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A B S T R A C T   

The field of veterinary diagnostic imaging is undergoing significant transformation with the integration of 
artificial intelligence (AI) tools. This manuscript provides an overview of the current state and future prospects of 
AI in veterinary diagnostic imaging. 

The manuscript delves into various applications of AI across different imaging modalities, such as radiology, 
ultrasound, computed tomography, and magnetic resonance imaging. Examples of AI applications in each mo
dality are provided, ranging from orthopaedics to internal medicine, cardiology, and more. Notable studies are 
discussed, demonstrating AI’s potential for improved accuracy in detecting and classifying various abnormalities. 

The ethical considerations of using AI in veterinary diagnostics are also explored, highlighting the need for 
transparent AI development, accurate training data, awareness of the limitations of AI models, and the impor
tance of maintaining human expertise in the decision-making process. The manuscript underscores the signifi
cance of AI as a decision support tool rather than a replacement for human judgement. 

In conclusion, this comprehensive manuscript offers an assessment of the current landscape and future po
tential of AI in veterinary diagnostic imaging. It provides insights into the benefits and challenges of integrating 
AI into clinical practice while emphasizing the critical role of ethics and human expertise in ensuring the 
wellbeing of veterinary patients.   

1. Introduction 

Nowadays, diagnostic imaging is a fundamental step in the clinical 
evaluation of veterinary patients, and this is driving a growing demand 
for veterinarians specialized in this field. Diagnostic imaging is also 
complementary to several other disciplines, such as internal medicine, 
surgery, neurology, oncology, and obstetrics. Given this context the 
quick and reliable interpretation of veterinary imaging data is evidently 
paramount for every busy veterinary clinical practice. Although no 
official data is available on this occurrence, those people currently 
working in small animal clinics commonly find that the number of 
diagnostic imaging studies produced far exceeds specialists’ ability to 
assess them. Hence, the need for tools and solutions to assist general 
practitioners during their in daily routine is steadily increasing, and 

artificial intelligence (AI) tools are gaining popularity, due to the 
promise of their ease of use and potentially unlimited scope. In fact, the 
AI tools market is swiftly expanding as more and more potential appli
cations are tested out and the number of market players is growing. 

The core idea of AI is to create machines capable of performing ac
tions that typically require human abilities (Lecun et al., 2015). AI is a 
broad term including a variety of different algorithm types, such as 
machine learning (ML), which in turn encompasses the most complex 
deep learning (DL) algorithms. ML algorithms often require manual 
feature extraction and validation, while DL leverages deep neural net
works to automatically extract complex features from raw data, thus 
overcoming the need for manual feature engineering. The recent flour
ishing of both research and commercial applications using deep neural 
networks for the automatic interpretation of diagnostic images has been 
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driven in part by the lack of available certified veterinary radiologists, 
and the need to support overworked specialists and, therefore, prone to 
interpretation errors. Last but not least, the opportunity to establish an 
economically viable enterprise represents another important driving 
force. 

In human medicine, the “effect of” of diagnostic imaging errors has 
been thoroughly investigated, mainly in terms the potential impact of 
such errors on the patients and, ultimately, on hospital administrations 
(Siewert et al., 2008; Yun et al., 2017a). Oversight involving a lesion in 
an overlooked anatomical area (often referred to as a blind spot), failure 
to detect lesions due to improper use of the window settings, superim
position of lesions, or atypical presentation of a lesion are all examples of 
factors that can lead to errors in interpretation in diagnostic imaging 
(Yun et al., 2017a). Despite advancements in experience, knowledge and 
technology over recent decades, the error rate in diagnostic imaging has 
remained constant (e.g. <15% for thoracic radiographic studies, and 
16% for abdominal tomographic studies) (Yun et al., 2017b). Several 
strategies to reduce human error - such as using dynamic (e.g. tomo
graphic) rather than static (e.g. radiographic) images to mitigate the 
effects of fatigue, or having a second reader double-read the images - 
have been proposed (Degnan et al., 2019; Krupinski et al., 2012). The 
deployment of AI-based products to assist radiologists during image 
acquisition and interpretation is recommended by several authors in 
human medicine literature (Degnan et al., 2019; Hardy and Harvey, 
2020). The prevalence of interpretation errors in veterinary medicine 
has not been studied as extensively as in human medicine (Cohen et al., 
2023; Lamb et al., 2007). 

The literature on DL algorithms applied in the field of veterinary 
image diagnostics is of a relatively limited quantity compared to what is 
available in human medical literature. The development of these tech
nologies has indeed reached outstanding levels across all application 
domains in human medicine, facilitated by extensive databases and 
driven by the need for advanced tools to support radiologists. 
Conversely, the available veterinary literature is still quite patchy, and 
only a few studies span different application fields. 

The purposes of this review are: to assess the current state of the art 
of AI in veterinary diagnostic imaging; to provide the reader with an 
overview of the possible future directions of AI in both research and the 
market; and to review the AI ethics that all developers and retailers 
should respect. 

2. Applications of AI in veterinary diagnostic imaging 

2.1. Conventional radiology 

Twenty-four papers on conventional radiology AI applications are 
presented below and synthetically reported in Table 1. 

