

𝑛+1, 𝜅𝑛+1) = 0
r = 𝝈

𝑝

𝑛+1 − 𝝈
𝑇 𝑟
𝑛+1 + C𝜺𝑝𝑛+1 = 0,

ℎ = 𝜅𝑛+1 − (𝜅𝑛 + �̇�)
(23)

which is solved by using the Newton-Raphson method. After introducing 
the state variable vector x = [𝝈, 𝛾, 𝜅]𝑇 , the RM scheme can be recast into

x𝑚+1 = x𝑚 − A−1b, (24)

where A is the matrix of the linearized system, that is

A =

⎡⎢⎢⎢⎢
𝜕𝑓

𝜕𝝈

𝜕𝑓

𝜕𝛾

𝜕𝑓

𝜕𝜅
𝜕r

𝜕𝝈

𝜕r

𝜕𝛾

𝜕r

𝜕𝜅
𝜕ℎ 𝜕ℎ 𝜕ℎ

⎤⎥⎥⎥⎥ . (25)
⎢⎣ 𝜕𝝈 𝜕𝛾 𝜕𝜅
⎥⎦
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Fig. 12. Numerical scheme of possible application of the load increment in a transient solver for conducting transient mechanical analyses: at the end of the time 
step a); continuously (linearly) within the time step b); at the beginning of the time step c).
Fig. 13. Adopted numerical scheme for the application of the load increment, 
and subsequent evolution of stress relaxation.

Finally, the consistent tangent operator for the elasto-plastic model is 
construed in agreement with [65]

C𝑒𝑝 =
𝜕Δ𝝈𝑝

𝑛+1
𝜕𝜺𝑛+1

= A−1
12 C. (26)

3.3. Coupling between creep and elasto-plasticity

The classical implementation of a non-linear transient solver oper-

ating in the mechanical field demands that the equilibrium solution is 
reached at each time step in which time is discretized. The equilibrium 
condition at a current time step 𝑡𝑛+1 is met by setting close to zero the 
residual between the external and the internal forces computed at the 
specific time step, that is

r̂(𝑡𝑛+1) = F𝑒𝑥𝑡(𝑡𝑛+1) − F𝑖𝑛𝑡(𝑡𝑛+1). (27)

It is observed that the load increment ΔF can be applied in different 
manners within the time interval [𝑡𝑛 𝑡𝑛+1]: at the end of the time step 
(Fig. 12 a)); continuously (linearly) within the time step (Fig. 12 b)), 
or instantaneously at the beginning of the time step (Fig. 12 c)). In the 
present work the load increment is assigned instantaneously at the be-

ginning of each time step, as indicated in Fig. 12 c). Thus, after the 
instantaneous application of the loading, it is assumed that the long-term 
effects associated to creep evolution in time take place (see Fig. 13). The 
adoption of this specific numerical scheme implies that at the current 
time step 𝑡𝑛+1 the elasto-plastic stress is defined based on the visco-

elastic stress evaluated at the previous time step 𝑡𝑛. Next, the new visco-

elastic stress is estimated at time 𝑡𝑛+1 through the creep model discussed 
in subsection 3.1.

Introduce the additive decomposition of the total strain tensor 𝜺

𝜺𝑛+1 = 𝜺𝑛 +Δ𝜺 = 𝜺
𝑒
𝑛+1 + 𝜺

𝑣
𝑛+1 + 𝜺

𝑝

𝑛+1 = 𝜺
𝑣𝑒
𝑛+1 + 𝜺

𝑝

𝑛+1. (28)

Thus, the trial elastic stress for the coupled visco-elasto-plastic model is 
defined as

𝝈
𝑇 𝑟
𝑛+1 = 𝝈𝑛 + C𝑣𝑒(𝑡𝑛)Δ𝜺, (29)
8

where C𝑣𝑒 takes the expression in Eq. (17).
Fig. 14. Return mapping scheme: stress versus time a), and stress versus strain 
b).

The RM is performed if the plastic check fails. The RM scheme moves 
the trial stress into the yield surface and the instantaneous stress tensor 
𝝈
𝑝

𝑛+1 is obtained by solving Eq. (24), as shown in Fig. 14. After the plastic 
correction, the current stress 𝝈𝑛+1 is finally obtained from Eq. (15).

