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Simple Summary: The microbial community that inhabits specific areas of the body, developing
a symbiotic relationship with the host, is termed the microbiota. The intestinal microbiota plays a
pivotal role in different physiological processes and is influenced by many factors, including nutrition.
Goji berries are a popular nutraceutical product that have been proposed as a dietary supplement
in some livestock species, including rabbits, but their effects on the composition of the microbiota
have never been investigated. This study evaluated the effects of Goji berry supplementation on the
microbiota of different digestive tracts (stomach, duodenum, jejunum, ileum, caecum and colon) of
the rabbit, using a modern method of analysis. Our results suggest that Goji berries could modulate
the microbiota of the rabbit’s digestive tract increasing the growth of beneficial bacteria, such as
Ruminococcaceae, Lachnospiraceae, Lactobacillaceae, and particularly, the genus Lactobacillus. These
findings suggest that Goji berries could be used to produce innovative feeds for rabbits, although
further studies are necessary to evaluate their impact on productive performance, gut immune system
maturation, as well as resistance to gastrointestinal disorders.

Abstract: Goji berries show health benefits, although the possible mechanisms of action, including
compositional changes in the gut microbiome, are still not fully understood. The aim of this study was
to evaluate the effect of Goji berry supplementation on microbiota composition and metabolites in
the digestive tracts of rabbits. Twenty-eight New Zealand White rabbits were fed with a commercial
feed (control group, C; n = 14) or the same diet supplemented with 3% of Goji berries (Goji group,
G; n = 14), from weaning (35 days old) until slaughter (90 days old). At slaughter, samples from the
content of the gastrointestinal tracts were collected and analyzed by Next Generation 165 rRNA Gene
Sequencing to evaluate the microbial composition. Ammonia and lactic acid were also quantified in
caecum. Results showed differences in microbiota composition between the groups for two phyla
(Cyanobacteria and Euryarchaeota), two classes (Methanobacteria and Bacilli), five orders, fourteen
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families, and forty-five genera. Ruminococcaceae (p < 0.05) and Lachnospiraceae (p < 0.01) were
more abundant in G than in C group. Lactobacillaceae also showed differences between the two
groups, with Lactobacillus as the predominant genus (p = 0.002). Finally, Goji berry supplementation
stimulated lactic acid fermentation (p < 0.05). Thus, Goji berry supplementation could modulate
gastrointestinal microbiota composition and caecal fermentation.

Keywords: Goji fruit; intestinal bacterial community; caecum; lactic acid; ammonium; rabbit

1. Introduction

Goji berries, the fruits of the Lycium barbarum plant, are often used in traditional
Chinese medicine for their nutritional and therapeutic properties, and are also widespread
as supplementation in Western diets [1,2]. Their health benefits are associated with bio-
logically active compounds, including polysaccharides, carotenoids, polyphenols, amino
acids, ascorbic acid, and unsaturated fatty acids [3], although their mechanisms of action
are still not fully understood. Recent evidence has shown that the fruit could modulate
the gut microbiota and thus have a role in the prevention and treatment of several gas-
trointestinal diseases in mice [4,5], rats [6] and humans [7]. Recently, Goji berries have
also been proposed as a dietary supplement for some livestock species, with the dual aim
of improving productive performance and product quality [8-10]. In rabbits, Goji berry
supplementation seems to improve reproductive [11] and productive performances, [12]
energy metabolism [13], and meat quality [14,15] in a dose-dependent manner, but its
effects on gut microbiota have not yet been investigated.

The microbiota represents a complex ecosystem of microorganisms which inhabits
specific niches of the body and plays important roles in physiological processes developing
symbiotic relationships with the host [16]. The intestinal microbiota is involved in the
digestion and absorption of nutrients, maturation and stimulation of the immune system, as
well as protection against pathogenic infections [17]. The bacterial microbiota composition
along the gastrointestinal tract of adult rabbits fed with a commercial diet has recently been
characterized [18]. This study showed interesting differences among the various sections
of the digestive system in bacterial richness and diversity [18]. Within the same species,
however, bacterial community composition of the gastrointestinal tract can be influenced
by several factors, including nutrition [13]. Goji supplementation could therefore induce
favorable changes in the intestinal microbiota of the rabbit with beneficial effects on health
and productive performance, as seen in other animal species and humans [4-10].