2.1.1. Orthopaedics 
There is a lack of studies exploring AI use on orthopaedic imaging; 

the few available papers focus on the evaluation of hip radiographs. A 
handful of articles have been published on stifle joints and long- bone 
fractures. 

A recent online search of the PubMed, Scopus, and Web Of Science 
databases from January 2000 to November 2023, using the keywords 
(“radiology” OR “radiographic” AND “elbow” AND “veterinary” OR 
“veterinary medicine”) failed to reveal AI use for the automatic evalu
ation of elbow dysplasia. McEvoy and Amigo (Mcevoy and Amigo, 2013) 
developed a deep neural network (Artificial Neural Network- ANN) and 
a linear regression model to determine whether the hip was present in an 
image. The ML model performed better, showing a higher sensitivity 
(89% vs. 86%) and a lower classification error (6.7% vs. 8.9%) than the 
ANN did, despite the database being small (256 hip X-ray images from 
60 dogs) for a neural network. McEvoy et al. (McEvoy et al., 2021) fine- 
tuned a pre-trained convolutional neural network (CNN), YOLO v3- 
Tiny, using a database of almost 16,300 hip radiographs classified 

according to Fédération Cynologique Internationale (FCI) scores, both 
for hip joint detection and for binary classification of dysplasia (grades 
A-B vs. C-E). The model showed a poor sensitivity (53%), but high 
specificity, positive and negative predictive values (92%, 91% and 81%, 
respectively). Ergun and Guney (Ergun and Guney, 2021) used 3437 
images of long bones (femur, tibia, humerus, radius-ulna) to train three 
different CNNs to solve three tasks: determining dog age; dating frac
tures; detecting fractures. The CNN based on the ResNet-50 architecture 
showed the best performance (F1 = 0.80, 0.81 and 0.89 respectively for 
the three tasks), with high accuracy (0.80, 0.83 and 0.89, respectively). 
A CNN to classify common canine stifle joint diseases (patellar devia
tion, drawer sign, osteophyte formation, and presence of joint effusion) 
was developed by Shim et al. (Shim et al., 2023). The study was designed 
with two steps. During the first step. 200 cropped X-rays were used to 
train an Inception-v2-based model to detect the main components of the 
joint (stifle joint region itself, patellar, and infrapatellar fat pad). The 
results were good, with an average precision (AP) between 0.99 and 1, 
meaning that the model was able to correctly classify the joint compo
nents in almost all cases. During the second step 2218 radiographs were 
used to train a ResNet-based model to classify stifle abnormalities: ac
curacy values ranged between 81.25% (for drawer sign) and 93.18% (for 
patellar deviation), and sensitivity between 79.41% (for drawer sign) 
and 89.7% (for patellar deviation). These results were then compared 
with the classifications performed by expert radiologists, with congru
ency values >80% for all the stifle joint diseases considered. 

2.1.2. Thorax 
The automatic evaluation of thoracic radiographs is the most widely 

investigated application of CNN-based models in veterinary literature. 
Interestingly, most of the studies focus on dogs, while just two are on 
cats. Yoon et al. (Yoon et al., 2018) compared a ML algorithm (bag of 
feature - BOF) with a CNN to evaluate - using a binary classification of 
normal vs. abnormal - the cardiac silhouette, lung, presence of medi
astinal shift, and pleural space. In particular, the algorithms were 
trained to distinguish between the normal or abnormal appearance of 
each area separately. Unsurprisingly, the CNN model showed higher 
accuracy (92.9% - 96.9% vs. 79.6% - 96.9% for BOF) and sensitivity 
(ranging from 92.1% - 100% vs. 74.1–94.8% for BOF). 

In Kim et al. (Kim et al., 2022) the authors used a commercially a 
commercially available AI-based software (Vetology Innovations, San 
Diego, CA, USA) for possible cardiogenic pulmonary edema (CPE) on 
500 canine thoracic radiographs. The same radiographs were also 
evaluated by a certified radiologist, whose reports were used as refer
ence standards for final diagnoses. The AI Vetology software discarded 
19 images for technical or quality issues, and obtained accuracy, spec
ificity and sensitivity of 92.3%, 92.4% and 91.3% respectively. On the 
other hand, a negative predictive value (NPV) of 99% was reached, with 
a positive predictive value (PPV) of 56%, suggesting that if a diagnosis of 
presence of CPE is given by the software, a more careful evaluation of 
the patient should be done. 

The same AI-based software was used in two other studies. The first 
one by Muller et al. (Müller et al., 2022) took into consideration the 
presence of pleural effusion on a relatively small dataset of radiographs 
(62 dogs, 21 as control group and 41 as confirmed pleural effusion 
cases). In this case, the software showed accuracy, sensitivity and 
specificity of 88.7%, 90.2% and 85.7% respectively, with NNP and PPV 
of 81.8% and 92.5%. The second one by Pomerantz et al. (Pomerantz 
et al., 2023) used Vetology AI-based software to evaluate the CT- 
confirmed presence of pulmonary nodules/masses in 56 dogs. A con
trol group of 32 dogs with normal thorax was also included in the study. 
The AI model showed accuracy, sensitivity and specificity of 69.3%, 
55.4% and 93.7% respectively. This study reiterated the capacity of 
these algorithms to assist in veterinary daily routines while underscoring 
the ongoing importance of patient assessment by an expert radiologist. 