The visco-elasto-plastic consistent tangent operator C𝑣𝑒𝑝 is obtained 
starting from Eq. (28). Hence, by using the chain rule, yields

C𝑣𝑒𝑝 =
𝜕𝝈𝑛+1(𝜺𝑣𝑒𝑛+1)

𝜕𝜺𝑛+1
= C𝑣𝑒

𝜕𝜺𝑣𝑒
𝑛+1

𝜺𝑛+1
, (30)

where C𝑣𝑒 =
𝜕𝝈𝑛+1(𝜺𝑣𝑒𝑛+1)

𝜕𝜺𝑣𝑒
𝑛+1

is the consistent tangent operator of the visco-

elastic model computed by using Eq. (17).

Further, the current visco-elastic strain 𝜺𝑣𝑒
𝑛+1 is a function of the plastic 

strain computed at the beginning of the time step, 𝜺𝑝𝑛, that is,

𝜺
𝑣𝑒
𝑛+1 = 𝜺𝑛+1 − 𝜺

𝑝

𝑛+1 = 𝜺𝑛+1 − 𝜺
𝑝
𝑛
− 𝛾

𝜕𝑔

𝜕𝝈
𝑝

𝑛+1
. (31)

The first derivative of 𝜺𝑣𝑒
𝑛+1 over the total strain is derived as

𝜕𝜺𝑣𝑒
𝑛+1

𝜺𝑛+1
= I− 𝛾

𝜕2𝑔

𝜕𝝈
𝑝 2
𝑛+1

𝜕𝝈
𝑝

𝑛+1
𝜕𝜺𝑛+1

= I− 𝛾
𝜕2𝑔

𝜕𝝈
𝑝 2
𝑛+1

C𝑒𝑝, (32)

with C𝑒𝑝 elasto-plastic consistent tangent operator, defined in Eq. (26).

After manipulation of Eq. (31) and Eq. (32), the consistent tangent op-

erator for the coupled visco-elasto-plastic can be written as

C𝑣𝑒𝑝 = C𝑣𝑒

(
I− 𝛾

𝜕2𝑔
C𝑒𝑝

)
. (33)
𝜕𝝈
𝑝 2
𝑛+1
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Fig. 15. Constant strain-rate tests: comparison between experimental [66] and numerical results.

Fig. 16. Constant strain-rate tests: evolution of the plastic strain in the numerical results.
4. Results and discussion

4.1. Calibration of the visco-elasto-plastic model

The proposed constitutive model for the binding constituent of as-

phalt concrete has been calibrated and validated against the experimen-

tal tests reported in [66]. As a first example, the performance of the 
model in reproducing tests in which the strain rate is maintained con-

stant in the sample, is analyzed. In these tests dumbbell-shaped samples 
have been loaded with a constant axial strain rate �̇�. In Fig. 15 the com-

parison between the experimental and the numerical results is shown 
for a 50 penetration grade bitumen at 0 ◦C for four different values of 
the applied strain rate.

The numerical parameters used to calibrate the curve characterized 
by �̇� = 0.015 s−1 are reported in Table 2. The other sets of data are 
used for validation of the proposed constitutive model by maintaining 
the same material parameters identified with the calibration procedure, 
and by simply varying the strain rate applied to the sample (�̇� = 0.007
9

s−1, �̇� = 0.0005 s−1) and �̇� = 0.02 s−1.
Table 2

Constitutive parameters used for calibration and 
validation of the model in relation to constant 
strain rate tests on samples made by a 50 penetra-

tion grade bitumen at 0 ◦C [66].

𝐸∞ 200.00 MPa 𝐸0 0.20 MPa

𝜈 0.40 MPa

𝑓𝑦 1.80 MPa 𝐻𝑝 −0.80 MPa

𝑚1 0.92 𝑚2 0.34
𝛿1 0.92 𝛿2 0.92
𝜂3 12.1 × 108
𝜏1 2.00 s 𝜏2 2.00 s

Fig. 16 shows the evolution of the internal variable 𝜅, adopted in 
the elasto-plastic formulation (Eq. (19)), in the sample for each applied 
strain rate. From this plot it is found that the sample undergoes irre-
versible inelastic strains during creep for �̇� = 0.015 and 0.02 s−1.
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Fig. 17. Constant stress tests/creep recovery tests: comparison between experimental [66] and numerical results.
Table 3

Constitutive parameters used for calibration and 
validation of the model in relation to constant stress 
tests/creep recovery tests on samples made by a 50
penetration grade bitumen at 10 ◦C [66].

