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Abstract 

Cognitive control has been theorized operating through two distinct mechanisms, proactive and reactive 

control, as posited by the Dual Mechanism of Control Model (DMC). Despite the DMC potential to explain 

cognitive control variability, the supporting evidence remains inconclusive. Prior studies frequently 

employed the Stroop task to assess the DMC, manipulating the proportion of congruency (PC) at the list-

wide (LWPC) and/or item-specific (ISPC) levels to target proactive and reactive control, respectively. 

However, these manipulations have been questioned as they may invoke low-level associative learning 

instead of control-driven mechanisms. Although solutions have been proposed to address these concerns, 

they still have limitations and impracticalities. 

In pursuit of a clearer understanding of this issue, we manipulated proactive and reactive control 

simultaneously to more directly investigate their separability. We conducted two experiments using the 

Peripheral and the Perifoveal spatial Stroop tasks, respectively, and we adopted state-of-the-art 

methodologies, leveraging trial-level multilevel modeling analytical approaches, to effectively estimate the 

Stroop effect and its control-related modulations while controlling for confounding factors. Notably, we 

manipulated LWPC and ISPC at the trial level, allowing for a fine-grained analysis. 

Our results provide compelling evidence for the existence of an LWPC-dependent proactive control 

mechanism, influencing Stroop performance independently of reactive control and confounding factors. 

Additionally, an ISPC-dependent reactive control effect was found to interact with proactive control, 

influencing Stroop performance, but not directly.  

These findings contribute to a better understanding of the interplay between proactive and reactive 

control mechanisms, shedding light on the intricate nature of cognitive control. 
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1. Introduction 

Cognitive control is one of the abilities that mostly characterizes human beings, as it is fundamental to 

goal-directed behavior (Chiew & Braver, 2017; Cohen, 2017). Cognitive control is an umbrella term that 

refers to a family of processes required to adaptively regulate, coordinate, and sequence our thoughts and 

action plans according to the context and internal goals (Braver, 2012; Chiew & Braver, 2017). Indeed, it 

comes into play when simple automatic behavior is not enough and more flexible or complex behavior, 

guided by internal states or intentions, is needed (Miller & Cohen, 2001). Cognitive control works by 

maintaining current goal representations to bias cognitive processes in favor of goal-directed stimuli and 

actions and by updating such representations when goals and context change (Botvinick et al., 2001; Chiew 

& Braver, 2017; Cohen, 2017; Diamond, 2013; Miller & Cohen, 2001). A central component of cognitive 

control is interference resolution, which is the ability to select weaker but task-relevant information when 

it is in competition with a stronger and more habitual, but task-irrelevant one (Miller & Cohen, 2001; Nee et 

al., 2007; Tafuro et al., 2019). The need to select task-relevant information among conflicting one is 

pervasive in everyday life because we are always surrounded by a great amount of sensory stimuli and 

possible actions, but only some of them are appropriate at any given moment (Gratton et al., 2018; Jiang et 

al., 2014; Nee et al., 2007).  

In the last decades, the mechanisms that underlie and adaptively regulate cognitive control have been 

intensively investigated. However, an exhaustive understanding of this fundamental process is still lacking. 

Therefore, in the present study we directly investigated one of the most influential cognitive control 

accounts, the Dual Mechanisms of Control model  (DMC; Braver, 2012; Braver et al., 2007), using the Stroop 

task. Our aim was to assess whether the two control modes postulated by the DMC, namely proactive and 

reactive control, are separable. Indeed, due to some methodological and theoretical issues, it still remains 

unclear whether they can be distinguished at the behavioral level. To achieve this, we devised a novel 

methodological approach that incorporates cutting-edge trial-level multilevel modeling techniques, 

ensuring accurate and reliable estimations of the Stroop effect, while finely manipulating the proxy 

variables for proactive and reactive control at the trial level. This fine-grained manipulation is crucial for 

gaining insights into the simultaneous presence and interplay of proactive and reactive control mechanisms 
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while effectively controlling for potential confounding effects arising from low-level processes, such as 

contingency.  

Given the vastness of the topic and the extensive literature on it, in what follows we first describe the 

classic manipulations commonly employed to engage proactive and reactive control, along with their 

respective limitations. Subsequently, we will discuss how researchers typically address such flaws and 

highlight the associated costs of proposed solutions. Additionally, we will highlight why the commonly used 

approaches do not allow truly investigating the separability of the two mechanisms. We will thus propose 

an alternative approach to solve these issues.  

1.1. The Stroop task: Proportion Congruency (PC) manipulations and their limitations 

In the laboratory, cognitive control can be investigated using interference tasks (Bugg & Crump, 2012; 

Gratton et al., 2018; Jiang et al., 2014). The Stroop task is among the most widely used interference tasks 

(Stroop, 1935). In its original version, known as the color-word Stroop task, words denoting a color are 

presented in either the same or a different ink color and participants are instructed to name the ink color 

regardless of the word meaning. Typically, the so-called Stroop effect is observed, that is, participants’ 

performance is worse in incongruent trials - when the meaning and the ink color of the word do not match 

- as compared to congruent trials - when they do match. (MacLeod, 1991; Stroop, 1935). Therefore, in this 

task, cognitive control is engaged to overcome interference at the task level (i.e., reading vs. color naming), 

as well as interference occurring at the stimulus and response levels in incongruent trials (Gonthier et al., 

2016; Viviani et al., 2023).  

Although the Stroop effect is universally observed, its magnitude varies as a function of age and clinical 

condition, or it can be deliberately modulated through specific experimental manipulations (e.g., Bugg & 

Crump, 2012). Of interest to the current work is that cognitive control demand and the consequent 

magnitude of the Stroop effect can be modulated by manipulating the proportion congruency (PC), that is, 

the relative frequency/likelihood of congruent trials within the task blocks (Gonthier et al., 2016; Logan & 

Zbrodoff, 1979). The basic assumption is that information about the PC is used to adjust the cognitive 

control level and, as the size of the Stroop effect inversely reflects the success of interference resolution, it 

is postulated that when such effect is relatively small, a greater extent of cognitive control has been 
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recruited (e.g., Braem et al., 2019; Lindsay & Jacoby, 1994). More in detail, in mostly incongruent blocks 

(low PC), the high probability of encountering incongruent trials and experiencing interference increases 

cognitive control demands and this yields significantly smaller Stroop effects. In contrast, in mostly 

congruent blocks (high PC), due to a relatively lower frequency of incongruent trials, cognitive control is 

laxer and the Stroop effect gets larger (e.g., Lindsay & Jacoby, 1994).  

The high flexibility of the PC manipulation makes it suitable for our purpose of differentiating the 

distinct cognitive control mechanisms (Bugg, 2017; Bugg & Crump, 2012), namely, those postulated by the 

Dual Mechanisms of Control model (DMC, Braver, 2012; Braver et al., 2007). As introduced above, the DMC 

explains the intrinsic variability of cognitive control in terms of different temporal dynamics, postulating 

that there are two qualitatively distinct cognitive control modes: proactive and reactive control. The former 

mode operates actively by maintaining task goals and anticipatorily biasing cognitive processes in a goal-

driven manner. Thus, proactive control acts as a preparatory mechanism, engaged in a sustained fashion 

even before cognitively demanding events, like conflicts, are encountered. When proactive control is 

exerted, interference is reduced because top-down attentional biases favor the processing of the task-

relevant information. By contrast, reactive control is mobilized transiently only as needed on a “just-in-

time” basis. As such, reactive control relies upon a “late correction” mechanism reflecting the bottom-up 

reactivation of task goals to resolve interference.  

Previous works using the Stroop task have shown that these two cognitive control modes can be 

distinguished by manipulating the PC at the list-wide (LWPC) and item-specific (ISPC) levels (Bugg, 2012; 

Bugg & Crump, 2012)1. Indeed, although these PC manipulations produce a similar overall pattern, they 

favor the use of a cognitive control mode over the other, as the logic behind them is different (Bugg, 2017). 

The LWPC manipulation is used to stress the adoption of a proactive control mechanism to resolve Stroop 

interference. It implies varying the PC within experimental blocks, that is, blocks with high LWPC, in which 

the proportion of congruent trials is higher (e.g., 75% congruent and 25% incongruent), are compared to 

                                                           

1 A third type of PC manipulation exists, the context-specific PC. Besides being akin to the ISPC, we will not 
discuss in detail the context-specific PC as it was not manipulated in the present work, but see Bugg and 
Crump (2012) and Bugg (2012) for reviews. 
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blocks with low LWPC, wherein the ratio is reversed (e.g., 25% congruent and 75% incongruent). Typically, 

this manipulation yields the so-called LWPC effect, characterized by smaller Stroop effects in low-LWPC 

blocks as compared to high-LWPC blocks (e.g., Bugg & Crump, 2012; Lindsay & Jacoby, 1994; Logan & 

Zbrodoff, 1979). Such an effect would be yielded by a goal-driven modulation of control, which is possible 

because, after experiencing a number of trials within a block, participants learn the global likelihood of 

conflict and develop expectancies about the upcoming trials. Low LWPC leads to the implementation of 

early preparatory strategies operating even before stimulus onset, which entail imposing an attentional 

bias toward the task-relevant dimension and/or away from the task-irrelevant one. By contrast, when 

LWPC is high, the more prepotent task-irrelevant dimension is processed preferentially (Braver et al., 2007; 

Bugg, 2017; Bugg & Chanani, 2011; Bugg & Crump, 2012; Lindsay & Jacoby, 1994; Logan & Zbrodoff, 1979). 

The highest level of proactive control is observed in low-LWPC blocks, yielding not only shorter RTs on 

incongruent trials, but also a congruency cost, namely a slowing on congruent trials as compared to 

congruent trials in high-LWPC blocks, since the attentional biases away from the task-irrelevant dimension, 

which are imposed anticipatorily and globally, reduce the facilitation on congruent trials (Gonthier et al., 

2016).  

In contrast, when the ISPC is manipulated, reactive control is dominant. As the name suggests, it is 

implemented by assigning different PCs to specific sets of items (Jacoby et al., 2003). Essentially, the 

manipulation targets one feature of an item, which is commonly the task-irrelevant dimension (i.e., the 

word dimension in the color-word Stroop task). Such stimulus feature signals a specific PC and two 

conditions can be distinguished within the same block: high-ISPC (e.g., 75% probability for the word RED to 

appear in red ink) and low-ISPC (e.g., 25% probability for the word BLUE to occur in blue ink) items. 

Therefore, low-ISPC items, by signaling a high level of expected interference, are assumed to produce the 

highest level of reactive control (e.g., Bugg, 2012, 2017; Bugg & Hutchison, 2013) triggered by a fast 

“stimulus-attention association” (Tafuro et al., 2020). Using this manipulation, previous studies found an 

ISPC effect, that is, smaller Stroop effects for low- than high-ISPC items (Bugg et al., 2011; Bugg & 

Hutchison, 2013; Jacoby et al., 2003). The different PC items are randomly intermixed and presented within 

the same block, and the global probability of congruent and incongruent trials is usually kept equal in that 
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block (LWPC of 50%), so that this manipulation cannot imply a control modulation at the list level. Indeed, 

participants learn the conflict likelihood of the items, but they can use this item-specific information to 

impose attentional biases only after stimulus onset. The ISPC effect is thus a reactive modulation of control 

that, by operating on an item-by-item basis, is fast and flexible and is maximal when the item signals a high 

level of interference (Bugg, 2012, 2017; Bugg et al., 2011; Bugg & Hutchison, 2013).  

Overall, PC manipulations are fundamental as they allow scholars to investigate what is referred to as 

adaptive control, that is, the context-induced and time-varying adjustments intrinsic to cognitive control 

(Braem et al., 2019). However, several authors have called into question the validity/purity of adaptive 

control measures, including the PC manipulations discussed so far, claiming that they suffer from 

methodological issues (see Braem et al., 2019; Schmidt, 2019 for reviews).  

First, there is considerable controversy about whether cognitive control per se is necessary to resolve 

the Stroop interference elicited by PC manipulations or, conversely, whether adaptive control measures are 

merely the result of much simpler stimulus-stimulus or stimulus-response associative learning processes, as 

claimed by the contingency hypothesis (Schmidt, 2019; Schmidt et al., 2007; Schmidt & Besner, 2008). This 

view identifies contingency learning as a more plausible candidate for explaining PC effects, excluding the 

involvement of any high-level cognitive control modulation. Essentially, it postulates that by learning that 

responses tend to co-occur with specific stimuli, they can be facilitated. According to this hypothesis, 

participants’ cognitive system implicitly learns the contingencies (or correlations) between the task-

irrelevant and the task-relevant stimulus features, namely the responses, and uses the task-irrelevant 

dimension to predict high-contingency responses. When responses are highly predictable, namely, in high-

contingency trials, participants exploit (even implicitly) these learning-based shortcuts and respond faster 

(Schmidt et al., 2007; Schmidt & Besner, 2008).  

The contingency hypothesis challenges especially the ISPC effect, pointing out that such effect is only 

incidental, since ISPC manipulations are always confounded with contingency (Schmidt, 2019; Schmidt & 

Besner, 2008). Indeed, to manipulate the PC of the items, the frequency of specific irrelevant-relevant 

characteristic pairs is necessarily altered as well (Spinelli et al., 2019). In line with this hypothesis, the 

assessment of contingency learning controlling for PC effect (high- vs. low-contingency items of equal PC) 
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revealed a contingency effect, while the assessment of PC effect controlling for contingency (high- vs. low-

ISPC items of equal contingency) yielded no residual PC effect (Schmidt, 2013; Schmidt & Besner, 2008; see 

also Schmidt, 2019, for a detailed review). However, other evidence argues in favor of a more intermediate 

account that embraces the contribution of both contingency and item-specific control mechanisms. For 

example, in Bugg and colleagues (2011), the task-relevant dimension signaled the ISPC rather than the task-

irrelevant one and this, by equating contingency across conditions, allowed deconfounding ISPC and 

contingency and finding evidence for a control modulation. When, instead, the task-irrelevant dimension 

functioned as the ISPC signal, contingency was confounded with ISPC and accounted for its effect, as 

predicted by the contingency hypothesis (Schmidt, 2019). Moreover, Bugg and Hutchison (2013, 

Experiment 3), restoring the traditional ISPC design (the task-irrelevant dimension signaling the ISPC), found 

an ISPC-dependent control modulation when 4-item sets were used, while contingency was dominant when 

2-item sets were used, suggesting that bigger set sizes promote reliance on item-specific control, whereas 

smaller ones favor the use of contingencies. Their findings support the existence of different mechanisms 

governing the ISCP effect depending upon the set size, with larger sets reducing high-contingency 

responses and the likelihood of learning contingency associations, especially for responding to incongruent 

items.  