The rabbit is a very interesting species because it can be a pet, livestock or animal
model. Both in pet and farmed rabbits, the digestive system is a common site of diseases
that are often associated with changes in intestinal microbiota [19,20]. In particular, the
peri-weaning period is the most critical physiological phase as the diet transition induces
changes in the gut microbiota increasing sensitivity to gastrointestinal pathogens [21].
Antibiotics are commonly used to control intestinal infections; however, according to
recommendations of the European Union, this practice should be reduced [22,23]. An
innovative strategy to limit the incidence of gastrointestinal disorders could be the use of
specific feeds for pet and farmed rabbits integrated with nutraceutical products such, as
Lycium barbarum fruit, to favor the growth of a beneficial gut microbiota. Understanding
the effects of Goji berry supplementation on the intestinal microbiota can therefore have
important implications for the health of rabbits. The rabbit could be also considered as an
animal model for diet-induced changes in gut microbiota, as it has already been used for
studies exploring the effect of nutrition on productive [24-26], reproductive [27,28], and
immunological traits [29,30].

The aim of this study was to investigate the effect of Goji berry supplementation on the
microbiota composition of the different tracts of the digestive system (stomach, duodenum,
jejunum, ileum, caecum, and colon) in the rabbit. For this purpose, the microbiota of all the
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sections of the digestive apparatus was analyzed using Next Generation 165 rRNA Gene
Sequencing. In addition, metabolites from bacterial fermentation in the caecum (lactic acid
and ammonia) were also quantified.

2. Materials and Methods
2.1. Animals and Samples Collection

The experimental trial was conducted in the facilities of the Faculty of Veterinary
Medicine of the Agricultural University of Tirana, Tirana, Albania.

The rabbits were maintained under the supervision of a responsible veterinarian and
in accordance with the Directive 2010/63/EU regarding the protection of animals kept for
farming purposes. The lowest number of rabbits necessary to obtain reliable results was
used for the trial.

According to dietary treatment, 28 New Zealand White male rabbits were randomly
assigned into two groups from weaning (35 days of age) until slaughter (90 days of age): con-
trol group (n = 14 animals, C), fed with a commercial pellet, and Goji group (1 = 14 animals,
G), fed with the same feed of the C group supplemented with 3% of Goji berries (Gianluca
Bazzica, Foligno, Italy) before pelleting (Table 1). At weaning the average body weight was
875 + 115 g and 893 £ 135 in C and G groups, respectively. Feeds from the same batches
were previously used in other experiments [11,13-15].

Table 1. Feed formulation and chemical composition (as fed) of control group and Goji group diet.

. Diet
Ingredients Unit
Control Goji
Wheat bran % 30.0 29.0
Dehydrated alfalfa meal % 42.0 41.0
Barley % 9.5 9.0
Sunflower meal % 4.5 4.2
Rice bran % 4.0 3.9
Soybean meal Y% 4.0 3.9
Calcium carbonate % 2.2 2.2
Cane molasses % 2.0 2.0
Dicalcium phosphate % 0.7 0.7
Vitamin-mineral premix 1 % 0.4 0.4
Soybean oil % 0.4 0.4
Salt % 0.3 0.3
Goji berries % - 3.0
Chemical composition
Crude Protein % 15.74 15.66
Ether extract % 2.25 247
Ash % 9.28 9.25
Starch % 16.86 16.99
NDF % 38.05 37.49
ADF % 19.54 19.01
ADL % 4.01 3.98
Digestible Energy 2 MJ/Kg 10.3 10.3

1 Per kg diet: vitamin A 11,000 IU; vitamin D3 2000 IU; vitamin B1 2.5 mg; vitamin B2 4 mg; vitamin B6 1.25 mg;
vitamin B12 0.01 mg; alpha-tocopherol acetate 50 mg; biotine 0.06 mg; vitamin K 2.5 mg; niacin 15 mg; folic acid
0.30 mg; D-pantothenic acid 10 mg; choline 600 mg; Mn 60 mg; Fe 50 mg; Zn 15 mg; 1 0.5 mg; Co 0.5 mg. 2 NDF:
Neutral Detergent Fiber; ADF: Acid Detergent Fiber; ADL: Acid Detergent Lignin. Estimated by Maertens et al. [31].