𝐸∞ 160.00 MPa 𝐸0 0.20 MPa

𝜈 0.40 MPa

𝑓𝑦 1.80 MPa 𝐻𝑝 −0.80 MPa

𝑚1 0.82 𝑚2 0.24
𝛿1 0.92 𝛿2 0.92
𝜂3 12.1 × 108
𝜏1 2.00 s 𝜏2 2.00 s

As a second example, creep recovery tests on the same 50 penetration 
bitumen material have been considered. Specimens were tested at 10 ◦C, 
under a constant axial stress 𝜎 = 0.32 MPa. After the application of the 
load, the bitumen was allowed to creep to a specified total nominal ten-

sile strain until release of the applied stress. Different loading times were 
considered in the experiment: 6.0 s, 3.0 s and 1.0 s.

The comparison between the experimental and numerical results is 
shown in Fig. 17. Similarly as before, one experimental data set has 
been used for calibration of the bitumen material parameters; the other 
two data sets account for validation of the proposed model. The mate-

rial parameters identified for this test set-up are reported in Table 3. It is 
noted that some constitutive parameters required further recalibration 
with respect to the previous example. This is because this second series 
of tests was conducted at a different temperature.

After calibrating the mechanical behavior of bitumen, the model is used 
to conduct meso-mechanical studies in the next Section.

4.2. Meso-scale model

The performance of the proposed constitutive model for bituminous 
materials has been assessed at the meso-scale by reproducing at this 
scale the experimental tests on concrete asphalt reported in [67]. The 
tested specimens are cylindrical, 10 mm in diameter and 20 mm height, 
with composition and grading as reported in Table 4. The procedure de-

scribed in Section 2 has been adopted to reconstruct a numerical sample 
in line with the given composition and grading curve. Practically, the 
coarse aggregate fraction in the range [1.18 − 2.36] mm has been ex-

plicitly modeled, while the fine fraction has been considered as part of 
the matrix phase, together with the binding bituminous material. The 
10

simulated composition is summarized in Table 5. In the same Table the 
percentage variation between the real and the simulated volume frac-

tion is also reported. In Fig. 18 the reconstructed geometry of one sample 
is shown, distinguished into matrix phase (Fig. 18 a)) and coarse aggre-

gates (Fig. 18 b)). A section of the assembled model is shown in Fig. 18

c), where aggregate inclusions and macropores are visible. In the ex-

perimental test reported in [67] the sample was constrained at the top 
and bottom faces by a press machine, while being subjected to a ran-

dom compressive loading. The load was applied at a velocity of 0.25
mm/s, and randomly in loading level and duration, as reported in the 
loading scheme of Fig. 19 a). This reflects on the asphalt material as a 
random duration of creep, and of creep recovery. In this scenario the 
asphalt concrete sample is expected to exhibit a visco-elasto-plastic be-

havior in time corresponding to a series of subsequent creep recovery 
tests of different loading levels and duration. The test was conducted at 
a temperature of 20 ◦C.

To calibrate the material constitutive parameters of the binder, an itera-

tive process was employed to find the optimal set of calibration values. 
This process aimed to ensure that the axial strain history in the sample, 
resulting from the random loading protocol, closely matched the empir-

ical data for the initial two loading cycles of the test. Consequently, the 
alignment between numerical and experimental results in subsequent 
load cycles is attributable to the calibration performed during the ini-

tial cycles.

The calibrating material parameters for the proposed visco-elasto-plastic 
constitutive model attributed to the matrix phase are reported in Ta-

ble 6. Aggregates have been assumed to behave as linearly elastic, with 
Young’s modulus 𝐸 = 80000 MPa [72] and Poisson’s ratio 𝜈 = 0.2 [71].

The comparison between experimental and numerical results of the 
cyclic random loading test is shown in Fig. 19 b) in terms of axial strain 
in the sample versus time. A fairly good agreement is observed between 
the experimental results and results obtained by using the proposed nu-

merical visco-elasto-plastic model for the binder. In the same figure, it 
can be observed that the alignment between the results is slightly more 
precise for the initial load cycles compared to the final ones. This dis-

crepancy stems from the calibration procedure, which was limited to 
the first two loading cycles, with the subsequent data being predicted 
numerically by the model.

Interestingly, when analyzing the mechanical behavior of asphalt con-

crete at the scale of its constituents, local effects of material plasticiza-

tion are captured. They are generated by the interaction between matrix 
and inclusions during the loading process, due to their different stiffness. 
The observed phenomena can be explained by the localized stress incre-
ments caused by inclusions within the binder matrix, which are further 



Computers and Structures 305 (2024) 107535G. Mazzucco, B. Pomaro, V.A. Salomoni et al.