Overall, this issue is still a matter of debate and a detailed discussion goes beyond the scope of the 

present work (see also Bugg, 2014; Bugg & Hutchison, 2013; Schmidt, 2013, 2019). However, what is clear is 

the need of methodologically correct/appropriate experimental designs controlling for or removing 

contingency-related biases to verify whether ISCP effect is, even only partially, due to congruency 

modulation. To this end, apart from the strategy reported above, another solution is to manipulate 

contingency learning and ISPC in a partially independent way. When using a color-word Stroop task, this 

can be done by creating two non-overlapping 2-item-sized sets, so to have: i) the first set with mostly-

congruent (MC) words, but mostly-incongruent (MI) colors (viceversa for the second set); ii) MC 

incongruent words presented only in the other MC colors; iii) MI incongruent words presented only in the 

other MI colors; iv) for each set, one high-contingency and one low-contingency incongruent word. To 

measure conflict adaptation effects, low-contingency MC incongruent items are compared to low-
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contingency MI incongruent items, whereas to measure contingency-related effects, low-contingency MI 

incongruent items are contrasted to high-contingency MI incongruent items. Of note, for congruent items, 

this does not dissociate between the two accounts (e.g., Spinelli & Lupker, 2020). Recently, Braem and 

colleagues (2019) summarized some guidelines on how to design cognitive control tasks avoiding 

confounds and, for what concerns ISPC manipulations, they suggest creating two sets of overlapping 

“inducer” items (one for MI and one for MC items) to trigger reactive control and a third set of “diagnostic” 

items with a PC of 50%, to which the ISPC-dependent level of cognitive control is assumed to be 

transferred, to measure the ISPC effect without item-frequency differences. Using the picture-word Stroop 

task, diagnostic items can be created by choosing a novel set of exemplars of the inducer items which can 

represent the same inducer item but in a different form (e.g., if among the inducer items there is a picture 

of a dog, select a different dog picture as a diagnostic item) or by selecting an alternative item belonging to 

the same category as the inducer item (e.g., if among the inducer items there is a picture of a lion, select a 

tiger picture as a diagnostic item). Alternatively, they propose to use diagnostic items involving new task-

irrelevant features, such as diagnostic trials with the same task-relevant features as the MC and MI items 

paired equally often with incongruent non-inducer task-irrelevant features (e.g., different distractor words 

in the color-word Stroop task). Faster responses for MI inducer task-relevant features paired with non-

inducer incongruent task-irrelevant features than for MC inducer task-relevant features paired with non-

inducer incongruent task-irrelevant features are assumed to reflect a cognitive control-driven ISPC effect 

without contingency confounds. It is worth mentioning that although these solutions have been proposed 

in a consensus paper, the same authors admit that they come with cautionary notes. Indeed, they 

recommend the latter approach but still highlight that it has been rarely tested, and that it is “important to 

assess its robustness in future studies” [p. 778]. 

Another potential flaw of adaptive control measures concerns the LWPC manipulation. Some authors 

indeed pointed out that LWPC effects do not actually depend on list-level information but instead can be 

explained by a mechanism operating at the item level. Thus, this account excludes any proactive control 

involvement or, at least, posits that it cannot be elicited by the LWPC manipulation (Blais et al., 2007; Blais 

& Bunge, 2010; Bugg et al., 2008). Indeed, when low-PC blocks are composed of low-PC items and high-PC 
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blocks are composed of high-PC items, LWPC is confounded with ISPC. To disentangle the two mechanisms, 

Bugg and Chanani (2011) randomly intermixed, in both high- and low-PC blocks, an additional set of items 

with an ISPC of 50% (unbiased or diagnostic items) to verify whether an LWPC effect could be observed for 

such items, which did not provide any item-specific or contingency information. This was the case, 

suggesting that the LWPC effect was driven by a mechanism using the information at the list-level, and thus 

it was modulated proactively. This procedure was proposed by Braem and colleagues (2019) too, who 

agreed on the need to use inducer items that trigger proactive control and diagnostic (or unbiased) items 

that measure its effect on performance. They also recommended presenting inducer items more frequently 

than diagnostic ones and using a set of at least three items.  

Although there is an emerging consensus on the need to use the approaches described above to design 

confound-minimized studies (Braem et al., 2019), their implementation comes at a cost. Indeed, both for 

LWPC and ISPC measures, distinguishing between inducer and diagnostic items is impractical and time-

consuming due to the need to measure PC-related effects only on diagnostic items, while excluding inducer 

ones from the analyses. Moreover, for what concerns ISPC manipulation specifically, the creation of 

multiple sets of stimuli consisting of a multitude of items is not always feasible as, except for picture-word 

Stroop tasks, the possible exemplars of items are limited (e.g., for the color-word Stroop task there are just 

limited colors among which to choose). Lastly, contingency-control manipulations in picture-word Stroop 

tasks might also be flawed, because when using different diagnostic pictures of the same exemplars of 

inducer items, response contingencies might still be predictable, while when using diagnostic pictures of 

the different exemplars but belonging to the same category as inducer items implies the assumption of 

within-category transfer, which might not always occur. Therefore, in our view, to date there is no 

methodological approach free from limitations and how to control for PC-related confounders in a feasible 

and effective way still remains an open question. Here, the solutions proposed by the confound-minimized 

approaches will be referred to as design-level control, as their purpose is to control for confounders as 

much as possible at the level of the experimental design. However, as just described, they imply some 

costs. As an alternative to this approach, there is the possibility of controlling for confounding effects at the 

statistical level, for which we will use the label analysis-level control. This statistical approach, which we 
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have adopted here (as described below), offers greater flexibility in the experimental design, thus 

overcoming the limitations of the approaches controlling for confounders at the design level. 

These methodological controversies notwithstanding, the existence of two temporally distinct control 

modes seems plausible, at least as long as potential confounders are controlled for at the design level. 

However, the only way of verifying whether proactive and reactive control constitute truly independent 

mechanisms (Braver et al., 2007), ruling out that they are two poles on a continuum, is by obtaining 

independent estimates of these effects from the same sample of participants. This was done by Gonthier 

and colleagues (2016), who tried to dissociate proactive and reactive control by directly contrasting their 

behavioral signatures in a within-subject design to obtain independent estimates of LWPC and ISPC effects 

in the same participants. To this end, separate blocks were used: two LWPC blocks (one mostly congruent 

and one mostly incongruent) along with a set of unbiased items to avoid ISPC-related influence, and one 

ISPC block including an equal number of mostly congruent and mostly incongruent items, with a LWPC of 

50% to exclude LWPC effects. They found not only that LWPC and ISPC manipulations independently 

reduced the magnitude of the Stroop effect, but also that the two benefit indices were negatively 

correlated, suggesting that subjects relying more on one mechanism engage less the other one, thus 

providing evidence that the two effects are elicited by two distinct (i.e., dissociable) control mechanisms.  

Although the study by Gonthier and colleagues (2016) provided initial evidence for the separability of 

LWPC and ISPC effects, thanks to its within-subjects design, and confirmed its suitability for measuring 

proactive and reactive control, it also suffers from some drawbacks. First, the effect of contingency learning 

was more strongly controlled for in the LWPC manipulation, for which unbiased diagnostic items were used 

while the influence of contingency on item-specific mechanisms was controlled for by using the task-

relevant dimension to signal ISPC, leading to unequal frequencies of unique trial types and irrelevant 

stimulus characteristics. A second limitation of the study by Gonthier and colleagues (2016) is that, 

although they use a within-subjects design testing both proactive and reactive control in the same 

participants, the two control mechanisms were investigated separately, as the LWPC and ISPC 

manipulations are kept apart and implemented one at a time in different blocks. Indeed, more convincing 

evidence for their existence as distinct mechanisms would require testing their interaction while both 
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manipulations are implemented. Indeed, this would allow exploring whether and how they covary, 

informing about the existence of two separate mechanisms.  

1.2. Aim of the present study and methodological novelties 

Motivated by the considerations discussed above, our main aim here is to make a step further, by 

investigating in a more direct manner whether proactive and reactive control are two separable 

mechanisms. Essentially, we put forward a new approach that allows manipulating LWPC and ISPC at the 

same time, while controlling for the effect of stimulus-response associations, such as contingency. 

Although, to the best of our knowledge, only one attempt has been made to study both of them together 

using the Stroop task (see Hutchison, 2011), we believe that, to verify the specificity of these two control 

mechanisms, the most plausible way is to measure participants’ performance while both LWPC and ISPC 

are parametrically varied at the same time. Indeed, by doing so, we can verify whether proactive and 

reactive control modes have distinct effects on participants’ performance. Moreover, if we assume that 

they are indeed distinct mechanisms, they should also interact as (implicitly) predicted by the DMC model 

(Braver et al., 2009, 2021; De Pisapia & Braver, 2006). Thus, by measuring both at the same time, we can 

also test the three-way interaction between the Stroop effect, LWPC and ISPC, which can tell us more about 

the impact of variable amounts of proactive and reactive control activated by different levels of LWPC and 

ISPC. Lastly, since previous literature has confirmed the, at least partial, role of contingency on conflict 

adaptation, we decided not to exclude it but we allowed it to vary orthogonally (as much as possible) with 

respect to LWPC and ISPC, with the aim to estimate its effect and control for it at the statistical level so to 

measure the LWPC and ISPC effects regardless of contingency. As a consequence, in our tasks, trials will 

have at the same time a different level of LWPC, ISPC, and contingency. To do so, we combined this 

methodological approach with the use of a multilevel trial-level modeling analytical approach to assess the 

fine-grained effects of our predictors at the subject level, while partialling out the effect of contingency and 

of other lower-level confounding factors (Viviani et al., 2023b). As we recently showed, indeed, trial-level 

confounders represent important sources of trial-by-trial noise that cannot be accounted for by standard 

general linear models (GLM), which require collapsing trial-level data to obtain participants-by-condition 

https://www.zotero.org/google-docs/?UbPp3x
https://www.zotero.org/google-docs/?rciKzW
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averages. They can instead be effectively estimated and removed by multilevel modeling (see Viviani et al., 

2023b for a more exhaustive description of the advantages of multilevel modeling over GLM). 

 Moreover, to pursue our aim, we introduced an important methodological novelty, that is, we  

manipulated the different PCs at the list-wide and item-specific levels to explore how and to what degree 

they modulate the Stroop effect dynamically and in a fine-grained way. In other words, we aimed  to 

evaluate the impact of PC on participants’ Stroop performance on a trial-by-trial basis, using trial-level 

LWPC and ISPC estimates computed based on the actual recent history of trial congruency they 

experienced, rather than on their assumed (future) experience of trial congruency at the block-level.  

Indeed, it should be noted that the available literature used the block-level LWPC and ISPC variables, 

that is, those computed as the number of congruent trials within a block (in total or for each item, 

respectively) divided by the total number of trials (in total or for each item, respectively) within the same 

block. However, these block-level LWPC and ISPC variables correspond for sure to the actual PCs at the end 

of the block only. This is true even if trial-level PC values are computed based on the trials experienced so 

far during that block, and especially if they are computed based on the local history of trials (e.g., using a 

moving window or a forgetting factor). Indeed, due to the commonly used (pseudo)randomization of the 

trial list, it is not unlikely that the LWPC value at, say, the 20th trial in a block deviates even dramatically 

from the expected block-level LWPC, being it, for example, as large as 40% and as small as 0% instead of 

20%. This is especially important after an unsignalled block transition, especially between blocks with 

extreme opposite block-level LWPCs (e.g., 20% and 80%). In this case, indeed, the commonly used block-

level approach implausibly assumes that, at the very first trial of a new block, participants immediately 

update their LWPC estimates (from 20% to 80% in this example) and, consequently, their proactive control 

level. Similarly, commonly used block-level ISPC values neglect the fact that participants first need to 

experience a sufficient number of trials for each item to estimate its ISPC value, thus unrealistically 

assuming that the items at the beginning of each block have already been associated to an ISPC value, 

without previously encountering them. Moreover, the commonly used block-level approach unrealistically 

assumes that all the trials within a block share the same PC values, not taking into account the fact that the 

local PCs vary within the block.  
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Therefore, and since participants are not aware of the probabilistic structure of the task, it is 

unreasonable to assume that their trial-by-trial performance is modulated by block-level PC values. Instead, 

it is more plausible to assume, as we do here, that their cognitive system implicitly and continuously 

estimates trial-level LWPC and ISPC values using some form of statistical learning based on the recent 

history of overall and item-specific PCs, respectively, implementing a specific level of control accordingly. 

We therefore employed a fine-grained manipulation of LWPC and ISPC, which were estimated trial-by-trial 

using an ideal Bayesian observer (Mathys et al., 2011). Our approach, thus, allows us to account for and 

estimate flexible, ongoing adjustments of cognitive control during the task (see Figure 1). Trial-by-trial 

estimates (which we will call continuous variables) were used as predictors in our analyses as they are more 

realistic than those computed using the block-level occurrences (which we will call discrete variables). Trial-

level estimates were also calculated for confounding variables of interest, including contingency, using the 

same approach.  

 

Figure 1  
The plot shows the block-level LWPC (LW, blue line) and its trial-level estimates (LWb, red line) computed 
using the Hierarchical Gaussian Filter (Mathys et al., 2011) for one of the trial lists used in the experiment. 
The occurrence of congruent (Congruency = 1) and incongruent (Congruency = 0) trials is also depicted as 
small black plus signs.   

 

Finally, we addressed the important but frequently overlooked aspect of measure reliability. As 

highlighted by Gonthier and colleagues (2016), LWPC and ISPC effect indices have unknown psychometric 

properties, in addition to being effects calculated from difference scores, which, in turn, further reduces 

their reliability (Thomas & Zumbo, 2012). Despite this awareness, this issue has rarely been addressed in 
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studies using such manipulations, and, as such, our study also aims to explore the reliability of such 

measures. To this aim, the use of multilevel trial-level modeling of participants’ performance is again 

fundamental, as we recently showed it to ensure estimations of the experimental effects with higher and 

more stable internal reliability compared to standard GLM approaches (see Viviani et al., 2023b). 

The three points mentioned above were addressed in two Experiments involving four-choice spatial 

Stroop tasks that require keypress responses to indicate the direction of a target arrow, ignoring its 

position. Both Experiments used exactly the same experimental procedure and design and differed only in 

the spatial arrangement of the experimental stimuli (see below), allowing us to assess the robustness of our 

experimental approach and results. These two spatial Stroop tasks, named Peripheral and Perifoveal spatial 

Stroop tasks, were chosen as they overcome some limitations intrinsic to the original color-word verbal 

Stroop task, while also ensuring a complete Stroop effect, that is, an effect including conflict at the task, 

stimulus, and response levels (see Viviani et al., 2023 for more details). In addition to these methodological 

advantages, in a recent work, we have shown that the Peripheral and Perifoveal spatial Stroop tasks are 

proper spatial Stroop adaptations, producing Stroop effects that not only have a large magnitude but are 

also robust to analytical flexibility and have a high and robust internal reliability (Viviani et al., 2023b).  