Rabbits were bred in single cages and maintained at a temperature range between
18 and 21 °C, relative humidity of 60%, and with a photoperiod of 16 h of light. Throughout
the entire trial, water and feed were provided ad libitum.

At the slaughterhouse, the gastrointestinal tract was immediately removed from each
rabbit. The content of the different digestive tract sections from each animal (stomach,
duodenum, jejunum, ileum, caecum, and colon) were collected separately in 15 mL sterile
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tubes and then stored at —80 °C until examination. Each sample was analyzed individually.
The average body weights (+standard error) at weaning were 875 £ 55 g and 893 + 75,
while at slaughter, they were 2310 £ 82 g and 2357 & 82 g in C and G groups, respectively.

2.2. Microbiota Evaluation—Genomic Sequencing
2.2.1. DNA Extraction

Using the commercial QIAamp PowerFecal Pro DNA Kit (Qiagen, Hilden, Germany),
the bacterial DNA was extracted from each sample of intestinal contents following the
manufacturer’s protocol. DNA quality and quantity were checked using a NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA, and the
obtained DNA was stoked at —20 °C until use.

2.2.2. 165 Ribosomal RNA (rRNA) Gene Sequencing

Bacterial DNA was amplified using primers described in the literature [32] which
target the V3-V4 hypervariable regions of the 16S rRNA gene. All the PCR amplifications
were performed in 25 pL volumes per sample. A total of 12.5 pL. of KAPA HIFI Master Mix
2x (Kapa Biosystems, Inc., Wilmington, MA, USA) and 0.2 pL of each primer (100 uM)
were added to 2 uL of genomic DNA (5 ng/uL). Blank controls (no DNA template added
to the reaction) were also performed. A first amplification step was performed in an
Applied Biosystem 2700 thermal cycler (ThermoFisher Scientific, Waltham, MA, USA).
The samples were denatured at 95 °C for 3 min, followed by 25 cycles with a denaturing
step at 98 °C for 30 s, annealing at 56 °C for 1 min, and extension at 72 °C for 1 min, with
a final extension at 72 °C for 7 min. The amplicons were then cleaned with Agencourt
AMPure XP (Beckman, Coulter Brea, CA, USA), and libraries were prepared following
the 16S Metagenomic Sequencing Library Preparation Protocol (Illumina, San Diego, CA,
USA). The libraries obtained were quantified using Real Time PCR with KAPA Library
Quantification Kits (Kapa Biosystems, Inc., Wilmington, MA, USA), pooled in equimolar
proportion, and then sequenced in one MiSeq (Illumina, San Diego, CA, USA) run with
2 x 250-base paired-end reads.

2.2.3. Sequence Analysis

The reads obtained by the 16S rRNA sequencing were analyzed as previously de-
scribed [18]. One rabbit from the Goji group and two samples, both from G diet (caecum
intestinal tract), were removed because they had a total number of counts <100.

2.2.4. Alpha and Beta Diversity Indices

To assess the microbial diversity of the different rabbit gastrointestinal tracts the alpha
(within-) and beta (across-) diversities were used. These indices were estimated starting
from the OTU table, after filtering with more than 50 total counts, distributed in at least
five samples. Besides the number of observed OTUs directly, within-sample microbial
richness, diversity, and evenness were estimated using Chaol and ACE (abundance-based
coverage estimator) for richness, Shannon, Simpson, and Fisher’s alpha for diversity [33,34],
and Simpson E and Pielou’s ] (Shannon’s evenness) for evenness [35]. The Bray—Curtis
dissimilarity [36] was used to quantify the across-sample microbiota diversity. Prior to
the calculation of these metrics, the OTU counts were normalized for uneven sequencing
depth by cumulative sum scaling (CSS) [37]. Details of these analyses can be found in
Biscarini et al. [38].