In Ott et al. (Ott et al., 2021), the authors trained and compared five 
different DL models for detecting pulmonary coccidioidomycosis 
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Table 1 
Peer-reviewed veterinary AI publications concerning conventional radiography.  

Topic Reference Task Species Model Results 

Orthopaedics       
Mcevoy and Amigo, 
2013 

hip identification dog ML sensitivity 89%      

classification error 6.7%     
DL sensitivity 86%      

classification error 8.9%  
McEvoy et al., 2021 hip dysplasia classification dog DL sensitivity 53%      

specificity 92%      
PPV 91%      
NPV 81%  

Ergun and Guney, 
2021 determining age from long bones images dog DL accuracy 80%; F1 0.80   

dating long bones fractures   accuracy 83%; F1 0.81   
detecting long bones fractures   accuracy 89%; F1 0.89  

Shim et al., 2023 stiffle joint components identification dog  avarage precision >0.99   
stiffle joint abnormalities classification  DL accuracy 81.25% - 93.18%      

sensitivity 79.41% - 89.70% 
Thorax       

Yoon et al., 2018 
normal vs abnormal cardiac silhouette and thoracic 
portions dog ML accuracy 79.6% - 96.9%      

sensitivity 92.9% - 96.9%     
DL accuracy 74.1–94.8%      

sensitivity 92.1% - 100%  
Kim et al., 2022 presence/absence of cardiogenic pulmonary edema dog Vetology® accuracy 92.3%      

sensitivity 91.3%      
specificity 92.4%  

Müller et al., 2022 presence of pleural effusion dog Vetology® accuracy 88.7%      
sensitivity 90.2%      
specificity 85.7%  

Pomerantz et al., 2023 presence of pulmonary nodules/masses dog Vetology® accuracy 69.3%      
sensitivity 55.4%      
specificity 93.7%  

Ott et al., 2021 detecting pulmonary coccidioidomycosis lesions dog DL AUC of 0.99  
Banzato et al., 2021a detecting common radiographic findings dog DL accuracy >90%  

Fitzke et al., 2021 
detecting thoracic and extra-thoracic radiographic 
abnormalities dog+cat DL AUROC 0.687–0.994      

FPR 0–0.057      
Sensitivity 0–0.962  

Banzato et al., 2021b detecting common radiographic findings dog DL AUC >0.5 - >0.8  
Dumortier et al., 2022 normal vs abnormal cat DL accuracy 82%      

sensitivity 88%      
specificity 75%  

Boissady et al., 2020 primary thoracic lesions classfications dog DL overall error rate 10.7%     
Radiologist overall error rate 17.2%     
DL + Radiologist overall error rate 16.8%  

Hespel et al., 2022 primary thoracic lesions classfications dog DL overall error rate 15.8%     
Radiologist overall error rate 13%  

Celniak et al., 2023 primary thoracic lesions classfications dog+human DL ROC AUC 0.77 (LL radiographs)      
ROC AUC 0.66 (DV radiographs) 

Cardiac silhouette       
Li et al., 2020 detecting left atrial enlargement dog DL accuracy 82.71%      

sensitivity 68.42%      
specificity 87.09%      
concordance with radiologist 
85.19%  

Burti et al., 2020 classification of cardiomegaly based on VHS value dog DL AUC of 0.97  

Boissady et al., 2021 automatically measuring VHS dog + cat 
DL and 
Radiologist concordance >0.9  

Zhang et al., 2021 identification of landmarks for calculating VHS dog DL average performance 90.9%  
Jeong and Sung, 2022 determining adjusted heart volume index (aHVI) dog DL ROC AUC 0.77–0.83  

Valente et al., 2023 classification of canine MMVD stages dog DL AUC 0.77–0.88 for different 
stages 

Image quality 
analysis       

Tahghighi et al., 2023 assessing proper collimation dog + cat DL accuracy 83.17%  
Banzato et al., 2023 determining the most common technical errors dog DL accuracy 81.5% (LL radiographs)      

accuracy 75.7% (sagittal 
radiographs) 

ML: machine learning; DL: deep learning; PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve; AUROC: area under the receiver 
operating characteristic; FPR: false positive rate; ROC: receiver operating characteristic; VHS: vertebral heart score; aHVI: adjusted heart volume index; MMVD: 
myxomatous mitral valve disease; LL: latero-lateral; DV: dorso-ventral. 
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lesions, a parasitic infection and potential zoonosis that is increasingly 
prevalent in the southern United States. Radiographic signs of coccidi
oidomycosis are an interstitial nodular pattern with hilar lymphade
nopathy. Once again, ResNet outperformed the remaining networks, 
with an (Area Under the Curve) AUC of 0.99. Banzato et al. (Banzato 
et al., 2021a) trained two different CNNs (ResNet-50 and DenseNet-121) 
on canine thoracic radiographs to detect some of the most common 
radiographic findings. The best-performing CNN was based on ResNet- 
50 with an overall AUC >0.8. Accuracy was particularly high (>0.9) 
for alveolar pattern, interstitial pattern, megaesophagus, and 
pneumothorax. 