1.3. Hypotheses  

As claimed above, we were interested in exploring if and how proactive and reactive control covary and 

interact to modulate the Stroop effect. To the best of our knowledge, this interaction has rarely been 

tested before, mainly because LWPC and ISPC have always been manipulated separately (but see 

Hutchison, 2011). As such, there is no solid evidence of how the Stroop effect is modulated when both 

proactive and reactive controls are implemented in the same experimental design and neither of whether 

these two control modes interact. Therefore, we put forward some hypotheses about what we expect to 

observe, proposing different theoretically plausible alternatives.  

All the hypotheses assume that when both LWPC and ISPC are high (lPro-lRea condition), the lowest 

level of control is applied (i.e., no form of proactive and reactive control is implemented) and thus the 

Stroop effect should be the largest (equal to 1 in our models). Conversely, when either LWPC or ISPC are 

low, a high level of proactive and reactive control, respectively, should be implemented (respectively, the 
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hPro-lRea and hRea-lPro conditions), and thus the Stroop effect should be reduced. Finally, when both 

LWPC and ISPC are low (hPro-hRea condition), the highest level of control should be implemented and thus 

the smallest Stroop effect should be observed. 

The first point that differentiates our hypotheses is the size of the Stroop effect in the hPro-hRea 

condition. We hypothesized that, if proactive and reactive control do not interact with each other but still 

separately modulate the Stroop effect, their effects on the Stroop effect will be additive, thus still 

producing the smallest Stroop effect compared to the other conditions (ADD models; Figure 2A). If, in 

contrast, their interaction is significant, two alternative scenarios are possible: They could interact either in 

a synergistic (i.e., more than additive) way, producing a reduction of the Stroop effect that is greater than 

that assumed by the additive hypothesis (SYN models; Figure 2B), or in an antagonistic (i.e., less than 

additive) way, producing a reduction of the Stroop effect that is smaller than that assumed by the additive 

hypothesis (ANT models; Figure 2C).  

The second distinction stems from the possibility that one of the two control modes could have a 

stronger impact on the Stroop effect than the other. This point differentiates our hypotheses only for what 

concerns the conditions wherein only proactive control or reactive control is implemented (respectively, 

hPro-lRea and lPro-hRea), while it should not affect the size of the Stroop effect in the conditions wherein 

neither or both forms of control are implemented (respectively, lPro-lRea and hPro-hRea). If we assume 

that proactive and reactive controls have the same strength, the Stroop effect should be the same size in 

the lPro-lRea and hPro-hRea conditions (Figure 2, left plots). Conversely, if we assume that the effect of 

proactive control is stronger, the Stroop effect should be smaller in the hPro-lRea condition compared to 

the lPro-hRea condition (Figure 2, right plots), while if the effect of reactive control is stronger, the Stroop 

effect should be smaller in the lPro-hRea condition compared to the hPro-lRea condition (Figure 2, middle 

plots).  
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Figure 2  
Predicted patterns of Stroop effect modulations by low and high levels (l and h, respectively) of LWPC-
related Proactive control (Pro) and ISPC-related Reactive control (Rea) according to our alternative 
hypotheses. ADD, additive effects of Pro and Rea; SYN, synergistic Pro by Rea interaction; ANT, antagonistic 
Pro by Rea interaction (see Hypotheses section for more details).  

 

2. Experiment 1 - Peripheral 

2.1. Methods 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, all 

manipulations, and all measures in the study. All inclusion/exclusion criteria were established prior to data 

analysis. All data and materials, as well as the code used to run the experimental tasks and generate and 

analyze the data of the current study, are available in our project repository on the Open Science 

Framework (OSF) platform at osf.io/qmu7g. No part of the study, including the analyses, was pre-

registered. 

2.1.1. Procedure and experimental tasks  

The experiment was programmed using Psytoolkit (Stoet, 2010, 2017) and administered online. The 

stimuli were presented in full-screen mode, with a resolution of 800 x 600 pixels, on a gray background 

(RGB: 128, 128, 128). Each trial started with a fixation stimulus presented at the center of the screen for 

500 ms and participants were instructed to fixate it. Then, the experimental stimulus appeared and 

https://osf.io/qmu7g/
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remained on the screen until participants responded or up to a response time-out of 2000 ms. Participants 

had to pay attention to the task-relevant information, which was the pointing direction of a black arrow, 

and were required to indicate it via button press by using four keys on a computer keyboard, which were E, 

O, K, and D. These keys were spatially arranged to be compatible with the four possible arrow directions, 

which could be upper-left, upper-right, lower-right or lower-left, and had to be pressed using the left 

middle, right middle, right index and left index fingers, respectively. The experimental stimuli were also 

characterized by task-irrelevant information, which was the position where the arrow appeared. The 

position of the arrow overlapped with the four task-relevant directions, since the arrow could appear in an 

upper-left, upper-right, lower-right, or lower-left position. The task-irrelevant position could match or not 

the task-relevant direction, yielding congruent and incongruent trials, respectively.  

In this study, we used a Peripheral spatial Stroop task (Viviani et al., 2023b), wherein the target arrow 

could appear in one of four peripherally-located spatial positions. For this task, the fixation screen consisted 

of a black cross (36 x 36 pixels) presented at the center of the screen, along with four white squares (73 x 

73 pixels) at the four corners of an imaginary square of 600 x 600 pixels centered on the screen. Then, the 

target arrow was presented inside one of the four peripheral squares, and it could point to one of the same 

four directions. We used 12 of the 16 possible combinations of arrow positions and directions, as we 

excluded the four corresponding to the incongruent arrows pointing to the opposite direction (e.g., the 

arrow appearing at the upper-left corner and pointing toward the bottom-right corner) because they point 

towards the correct response. 

List-wide (LWPC) and item-specific (ISPC) proportions of congruency were simultaneously manipulated 

to measure both proactive and reactive control, respectively. To this aim, the trial lists were designed by 

first dividing them into two main blocks made of 320 experimental trials each, with different LWPC values, 

one with 35% of congruent trials (LW35) and one with 65% of congruent trials (LW65). Then, distinct ISPC 

levels were used, nested within each LWPC block, so as to have 4 different ISPC values within each block. In 

the LW35 block, the ISPC ranged from 20% to 50% in steps of 10%, while in the LW65 block, the ISPC ranged 

from 50% to 80% in steps of 10%. Crucially, by using the same ISPC level (50%) in both LWPC blocks, we 

were able to assess the pure effect of LWPC (and thus proactive control) on Stroop effects, independently 
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of ISPC (and thus reactive control) and contingency. Moreover, within each block, the occurrence of each 

position-direction combination was intentionally varied in trying to orthogonalize as much as possible the 

contingency to LWPC and ISPC, so that the effect of each of these variables could be disambiguated in the 

statistical analysis. In doing so, we allowed the probability of each of the four directions (and thus the 

responses) to slightly vary within each sub-block, while keeping the probability of each of the four positions 

constant. We thus obtained different contingency values, ranging from 5% to 80%, and within each ISPC 

level, two different contingency values differing by 10% were used for the two possible incongruent trials 

(see Figure 3). In addition to the 640 experimental trials, before each LWPC block, we added sub-blocks of 

40 trials to favor the familiarization of participants to the current block LWPC level. Moreover, the 640 

experimental trials were divided into 8 sub-blocks with self-paced breaks in between, and at the beginning 

of each sub-block we added 2 buffer trials. The habituation and buffer trials were then excluded from the 

analyses. Within each trial-list, the order of presentation of the trials was pseudorandomized using the 

software Mix (van Casteren & Davis, 2006) to avoid more than four consecutive repetitions of the same 

congruency and both total and partial repetitions of stimulus characteristics and/or responses in order to 

control for first-order priming effects.  

A second step in trial-list design was to compute trial-wise LWPC, ISCP and contingency for each trial-list 

version using the Hierarchical Gaussian Filter (HGF, Mathys et al., 2011). The HGF is a filter that uses 

variational Bayes under a mean-field approximation to update the probability of an event on each trial. 

Specifically, trial-level estimates were computed reflecting trial-by-trial probabilities updated based on: i) 

the stimulus congruency, for LWPC; ii), the stimulus congruency conditional to a specific position, for ISPC; 

iii) the target direction (and thus the response) conditional to a specific position, for contingency. The HGF 

was also used to compute trial-by-trial probabilities of other variables used as confounding predictors in 

statistical analyses (see below).  

Before beginning the task, the participants received general instructions on the procedure, the task, and 

the response mapping.  Considering also that the task was completed online, we took particular care to 

keep the instructions as simple, detailed, and clear as possible. Participants were asked to respond as 

quickly and accurately as possible and recommended performing the task in a quiet environment, 
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maintaining a comfortable posture, and keeping the responding fingers in contact with the response keys. 

After the instructions, the participants completed a block of 20 practice trials with LWPC and ISPC at 50%, 

during which they received feedback on their performance, and, in the case of errors or time-out 

responses, they were also provided with a brief summary of instructions and response mapping. Practice 

trials were presented until 75% accuracy was reached. 

 

Figure 3 
Block-wise structure of the task. Separately for one sub-block of each LWPC blocks (LW35, top row; LW65, 
bottom row), the image shows on the left the number of trials (occurrences) with a specific target direction 
(DIR) and position (POS). For example, in the LW35 sub-block, we had nine trials with the arrow appearing 
in the lower-left corner, but pointing towards the lower-right corner. The trials in the diagonal are the 
congruent ones (underscored). For each sub-block, the corresponding contingencies are also shown on the 
right, while the middle column shows the percentage of congruent trials (LWPC) and of congruent trials 
specific for each location (ISPC). The color scale indicates the relative probability of each trial 
type/contingency, as well as the relative level of the LWPCs/ISPCs.  

 

2.1.2. Data analysis 

Various analyses were conducted to estimate the effect of LWPC and ISPC manipulations on the 

magnitude of the Stroop effect, while controlling for contingency, and to estimate the internal reliability of 

our effects. Statistical analyses were conducted using Matlab (version 2017b; The MathWorks, Inc. Natick, 

MA).  

The analyses were performed on inverse-transformed RTs (iRTs, computed as -1000/RTs). This 

transformation was employed to eliminate the heavy right skewness of the RT distribution, for which the 

logarithmic transformation was not enough. From the 62720 experimental trials, we excluded trials with 
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incorrect responses (n = 2115, corresponding to 3.37% of the experimental trials), missed responses (n = 

235, corresponding to 0.37% of the experimental trials), and RTs shorter than 150 ms (n = 1, corresponding 

to < 0.01% of the experimental trials), which were all treated as errors, and post-error trials (n = 2103, 

corresponding to 3.35% of the experimental trials). Control analyses were performed on both 

untransformed RTs and natural log-transformed RTs (lnRTs) to assess the robustness of the results to 

analytical flexibility.  

We checked for the presence of participants with low compliance, defined as those having either a 

mean iRTs more than three standard deviations away from the sample mean or a mean accuracy lower 

than 70% (i.e., the level used in the practice block). Based on these criteria, no participant was excluded 

from the analyses (see Supplementary Materials at osf.io/aeh2d, Figure S1.2) 

2.1.2.1. Assessing the magnitude of LWPC and ISPC effects  

The statistical analyses were performed using a multilevel modeling approach, also called trial-by-trial 

hierarchical modeling, by performing linear mixed-effects model analyses (LMM, Baayen et al., 2008). This 

approach is the most suitable for our experimental design and, thus, our aims. Indeed, using multilevel 

modeling, we were able to assess the distinct impact of LWPC and ISPC, as well as their interaction, in 

modulating the Stroop effect when they both varied. Moreover, this approach allowed us to do so while 

partialling out the effect of contingency and other lower-level confounding factors, which represent 

sources of trial-by-trial noise in the estimation of our effects of interest at the subject level. Finally, this 

approach allowed us to employ the trial-level estimates of our predictors because, as explained in the 

Introduction, considering trial-by-trial history is more realistic than using the respective discrete values. 

Multilevel modeling also allows one to overcome standard general linear model (GLM) drawbacks. Indeed, 

we recently showed that this approach ensures more accurate and precise estimates of the experimental 

effects of interest. Moreover, since this approach explains intra-subject/inter-trial sources of variance 

contributing to measurement error, it also provides better reliability of these estimates (Viviani et al., 

2023b).  

We tested a LMM model defined a priori based on our theoretical assumptions, which we named 

“continuous full model”. Indeed, this model included the trial-level estimates of our predictors for both 

https://osf.io/aeh2d
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experimental manipulations and confounders, indicated by the suffix “b” to the predictor names (because 

they were estimated using the ideal Bayesian observer). Specifically, in the fixed part of the model, we 

included several confounding predictors, for the reasons explained above. Each confounder was included 

based on well-known effects in the literature. Specifically, we included i) a continuous predictor reflecting 

the iRT of the preceding trial (iRTpre), to account for temporal dependency in RTs (Baayen & Milin, 2010) 

and thus to avoid violating the assumption of the independence of observations for linear modeling; ii) the 

continuous predictor for the effect of trial number (trialTOT) to account for potential time-on-task effects, 

such as the effects of learning/adaptation or fatigue; iii) the horizontal and vertical position of the stimulus 

on the screen (respectively, hS and vS), to account for potential (e.g., perceptual, attentional) differences 

due to the location where the stimulus appeared (left vs right, above vs below, respectively); iv) the 

horizontal and vertical coding of the response (respectively, hR and vR), to account for potential (e.g., 

motor) differences due to the response hand and finger, respectively. Lastly, we included predictors for 

low-level learning effects that have been shown to affect the Stroop interference resolution, threatening 

the interpretability of the Stroop performance with control-related accounts, that is, v) contingency, which 

is the conditional probability of the response given the stimulus, P(R|S) (PRSb), and vi) the probability of 

the response, P(R) (PRb). The experimental effects of interest were modeled by including the predictors for 

the LWPC and ISCP manipulations (LWb and ISb, respectively) and trial congruency (CON), as well as their 

interactions. The three-way interaction served to explore whether proactive and reactive control interacted 

in modulating the Stroop effect, and it was included in both the fixed and random parts of the model, as we 

assumed that it varied across subjects. The Wilkinson-notation formula for the continuous full model is as 

follows: RT ~ iRTpre + TrialTOT + hS + vS + hR + vR + PRSb + PRb + LWb*ISb*CON + (LWb*ISb*CON|SS). 