2.2.5. Software

The QIIME 1.9 pipeline [39] was utilized both to analyze the reads obtained from
165 rRNA gene sequencing and to estimate most diversity indices. Own Python (https:
/ /github.com/filippob /Rare-OTUs-ACE.git, accessed on 15 November 2021) and R (https:
/ / github.com/filippob /sampleBasedRarefaction, accessed on 15 November 2021) scripts
were used to estimate the ACE index and sample-based rarefaction. The figures were
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generated with the ggplot2 R package [40]. The R environment for statistical computing [41]
was used to perform the additional data handling and statistical analysis.

2.3. Lactic Acid and Ammonia Quantification

For the analysis of bacterial metabolites (lactic acid and ammonia), 1 g of caecal
content was diluted in 1 mL of 1 M perchloric acid and 8 mL of distilled water. After
homogenization, tubes were centrifuged for 10 min at 5000 rpm, and the supernatant was
transferred to 2 mL Eppendorf tube and frozen at —20 °C until metabolite quantification.
The spectrophotometric method for biological fluids was used for lactic acid determination
in accordance with Pryce et al. [42]. Ammonia concentration was detected in line with
Patton et al. [43]. Spectrophotometer was set at 565 nm and 660 nm respectively (Shimadzu
Corporation UV-2550, Kyoto, Japan). All chemicals were purchased from Sigma Chemical
Co (St. Louis, MO, USA).

2.4. Statistical Analysis

Differences in alpha diversity indexes between treatments at various taxonomic levels
along the rabbit’s gastrointestinal tract were tested with a linear model that took into
account the hierarchical structure of within-subject nested data (consecutive sections of the
gastrointestinal tract belonging to individual rabbits). The model had the following form:

Vijkt = H + rabbitj + treatmenty + anatomic regiony;) + €kt (1)

where yjj is the alpha diversity index value for record i from rabbit j with treatment k and
anatomic region t, 1 is the intercept, rabbit; is the systematic effect of the individual rabbits,
treatmenty, is the treatment effect (Goji vs. control), anatomic regionyg; is the effect of the
anatomic region of the gastrointestinal tract nested within rabbit;, and ejj; is the residual.

Var(y) = Sigma + [o>

where Sigma is a block diagonal matrix, with 1 s on the diagonal and the covariances oj;
between records within rabbits in the off-diagonal block elements, I is the identity matrix,
and 0,2 is the residual variance.

A simplified version of Model (1) was used to evaluate differences between Goji
and control samples; in particular, where the anatomic region effect was dropped and
data from all gastrointestinal sections were analyzed jointly to evaluate the effect of Goji
supplementation on the overall rabbit gut microbiota.

For Bray—Curtis dissimilarities (beta diversity), differences along the digestive tract
were tested non-parametrically using the permutational analysis of variance approach
(999 permutations; [33]).

3. Results
3.1. Sequencing Results

The microbiota structure of the gastrointestinal tract of C and G groups was char-
acterized by a total of 6,122,359 and 7,156,769 high quality reads (after filtering), respec-
tively, with a mean of 75,584 + 38,864 reads for C and 90,592 =+ 33,296 reads for G group.
The evaluation of the sample-based and sequence-based rarefaction curves suggested
that the depth of coverage was sufficient to describe the biological diversity within the
samples (Figure S1).

3.2. Taxonomic Composition of Gut Microbiota along the Rabbit Gastrointestinal Tract of C and
G Groups

Phylum relative abundances distribution along the gastrointestinal tract of C and
G groups are summarized in Figure 1. Significative differences were found in microbiota
composition between the experimental groups for two phyla, two classes, five orders,
fourteen families, and forty-five genera (Table S1). Firmicutes represented the main phylum
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in all sections of the digestive tract, especially in the most distal portions of caecum and
colon (77-79% of total bacteria) for both groups, and Bacteroidetes the second (14-16% of
total bacteria). The caecum and colon of rabbits treated with Goji berries showed differences
regarding the abundance of Bacteroidetes (16%) compared to the control group (14%)
although these were not statistically significant. As regards other phyla, Actinobacteria was
present in the upper part of the gastrointestinal tract. In the jejunum, its relative abundance
was higher in C than G group (7.5% for C vs. 5.5% for G group), while in the ileum the
percentages were opposite (4.8% for C vs. 5.2% for G group); as with the Bacteroidetes,
the differences regarding Actinobacteria were not significant. On the other hand, at the
phylum level, Cyanobacteria and Euryarchaeota, the latter belonging to kingdom Archaea,
were statistically different (p = 0.034 and p = 0.004, respectively) between the experimental
groups, with higher relative abundances in the upper part of the gastrointestinal tract in
G group.