Table 4

Composition of asphalt concrete samples considered for the numerical analyses at 
the meso-scale [67,68].

fine inclusions coarse inclusions bitumen air void

size [mm] 0.15 - 0.3 1.18 - 2.36
density [t/m3] 2.69 × 10−9 2.67 × 10−9 1.03 × 10−9

volume fraction [%] 37.5 37.5 21.0 4.0

Fig. 18. Reconstructed meso-scale sample: matrix a); inclusions b); vertical section of assembled sample c).
Fig. 19. Loading scheme of the random loading creep test reported in [67] a); comparison between experimental [67] and numerical results b).

Table 5

Simulated composition of the asphalt concrete samples reported 
in [67], considered for the numerical analyses at the meso-scale.

coarse inclusions matrix air void

size [mm] 1.18 - 2.36
volume fraction [%] 36.9 59.0 4.1
exp.-num. variation [%] 1.5 0.8 1.8

Table 6

Constitutive parameters used for the matrix in simulating the ran-

dom loading creep test reported in [67].

𝐸∞ 106.00 MPa 𝐸0 0.08 MPa

𝜈 0.35 MPa

𝑓𝑦 0.90 MPa 𝐻𝑝 −0.80 MPa

𝑚1 0.60 𝑚2 0.17
𝛿1 0.59 𝛿2 0.19
𝜂3 12.1 × 108

𝜏1 30.25 s 𝜏2 30.26 s

compounded by their irregular geometries, resulting in non-uniform 
stress distributions. In Fig. 20 contour maps of the accumulated inelastic 
strains at the end of the loading process are plotted. It is observed that 
locally, around the aggregates, the adopted nonlinear material modeling 
leads to the development of not recoverable strains during creep evolu-

tion.

The primary advantage of meso-scale modeling lies in its capability to 
accurately characterize localized irreversible strains by considering in-

teractions between the aggregates. This allows for the evaluation of local 
behaviors that are not numerically visible when employing a macro-

scopic approach.

4.3. Indirect tensile strength test for asphalt emulsion

Asphalt emulsion mixtures comprise asphalt emulsion (a blend of 
asphalt cement, water, and emulsifying agents) mixed with aggregates 
(such as sand, gravel, or crushed stone) and other additives. They are 
typically manufactured and applied at lower temperatures compared 
to hot mix asphalt. Following the experimental protocol delineated in 
[69], Indirect Tensile Strength (ITS) tests were conducted in accordance 
with ASTM D6931 -12 standard. The tests utilized samples with a di-
11
ameter of 101.6 mm, a loading strip width of 12.7 mm, and a loading 
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Fig. 20. Inelastic strains in the sample at the end of the random loading creep test [67]: vertical section a); transversal section b) of the sample.

Fig. 21. Numerical model of the ITS test on an asphal emulsion sample: front view a); axonometric view b).
Table 7

Coarse aggregates grading.

Passing percentage of sieve [mm]

20 16 13.2 9.5 4.75

Loss [%] 100 95 84 78 48

rate of 50 mm/s. The grading curve utilized in specimen production 
is presented in Table 7. This grading curve was reconstructed numeri-

cally using the random distribution algorithm detailed in Subsection 2.1. 
Polyhedral shapes were chosen for the inclusions due to their alignment 
with the geometric characteristics of the aggregates within the tested 
samples (Fig. 21).

The reconstruction of coarse aggregates within the 3D model is de-

picted in Fig. 22, highlighting the polyhedral shape specifically adopted. 
In the geometrical reconstruction, the sample is assumed to be dense, de-

void of macro-porosity, with pore dimensions considered to be less than 
5 mm. Consequently, these pores are homogenized into the matrix, mir-

roring the treatment of finer particles in the grading curve (aggregates 
with nominal diameters less than 5 mm are not individually modeled 
but are assimilated into the matrix). The experimental tests proposed 
by Mahyuddin et al. [69] involved the addition of varying proportions 
of natural rock (Buton Granular Asphalt, BGA) to a base mix, aimed 
at enhancing the material’s strength performance. Specifically, Indirect 
12

Tensile Strength (ITS) tests were conducted to assess the increase in ten-
Fig. 22. Aggregates reconstruction in the sample used for the ITS test.

sile strength attributable to the additive. The experimental campaign 
encompassed three distinct BGA percentages: 2.5%, 5.0%, and 7.5%.