The continuous predictors iRTpre, TrialTOT, PRSb, and PRb were centered and scaled at the participant 

level to facilitate the convergence of the model and the interpretation of the results, while scaling was not 

necessary for LWb and ISb, since, by calculating their trial-level estimates, they were already on a scale 

centered at a 50% probability. The predictor for Congruency was coded with the values of 0 and 1 for the 

Incongruent and Congruent conditions, respectively, with the latter acting as the reference level.  
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Then, to assess whether there was evidence of stress in the model fit, after fitting the model, we 

inspected the model residuals and we then re-fitted a trimmed version of the model obtained by excluding 

data points with absolute standardized residuals exceeding 3. 

We report the estimated coefficient (b), standard error (SE), and t and p values for each fixed effect 

included in the trimmed final model. We calculated the p-values by using Satterthwaite's approximation of 

degrees of freedom, which was also used to compute the corresponding effect size estimates (dS) for the 

experimental effects of interest. The effect sizes for the same effects were also computed as standardized 

differences based on the participants’ estimated condition means based on their random slopes (dr). An 

alpha level of .05 was set as the cut-off for statistical significance. We used the participants’ random slopes 

to compute the individual effects of interest (that is, the Stroop effect and its modulation by LWPC, ISPC, 

and their interaction) and the corresponding dominance values, that is, the percentage of participants 

showing them. 

We also performed some control analyses to verify whether our continuous full model was justified and 

ensured the best fit to the data. First, the same model was tested also using the block-level estimates of 

our variables, referred to as discrete variables (discrete full model), to assess the assumed theoretical 

advantages of the trial-level estimates (besides favoring comparability with previous literature). To this aim, 

we compared the Akaike information criterion (AIC) of the continuous and discrete full models to assess 

which one better explained our data. Moreover, to verify whether the inclusion of confounders actually 

increased the model goodness of fit, we compared the continuous full model to a reduced one (continuous 

reduced model), which included only the variables of theoretical interest but none of the confounding 

ones, using the log-likelihood ratio test (Baayen et al., 2008). Lastly, in the case in which the three-way 

interaction was not significant, we tested the same continuous full model but after removing the term for 

the three-way interaction (i.e., leaving the terms for the two 2-way interactions CON_0:LWb and 

CON_0:ISb), to verify whether its inclusion might have interfered with the estimation of the effects of the 

two 2-way interactions testing for the distinct effects of proactive and reactive control (continuous full 2-

way interaction model).  
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To assess the robustness of our results to analytical flexibility, control analyses were also performed by 

replicating LMM results for the continuous full model using another multilevel modeling approach, that is, a 

random coefficient analysis (RCA, also called random regression or two-step regression; Lorch & Myers, 

1990). For the RCA analysis, we first ran linear regressions at the subject level using the same regression 

model as the final LMM model described above (continuous full model). The Wilkinson-notation formula 

for the RCA model is: RT ~ iRTpre + TrialTOT + hS + vS + hR + vR + PRSb + PRb + LWb*ISb*CON. 

As for the LMM analysis, the model was refitted after the exclusion of data points with standardized 

residuals exceeding 3. Then, we assess the statistical significance and effect size of the tested effects at the 

group level by performing two-tailed one-sample t tests against 0 on the estimated b coefficients for each 

participant.  

We also performed additional analyses to assess the magnitude of the Stroop effect using a general 

linear model (GLM) approach, which is the standard approach in cognitive psychology and relies on the 

aggregation of the participants’ performance in trials of different conditions to obtain participants-by-

condition scores. However, this approach discards any trial-by-trial variability that can contaminate 

participant-by-condition scores, potentially decreasing their accuracy and generalizability (Rouder & Haaf, 

2019). More importantly, GLM analyses are not well-suited for our experimental design because it is 

incomplete (ISPC is nested in LWPC). This was not an issue for testing the Stroop effect magnitude per se, 

as we could aggregate congruent and incongruent trials across the LWPC and ISPC levels, but it prevented 

us from testing the effects of LWPC and ISPC while also controlling for contingency (see Assessing the 

magnitude of LWPC and ISPC effects). Indeed, due to our manipulation of LWPC, ISPC, and contingency, and 

since contingency is inevitably confounded with ISPC in congruent trials, we did not have all the required 

combinations of LWPC, ISPC, and contingency levels, and the trial number for the available combinations 

was heavily unbalanced. These limitations notwithstanding, we decided to perform GLM analyses anyway 

to favor the comparison of our results on the Stroop effect magnitude with the literature.  

2.1.2.2. Assessing the internal reliability of LWPC and ISPC effects  

The internal consistency of the experimental effects of interest was assessed for the LMM results by 

computing split-half Pearson’s correlations corrected with the Spearman-Brown formula (rSB). We used 
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2000 randomizations and calculated both the median rSB values and the corresponding nonparametric 95% 

confidence intervals (CI95%). 

Essentially, observations were randomly split into two subsets and, on each subset, LMM analysis was 

performed. As highlighted above, this allowed us to model the interindividual variability in the effects of 

interest (Stroop effect, proactive and reactive control and their interaction), while partialling out the effect 

of the confounding predictors described above. Then, the by-subject random slopes for the effects of 

interest in the two subsets were correlated to obtain the rSB values.   

2.1.3. Participants 

For the first experiment, we recruited 98 participants (55 females and 43 males; mean age = 25.89 

years, SD = 6.42 years). Participants’ handedness was assessed using the Edinburgh Handedness Inventory 

(EHI, Oldfield, 1971). The sample comprised five left-handed participants (EHI scores < −50) and nine 

ambidextrous participants (EHI scores between −50 and 50). No participants reported suffering from 

neurological or psychiatric disorders or being under medication. Participants gave their informed consent 

to participate in the study, which was conducted in accordance with the ethical standards of the 2013 

Declaration of Helsinki for human studies of the World Medical Association. The study was approved by the 

Ethical Committee for the Psychological Research of the University of Padova. 

Participants consisted of a convenience sample recruited using researchers’ personal networks and were 

not compensated for their participation. To determine the sample size for the LMM analysis, the 

approaches available to date for power analysis are not adequate and/or feasible for our complex statistical 

model (see Viviani et al., 2023b for a detailed discussion), especially because it involves the interaction 

between continuous predictors. Nonetheless, it should be noted that the RCA and LMM approaches are 

quite similar and provide similar results (at least regarding the Stroop effects in our experimental 

paradigm), and the power analysis for RCA is trivial, as it concerns a simple one-sample t-test on the by-

subject slopes for the effect of interest.  We thus performed an a priori power analysis in G*Power 

(Erdfelder et al., 1996) to compute the minimum sample size required to detect, with a statistical power of 

.80, the effect of main interest (i.e., the three-way interaction reflecting the Stroop effect modulation by 

the interaction between LWPC and ISPC) in a two-tailed one-sample t-test. We conservatively assumed a 
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small-medium Cohen’s d effect size of .35. This analysis revealed that at least 67 participants were 

required. We nonetheless decided to recruit as many participants as possible, exceeding the required 

sample size, to be able to detect even smaller effects (by increasing the statistical power of our analyses) 

and to increase the precision of the experimental effects estimates. It is important here to note that LMMs 

tend to provide higher power than standard GLM approaches like the one-sample t-test we used here. 

2.2. Results 

2.2.1. Magnitude of LWPC and ISPC effects 

For all the analyses, we report here only the results for iRTs. Indeed, as mentioned above, the 

distribution of RTs was heavily right-skewed and the residuals of the analyses on both RTs and lnRTs 

violated the assumptions of normality and homoscedasticity (see Supplementary Materials at osf.io/aeh2d, 

Figures S1.1 and S1.3-5). 

GLM-based analyses were performed using t tests. The overall Stroop effect (i.e., collapsing across LWPC 

and ISPC values) was significant (t = 35.50, p < .0001) and with a very large effect size (d = 3.59). Our result 

indicates that all our participants were significantly slower in responding to Incongruent as compared to 

Congruent trials (dominance = 100%) (see Supplementary Materials at osf.io/aeh2d, Table S1.1).  

Regarding the LMM analysis, we first compared the full continuous model to the full discrete model 

using the AIC model selection and we found that the best-fit model was the full continuous model (AIC = 

8352 vs 8436.7 of the full discrete model). Then, we compared our full continuous model with the reduced 

continuous one by performing the log-likelihood ratio test, which revealed that the full continuous model 

was justified (χ2(7) = 7530.5, p < .0001), confirming that the inclusion of confounders increased the model 

fit.  As such, here we report the results of the analysis performed on iRTs using the full model with 

continuous variables.  

The conditional R2 of the LMM model was .69 and 0.84% of the observations was removed as outliers 

(>3 absolute standardized residuals) to mitigate the stress of the model fit (i.e., to improve the normality of 

the residuals, see Supplementary Materials at osf.io/aeh2d, Figure S1.3). This analysis revealed that all the 

confounding predictors were significant in modulating participants’ iRTs (all ps < .0001, see Table 1). 

Specifically, our results suggest that participants were faster as the trials progressed and when they 

https://osf.io/aeh2d
https://osf.io/aeh2d
https://osf.io/aeh2d
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responded to stimuli appearing on the upper and right sides of the screen using the middle finger and the 

right hand. Moreover, we found a significant temporal dependency in iRTs (i.e., a positive correlation 

between iRTs at the current and preceding trial). Lastly, responses were faster when the probability of the 

response (PRb) was higher.  

 

Table 1 – Results of the LMM analysis for Experiment 1 (continuous full model) 

Effect b SE t df p 

Intercept -1.9439 0.0350 -55.559 145.60 < .0001 

TrialTOT -0.0923 0.0023 -40.030 1967.43 < .0001 

CON_0 0.3521 0.0123 28.620 179.86 < .0001 

iRTpre 0.0551 0.0012 47.190 57392.28 < .0001 

hS -0.0104 0.0028 -3.700 12850.75 .0002 

vS -0.0791 0.0027 -29.056 19753.88 < .0001 

hR -0.0351 0.0026 -13.381 34201.64 < .0001 

vR -0.1013 0.0026 -39.379 39671.65 < .0001 

LWb -0.0086 0.0104 -0.825 97.51 .4112 

ISb -0.0135 0.0074 -1.827 435.59 .0684 

PRSb -0.0207 0.0059 -3.497 48890.40 .0005 

PRb -0.1234 0.0133 -9.256 49487.44 < .0001 

CON_0:LWb 0.0651 0.0081 8.071 101.81 < .0001 

CON_0:ISb 0.0162 0.0102 1.590 939.28 .1121 

LWb:ISb -0.0123 0.0109 -1.132 97.28 .2606 

CON_0:LWb:ISb 0.0140 0.0120 1.167 94.08 .2461 

Notes: b, coefficient estimates; SE, standard error, df, degrees of freedom computed with the 
Satterthwaite's approximation. See the main text for the spelling out of the acronyms for the effects 

 

For what concerns our predictors of interest, we found that the Stroop effect (CON_0) was significant (p 

< .0001), with slower responses to Incongruent trials. The Stroop effect had a very large effect size (dr = 

3.67, dS = 2.13) and a dominance value of 100%, that is, all participants showed a positive Stroop effect. The 

Stroop effect was significantly modulated by LWb (p < .0001, dr = 1.27, dS = 0.80, dominance = 92.86%), 

showing that as LWb increased, the Stroop effect increased, revealing the effect of proactive control. By 

contrast, the LMM analysis did not reveal a significant modulation of the Stroop effect by ISb (p = .1121, dr 



27 

= 0.62, dS = 0.05, dominance = 70.41%). Moreover, the three-way interaction between the Stroop effect, 

LWb and ISb was not significant (p = .2461, dr = 0.16, dS = 0.12, dominance = 57.14%), suggesting that LWb 

and ISb did not interact in modulating the Stroop effect. Lastly, our analysis revealed a significant effect of 

Contingency (PRSb, p = .0005), indicating that participants responded faster when PRSb was higher.  

To verify whether the effect of the CON_0:ISb interaction was hindered by the three-way interaction, we 

also performed the continuous full 2-way model, excluding the three-way interaction and keeping the two 

double interactions (CON_0:LWb and CON_0:ISb). This analysis confirmed the results reported above, and 

the interaction between ISb and CON_0 remained non-significant (p = .0920, dr = 0.50, dS = 0.06, dominance 

= 72.45%), confirming that in the Peripheral task, we did not find a significant modulation of the Stroop 

effect by ISb. Lastly, the effect of PRSb was again significant (p = .0004), showing that participants 

responded faster when PRSb was higher (see Supplementary Materials at osf.io/aeh2d, Table S1.7).  

To confirm these results, RCA analysis was then performed on the iRTs using the continuous full model, 

namely the model including the three-way interaction. All the effects of the confounding predictors on 

participants’ iRTs found in both LMM analyses were confirmed (all ps < .004, see Supplementary Materials 

at osf.io/aeh2d, Table S1.8), with the exception of hS. RCA results regarding our predictors of interest 

partially replicated LMM results. Indeed, we similarly found a significant Stroop effect (p < .0001, dr = 2.32, 

dominance 98.98%), that is, longer iRTs for Incongruent trials, and a significant modulation of the Stroop 

effect by LWb (p < .0001, dr = .86, dominance = 77.55%). Moreover, the interaction between CON and ISb 

was still not significant (p = .9344, dr = 0.01, dominance = 46.94%), replicating previous analysis that failed 

to reveal the effect of reactive control in modulating the Stroop effect. However, the results of the three-

way interaction were in contrast with the LMM ones. Indeed, we found that LWb and ISb interacted 

significantly in modulating the Stroop effect (p = .0009, dr = 0.35, dominance = 65.31%). Lastly, the effect of 

PRSb was significant (p = .0001, dr = -0.40), confirming previous results.  

Since we found that the effect of PRSb was always significant while the effect of reactive control was 

never significant, we hypothesized that we did not find it because PRSb might have explained all the 

variance that could have been explained by the reactive control modulation of the Stroop effect. We thus 

performed a control analysis, running again the continuous full model after excluding PRSb (continuous full 

https://osf.io/aeh2d
https://osf.io/aeh2d
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No_PRS model) both using LMM and RCA (see Supplementary Materials at osf.io/aeh2d, Tables S1.9-10). 

These analyses confirmed the results of the previous ones, except for the fact that, by removing PRSb, the 

interaction between CON and ISb became significant (both ps < .0001, ds = 0.84 and dr = 0.83, respectively). 

Of note, the inclusion of PRSb in the model was justified and improved the model fit (χ2(1) = 30.1, p < 

.0001). 

2.2.2. Internal reliability of LWPC and ISPC effects  

We assessed the internal reliability of our effects of interest using LMM to explain intra-subject/inter-

trial variance, with the aim of obtaining more precise estimates of it.  