Moreover, Clostridia represented the major class in all anatomic regions, while Ruminococ-
caceae and Lachnospiraceae were the most abundant families in the Goji group (Figure 2).

Figure 3 shows the comparison of the relative abundances of significant OTUs between
treatments and along the rabbit’s gastrointestinal tract. As shown in Table S1 and Figure 3,
there were significant differences between the groups; Bacillales were predominant
(p = 0.0032) in the G group, and Bacillus was the major genus in the stomach (p = 0.0036) .
Ruminococcaceae UCG-005, Lachnospiraceae NK4B4 group, and Christensenellaceae R-7
group were genera detected in all the digestive tracts with statistically significant different
results between the groups. As reported in Table S1, the Lactobacillaceae family was sig-
nificantly different (p = 0.0018) between the groups with Lactobacillus as the predominant
genus in G group compared to C group.

3.3. F/B Ratio

The Firmicutes: Bacteroidetes (F:B) ratio followed a clear pattern along the rabbit’s
digestive tract starting at around 10 in the stomach, increasing clearly in the duodenum and
jejunum, and finally decreasing again in the caecum and colon. The F:B ratio appeared to
be significantly lower in the G group (Figure 4), in the duodenum (p = 0.0176) and jejunum
(p = 0.000049). This was confirmed by bootstrapping (1000 replicates resampled with
replacement from the original data, Figure 5), which provided further statistical support of
the significance of F:B differences between G and C groups in the duodenum, jejunum and,
slightly less so, in the ileum.

3.4. Alpha Diversity Index—Treatment by Region

Table 2 reports the values for the alpha diversity indexes estimated in the rabbits’
gastrointestinal tract, in the two groups. Alpha diversity indexes were significantly different
between treatments in the last portion of the digestive tract (Figure S2): six indexes were
significantly different in the jejunum (ACE, Fisher’s alpha, observed n. of OTUs, Shannon
and Simpson diversity), two in the ileum (Equitability and Simpson E), three in the caecum
(Chaol, ACE, Fisher’s alpha), and two in the colon (Equitability and Simpson E).
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Figure 1. Pie-chart of phylum relative abundances in control and Goji-treated rabbits along
the gastrointestinal tract. For the analyses, 14 and 13 samples were used for the control and
Goji groups, respectively.
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tract of rabbits, grouped by taxonomic level. Control (blue = 14 rabbits) and Goji (yellow = 13 rabbits)
experimental groups. The size of the bubble is proportional to the relative abundance, with 0.2,
0.4 and 0.6 hallmarks, as shown in the legend.
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Figure 3. Significantly different OTUs. OTU significantly different between treatments from analysis
of variance based on normalized counts: p-values (A) and counts per group and anatomic region
of the rabbit digestive tract (B). p-value < 0.05 was used as cut-off. Darker colours indicate lower
p-values (A) or higher counts (B). p-values are in the range 10~'5-0.049, from dark brown to light
yellow. For the analyses, 14 and 13 samples were used for the control and Goji groups, respectively.
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Figure 4. Distribution of the F:B ratio (Firmicutes to Bacteroidetes) in control and Goji-treated groups
along the gastrointestinal tract. For the analyses, 14 and 13 samples were used for the control and
Goji groups, respectively.

Table 2. Alpha diversity indices along the digestive tract of rabbits in the two experimental groups
(14 controls and 13 Goji-treated; two more samples, both from caecum intestinal G diet were removed
because they had a total number of read counts < 100). * indicates significant difference (p < 0.05)
between control and Goji groups.