In a noteworthy study by Fitzke et al.(Fitzke et al., 2021), a multi
centric dataset comprising over 2.5 million canine and feline thoracic 
and extra-thoracic radiographs was employed to train a DL model for the 
recognition of various abnormalities. A natural language processing 
(NLP) algorithm was used to extract labels from the corresponding re
ports. The study reported promising results in terms of AUROC (ranging 
from 0.687 to 0.994), false positive rate (ranging from 0 to 0.057), and 
sensitivity (ranging from 0 to 0.962). However, the most noteworthy 
achievement was a significant improvement in the generalizability of 
the overall results. 

The two studies on the analysis of feline thoracic radiographs are by 
Banzato et al. (Banzato et al., 2021b) and Dumortier et al. (Dumortier 
et al., 2022). In Banzato et al. (Banzato et al., 2021b), two neural net
works (ResNet 50 and Inception V3) were trained on the detection of 
some of the most common radiographic findings (bronchial pattern, 
pleural effusion, mass, alveolar pattern, pneumothorax, cardiomegaly, 
no findings)(Banzato et al., 2021b). Both networks achieved good per
formances (AUC >0.8) for almost all findings, except for cardiomegaly 
(AUC > 0.7) and mass (AUC > 0.5). Dumortier et al. (Dumortier et al., 
2022) used the ResNet50V2 neural network to classify feline thoracic 
images as normal or abnormal by using the contrast-enhanced method 
and manually segmented images(Dumortier et al., 2022). Despite its 
promising results, the small database (500 radiographs) and the need for 
manual image segmentation severely limit application of this method in 
clinical practice. 

In Boissady et al. (Boissady et al., 2020) the authors aimed to 
establish the error rate for three different CNNs in classifying 15 primary 
thoracic lesions. Once the best-performing network was selected, the 
error rates for the neural network alone, the veterinarians alone, and the 
CNN-assisted veterinarians were compared and analysed. The CNN 
alone showed a significantly lower global error rate for some lesions (e. 
g.: cardiac enlargement and bronchial pattern) than the unassisted 
veterinarians or the CNN-assisted veterinarians did. The authors hy
pothesized this may have been due to the veterinarians’ poor confidence 
in the relatively new CNN tool and its proposed classification. Hespel 
et al. (Hespel et al., 2022) instead compared the error rates for four pre- 
trained CNNs with those for 13 veterinary radiologists in classifying 15 
primary thoracic lesions. In this research, the radiologists’ error rate was 
equal to (and sometimes lower than) that of at least one of the four pre- 
trained networks, except in the case of oesophageal dilation, where two 
of the four networks had significantly lower error rates than their human 
counterpart. 

Celniak et al. (Celniak et al., 2023) recently pre-trained a DL algo
rithm on a large-scale database containing both human and canine data: 
using a self-supervised learning approach, this achieved higher classi
fication accuracy for some lesions (pleural effusion, pneumothorax) 
than customary DL approaches did (Banzato et al., 2021a). 

2.1.3. Cardiac silhouette 
Several studies specifically on developing AI systems for the auto

matic evaluation of cardiac silhouette have been published. 
Li et al. (Li et al., 2020) developed a CNN (Visual Geometry Group 

16) to detect left atrial enlargement on lateral thoracic radiographs. A 
database of 792 patients’ echocardiograms classified as “positive” or 
“negative” for left atrial enlargement was used, and the classifications by 

the CNN and by the board-certified radiologists were performed. The 
developed CNN-based model classified the images with an 82.71% ac
curacy, a 68.42% sensitivity and an 87.09% specificity, and with an 
85.19% concordance between CNN and veterinary radiologists. Burti 
et al. (Burti et al., 2020) compared four different CNNs’ accuracy for the 
binary (positive or negative) classification of cardiomegaly based on 
Vertebral Heart Score (VHS): the best performing CNN was based on 
ResNet-101 and had an AUC of 0.97. Boissady et al. (Boissady et al., 
2021) trained a 121-layer DenseNet CNN to automatically measure VHS 
on lateral radiographs, albeit with a relatively small test set (30 canine 
and 30 feline thoracic radiographs). Agreement between the VHS mea
surements by the two board-certified radiologists involved and the AI 
algorithm-measured VHS was high (>0.9) for both the canine and the 
feline radiographs. Zhang et al. (Zhang et al., 2021) published a tech
nical study on training neural networks to identify the necessary land
marks for calculating VHS in lateral radiographs. More specifically, 
HRNets were trained to locate 12 thoracic vertebrae and the four points 
on the cardiac silhouette required for tracing the long and short axes, 
resulting in an average performance of 90.9%. In everyday clinical 
practice, this could assist veterinarians in calculating VHS more objec
tively. In Jeong and Sung (Jeong and Sung, 2022), a new automated 
method for evaluating cardiac dimensions based on the estimated entire 
cardiac area, namely adjusted heart volume index (aHVI), was devel
oped. This method showed a similar performance to VHS in predicting 
left atrial (LA) enlargement, left ventricular (LV) enlargement and 
combined LA + LV enlargement. In Valente et al. (Valente et al., 2023), a 
ResNet18-based CNN was trained to classify different stages (B1, B2, C 
+ D) of canine myxomatous mitral valve disease based on the American 
College of Veterinary Internal Medicine guidelines. The algorithm was 
trained on two distinct sets of radiographs, consisting of 728 sagittal and 
514 lateral images. Notably, the best classification performance was 
achieved for the lateral images, with AUC values of 0.87, 0.77 and 0.88 
for the B1, B2 and C + D stages, respectively. 