As expected, the internal reliability estimate of the Stroop effect was the highest and least variable 

among our effects of interest, with a median rSB value of .92 and a CI95% of .89-.94. The internal reliability of 

the proactive control effect had a median rSB value of .79 and a CI95% of .67-.87, while the median rSB 

internal reliability of the reactive control effect was .58 with a CI95% of .25-.79. Finally, the internal reliability 

of the three-way interaction was similar to that of proactive control, with a median rSB value of .76 and a 

CI95% of .65-.83 (see Figure 4 and Supplementary Materials at osf.io/aeh2d, Figure S1.9). 

 

Figure 4  
Internal reliability (rSB) of the experimental effects of interest (Con, Stroop effect; Con:Pro, LWb modulation 
of Stroop effects) in the three analyses (Con:Rea, ISb modulation of Stroop effects; Con:Pro:Rea, interaction 
between LWb and ISb in modulating the Stroop effects). Error bars represent the non-parametric 95% 
confidence intervals.  

 

https://osf.io/aeh2d
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2.3. Discussion 

The results of our previous study (Viviani et al., 2023b) showed that the Peripheral spatial Stroop is an 

experimental paradigm suitable for yielding a complete Stroop interference effect whose magnitude is also 

large and robust to analytic flexibility with adequate and robust internal reliability. In contrast to our 

previous study (Viviani et al., 2023b), in which we just assessed the magnitude of the Stroop effect, here we 

used the same experimental paradigm but with different manipulations with the aim of measuring, 

simultaneously, the effect of proactive and reactive control in modulating the Stroop effect, as well as their 

interaction, while controlling for low-level effects, among which contingency.  

The analysis assessing the magnitude of such effects revealed different results based on the analytical 

approach employed. As explained in the methods, the standard GLM-based analysis is largely incompatible 

with our experimental design and was thus only used to assess overall Stroop effects. The two multilevel 

analytical approaches, which were instead more adequate for our purposes, showed a partially contrasting 

scenario. Indeed, both approaches converged on the existence of a proactive control mechanism 

modulating the Stroop effect, which was shown to be a large and universal effect, and on the absence of a 

reactive control mechanism that independently modulated the Stroop effect. On the contrary, a significant 

interaction of proactive and reactive control in modulating the Stroop effect was found only in the RCA-

based analysis but not in the LMM-based one, casting shadows on the robustness of such an effect. 

A further consistent aspect revealed by our analyses is the relation between reactive control and PRSb. 

Indeed, they interestingly revealed that when PRSb was statistically controlled for, the ISb-dependent 

modulation of the Stroop effect was not significant, thus confirming the strong influence of contingency on 

ISPC-induced reactive control, as suggested by Schmidt (2019) (see also Schmidt & Besner, 2008). 

Moreover, the fact that the effect of reactive control was unveiled after removing PRSb from the model 

provides support to our methodological and analytical approaches, which allowed us to control for the 

impact of contingency at the statistical level, while this is practically impossible to do in a purely 

methodological way (i.e., with the design-level control). This point will be addressed more in more detail in 

the general discussion.  
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Lastly, the internal reliability of the two significant effects of interest was quite high. Specifically, the 

Stroop effect had a very high internal reliability, characterized also by little variability, whereas the 

proactive control reliability was more variable but still quite good (see Figure 4).  

The inconsistencies regarding the interplay between proactive and reactive control observed in the 

present experiment could be in part explained by the Peripheral spatial Stroop weaknesses assumed also in 

our previous study (Viviani et al., 2023b) and related to the peripheral visual presentation of the stimuli. 

Specifically, the peripheral arrangement of the stimuli promotes the employment of visuospatial 

attentional shifts and eye movements to fixate the stimulus and better perceive it, which is a necessary 

processing step to retrieve the PC specifically associated with the item and then employ reactive control 

accordingly. However, these processing steps probably delay the employment of reactive control, as 

compared to a task using a perifoveal arrangement of the stimuli. This might have hindered the strength of 

reactive control and, consequently, its interaction with proactive control, thus not allowing us to detect it 

consistently using different analytical approaches.  

Therefore, the use of the Perifoveal task in the second experiment could help us shedding light on the 

inconsistencies in our results, since we previously found that this experimental paradigm not only 

overcomes the weaknesses of the Peripheral task, but it is also the best alternative to it among all the task 

versions considered (Viviani et al., 2023b). Indeed, by presenting the stimuli in the perifoveal vision, the 

Perifoveal spatial Stroop task does not require visuospatial attentional shifts or eye movements, thus it may 

favor a faster and more efficient reactive control employment.  

3. Experiment 2 - Perifoveal 

3.1. Methods 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, all 

manipulations, and all measures in the study. All inclusion/exclusion criteria were established prior to data 

analysis. All data and materials, as well as the code used to run the experimental tasks and generate and 

analyze the data of the current study, are available in our project repository on the Open Science 

Framework (OSF) platform at osf.io/qmu7g. No part of the study, including the analyses, was pre-

registered. 

https://osf.io/qmu7g/
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3.1.1. Procedure and experimental tasks  

In this experiment, we used a Perifoveal spatial Stroop task (Viviani et al. 2023b), wherein the target 

arrow could appear in one of four centrally-located spatial positions so that both the task-relevant and 

task-irrelevant pieces of information could be seen in perifoveal vision. To do so, a different fixation screen 

was displayed, consisting of a vertically oriented thin black cross (30 x 30 pixels) enclosed in the partial 

outline of a black square (94 x 94 pixels) presented at the center of the screen. The partial outline of the 

square around the fixation cross created the impression of four small squares, allowing us to manipulate 

the position inside the fixation stimulus. Therefore, the target arrow was presented within one of these 

apparent small squares, and participants were required to indicate its pointing directions regardless of its 

position. Apart from this aspect, the experimental task and procedures were the same as in Experiment 1. 

3.1.2. Data Analysis 

The analyses were performed as in Experiment 1. As in Experiment 1, we excluded from the analyses 

training trials, habituation trials, and buffer trials at the beginning of each sub-block. From the resulting 

49920 experimental trials, we also excluded trials with incorrect responses (n = 1885, corresponding to 

3.78% of the experimental trials), missed responses (n = 57, corresponding to 0.11% of the experimental 

trials), and RTs shorter than 150 ms (n = 0), which were all treated as errors, and post-error trials (n = 1667, 

corresponding to 3.34% of the experimental trials). 

We checked for the presence of participants with low compliance, defined as those having either a 

mean iRTs more than three standard deviations away from the sample mean or a mean accuracy lower 

than 70% (i.e., the level used in the practice block). Based on these criteria, no participant was excluded 

from the analyses (see Supplementary Materials at osf.io/aeh2d, Figure S2.2) 

3.1.3. Participants 

For this Experiment, we recruited 78 participants (41 females and 37 males; mean age = 24.21 years, SD 

= 6.43 years). The sample comprised four left-handed participants (EHI scores < −50) and 13 ambidextrous 

participants (EHI scores between −50 and 50). No participants reported suffering from neurological or 

psychiatric disorders or being under medication. Participants gave their informed consent to participate in 

the study, which was conducted in accordance with the ethical standards of the 2013 Declaration of 

https://osf.io/aeh2d
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Helsinki for human studies of the World Medical Association. The study was approved by the Ethical 

Committee for the Psychological Research of the University of Padova. 

Participants consisted of a convenience sample recruited using researchers’ personal networks and were 

not compensated for their participation. A power analysis was performed as in Experiment 1; again, we 

decided to recruit as many participants as possible, exceeding the required sample size, to be able to detect 

effects even smaller than expected (by increasing the statistical power of our analyses) and to increase the 

precision of the experimental effects estimates. It is important here to note that LMMs tend to provide 

higher power than standard GLM approaches like the one-sample t test we used here. 

3.2. Results 

3.2.1. Magnitude of LWPC and ISPC effects   

As for the analyses on the Peripheral task, here, we report only the results on iRTs, since the distribution 

of RTs was heavily right-skewed and the residuals of the analyses on both RTs and lnRTs violated the 

assumption of normality (see Supplementary Materials at osf.io/aeh2d, Figures S2.1 and S2.3-5). 

GLM-based analyses using t tests were first used to explore the overall Stroop effect (i.e., aggregating 

across LWPC and ISPC values). These analyses revealed that participants responded significantly slower to 

Incongruent as compared to Congruent trials (t = 33.43, p < .0001) with a very large effect size (d = 3.79) 

and 100% dominance (see Supplementary Materials at osf.io/aeh2d, Table S2.1).  

Then, we performed analyses using both the continuous and the discrete full models. We found that the 

former provided a better fit to the data (AIC = 29422 vs. 29511 of the full discrete model). Then, we 

compared the continuous full model with the continuous reduced model performing the log-likelihood ratio 

test, which revealed that the full continuous model was justified (χ2(7) = 2971.6, p < .0001), suggesting that 

the inclusion of confounders increased the model fit. As such, here we report the results of the analysis 

performed on iRTs using the full model with continuous variables. 

The conditional R2 of the LMM model was .63 and 0.84% of the observations was removed as outliers 

(>3 absolute standardized residuals) to mitigate the stress of the model fit (i.e., to improve the normality of 

the residuals, see Supplementary Materials at osf.io/aeh2d, Figure S2.3). All the confounding predictors of 

our continuous full model significantly modulated participants’ iRTs (all ps < .04, see Table 2). We found 

https://osf.io/aeh2d
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that participants were faster as trials went on and when they responded to stimuli appearing in the lower 

and right halves of the screen using the middle finger and the right hand. Moreover, there was a significant 

temporal dependency in iRTs (i.e., a positive correlation between iRTs in the current and preceding trial), 

and the responses were faster when the probability of the response (PRb) was higher.  

 

Table 2 – Results of the LMM analysis for Experiment 2 (continuous full model) 

Effect b SE t df p 

Intercept -2.4845 0.0448 -55.449 128.21 < .0001 

TrialTOT -0.1018 0.0034 -29.687 2686.32 < .0001 

CON_0 0.3729 0.0177 21.059 138.27 < .0001 

iRTpre 0.0586 0.0017 35.077 45622.01 < .0001 

hS -0.0080 0.0039 -2.072 4301.02 0.0383 

vS 0.0110 0.0038 2.888 3793.44 0.0039 

hR -0.0608 0.0038 -16.143 31342.78 < .0001 

vR -0.0723 0.0037 -19.484 29671.40 < .0001 

LWb -0.0002 0.0145 -0.012 78.89 0.9907 

ISb -0.0025 0.0112 -0.223 262.95 0.8238 

PRSb -0.0516 0.0085 -6.062 40688.90 < .0001 

PRb -0.1572 0.0189 -8.300 39539.08 < .0001 

CON_0:LWb 0.0668 0.0119 5.606 77.49 < .0001 

CON_0:ISb -0.0066 0.0157 -0.416 422.46 0.6774 

LWb:ISb -0.0311 0.0149 -2.085 78.49 0.0403 

CON_0:LWb:ISb 0.0454 0.0204 2.226 78.29 0.0289 

Notes: b, coefficient estimates; SE, standard error, df, degrees of freedom computed with the 
Satterthwaite's approximation. See the main text for the spelling out of the acronyms for the effects. 

 

For what concerns our predictors of interest, the Stroop effect (CON_0) significantly modulated 

participants’ iRTs (p < .0001), who showed slower responses to Incongruent trials, with a very large effect 

size (dr = 3.01, dS = 1.79) and a dominance value of 100%, which indicates that all participants showed a 

positive Stroop effect. As for the Peripheral task, LWPC significantly modulated the Stroop effect (p < .0001, 

dr = 0.99, ds = 0.64, dominance = 82.05%), that is, there was an effect of proactive control, with larger 

Stroop effects as LWb increased. By contrast, the Stroop effect was not significantly modulated by ISb (p = 
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.6774, dr = -0.11, ds = -0.02, dominance = 42.31%). In contrast to the Peripheral task, here, the three-way 

interaction was significant (p = .0289, dr = 0.31, ds = 0.25, dominance = 57.69%), revealing that the LWb and 

ISb interacted in modulating the Stroop effect, that is, when both were high (namely, both proactive and 

reactive control were low), the Stroop effect was larger. Lastly, the effect of Contingency (PRSb) was again 

significant (p < .0001), indicating that participants responded faster when PRSb was higher. As opposed to 

the analysis on the Peripheral task, here we do not report the continuous full 2-way model, since the three-

way interaction was significant (but see Supplementary Materials at osf.io/aeh2d, Table S2.2).  

We then performed an RCA analysis on the continuous full model, which basically confirmed the results 

of the LMM analysis. Indeed, all the confounding predictors were in the same direction as the LMM results, 

and all but hS and vS were significant (all ps < .0005). We also found a very large Stroop effect (p < .0001, dr 

= 2.09, dominance 98.72%), as well as its significant modulation by LWb (p < .0001, dr = 0.60, dominance = 

71.79%). In line with all previous results, the CON_0:ISb interaction was not significant (p = .7178, dr = -0.04, 

dominance = 51.28%), showing no reactive control effect on the Stroop effect. The RCA analysis also 

confirmed the three-way interaction found with the LMM analysis on the Perifoveal task, showing that LWb 

and ISb significantly interacted in modulating the Stroop effect (p = .0006, dr = 0.41, dominance = 65.38%). 

Also, the effect of PRSb was again significant as in all our analyses (p = .0001, dr = -0.47) (see Supplementary 

Materials at osf.io/aeh2d, Table S2.8).   

Lastly, we performed the same control analysis described for the Peripheral Experiment to verify 

whether the non-significant effect of reactive control was due to the effect of PRSb by rerunning the 

continuous full model using LMM and RCA but excluding PRSb (continuous full No_PRS model). The results 

were confirmed but, again, the interaction between CON_0 and ISb became significant after removing PRSb 

(both ps < .0001, ds = 0.71 and dr = 0.74, respectively). Of note, the inclusion of PRSb in the model was 

justified and improved the model fit (χ2(1) = 18.0, p < .0001) (see Supplementary Materials at osf.io/aeh2d, 

Tables S2.9-10). 

3.2.2. Internal reliability of LWPC and ISPC effects 

The internal reliability estimate of the Stroop effect was the highest and least variable among our effects 

of interest, with a median rSB value of .94 and a CI95% of .89-.96. The internal reliability of proactive control 

https://osf.io/aeh2d
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had a median rSB value of .74 and a CI95% of .56-.84, while the median rSB internal reliability of reactive 

control was .82 with a CI95% of .70-.91. Finally, the internal reliability of the three-way interaction was quite 

high, with a median rSB value of .82 and a CI95% of .73-.88 (see Figure 4 and Supplementary Materials at 

osf.io/aeh2d, Figure S2.9). 