Group Anatomic Portion N Chaol Ace Fisher Alpha Observed OTUS  Shannon  Simpson  Equitability Simpson E
Control Stomach 14 378.115 380.038 163.32 335.786 7.779 0.993 0.973 0.747
Goji Stomach 13 320.39 318.117 135.593 300.923 7.926 0.995 0.976 0.766
Control Duodenum 14 279.333 274.565 120.298 268.143 7.806 0.995 0.976 0.764
Goji Duodenum 13 329.489 325.595 142.572 312.462 7.999 0.995 0.975 0.750
Control Jejunum 14 205.000*  205.000 * 85.734 % 205.000 * 7.427* 0.993 * 0.979 0.787
Goji Jejunum 13 306.591*  305.284 * 130.950 * 287.000 * 7.878* 0.995 * 0.975 0.750
Control Tleum 14 341.365 345.910 152.660 327.286 8.034 0.995 0.975* 0.749 *
Goji Tleum 13 410.027 396.468 169.947 355.000 8.149 0.996 0.968 * 0.700 *
Control Caecum 14 683.149*  640.207 * 274313 * 534.714 8.734 0.997 0.965 0.674
Goji Caecum 11 553.633 * 555.73 * 235517 * 494.909 8.642 0.997 0.966 0.687
Control Colon 14 621.580 616.796 271.393 529.929 8.731 0.997 0.966 * 0.682*
Goji Colon 13 656.245 638.687 265.692 543.385 8.744 0.997 0.964 * 0.666 *

3.5. Beta Diversity Index (Clustering Treatment X Anatomic Portion)

Figure 6a shows the clustering of samples (C and G groups) from Bray—-Curtis dissimi-
larities (first three dimensions from non-metric multidimensional scaling). The distance
between groups were significantly different (p < 0.01) from permutational multivariate
analysis of variance (PERMANOVA, 999 permutations). This difference appeared to vary
along the gastrointestinal tract, with jejunum, caecum, and colon showing the clearest
differences, while the two groups mostly overlapped in the stomach, duodenum, and ileum
(Figure 6b: first two NMDS dimensions only).

3.6. Caecal Lactic Acid and Ammonia Quantification

Regarding lactic acid quantification, G group showed a higher concentration than
C group, suggesting higher bacterial activity (3.91 & 1.59 and 1.01 £+ 1.22 mmol/kg in C
and G groups, respectively; p = 0.033). No significant differences in ammonia concentration
were detected between the two groups (5.81 & 2.22 and 5.89 £ 1.81 mmol/kg in C and
G groups, respectively; p = 0.305).
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Figure 5. Distribution of the F:B ratio (x-axis) along the digestive tract in Goji-treated (blue) and con-
trol (red) rabbits from 1000 bootstrapping replicates of the data. For the analyses, 14 and 13 samples
were used for the control and Goji groups, respectively.
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Figure 6. (a): Non-metric multidimensional scaling plot of Bray-Curtis dissimilarities estimated from
the OTU table. The plots show the first three NMDS dimensions (from left to right: dimensions
one and two, one and three, two and three). Control samples in red circles, Goji-treated samples in
blue triangles. (b): First two dimensions from the non-metric dimensional scaling of Bray-Curtis
dissimilarities between control and Goji-treated samples along the digestive tract of rabbits. For the
analyses, 14 and 11-13 samples were used for the control and Goji groups, respectively.

4. Discussion

Diet is one of the main factors affecting the composition of the microbiota in the
digestive tract due to the relation between nutrients and microbial populations [44]. The
bacterial populations inhabiting the different gastrointestinal compartments of the rabbit
have been previously described [18]. For the first time, this study investigated the effect
of Goji berry supplementation on microbiota composition in the different tracts of the
digestive system and on caecal bacterial fermentations of adult rabbits.

The results of the present study showed a prevalence of Firmicutes in all the anatomic
tracts in both experimental groups. This phylum is classified as the most efficient cellulose
degrader [45] and it plays a fundamental role in rabbit digestion. Similar results were
reported by both Cotozzolo et al. [18] and Arazzuria et al. [46]. This result was also
supported by other studies investigating not only the caecal microbiota of rabbits [47,48]
but also the gastrointestinal content and feces of both wild and domestic rabbits [49]. This is
a common condition not only in hindgut fermenters, such as rabbits, but also in ruminants
and monogastric animals [50].