2.1.4. Radiograph image quality analysis 
Obtain high-quality images is paramount to achieve a correct diag

nosis, regardless of which diagnostic imaging technique is used. Two 
studies focused on the application of DL algorithms for assessing 
radiographic image quality exist in the veterinary literature. In the first 
study, by Taghighi et al. (Tahghighi et al., 2023), a multilayer percep
tron neural network was trained to assess proper collimation on a group 
of 900 sagittal chest radiographs of dogs and cats. The algorithm was 
trained to recognize the inclusion of lung fields by evaluating the cranial 
and caudal boundaries within the previously segmented thoracic area. 
The model achieved accuracy values of 83.17% and an F1 score of 87%. 
The second study, by Banzato et al. (Banzato et al., 2023), focused more 
specifically on determining the most common technical errors in canine 
thoracic radiographs. To do this, the authors fine-tuned the pre-trained 
ResNet-50 network on a dataset of 6028 lateral and 4053 sagittal ra
diographs, aiming to classify each image as correct or as having at least 
one of the following errors: rotation, underexposure, overexposure, limb 
mispositioning, neck mispositioning, blurriness, cut-off, and presence of 
foreign objects/medical devices. The algorithm showed an overall ac
curacy of 81.5% for lateral radiographs, and 75.7% for sagittal images, 
with the most common technical errors both in lateral and sagittal ra
diographs being limb mispositioning and underexposure. 

2.2. Ultrasound 

Only two studies to date have highlighted of AI-based algorithms’ 
potential in the field of veterinary ultrasonography, focusing particu
larly on ML with texture analysis, and with both studies primarily on 
liver-related applications. The first study (Banzato et al., 2015) com
bined ultrasound and cytology to assess diagnostic efficacy in cases of 
diffuse liver disease in dogs and cats. The second study (Banzato et al., 
2016) used texture analysis in combination to estimate the 
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triacylglycerol content of the livers of dairy cows. 
In the research by Banzato et al. (Banzato et al., 2018a), a transfer- 

learning approach was applied to modify and enhance a pre-trained 
neural network (AlexNet) to detect degenerative hepatic diseases from 
ultrasound images of canine livers. This study involved 48 dogs sus
pected of having liver disease, confirmed by standard histopathology 
results. The new model’s output demonstrated greater diagnostic accu
racy than did the results from serum biochemical markers (alanine 
aminotransferase and aspartate aminotransferase), hepatic cytology, 
and histopathology: the model correctly classified 82% of the test-set 
images, with an AUC of 0.91, a sensitivity of 100%, and a specificity 
of 83%. 

2.3. Computed tomography 

AI-based methods for the automatic evaluation of veterinary 
computed tomography (CT) images have only seldom been explored in 
veterinary literature. The main AI applications in CT are for automatic 
classification of images and in for automatic segmentation of lesions. 
Eleven papers are presented below and synthetically reported in Table 2. 

2.3.1. Automatic classification of abdominal and pulmonary lesions 
To date all the available papers using AI for classification purposes 

have been based on applying ML algorithms to manually crafted de
scriptors (lesion Hounsfield Unit, lesion dimensions, margin character
istics, etc..) or to lesion texture analysis for case classification. Burti et al. 
(Burti et al., 2021) proposed a decision tree to classify focal liver lesions 
based on several imaging descriptors such as well-defined margins, 
irregular surface, or cyst-like appearance. The developed decision tree 
had a moderate accuracy (62%) for classifying lesions. In particular, this 
decision tree had a high specificity in classifying a category named 
“other benign lesions” (containing all the benign lesion other than 
nodular hyperplasia), and hepatocarcinoma. Pey et al. (Pey et al., 2022) 
established a 7-point scale for predicting the vascular invasion of adre
nal tumors. Here a decision tree was developed, based on imaging 

features, to distinguish between pheochromocytoma and adrenocortical 
tumour. Unfortunately, several histopathological categories were not 
included in the decision tree, significantly restricting its clinical appli
cations. Burti et al. (Burti et al., 2022) also developed a decision tree for 
classifying splenic lesions from their CT features. In this case too, some 
histopathological categories were not included in the decision tree, 
largely limiting its clinical applications. Shaker et al. (Shaker et al., 
2021) used ML on texture features extracted from CT images to distin
guish between benign and malignant hepatic lesions, deploying a 
quadratic discriminant analysis model for lesion classification. This 
model had a moderate accuracy (0.73) in distinguishing between benign 
and malignant focal liver lesions. Marschner et al. (Marschner et al., 
2017) used texture analysis of CT lung images to detect 
thromboembolism-related changes in dogs. Here the authors used least 
square discriminant analysis and support vector machines. In this study, 
the authors have used Least Square Discriminant Analysis and Support 
Vector Machines to distinguish between normal lungs, diseased lungs 
affected by pulmonary thromboembolism, and diseased lungs without 
pulmonary thromboembolism. The developed method had high accu
racy in a binary classification task (normal vs diseased) but failed to 
distinguish between diseased lungs affected by pulmonary thrombo
embolism and diseased lungs without pulmonary thromboembolism. 
Lastly, Choi et al. (Choi et al., 2023a) developed a ML method based on 
texture analysis to distinguish between splenic nodular hyperplasia and 
splenic hemangiosarcoma. However, the small number of cases included 
in the study (23) and the limited number of histopathological classes 
included (nodular hyperplasia and splenic hemangiosarcoma) both 
make the usefulness of this method questionable. 