3.3. Discussion 

As discussed in our previous study (Viviani et al., 2023b) and in the Peripheral Experiment discussion 

(see Section 2.3), the Perifoveal task has methodological advantages over the Peripheral one, while also 

showing good statistical properties, as it ensures a large and reliable Stroop effect. Although, so far, this 

experimental paradigm was tested when only Congruency was manipulated (see Viviani et al., 2023b), we 

expected that its methodological advantages over the Peripheral task could be extended over different 

experimental manipulations, such as those used in the present study. As such, we predicted that we could 

have obtained more reliable and robust results by using the Perifoveal Stroop task to simultaneously 

measure the effect of proactive and reactive control in the modulation of the Stroop effect, as well as their 

interaction, while also controlling for contingency and other low-level effects.  

The results were in line with our predictions and the pattern and magnitude of our effects of interest 

were consistent across the two multilevel analytical approaches, which showed a significant modulation of 

the Stroop effect by proactive control alone and by the interaction between proactive and reactive control. 

Thus, as compared to the Peripheral Experiment, using the Perifoveal task we obtained evidence not only 

for the effect of proactive control but also for that of the three-way interaction, which was probably 

favored by the nature of the task that minimized the potential effect of confounders related to the 

peripheral allocation of attention. Indeed, by allowing a faster identification of the item, the PC associated 

with it was probably more effectively activated and reactive control was elicited accordingly. As a 

consequence, the three-way interaction might have had a larger magnitude, and thus might have been 

more easily detectable.  

Although we found reactive control to interact with proactive control in modulating the Stroop effect, 

no significant distinct reactive control effect emerged. This finding, obtained using an experimental 

paradigm that is more likely to favor an ISPC-related reactive control employment, provided further 

https://osf.io/aeh2d
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evidence for our hypothesis that, when PRSb was included in the model, there was no residual variance left 

to be explained by ISb. Indeed, after PRSb was removed from the model, the effect of ISPC-induced reactive 

control emerged. This control analysis further supported our claim for the need to statistically control for 

what cannot be controlled for at the design level.  

The results for internal reliability were in line with the Peripheral ones. The internal reliability of the 

Stroop effect was very high and showed little variability. Proactive control still had a good internal 

reliability, but was somewhat lower and more variable than that of the Stroop effect (see Figure 4).  

Overall, the methodological premises favoring the Perifoveal spatial Stroop task and the greater 

consistency of the results across different approaches could indicate that the results obtained using the 

Perifoveal task were more robust and trustable. However, since they are in contrast with those obtained 

using the Peripheral task, we performed a between-Experiments analysis to verify whether the patterns of 

results were actually different between the two experiments.  

4. Between-Experiments comparisons 

4.1. Methods 

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, all 

manipulations, and all measures in the study. All inclusion/exclusion criteria were established prior to data 

analysis. All data and materials, as well as the code used to run the experimental tasks and generate and 

analyze the data of the current study, are available in our project repository on the Open Science 

Framework (OSF) platform at osf.io/qmu7g. The analyses were not pre-registered. 

4.1.1. Data analysis  

4.1.1.1. Between-Experiment differences in LWPC and ISPC effects  

We run all the previous analyses but now to compare whether the experimental effects differed among 

the Peripheral and Perifoveal experimental tasks. We again checked for the presence of participants with 

low compliance, defined as those having either a mean iRTs more than three standard deviations away 

from the sample mean or a mean accuracy lower than 70% (i.e., the level used in the practice block). Based 

on these criteria, no participant was excluded from the analyses (see Supplementary Materials at 

osf.io/aeh2d, Figure S3.2) 

https://osf.io/qmu7g/
https://osf.io/aeh2d
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First, a GLM analysis was performed to verify whether the Stroop effects obtained in the two 

experiments differed. Specifically, we compared the overall Stroop effects using a two-sample t test and 

computing Cohen’s d to obtain the corresponding effect size estimate. 

For the LMM analysis, we added to the continuous full model used in the previous analyses the 

categorical variable Experiment, whose value was set to -.5 for the Peripheral Experiment and .5 for the 

Perifoveal one. As explained above, based on our theoretical assumptions, we a priori decided to test the 

model including the trial-level estimates of our predictors and to include all plausible confounders. The 

Experiment factor was tested in interaction with those predictors that we expected to be modulated by it. 

As regards low-level predictors, we hypothesized that Experiment, due to the spatial arrangement of the 

stimuli, interacted with hS and vS (but not with hR and vR since the response effectors were the same), and 

with PRS since the difference in the stimuli could have affected the contingency effects. Moreover, since we 

were interested in whether the proactive and reactive control interaction in the Stroop effect modulation 

differed among the two Experiments, the Experiment factor was also tested in interaction with them in the 

fixed part, thus including in the model a four-way interaction. The formula for the final model, referred to 

as the continuous full_btw4 model, is: RT ~ iRTpre + TrialTOT + hR + vR + PRb +Experiment*(hS + vS + PRSb + 

LWb*ISb*CON) + (LWb*ISb*CON|SS). 

We inspected the results to identify whether the effect of the predictors we tested in interaction with 

the Experiment factor was significant or not and, in the latter case, we refitted the model without such 

interactions to exclude the possibility that they could have affected the estimation of the other effects. It is 

important here to note that the results were essentially the same. Then, we used the random slopes for 

each participant to obtain the participant’s mean for each combination of experimental conditions and 

compared the experimental effects between the two Experiments using independent-sample t tests. 

For the RCA analysis, we ran linear regressions at the subject level using the same regression model as 

the within-subjects analysis (continuous full model), that is, using the following formula: RT ~ iRTpre + 

TrialTOT + hS + vS + hR + vR + PRSb + PRb + LWb*ISb*CON. 

After excluding outliers exceeding 3 SD, we refitted the model and we compared whether the 

parameters of interest differed between the two Experiments using independent-sample t tests.  
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These analyses could also help us in case of inconsistencies in the results of the two within-subjects 

analyses as, by being performed on the two datasets together, it would provide an overall result based on a 

larger sample.  

4.1.1.2. Assessing the internal reliability of LWPC and ISPC effects  

The internal consistency of the experimental effects of interest was assessed for the LMM results in the 

aggregate sample as described in Experiment 1. 

4.2. Results 

4.2.1. Between-Experiments differences in LWPC and ISPC effects   

We report here only the results of the analyses performed on iRTs for the same reasons explained 

above.  

The GLM-based analysis using a two-tailed independent-samples t test showed that the mean Stroop 

effects in the two Experiments differed significantly, with the Perifoveal one yielding the larger Stroop 

effect (Mdiff = .0832, t = 4.77, p < .0001, d = 0.72).  

Regarding LMM analysis, the continuous full_btw4 model revealed that the low-level confounders that 

we tested in interaction with Experiment were significant, confirming our assumption that the Experiments 

differed for the horizontal position of the stimulus (p = .0172) and for the vertical position of the stimulus (p 

< .0001). Moreover, the confounding predictors tested alone were all significant (p < .0001, see 

Supplementary Materials at osf.io/aeh2d, Table S3.1). Specifically, participants responded faster as trials 

went on, responded faster to stimuli appearing in the upper and right positions, using the middle finger and 

the right hand, and when PRb was higher. We also found a significant temporal dependency in iRTs.  

For what concerns the predictors of interest tested in interaction with the Experiment factor, the four-

way interaction was not significant (p = .1588), revealing that the interaction between LWb and ISb in 

modulating the Stroop effect was not different between the two Experiments. The Stroop effect and the 

effects of proactive and reactive control did not differ between the Experiments (p = .4792, p = .6713, and p 

= .2110, respectively). By contrast, the effect of PRSb was significantly different between the two 

Experiments (p = .0002), with a greater effect of PRSb in the Perifoveal Experiment as compared to the 

Peripheral Experiment. Regarding the predictors of interest not tested in interaction with the Experiment, 

https://osf.io/aeh2d
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the results confirmed a significant Stroop effect (CON_0), with a very large effect size (p < .0001, dr = 3.33, 

dS = 1.95) and a dominance of 100%, indicating that all participants responded slower to Incongruent trials. 

Moreover, LWb significantly modulated the Stroop effect (p < .0001, dr = 1.15, ds = 0.71, dominance 

86.36%), revealing a significant effect of proactive control. Similar to previous analyses, we did not find a 

significant ISb modulation of the Stroop effect (p = .5849, dr = 0.12, ds  = 0.02, dominance 55.68%). 

Interestingly, the three-way interaction between LWb, ISb and CON_0 was significant (p = .0094, dr = 0.25, 

ds = 0.20, dominance 59.09%), suggesting that LWb and ISb interacted in modulating the Stroop effect. This 

result was in line with the Perifoveal task results but not with the Peripheral ones, and provided additional 

evidence for the interaction of proactive and reactive control in the modulation of the Stroop effect. Lastly, 

the effect of PRSb was again significant (p < .0001), indicating that participants responded faster when PRS 

was higher (see Supplementary Materials at osf.io/aeh2d, Table S3.1).  

As explained in the methods section, we performed the same model but after excluding the interactions 

between Experiment and the predictors that resulted non-significant in the previous analysis, which 

essentially consisted in removing the interactions between Experiment and the experimental effects of 

interest (i.e., the effect of proactive and reactive control, as well as their interaction, in modulating the 

Stroop effect). This model (continuous full_btw model), is basically identical to the ones performed on the 

two Experiments separately, but here it was run on the two datasets aggregated together. As such, since 

the separate within-subjects analyses on the two Experiments revealed contrasting results, this analysis 

also helped us to resolve the inconsistencies between them, by verifying whether, by removing Experiment, 

the three-way interaction survived.  

This analysis confirmed the results reported above for the continuous full_btw4 model. The conditional 

R2 of the model was .72 and 0.95% of the observations was removed as outliers (>3 absolute standardized 

residuals) to mitigate the stress of the model fit (i.e., to improve the normality of the residuals, see 

Supplementary Materials at osf.io/aeh2d, FigureS3.3). The effects of low-level confounders, as well as their 

interaction with the Experiment factor, remained significant and in the same direction as in the previous 

analysis (see Table 3). Regarding the predictors of interest, the Stroop effect was again significant with a 

large effect size (p < .0001, dr = 3.28, dS = 1.95) and complete dominance. LWb still significantly modulated 

https://osf.io/aeh2d
https://osf.io/aeh2d
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the Stroop effect (p < .0001, dr = 1.16, ds = 0.72, dominance = 87.5%), confirming the effect of proactive 

control. Similarly to the previous analysis, the ISb modulation of the Stroop effect was not significant (p = 

.4792, dr = 0.15, ds = .02, dominance = 56.82%). Lastly, the three-way interaction between LWb, ISb and 

CON_0 was again significant (p = .0150, dr = 0.24, ds = 0.19, dominance = 55.68%), indicating that LWb and 

ISb interacted in modulating the Stroop effect, and when they were both high, participants showed larger 

Stroop effects. Thus, these results confirmed both those from the Perifoveal Experiment and those 

reported above for the between-Experiments continuous full_btw4 model results.  

 

Table 3 – Results of the LMM analysis for the btw-studies analysis (continuous full_btw model) 

Effect b SE t df p 

Intercept -2.2029 0.0278 -79.225 273.92 < .0001 

TrialTOT -0.0967 0.0020 -48.649 5466.32 < .0001 

CON_0 0.3612 0.0105 34.470 311.05 < .0001 

iRTpre 0.0568 0.0010 58.150 102923.55 < .0001 

hS -0.0103 0.0023 -4.394 17358.21 < .0001 

vS -0.0330 0.0023 -14.442 20631.10 < .0001 

hR -0.0463 0.0022 -21.001 72402.04 < .0001 

vR -0.0899 0.0022 -41.542 74362.37 < .0001 

LWb -0.0057 0.0087 -0.653 175.99 0.5144 

ISb -0.0083 0.0064 -1.291 656.11 0.1972 

PRSb -0.0356 0.0050 -7.152 91065.10 < .0001 

PRb -0.1335 0.0111 -11.977 92613.89 < .0001 

CON_0:LWb 0.0658 0.0069 9.590 177.58 < .0001 

CON_0:ISb 0.0063 0.0089 0.708 1198.54 0.4792 

LWb:ISb -0.0214 0.0090 -2.389 175.94 0.0180 

CON_0:LWb:ISb 0.0279 0.0113 2.458 174.02 0.0150 

Exp -0.4712 0.0448 -10.523 182.63 < .0001 

hS:Exp -0.0098 0.0041 -2.376 17548.36 0.0175 

vS:Exp 0.1047 0.0041 25.703 22145.14 < .0001 

PRSb:Exp -0.0229 0.0053 -4.357 336.10 < .0001 

Notes: b, coefficient estimates; SE, standard error, df, degrees of freedom computed with the 
Satterthwaite's approximation. See the main text for the spelling out of the acronyms for the effects 

 

RCA analysis was then performed to confirm between-Experiments LMM results and this was the case. 

Indeed, all the predictors of interest were not significantly different in the two Experiments (all ps > .14, see 

Supplementary Materials at osf.io/aeh2d, Table S3.3). Therefore, this analysis confirmed the robustness of 

https://osf.io/aeh2d
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the results obtained with RCA. Confounding predictors were all significant (all ps < .04, see Supplementary 

Materials at osf.io/aeh2d, Table S3.3) and in the same direction as the previous results, except for vS, for 

which we obtained contrasting results in the two Experiments. Here, we found that participants were faster 

in responding to stimuli appearing in the upper part of the screen, as for the Peripheral Experiment. In line 

with previous results, we found a very large Stroop effect (p < .0001, dr = 2.18, dominance = 98.86%), which 

was significantly modulated by LWb (p < .0001, dr = 0.71, dominance = 75%) but not by ISb (p = .8147, dr = -

0.02, dominance = 48.86%). Moreover, LWb and ISb interacted significantly in modulating the Stroop effect 

(p < .0001, dr = 0.37, dominance = 65.34%), which is consistent with the RCA results from both Experiments. 

The effect of PRSb was also significant (p < .0001, dr = -0.43) (see Supplementary Materials at osf.io/aeh2d, 

Table S3.3).   

Given that between-Experiments results also showed that PRSb was significant but the CON_0 by ISb 

interaction was not, we further tested our hypothesis that we did not find it because PRSb explained all the 

variance that could have been explained by the reactive control modulation of the Stroop effect. For both 

the LMM and the RCA analyses, the continuous full_btw No_PRS model showed the same pattern of 

results, both for confounders and predictors of interest, with the only exception that, after removing PRSb 

from the model, the interaction between CON_0 and ISb became significant (ps < .0001) and with large 

effect sizes (dr = 0.72 and 0.76, respectively; see Supplementary Materials at osf.io/aeh2d, Tables S3.5-6). 

Of note, the inclusion of PRSb in the model was justified and improved the model fit (χ2(2) = 138.4, p < 

.0001). 