Bacteroidetes was the second most abundant phylum, especially in the large intestine
(caecum and colon tracts), and was slightly predominant in the G group. This phylum, not
significantly different between the two groups and along the digestive tracts, is known
for its role in the stimulation of gut-associated lymphoid tissue [46,48]. The abundance of
Bacteroidetes is in accordance with what was already observed by Cotozzolo et al. [18]
on the rabbit gastrointestinal microbiota and by Crowley et al. [49] on both domestic
and wild rabbits. A further analysis of our samples with a shotgun metagenomic or
metatranscriptomic approach, combined with immunological assays, could provide more
information about the role of this relevant phylum in gut immunity.

Regarding other phyla, Verrucomicrobia were found in all sections, while Actinobac-
teria and Proteobacteria were found in the stomach and small intestine. Although with
low levels in the core microbiome, the Euryarchaeota phylum, belonging to the kingdom
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Archea, was statistically different between the two groups, with higher levels in the G group
in all the digestive tracts. All species of this phylum were taxonomically assigned to the
methanogenic genus Methanobrevibacter [51]. Though this phylum is not very common in
the intestinal microflora of some species, such as horses and pigs [18], it is often found in
the human gut with the role of increasing polysaccharide digestion by consuming the end
products of bacterial fermentation [52].

Clostridia, anaerobic Gram-positive bacteria present in the intestinal microbiota of
human, mouse, chicken, and pig, represented the major class in all anatomic regions,
in accordance with Velasco-Galilea and co-workers [51]; they are prevalent, cellulose-
degrading symbiotic microorganisms, helping the rabbit for plant material digestion [51].

The families of Ruminococcaceae and Lachnospiraceae were present in all anatomic
parts, and both were higher in the G group. Ruminococcaceae are usually prevalent in
healthy rabbits [53], while Lachnospiraceae is known to be associated with a decrease of
mortality [54]. These two families appear to have an important role in fiber digestion, in
particular of peptose and cellulose [55], and are significant producers of short-chain fatty
acids [56]. Moreover, as previously reported [4], in mice a diet with Goji supplementation
promotes butyrate-producing bacteria, including Lachnospiraceae and Ruminococcaceae
families, preventing colitis; their high levels in the digestive apparatus also allow protective
and beneficial effects towards different diseases, such as diabetes and heart disease [57].

Lactobacillaceae was another family that showed significant differences between the
two groups, although present in small quantities. Within this family, Lactobacillus was the
predominant genus. Lactobacilli are rare in the rabbit intestine, occupying less than 1% of
the total intestinal bacteria [58], and their function in gut health is not fully understood. A
recent study has shown that the total intestinal bacteria from rabbits tends to induce a higher
inflammatory level than the total intestinal bacteria from chickens or pigs [59], probably
because of the low abundance of Lactobacilli in the rabbit’s intestine. Thus, the higher
Lactobacillus abundance in rabbits supplemented with Goji could play a protective role
against inflammatory diseases. Components of commensal bacteria can alleviate intestinal
inflammation by regulating the expression of both pro-inflammatory and anti-inflammatory
factors. Kawashima et al. [60] reported that bacterial double-stranded RNA, abundant in
Lactobacillus bacteria, showed a regulatory function by triggering anti-inflammatory factor
IFN-B production and inhibiting pro-inflammatory factors production.

The F:B ratio was at around 10 in the stomach, then increased in the duodenum and
jejunum, and subsequently progressively decreased from the ileum to the caecum and
colon. The F:B ratio appeared to be lower in the G group, significantly so in the duodenum
and jejunum, less so in the ileum, caecum and colon, as also shown by the bootstrapping
analysis. Studies in human microbiota and in animal models, have reported that the F:B
ratio was directly related to body weight modifications and in particular to obesity [61]. In
obese people, the population of Firmicutes shows an elevated proportion with a reduced
Bacteroidetes population; this unbalance causes an altered F:B ratio [62]. Additionally,
a strong correlation between the F:B ratio and milk fat yield has been observed in dairy
cattle [63]. In previous studies, feed supplementation in livestock has been reported to alter
the F:B ratio in the gut microbiota (e.g., grape pomace supplementation in cattle [38]). Fur-
ther studies could investigate the link between Goji intake, F:B ratio and lipid metabolism
in rabbits.