2.3.2. Automatic segmentation of organs and lesions 
The other important application of AI on CT images is lesion detec

tion and segmentation. This task is important mainly for radiation 
oncology but can be also implemented in other clinical settings. A spe
cial type of DL architecture called U-Net (Ronneberger et al., 2015). The 
U-Net model and its variants are examples of hierarchical encoder- 

Table 2 
Peer-reviewed veterinary AI publications concerning computed tomography.  

Topic Reference Task Species Model Results 

Automatic classification of abdominal and 
pulmonary lesions       

Burti et al., 2021 classification of focal liver lesions dog ML accuracy 62%  

Pey et al., 2022 
distinction between pheochromocytoma and 
adrenocortical tumour dog ML 

CVC invasion: accuracy 
81% - 91%      
RV invasion: accuracy 
60% - 88%      
PAV invasion: accuracy 
58% - 60%  

Burti et al., 2022 classification of focal splenic lesions dog ML overall accuracy 0.67  

Shaker et al., 2021 
distinguish between benign and malignant hepatic 
lesions dog ML accuracy 73%  

Marschner et al., 
2017 detection of pulmonary thromboembolism dog 

ML (PLS- 
DA) sensitivity 94%      

specificity 96%     
ML (SVM) sensitivity 99%      

specificity 100%  

Choi et al., 2023a 
distinction between splenic nodular hyperplasia and 
hemangiosarcoma dog ML accuracy 95.7% 

Automatic segmentation of organs and 
lesions       

Ji et al., 2022 evaluation of kidney volume dog DL Lin’s CCC 0.95  
Ji et al., 2023 detecting kidney stones on pre-contrast CT dog DL DSC 0.74  
Park et al., 2021 segmentation of head and neck organs dog DL DSC 0.83  
Groendahl et al., 
2023 segmentation of canine head and neck cancer dog DL overall DSC 0.52  
Schmid et al., 
2022 

segmentation of the medial retropharyngeal lymph 
nodes 

dog DL AIOU of 36% ± 20% 

ML: machine learning; CVC: caudal vena cava; RV: renal vein; PAV: phrenicoabdominal vein; PLS-DA: partial least square discriminant analysis; SVM: support vector 
machine; DL: deep learning; Lin’s CCC: Lin’s concordance correlation coefficient; CT: computed tomography; DSC: Dice similarity coefficient; AIOU: average inter
section over union. 

S. Burti et al.                                                                                                                                                                                                                                    



Research in Veterinary Science 175 (2024) 105317

6

decoder architecture where the encoder is responsible for automatic 
feature extraction, and the decoder learns how to aggregate the features 
to calculate the segmentation maps. When paired with the residual 
connections, this hierarchical structure enables the U-Net architecture to 
learn features at different scales and complexities, thus resulting in 
robust and reliable feature extraction and gradient propagation. The 
literature offers several contributions related to U-Net architecture use 
in veterinary imaging. Ji et al. (Ji et al., 2022) developed a DL algorithm 
for the automated evaluation of kidney volume. Here the authors have 
implemented several different variations of U-Net, and the best- 
performing architecture had a Lin’s concordance correlation coeffi
cient of 0.95 thus enabling a very accurate estimation of kidney volume. 
Shortly afterwards, the same authors developed a U-Net architecture 
capable of detecting kidney stones on pre-contrast CT scans in dogs (Ji 
et al., 2023). Other authors have instead focused on the automatic 
segmentation of head and neck structures. In particular, Park et al. (Park 
et al., 2021) developed and tested a DL algorithm for the automatic 
segmentation of some of the main head and neck organs for radio
therapy (e.g. the brain, the mandibular salivary glands, the pharynx), 
with an average Dice Similarity Score (DSC) of 0.83. Groendahl et al. 
(Groendahl et al., 2023) proposed a very interesting inter-species 
approach to developing a DL algorithm capable of automatically seg
menting canine head and neck cancer. Here the authors referred to both 
human and canine patients affected by head and neck cancer to create a 
mixed CT database for the automatic segmentation of head and neck 
cancer. The overall DSC was not very high (0.52) but was higher for 
nasal tumors (0.69). Despite the modest overall results, the mixed 
human-canine training could be a game-changing approach for the 
development of AI based tools both in human and veterinary medicine. 
Lastly, Schmid et al. (Schmid et al., 2022) developed an algorithm for 
the automatic segmentation of the medial retropharyngeal lymph nodes 
in dogs: its accuracy was fair, despite the limited number of cases (40) 
included in the study. 

2.4. Magnetic resonance imaging 

Eight papers on magnetic resonance imaging AI applications are 
presented below and synthetically reported in Table 3. 