4.2.2. Comparison with the hypothesized models 

Lastly, we compared our results to the models we put forward in the Introduction to verify which one 

better explained the patterns we obtained. We decided to compute such a comparison directly on the data 

aggregated over the two Experiments, that is, those used in the between-Experiments analysis with the 

continuous full model. Specifically, we correlated the overall observed pattern of Stroop effects predicted 

by the LMM analysis (Figure 5A) with those predicted by each of our a priori models to identify which had 

the highest correlation. We found that the observed Stroop effects were correlated the most with the 

https://osf.io/aeh2d
https://osf.io/aeh2d
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model assuming an antagonistic interaction with a higher effect of proactive compared to reactive control 

(r = .97) (see Figure 5B for all correlations).  

4.2.3. Internal reliability of LWPC and ISPC effects in the aggregated sample 

As expected, the internal reliability estimate of the Stroop effect was the highest among our effects of 

interest, with a median rSB value of .92 and a CI95% of .89-93. The internal reliability of proactive control had 

a median rSB value of .73 and a CI95%  of .64-.82, while the median rSB of reactive control was .75, with a CI95% 

of .64-.83. Finally, the internal reliability of the three-way interaction was similar, with a median rSB value of 

.78 and a CI95% of. .71-.83 (see Figure 4). 

 

Figure 5 
A) The plot shows the observed pattern of Stroop effects, as estimated by the LMM continuous full_btw 
model, as a function of the level of proactive control (hPro, blue line, corresponding to low-LWb conditions; 
lPro, blue line, corresponding to high-LWb conditions) and reactive control (hRea, corresponding to low-ISb 
conditions; lRea, corresponding to high-ISb conditions). B) Correlations between the observed pattern of 
Stroop effects and the hypothesized models (see the Hypotheses section). Error bars represent the 
standard error of the correlation. ADD, additive effects models; SYN, synergistic effects models; ANT, 
antagonistic effects models; Pro, Proactive control effect; Rea, Reactive control effect.  

 

5. General discussion 

According to the Dual-Mechanism of control model (DMC, Braver, 2012; Braver et al., 2007), cognitive 

control operates via two distinct mechanisms, proactive and reactive control, which are qualitatively 

different in terms of their temporal dynamics. Although this model could account for the great variability 

intrinsic to this ability, the evidence currently available for it is not compelling. In the laboratory, the DMC 
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has been frequently assessed with the Stroop task, which allows varying the Proportion of Congruency (PC) 

at the list-wide (LWPC) and/or at the item-specific (ISPC) levels to specifically target proactive and reactive 

control, respectively. However, these manipulations have been called into question, especially by the 

contingency hypothesis, which claims that they elicit low-level processes instead of control-driven ones 

(Schmidt, 2019; Schmidt et al., 2007; Schmidt & Besner, 2008). Although several confound-minimized 

manipulations have been proposed to solve this issue, in our view, they still suffer from some limitations 

and are impractical. Moreover, the two control mechanisms have always been explored separately by 

implementing each PC manipulation one at a time, which prevents from assessing their specific effects 

when both are manipulated and, especially, the interplay between the two control mode mechanisms.  

Therefore, to date, there is no compelling evidence clearly supporting the existence of two distinct 

mechanisms, while also controlling for the potential influence of low-level confounders. Our aim here was 

indeed to tackle this issue by combining multilevel modeling, the state-of-the-art trial-level analytical 

approach to estimate the Stroop effect and its control-related modulations effectively and reliably (see 

Viviani et al., 2023b), with a novel methodological approach allowing to manipulate both LWPC and ISPC in 

a fine-grained way at the trial-by-trial level. 

In brief, our main results consistently indicate that proactive control induced by trial-level LWPC 

manipulations modulated the Stroop effect, whereas ISPC-induced reactive control did not, probably due to 

the confounding effect of contingency. However, both control modes interacted in modulating the Stroop 

effect.    

5.1. Advantages of our methodological and analytical approach 

Before elaborating on the findings, it is worthy to discuss the methodological and analytical novelties of 

the present study, to fully understand their advantages compared to classical approaches primarily 

implying design-level control only. To make a step further, we used an analysis-level control, leveraging 

trial-level multilevel modeling to put forward a new approach in which LWPC and ISPC were manipulated 

simultaneously. This is indeed a more effective way to i) directly explore whether proactive and reactive 

control can coexist, that is, whether each mechanism can be active while also the other is activated; ii) 

investigate whether proactive and reactive control interact, since if we assume that they are distinct 
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mechanisms, it is also plausible that they interact as (implicitly) postulated by the DMC. Moreover, to 

control for contingency-related effects, we did not balance stimulus-response combinations so as to make 

the contingency orthogonal to LWPC and ISPC as much as possible, and then we controlled for its effect at 

the statistical level. 

Overall, our approach introduced some main novelties, which our data suggested to be advantageous as 

compared to the traditional approaches used in the literature. 

The first original aspect of our approach consisted of calculating the trial-wise probabilities of our 

variables of interest. These provided more realistic estimates of our variables at each trial, because they 

were based on the updating of the trial-by-trial probability based on the trial history. Our expectation of a 

better model fit when using continuous as compared to discrete values was indeed confirmed by the model 

comparisons that we performed. Notably, these findings offer indirect support for frameworks that started 

conceptualizing cognitive control in terms of Bayesian inference (Jiang et al., 2014; Parr et al., 2023), 

suggesting a potential alignment between the observed results and the principles of the predictive brain 

(Clark, 2013).  

The second novel aspect of our study concerned the analytical approach, as we used multilevel trial-

level modeling, which was particularly suitable for our aims. First, it allowed us to assess all our 

experimental effects of interest at the same time, that is, the Stroop effect, proactive control, reactive 

control and their interaction in modulating the Stroop effect, which was our main aim and was not feasible 

using classical GLM-based approaches. As detailed in the Methods sections, GLM analyses were used just to 

assess the overall Stroop effect (and thus allowing its comparison with the existing studies) but they were 

not suitable for our experimental design and aim. Indeed, the second important advantage of multilevel 

modeling was that it ensured that the estimates of our effects were partialled out from the effect of lower-

level confounders at the trial level, which represent sources of trial-by-trial noise that can affect the 

estimation of the effects at the subject level. This advantage, in line with the results of our previous study 

(Viviani et al., 2023b), was confirmed by the comparisons of the full model with the reduced one, which 

showed that, in all our analyses, the former better explained our data. These results suggest that including 

in the model low-level predictors based on the characteristics of the task at hand ensured that the 

https://www.zotero.org/google-docs/?zHZE5T
https://www.zotero.org/google-docs/?pnlsm3
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estimates of our effects of interest were more accurate and precise since intra-subject/inter-trial sources of 

variance, that contribute to measurement error, were explained. Moreover, using this approach, we 

successfully cleaned our effects of interest from the effect of contingency which represents a great issue 

when using PC manipulations as, in our view (see Section 1.1), they can hardly be properly controlled at the 

design level only. Indeed, it should be noted that it is practically impossible to de-confound ISPC and 

contingency measures for congruent trials, as they are both computed in the same way (i.e., the ratio 

between the occurrence of congruent trials and the total number of trials for that item within a block). Our 

results indeed indicate that controlling for the effects of contingency at the analysis level, that is, by 

including it in the model, represents a valid alternative to controlling for it at the design level. We indeed 

found that ISPC-related results changed dramatically when contingency was removed from the statistical 

model as compared to when it was included. This indicates that not controlling for contingency-related 

effects severely affected the results, leading to misleading conclusions about spurious effects of reactive 

control.  

5.2. LWPC and ISPC effects and between-Experiments differences 

The Peripheral and the Perifoveal Experiments yielded contrasting results for what concerns the three-

way interaction (namely, between the Stroop effect, LWPC and ISPC), with the former not finding any 

interaction between proactive and reactive control in Stroop effect modulation and the latter showing it 

instead. To shed light on this discrepancy, a between-Experiments analysis was performed, by running a 

model that compared the effects of interest as well as the low-level ones that were assumed to be different 

(i.e., stimulus position and contingency) to assess whether they differed between the two Experiments. 

Low-level results confirmed our assumption that the two Experiments implied different effects of stimulus 

position, which was quite predictable as the Perifoveal task had been intentionally designed to reduce 

visuospatial attention shifts and/or eye movements. Moreover, the difference in contingency might also be 

explained in terms of different spatial arrangements, as the greater effect of contingency in the Perifoveal 

task might have been explained by the lower eccentricity of the stimuli. The keypresses used to provide 

responses were indeed spatially arranged more similarly to the Perifoveal stimuli, as they also had a low 
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eccentricity. This might have led to a greater stimulus-response overlap in the Perifoveal task2 which, in 

turn, might have favored the learning of stronger stimulus-response associations. No Experiment-

dependent difference was instead observed for the effects of interest.  

Given that between-Experiments results revealed that the two Experiments were not different for what 

concerns the effects of interest, we aggregated the two samples to assess the results on both Experiments 

together, as this could tell us more about which pattern of results was more consistent, that is, whether the 

emerging results on the aggregated sample were more compatible with the Peripheral or the Perifoveal 

results. Importantly, the analysis on the aggregated sample, as compared to the ones performed for each 

Experiment, was expected to yield more robust evidence by ensuring more power and more precise 

estimates. Interestingly, the results of the aggregated analysis reflected those obtained in the Perifoveal 

Experiment, although that was the Experiment with the smaller sample size. Essentially, we found again 

that proactive control, but not reactive control, modulated the Stroop effect, and that both control modes 

interacted in modulating the Stroop effect.  

Therefore, the three-way interaction results could seem in contradiction with the between-Experiments 

results that did not reveal any significant difference between the two Experiments as, after aggregating the 

two samples, they showed results in line with one Experiment but not with the other. To try to explain this 

inconsistency, we put forward a possible explanation based on the results of our previous study (Viviani et 

al., 2023b), wherein we found that the greater visuospatial attention shifts characterizing the Peripheral 

task led to an underestimation of the Stroop effect magnitude whereas, when they were reduced, such as 

in the Perifoveal task, the Stroop effect was more robust and larger. As such, these attentional shifts might 

have reduced the magnitude of the three-way interaction in the Peripheral task, making it not detectable 

with the within-subjects analysis, probably because the Peripheral Experiment was too underpowered to 

detect it, but revealing such interaction in the aggregated samples analysis, thanks to the greater power. Of 

note, the direction of the three-way interaction in the Peripheral task tested alone, despite being not 

significant, was consistent with the direction of the three-way interaction in the Perifoveal and in the 

                                                           

2 According to Kornblum (e.g., 1992), stimulus-response overlap is fundamental to yield a complete Stroop 
effect (see also Viviani et al., 2023), thus the stronger such overlap, the greater the Stroop effect.  
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aggregated sample, supporting our hypothesis that the difference among the two Experiments was not 

qualitative but just quantitative due to the effect of visuospatial attention shifts. This notwithstanding, the 

difference in the magnitude of the two three-way interactions in the two Experiments was not large 

enough to be significant and thus could not be detected by the between-Experiments analysis. Therefore, 

this interpretation would reconcile our apparently contrasting results, supporting both the presence of 

distinct patterns, as shown by the within-subjects results, and the absence of evidence for a difference 

among the Experiments, as found in the between-Experiments results, allowing us to more safely rely on 

the aggregated sample results to draw our conclusions.  

The robustness of the pattern of results provided by the aggregated sample analysis appears to be well 

substantiated also by the RCA analyses which served us to confirm LMM results. Indeed, the RCA analyses 

did not show contradictory results and always revealed that the Stroop effect was modulated by proactive 

control alone and by the interaction between proactive and reactive control. Therefore, this further 

supported our interpretation that the lack of a significant three-way interaction in the Peripheral 

Experiment alone using LMM analysis was the consequence of the underestimation of such effect due to 

the factors discussed above. Still, the fact that this effect emerged only under certain conditions and 

depending on the analytical approach leads us to suggest taking it with some caution and indicates that 

further investigations are needed before drawing definitive conclusions about it.   

A result that was instead always consistent was the absence of the main effect for the reactive control 

modulation of the Stroop effect. Indeed, none of our analyses showed a significant interaction between 

item-specific proportion congruency and the Stroop effect (ISb and CON_0). The absence of such 

interaction was observed also in one of the control analyses performed on the Peripheral Experiment using 

the LMM approach, in which we removed from the model the three-way interaction, as it was not 

significant, to assess whether it interfered with the estimation of reactive control effects. Even after 

excluding the three-way interaction, the effect of reactive control by itself did not emerge, suggesting that 

it was not masked by the three-way interaction.  

Therefore, to provide a possible explanation for why ISPC-induced reactive control alone never 

modulated the Stroop effect, we performed control analyses on both single and aggregated samples by 
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excluding from the model the contingency predictor. This was done because there is extensive literature 

showing that reactive control is specifically confused with contingency when ISPC is manipulated (e.g., 

Schmidt, 2019; Schmidt & Besner, 2008). Moreover, as explained above, it is very difficult to totally 

decorrelate contingency and ISPC at the design level while also keeping this manipulation item-specific. As 

a consequence, we assumed that the effect of ISb and CON_0 interaction might have been non-significant 

since Contingency (PRSb) included in the model explained all its variance. This was exactly the case: in all 

the control analyses, the removal of PRSb produced the same pattern of results, except for the interaction 

between ISb and CON_0, which became significant after this change. Thus, these consistent results 

confirmed our assumption that PRSb alone can explain all the variance of reactive control modulation and 

have several implications, as detailed in the following paragraph.  

First, ISPC-induced reactive control and contingency are intrinsically related since the manipulation used 

to induce such a mechanism is inevitably confused with contingency, especially for congruent items. 

Second, as confound-minimized designs that have been proposed in the literature are, in our view, 

unpractical and partially flawed (see Section 1.1), the more adequate approach to control for contingency is 

the analysis-level one, as it effectively estimated the contingency-related confounding effect, allowing us to 

suggest that our estimation of reactive control effects was not biased by contingency. As discussed above, 

the model comparisons provided further evidence in favor of analysis-level control, which showed that the 

observed data were better explained when confounding predictors, among which contingency, were 

included in the statistical model. The third implication regards the fact that, although ISPC-induced reactive 

control alone was not significant, its interaction with proactive control to modulate the Stroop effect was 

significant even when contingency was in the model, suggesting that our experimental design was effective 

at yielding a reactive control effect partialled out from contingency, albeit an indirect one. This claim was 

further supported by another follow-up control analysis testing a model wherein PRSb and ISb were 

switched, so that, instead of ISb, PRSb was included in the three-way interaction to assess whether PRSb 

interacted with LWb in modulating the Stroop effect, that is, to exclude that the PRSb effect was masked by 

the inclusion of ISb. This, however, did not occur as the three-way interaction did not result significant, 

providing further evidence for the significant role of ISb in the three-way interaction and also indicating 
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that it was successfully partialled out from the effect of contingency (see Supplementary Materials at 

osf.io/aeh2d).  