The relationship between yield stress and BGA percentage was deter-

mined through polynomial interpolation of the experimental data, as 
follows

𝑓𝑦

𝑓𝑦0
= 𝑎+𝜓 [𝑏+𝜓 (𝑐 + 𝑑𝜓)] , (34)

where 𝜓 represents the percentage of BGA in the mix, and the constants 
[𝑎, 𝑏, 𝑐, 𝑑] of the interpolating curve are listed in Table 23 a). By employ-

ing this simplified data extrapolation method, it is anticipated that the 

polynomial curve depicted in Fig. 23 b) will align with experimental ob-
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Fig. 23. Polynomial parameters a); interpolating curve of experimental results reported in [69] b).
Table 8

Constitutive parameters used to simulate the ITS 
test proposed in [69].

𝐸∞ 120 MPa 𝐸0 10.5 MPa

𝜈 0.35 𝑓𝑦0 0.95 MPa

𝑓𝑦 Eq. (34) 𝐻𝑝 −9.5 MPa

𝑚1 0.9 𝑚2 0.32
𝛿1 0.91 𝛿2 0.91
𝛿3 12.1 × 108
𝜏1 30 s 𝜏2 30 s

servations within the limited range of BGA percentages tested, namely: 
[0%, 7.5%].
For the numerical reproduction of the ITS test the constitutive param-

eters shown in Table 8 have been adopted. Specifically, 𝑓𝑦 has been 
assumed in agreement with Eq. (34).

The aggregates have been characterized by a Young’s modulus equal to 
55000 MPa and a Poisson’s ratio equal to 0.15.

Fig. 24 illustrates the comparison between experimental and numerical 
stress-strain curves for the tested samples at varying BGA percentages 
examined in the experiment. The numerical results are found in good 
agreement with the experimental findings. This analysis underscores the 
capacity of the proposed model to accurately capture the macroscopic 
material nonlinearity displayed by the asphalt mixture across different 
BGA percentages. Fig. 25 presents the evolution of the plastic internal 
variable at various analysis times for a representative cross-section of 
the sample. It is noteworthy that other cross-sections within the sample 
exhibit a similar behavior (not depicted here for brevity). The initia-

tion of plastic strains occurs at the loading strip and progresses with the 
loading increments along the diametral direction. Furthermore, Fig. 25

illustrates that plastic strains are induced in the interstices between ag-

gregates, contributing to stress concentration.

5. Conclusions

In this paper a 3D visco-elasto-plastic model for bituminous materi-

als is proposed finding use in concrete asphalt production. The model 
adopts a fractional approach for the visco-elastic part, which is imple-

mented in line with the modified Huet-Sayegh model. Further, plasticity 
is addressed under the assumption of an associative flow rule for the 
plastic strain component. A coupling scheme between visco-elasticity 
and plasticity is proposed, and small strains are considered. By using 
the chain rule, the visco-plastic and the visco-elasto-plastic consistent 
tangent operators are construed.

For a realistic modeling of asphalt concrete specimens at the meso-

scale, a random distribution algorithm is developed and used to place 
aggregate inclusions in a reference volume, compliant with assigned 
grading curve and assigned coarse aggregate volume fraction. Further, 
13

it is proposed that the solid modeling is enriched by: i) a geometri-
cal approximation of the outer surface of aggregate inclusions through 
Bézier parametric splines, and ii) the performing of boolean operations 
between offset surfaces, to generate a matrix phase compatible with a 
given macroporosity degree of the binder.

By juxtaposition of numerical results versus experimental creep tests of 
different nature and indirect tensile strength tests, the model demon-

strates robust predictive capabilities. Specifically, it allows to capture 
the evolution of visco-elastic strains and to anticipate the onset of in-

elastic strains at the meso-scale.

There is potential for further enhancement of the model by considering 
the influence of asphalt material behavior under non-ambient tempera-

ture conditions.

In conclusion, the main advantages of the proposed approach can be 
summarized in the possibility: i) to combine a model visco-elasticity 
based on a fractional derivative formulation with plasticity, to capture 
the inelastic strain evolution during creep of asphalt materials, ii) to 
conduct meso-mechanical studies on a realistic 3D geometry of the com-

posite, iii) to investigate complex three-axial stress states, close to the 
material admissible strength, and taking into account confinement.

All these aspects coexist in the formulation proposed in this work for the 
study of bituminous materials at the scale of individual constituents, 
aiming to provide the most comprehensive and all-encompassing ap-

proach to the problem under examination.
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Fig. 24. Comparisons of stress vs. strain curves from experimental [69] and numerical results at different asphalt natural rock percentages: 0% of BGA a); 2.5% of 
BGA b); 5.0% of BGA c) and 7.5% of BGA d).

Fig. 25. Material failure evolution at different load increments: no load a) at halfway through the analysis b); at failure (end of analysis and of the ITS test) c).
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