2.4.1. Distinction between different types of brain diseases 
Different approaches have been proposed in the literature for the 

distinction between brain diseases on magnetic resonance imaging 
(MRI) scans. Banzato et al. (Banzato et al., 2018b) used a DL-based 
approach to distinguish between meningiomas and gliomas. The best 
classifier was developed by combining post-contrast T1 images and 
GoogleNet, and showed a 91% accuracy in the test set. Wanamarker 
et al. (Wanamaker et al., 2021) used a texture-based approach to 
distinguish between neoplastic and inflammatory brain disease on MRI 
images. This approach showed a high accuracy (85%) in the distinction 
between inflammatory and neoplastic disease, but the authors reported 
a low accuracy in distinguishing between different inflammatory 
subtypes. 

Spiteri et al. (Spiteri et al., 2019) developed developed an ML-based 
approach to identify candidate biomarkers of the morphological 
changes associated with Chiari-like malformations in Cavalier King 
Charles Spaniels. Such an approach is particularly meaningful as it not 
only provides a potentially helpful tool in the diagnosis of Chiari-like 
malformations but also takes a further step towards understanding the 
pathogenesis of this disease. 

2.4.2. Prediction of the grading of certain intracranial diseases 
Predicting intracranial neoplasias grade has been used both for me

ningiomas and gliomas. Banzato et al. (Banzato et al., 2017) developed a 
texture analysis-based tool to predict meningiomas grading in dogs. This 
model was developed starting from 58 histologically proven meningi
omas and had a very high accuracy (96.8%) in distinguishing between 
benign and atypical-anaplastic meningiomas. Nevertheless, the limited 
database variability and the complex analysis required both restrict the 
clinical usefulness of this model. The following year the same authors 
developed a DL-based model for the same task (Banzato et al., 2018c). 
Despite its lower overall accuracy (80%) its ease of implementation 
makes this approach much more promising. Barge et al. (Barge et al., 
2023) used texture analysis to predict the histopathological grading of 
canine gliomas. Despite the limited database (38 dogs with 40 lesions in 
total), the overall case classification accuracy was 77% when using a 
leave-one-out classification scheme. Interestingly, the authors reported 
that peritumoral oedema on T1 weighted images and non-enhancing 
parts of the tumour were the most discriminative features, indicating 
that texture analysis could be directly used in a clinical context. 

Table 3 
Peer-reviewed veterinary AI publications concerning magnetic resonance imaging.  

Topic Reference Task Species Model Results 

Distinction between different types of 
brain diseases       

Banzato et al., 
2018a distinction between meningiomas and gliomas dog DL accuracy 91%  
Wanamaker et al., 
2021 

distinguish between neoplastic and inflammatory brain 
disease 

dog DL accuracy 85%  

Spiteri et al., 2019 
identification of morphological changes associated with 
Chiari-like malformations 

dog 
(CKCS) DL AUC 0.78–0.82      

sensitivity 82% - 93%      
specificity 67% - 69% 

Prediction of the grading of certain 
intracranial diseases       

Banzato et al., 2017 predicting meningiomas grading dog ML accuracy 96.8%  
Banzato et al., 
2018b 

predicting meningiomas grading dog ML accuracy 80%  

Barge et al., 2023 prediction of gliomas histopathological grading dog ML accuracy 77% 
Detection of spinal cord diseases       

Biercher et al., 2021 detection of spinal cord diseases dog DL 
sensitivity 90.8% - 
100%      
specificity 95.1% - 
98.98% 

Improvement of MR image quality       

Choi et al., 2023b reduce scan time and improve image quality dog DL 
scan time reduction up 
to 75% 

DL: deep learning; CKCS: Cavalier King Charles Spaniel; AUC: area under the curve; ML: machine learning; MR: machine resonance. 
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2.4.3. Detection of spinal cord diseases 
To date, only one study exploring DL for use in the detection of spinal 

cord disease on MRI is available (Biercher et al., 2021). Biercher et al. 
(Biercher et al., 2021) developed a CNN capable of detecting interver
tebral disc extrusion (IVDE), intervertebral disc protrusion (IVDP), 
fibrocartilaginous embolism (FCE)/acute non-compressive nucleus 
pulposus extrusion (ANNPE), syringomyelia and neoplasia. The devel
oped CNN had a very high accuracy in detecting IVDP and IVDE with a 
100% sensitivity and 95.1% specificity, and a 90.8% sensitivity and 
98.98% specificity, respectively. The CNN’s accuracy for the other dis
eases was lower but still acceptable. 

2.4.4. Improvement of MR image quality 
One of the most investigated applications of AI regarding MRI is 

improved image quality with a shorter scanning time (Yutong Chen 
et al., 2022); since it is a very technical aspect it is usually investigated in 
specialty journals. Nevertheless, Choi et al. (Choi et al., 2023b) devel
oped a DL-based algorithm to improve specific as well as overall image 
quality; due to the lower number of excitations used it significantly 
reduced scanning time. 