A further result robust to analytical flexibility, and thus consistent across all our analyses, was the Stroop 

effect modulation by proactive control, which is in line with previous findings (e.g., Bugg & Chanani, 2011; 

Hutchison, 2011). Indeed, the interaction between LWb and CON_0 was not only always significant in our 

main LMM and RCA analyses, but it was also accompanied by d values that were greater than .5, which is 

considered the threshold of medium effect sizes. In the aggregated sample results, proactive control had a 

medium-to-large effect size (d = .71) and a dominance of almost 87%, indicating that our paradigms were 

effective in producing a proactive control effect in the expected direction in most of the participants (i.e., 

larger Stroop effects when LWb was higher).  

It has to be noted also that this evidence for a proactive control modulation of the Stroop effect was 

obtained while controlling for possible confounding factors that might influence it. Indeed, whether LWPC 

manipulation is effective in inducing a control mechanism operating at the list-level and not just at the item 

level has been challenged. Essentially, some authors argued that LWPC is inevitably confused with ISPC 

since low-PC blocks are composed of low-PC items and high-PC blocks are composed of high-PC items (e.g., 

Blais et al., 2007; Blais & Bunge, 2010; Bugg et al., 2008). This is an inevitable consequence of LWPC 

manipulation. Indeed, although we tried to orthogonalize LWPC and ISPC as much as possible, our 

predictors were still correlated. However, by using multilevel modeling and including both predictors in the 

model, we were able to control for that confound. Therefore, since the LWPC by Congruency interaction 

consistently emerged, as opposed to the ISPC by Congruency interaction, which was never significant, we 

can reasonably suggest that the observed variance was explained by the proactive (but not by the reactive) 

control predictor. These results further highlighted the advantages of analysis-level control, which can 

overcome issues that cannot easily be addressed by the design-level control.  

The last important result concerned the magnitude of the Stroop effect. Although in this work we were 

not specifically interested in the Stroop effect per se, it was essential that our paradigms yielded an effect 

that was robust, and this was the case. The Stroop effect was indeed observed in all our analyses and was 

characterized by very large effect sizes. Specifically, in the aggregated analysis, it had a d value of 1.95 and 

https://osf.io/aeh2d


50 

all individuals showed a true positive Stroop effect, that is, they all responded more slowly in incongruent 

compared to congruent trials, as indicated by a dominance of 100%. These results are in line with those 

from our previous study, in which we found that both the Peripheral and the Perifoveal tasks were effective 

in producing large Stroop effects. However, the present results did not confirm the larger Stroop effects we 

found for the Perifoveal as compared to the Peripheral task in our previous study (Viviani et al., 2023b). 

Indeed, albeit in the same direction, this between-Experiments difference was not significant in the present 

study. 

Overall, this complex pattern of results allowed us to start to answer one of our research questions, that 

is, whether proactive control exists per se also while reactive control is present and vice versa, and whether 

they interact as well. For the reasons explained above, such a question was addressed considering the 

results produced by the aggregated sample analysis because its higher statistical power ensured more 

precise estimates of the effects of interest, which, inter alia, did not differ among the two Experiments.  

Interestingly, our results suggest that proactive control independently operated by modulating the 

magnitude of the Stroop effect, even when reactive control was manipulated, whereas ISPC-induced 

reactive control did not affect the Stroop effect by itself, but it only interacted with the proactive control in 

modulating the Stroop effect. As such, this might indicate that, overall, proactive control is stronger than 

reactive control, but this claim will be better discussed in the testing of a priori formal model section.  

However, care must be taken in interpreting this pattern of results. Indeed, there is no clear evidence 

against reactive control that exists independently of proactive control because of the limitations of the ISPC 

manipulation that have been pointed out in the literature and confirmed in our work. Indeed, what clearly 

stood out from our work, and especially from the comparison between the main results and the control 

ones, was that the effect of reactive control was masked by that of contingency to such an extent that, 

when both were included in the statistical model, contingency alone explained all the variance. As already 

pointed out, this is very likely to be the consequence of the imperfect orthogonalization due to the 

inevitable overlap of contingency and ISPC for congruent trials. However, although the correlation between 

our ISb and PRSb predictors was not that high (13% of shared variance), contingency still preferentially 

emerged as a significant modulator of participants’ performance, suggesting its stronger influence. This 
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claim seems to be in line with previous works showing that the ISPC effect was only incidental and 

exclusively due to contingency learning (e.g., Schmidt, 2019; Schmidt & Besner, 2008). It is worth noting 

that the conclusions drawn by the contingency learning account have been quite radical, pointing towards a 

mere low-level associative learning, rather than conflict-related resolution of the interference in the Stroop 

task. However, our data do not seem to support such an extreme view either, revealing that a more 

intermediate and balanced position might better fit the available data.  

Essentially, on the one hand, our results are consistent with the contingency learning account for what 

concerns the inevitable influence of contingency learning on performance. Contingency prevailed especially 

over ISPC-induced reactive control which, when considered by itself, did not survive the presence of such 

low-level learning effect. Therefore, we agree on the need to control for contingency learning and that 

considerable attention must be paid in interpreting ISPC-induced reactive control effects. However, our 

results also revealed that the impact of reactive control still remained significant even after partialling out 

the effect of contingency, that is, when reactive control interacted with proactive control in modulating the 

Stroop effect. Therefore, it might be that contingency is stronger than reactive control per se, but this does 

not necessarily exclude a strategic implementation of control, which can also operate in a reactive way but 

only when moderated by proactive control levels. Such modulation was, in fact, specifically driven by ISPC-

induced reactive control as shown by one of our control analyses, as discussed above (also see 

Supplementary Materials at osf.io/aeh2d), which allowed us to exclude the role of contingency learning in 

such a higher-level modulation. More importantly, the pattern of the significant interaction between 

proactive and reactive control in modulating the Stroop effect offers another alternative explanation for 

the fact that the reactive control modulation of the Stroop effect did not reach the significance level per se. 

Indeed, as we discuss in detail below, our results indicate that the effect of ISPC-induced reactive control 

emerged only when the level of proactive control was low. However, in our models the effect of the 

interaction between congruency and the trial-level ISPC estimate is conditional to an intermediate level of 

the trial-level LWPC estimate and, consequently, an intermediate level of proactive control, which thus 

could have been high enough to prevent the need for reactive control. 

https://osf.io/aeh2d
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Hence, our work contributed to provide consistent evidence for the specificity of the proactive control 

mechanism, by showing that it operated independently from the concurrent activation of reactive control 

and/or contingency learning. Moreover, we have provided initial evidence that cognitive control can also 

operate through a ISPC-induced reactive control mechanism. The latter, however, emerged only in 

interaction with proactive control as, when assessed by itself, it could be explained mainly by contingency. 

This pattern thus suggests that proactive control is mainly engaged to solve Stroop interference, with a 

greater impact on participants' performance, as compared to ISPC-induced reactive control. 

5.3. Testing of a-priori formal models  

The pattern of results discussed above suggested that, although proactive and reactive control 

interacted, the former had a stronger effect than the latter, as it also operated by itself. At first glance, this 

claim matches one alternative of our a priori hypotheses, that is, the one predicting a dominant role of 

proactive over reactive control. However, we tested all of our hypotheses to verify whether our data 

actually correlated the most with that alternative or whether another model better fitted the pattern of 

results we found.  

The model that was more highly correlated to our data, and thus that best explained the obtained 

pattern of results, was the one predicting the dominance of proactive over reactive control and an 

antagonistic interaction between them. This result thus confirmed the asymmetrical pattern we observed 

in our results. Moreover, it further supported our claim that proactive control had a stronger effect than 

reactive control. This is in line with the fact that, in all our analyses, reactive control did not survive by itself 

and thus it would have been odd if our data were better explained by the model implying an equal strength 

of proactive and reactive control or, even more, by the model predicting the dominance of reactive control. 

 What is even more noteworthy here, as it emerged less straightforwardly from our results, was the 

direction of the three-way interaction. The fact that the best model was the one predicting an antagonistic 

interaction provides a better insight into how proactive and reactive control interacted to modulate the 

Stroop effect. This suggests that proactive and reactive control interacted in an antagonistic manner and, 

when both were high, they yielded a Stroop effect reduction that was smaller than that predicted by their 

additive effects. This means that one of the two mechanisms produced a mitigation of the strength of the 
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effect of the other. As the stronger control mode was the proactive one, it can be assumed that it exerted 

such a moderator effect on reactive control, probably because this latter mechanism was not useful or 

effective. In other words, the possibility of relying on the trial-level LWPC estimates to exert proactive 

control, the stronger and more effective mode, made the implementation of reactive control unnecessary. 

Figure 5A clearly displays this, as can be seen from the pattern of observed results, when proactive control 

was high (blue line, hPro-hRea and hPro-lRea conditions), the Stroop effect did not decrease (and was even 

numerically larger) when both control strategies were available (hPro-hRea) as compared to when just 

proactive control strategies were implemented (hPro-lRea). By contrast, when proactive control was low 

(red line, lPro-hRea and lPro-lRea conditions), the Stroop effect was lower when reactive control was 

implemented (lPro-hRea), even if still higher than that observed under proactive control, as compared to 

when no control mode was available (lPro-lRea).  

Importantly, the observed pattern of the interaction between proactive and reactive control in 

modulating the Stroop effects is well in line with the DMC proposal (De Pisapia & Braver, 2006), which 

assumes that reactive control preferentially operates when proactive control is not possible or 

advantageous. However, to the best of our knowledge, this interplay between proactive and reactive 

control has never been tested directly, that is, by actually manipulating both the corresponding 

experimental variables, like LWPC and ISPC, respectively. Indeed, DMC-inspired studies investigating or 

interpreting the behavioral and neurophysiological correlates of proactive and reactive control usually only 

varied LWPC (or LWPC-like) experimental variables and then assumed that reactive control operated for 

lower levels of proactive control. Our results thus represent a substantial contribution to the field by 

showing, for the first time, the actual fine-grained pattern of the proactive-reactive control interplay in 

modulating Stroop performance. More importantly, our results also raise severe concerns about the 

assumptions made by the existing studies mentioned above, namely, that when there is no or low proactive 

control, then reactive control must necessarily be active. Indeed, our results clearly showed that, when 

LWb was high (and thus proactive control was low), the Stroop effect decreased only when ISb was low 

(and thus reactive control was high), whereas it was very large when ISb was also high (and thus reactive 

control was low). In other words, high levels of LWPC would be a necessary but not sufficient condition for 
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the activation of reactive control, as it might be actually implemented only when there are low levels of 

ISPC. It is important here to note that this argument is valid only for the “faster” or “associative” form of 

reactive control, that is, the one signaled by ISPC (or other forms of stimulus-related information) that, in 

turn, activates a sort of stimulus-attention association to apply attentional biases to stimulus-related 

processing in a reactive way (Tafuro et al., 2020; Bugg, 2017; Bugg & Crump, 2012). 

Overall, the model testing confirmed in a more straightforward way what we obtained from our 

analyses. Therefore, it did not add more information to the result parameters we present in Table 3. 

However, we believe that it could add two main strengths to the present work: i) the graphical 

representation displaying the model better showing the results provides a clearer and more easily 

interpretable overview of the pattern of results; ii) it encourages comparability with other works testing 

both similar and distinct hypotheses.  

5.4. Internal reliability 

The internal reliability of our effects of interest was overall quite high for all of our analyses. In the 

results from the aggregated sample, the internal reliability of the effects was always higher than .73. The 

Stroop effect showed the highest internal reliability with an rSB value of .92, and this value was even higher 

than those obtained in our previous study (Viviani et al., 2023b), probably due to the higher number of 

trials used in the present study. Indeed, we previously found that the Peripheral task had an internal 

reliability of .80, whereas here it reached an rSB  value of .92, and the Perifoveal task had an internal 

reliability of .80, whereas here it reached an rSB value of .94. Moreover, all of these values had low 

variability across randomizations.  

The internal reliability of the proactive control effect was slightly lower, but still remained quite high (rSB 

value of .73 in the aggregated sample) and was similar not only to that of the reactive control effect (rSB 

value of .75 in the aggregated sample), but also to that of the three-way interaction (rSB value of .78). This 

latter result is surprising, since the reliability of differential effects is generally lower.  

Overall, these results confirmed our previous findings (Viviani et al., 2023b), as they are still at odds with 

the reliability paradox (Hedge et al., 2018) and related proposals (Rouder & Haaf, 2019) according to which, 

if an experimental effect is large and universal, its internal reliability can hardly be large enough. As such, 
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this further supports our choice of using multilevel modeling which, by allowing explaining intra-

subject/inter-trial variance, has been shown to effectively provide more precise estimates of the effects of 

interest.  

6. Conclusions 

In two behavioral Experiments, we aimed to investigate the dual-mechanisms of control model (DMC) 

and its application to the Stroop task by developing a novel methodological approach and combining it with 

the state-of-the-art trial-level multilevel modeling that ensures accurate and reliable estimates of the 

Stroop effect. This approach allowed us not only to manipulate LWPC and ISPC simultaneously, but also in a 

fine-grained way at the trial level, which is crucial for understanding the coexistence and interaction of 

proactive and reactive control, while also controlling for the confounding effects of low-level processes, 

including contingency. 

Our results provided consistent evidence for the existence of LWPC-dependent proactive control 

mechanisms modulating Stroop performance regardless of confounders and also ISPC-dependent reactive 

control levels. Moreover, albeit we did not find evidence for the existence of specific ISPC-dependent 

reactive control effect, ISPC-induced reactive control still interacted with proactive control in modulating 

Stroop performance, with the characteristic pattern assumed by the DMC. 

Although further research is needed to validate these findings and understand the nature of the three-

way interaction between congruency and proactive and reactive control, thanks to our novel approach, our 

study provided new insights into the DMC model and the cognitive mechanisms underpinning the 

modulation of the Stroop effect. These insights specifically concern three points; first, our results reveal 

that using trial-level estimates of the PC provides a better account of adaptive control employment, thus 

encouraging future studies to do the same to reach a more realistic understanding of adaptive control 

modulations. Second, thanks to the simultaneous and fine-grained manipulation of LWPC and ISPC, we 

provided evidence for the interplay between proactive and reactive control in modulating the Stroop effect, 

which set the bases for further studies that deepen the understanding of the two control modes postulated 

by the DMC. Third, thanks to our analysis-level control approach used to control for (and estimate) the 

effect of contingency, we unveiled the interplay between ISPC-induced reactive control and contingency, 
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shedding light on the related still unresolved diatribe between pure associative learning and adaptive 

control accounts of the Stroop performance, promoting a more moderate view. Overall, our results 

valuably contributed to the ongoing research on cognitive control mechanisms and their implications for 

understanding human cognition. 
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