The alpha diversity results revealed higher microbial richness and diversity in bac-
terial composition independently from the treatments in the large intestine. That was an
expected result because, as already demonstrated in other livestock species, the microbial
densities (and also diversity) along the gastrointestinal tract is maximal in the fermenting
compartments [64]. Indeed, Cotozzolo et al. found alpha diversity of the cecum and colon
to be significantly higher than for the other compartments of the rabbit gastrointestinal
tract [18]. As previously reported [18], this variability, typical of colon and caecum tracts, is
due essentially to their physiological functions, such as fermentation of cellulose with pro-
duction of volatile fatty acids (VFA) and their absorption for energy production. Goji berry
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supplementation caused higher microbial richness, especially in the jejunum, ileum, and
colon tracts, where six indexes were significantly different in the jejunum (ACE, Fisher’s
alpha, observed n. of OTUs, Shannon and Simpson diversity), two in the ileum (Equitability
and Simpson E), three in the caecum (Chaol, ACE, Fisher’s alpha), and two in the colon
(Equitability and Simpson E). In particular, the principal families involved in the microbial
richness were Ruminococcaceae and Lachnospiraceae, as well as Lactobacillus spp. These
conditions could guarantee greater resilience toward dysbiosis in the gut microbiota, which
is necessary to maintain homeostasis and, in turn, the healthy status of the gastrointestinal
system [65]. The beta diversity was greatly influenced by Goji treatment, especially in cae-
cum and colon tracts, which play fundamental roles in the digestion of fermenter animals,
such as rabbits. Conversely, less influence of this treatment was found in the stomach,
duodenum, and ileum tracts.

The differences in microbiota composition are due to the environmental conditions,
such as pH modifications, along the gastrointestinal tract. In adult rabbits, the principal
substrates for caecal microorganisms are polysaccharides and protein. Caecal microorgan-
isms ferment available nutrients, converting them to metabolites (e.g., short-chain VFA,
ammonia, Hy, CHy, CO;) and compounds that are incorporated into microbial cells [66].
Our results for caecal bacterial fermentations indicate that Goji berry supplementation
did not influence proteolytic activity and ammonia production. On the other hand, Goji
supplementation stimulated lactic acid fermentation, indicating changes in the intestinal
microbiota in favor of specific bacterial populations. The caecum represents the main site
of fermentative activity in the rabbit due to the presence of an abundant microbial flora [1].
Rabbits produce large amounts of VFA and lactate by fermentation of dietary carbohy-
drates, such as xylan and pectin, in the hindgut [67-69]. Lactobacilli are strong producers
of lactic acid and, for this reason, can compete against pathogenic bacteria [70]. Regarding
Goji berry supplementation, several authors [71,72] have confirmed the beneficial effects of
this integration on the physiology and health of the gut acting on the intestinal microbiota
composition of human and mice. Castrica et al. [15] reported that the incorporation of 3%
w/w of Goji berries in the rabbit diet was able to increase the Lactobacilli population in
rabbit meat.

This is a preliminary study on the effect of Goji berry supplementation on gastrointesti-
nal microbiota of the rabbit and, although its practical implications are currently limited, it
may represent a starting point for future exploratory research. Further experimental trials
could be addressed to evaluate whether caecal fermentative activities (VFA production)
could be affected by changes in microbial community composition. Moreover, evaluation
of digestive efficiency by performing an in vivo digestibility trial could integrate the study
of the microbiota composition of the rabbit. Finally, it could be interesting to evaluate the
impact of microbiota modification on the maturation and activity of the immune system, as
well as on resistance to infectious diseases, animal welfare and the productive performance
of the rabbit.

5. Conclusions

The present study demonstrated that Goji berry supplementation can modulate gas-
trointestinal microbiota composition and caecal fermentations of the rabbit. In particular,
Lycium barbarum fruit increased the growth of the phylum Bacteroidetes as well as of
Ruminococcaceae, Lachnospiraceae, and Lactobacillus in the caecum and colon, and as a
consequence, lactic acid production. The mechanism of absorption and integration of the
bioactive molecules contained in the fruit, and their influence on the microbiota population,
should be investigated to appropriately use Goji berries’ probiotic properties. The use of
this natural compound needs to be further studied for its implications for both commercial
performance and animal resistance to infection, as its supplementation could reduce the
incidence of health problems in livestock and consequent antibiotic treatments.
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