3. Ethical considerations in AI-driven veterinary diagnostics 

Veterinary professionals have a basic duty to promote their animal 
patients’ wellbeing while avoiding doing harm (Coghlan, 2018; Her
nandez et al., 2018; Rollin, 2006). Promoting patient interests can also 
enhance human-animal bonds (Walsh, 2009) and improve professional 
satisfaction. Little has been written about veterinary AI ethics, but see 
Coghlan and Quinn (Coghlan and Quinn, 2023a); Cohen and Gordon 
(Cohen and Gordon, 2022). 

AI can have problematic effects in healthcare (Morley et al., 2020; 
Topol, 2019). For instance, one ML model designed to predict human 
pneumonia risk incorrectly gave lower risk scores for asthma sufferers 
due to features of the medical record data used in training the model, 
thereby potentially causing serious patient harm (Caruana et al., 2015). 
Veterinary radiological AI too carries risks alongside its potential ben
efits (Coghlan and Quinn, 2023b; Cohen and Gordon, 2022). 

Radiological AI that approaches or exceeds the performance of ex
perts may sometimes allow more accurate and speedier diagnosis 
(Basran and Appleby, 2022). In general practice, AI might serve as a 
useful ‘second opinion’ when specialist radiologists are unavailable. AI 
may theoretically reduce misdiagnoses and missed diagnoses involving 
rarer conditions or unusual presentations. Improved workflows from 
speedier diagnosis could benefit patients and clients, while fostering job 
satisfaction. 

However, AI’s risks are equally important (Raymond Geis et al., 
2019). ML models can have inaccuracies due to issues with their training 
data (Coghlan and Quinn, 2023b). For example, insufficient and un
representative data in model training can lead to false positive and 
negative classifications (Goisauf and Cano Abadía, 2022). So too can the 
application of ML models to patient groups that differ significantly from 
training datasets. Factors such as patient age, breed, and conformation, 
plus differences in scanning and labelling techniques (Raymond Geis 
et al., 2019), may be associated with model bias. If widely used, biased 
and inaccurate models could negatively affect very many veterinary 
patients. An essential consideration warrants attention at this point: AI 
algorithms are typically trained and validated using extensive databases 
in human medicine. On the contrary, datasets available in veterinary 
medicine are typically more limited. Consequently, it is the authors’ 
opinion that further studies are imperative to attain a robust level of 
result generalizability. 

Promoting patient wellbeing will only occur if practitioners avoid 
overtrusting or undertrusting AI models (Jacovi et al., 2021). Overtrust 
in AI may derive from ‘automation bias’ (Parasuraman and Riley, 1997) 
and underappreciating machine learning’s limitations. Too little trust is 
problematic when AI is relatively trustworthy. Trust in AI can drop off, 

sometimes legitimately, with DL systems (such as CNNs) that are unin
terpretable despite being generally accurate (Goisauf and Cano Abadía, 
2022). Such blackbox AI (Quinn et al., 2022) stops practitioners 
knowing the reasons for, say, the classification of a radiological anomaly 
(e.g., in a thoracic X-ray). Other ethical issues include privacy of client 
data in radiological AI models (Raymond Geis et al., 2019) and carbon 
emissions from energy intensive AI (Crawford, 2021). 

Given these issues, we offer the following ethical recommendations. 
Crucially, AI developers must appreciate veterinary medicine’s goals of 
promoting patients’ interests and human-animal relationships. AI 
models should therefore be trained and rigorously tested—not just in the 
lab but in real-life circumstances—to ensure reliability (Cohen and 
Gordon, 2022). Furthermore, radiological AI systems, in our view, 
should come with information about their training data and appropriate 
warnings about their proper use and risks. This would facilitate 
informed decision-making by veterinarians. 

Equally, practitioners, radiologists, and clinic managers must take 
steps to appreciate the benefits and risks of AI tools used or purchased 
(Coghlan and Quinn, 2023b). This includes risks of overtrusting and 
undertrusting AI, turning to AI instead of radiology experts, employing 
‘blackbox’ models (London, 2019), exposing or uploading private client 
information, and contributing to pollution. To mitigate risk, veterinar
ians and clinic managers should ask questions about particular models 
and insist that AI purveyors, not least profit-driven companies, are 
transparent about them (Larsson and Heintz, 2020). This is especially 
important given that veterinary technologies, unlike medical technolo
gies, are relatively unregulated (Cohen and Gordon, 2022). The authors 
recommend the reader of this paper to refer to the official publication of 
the ACVR and ECVDI, where an AI-published supplement focused on AI 
is available. 

Finally, we recommend that radiological AI never entirely replace 
human judgement. Removing a ‘human-in-the-loop’ (Goisauf and Cano 
Abadía, 2022) imperils patient wellbeing and abrogates veterinary re
sponsibility. Practitioners and radiologists should remain accountable 
for patient care even when using sophisticated AI tools, since those tools 
can still get it wrong. We therefore advise that veterinarians treat 
radiological AI as a decision support tool, not a decision-making sub
stitute. Veterinary professionals should employ only those AI tools 
which they know will support good medical practice (Reddy et al., 
2019). 

4. Conclusion 

AI-based models, in particular deep learning models, could act as 
effective supports in the evaluation of medical images for both special
ized radiologists and general practitioners. Nevertheless, these tech
nologies should not replace veterinary experience and knowledge. On 
the contrary, AI products have the potential to empower radiologists to 
deliver increased value in a more efficient way. 
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