UNIVERSITA
DEGLI STUDI
DI PADOVA

Head Office: Universita degli Studi di Padova

Department of Information Engineering

Ph.D. COURSE IN: Information Engineering
SERIES: XXXV

Enhancing Scalability of Deep Learning Based Approaches in Semiconductor Manufacturing

Thesis written with the financial contribution of Infineon Technologies AG.

Coordinator: Prof. Andrea Neviani
Supervisor: Prof. Alessandro Beghi

Co-Supervisor: Ch.mo Prof. Gian Antonio Susto

Ph.D. student : Natalie Gentner



UNIVERSITA DEGLI STUDI DI PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

XXXV SERIES
PH.D. SCHOOL IN INFORMATION ENGINEERING
UNIVERSITY OF PADUA 2022

ENHANCING SCALABILITY OF DEEP LEARNING
BASED APPROACHES IN SEMICONDUCTOR

MANUFACTURING

SUPERVISOR PH.D. CANDIDATE

PrROF. ALESSANDRO BEGHI NATALIE GENTNER

CO-SUPERVISOR

Pror. GiaN ANTONIO SUSTO

DIRECTOR

ProOF. GAUDENZIO MENEGHESSO

COORDINATOR

PrOF. ANDREA NEVIANI



ii



I DON’T HAVE ANY PARTICULAR RECIPE [FOR DEVELOPING NEW PROOFS]. ... IT IS
LIKE BEING LOST IN A JUNGLE AND TRYING TO USE ALL THE KNOWLEDGE THAT YOU
CAN GATHER TO COME UP WITH SOME NEW TRICKS, AND WITH SOME LUCK YOU MIGHT
FIND A WAY OUT.

MARYAM MIRZAKHANI



iv



Abstract

Semiconductor manufacturing is determined by complex processes and high variety of pro-
cess components. In order to assure high product quality, processes need to be as stable
and reproducible as possible and standardization is one of the key factors for successtul pro-
cess control. In addition, Machine Learning (ML) based technologies for production, like
Virtual metrology/soft sensing, defect classification, predictive maintenance and fault detec-
tion, have been successfully applied in the past recent years in data intensive manufacturing
industries, like semiconductor manufacturing, to support automation and improve process
monitoring and related operations.

Reproducibility, generalization, standardization and alignment over multiple equipment
is a key element to ensure industry wide adoption, implementation and scalability for ML-
based technologies in complex production environment.

To deal with such generalization and scalability tasks in the production context, semicon-
ductor related literature mainly presents two approaches: matching and transfer learning
with a focus especially on adaptation.

(1) MATCHING  The matching approach aims at analyzing, finding and eliminating existing
differences in production to avoid future quality issues, machine breakdowns and unknown
misfits with help of expert knowledge and data. This results in identical properties and set-
tings hence overall standardization and consequently identical results for targeted equipment
and processes.

(1) ADAPTATION The adaptation approach as part of transfer learning is based on do-
main adaptation theory and as such purely data-driven; domains respective data distribu-
tions are taken into account and dedicated methods are developed to deal with scenarios
where different data distributions occur. In this area, neural networks are a particularly ap-
pealing method: so-called domain adversarial neural network (DANN). They are designed
to deal with occurring data differences; therefore they are suitable for modeling tasks that
include process or equipment with identical underlying physical information but naturally
data shifts occur due to for example degradation or maintenance besides others.

The methods presented in the thesis - DANN-based Alignment Model (DBAM) and its
extended version DANN-based Alignment with Cyclic Supervision (DBACS) - are able to
learn a model that is scalable from one domain to another in settings where inconsistent data
distributions occur. The underlying idea of the proposed modeling approach - compared to
already existing approaches - is to keep the necessary information accessible to allow physical



interpretability and comparison of original versus aligned data while maintaining the high
accuracy of a dedicated prediction or classification model. In addition, its functionality han-
dles unpaired mapping, heterogeneous domain adaptation, comparability of source a target
in bijective manner meaning in both directions hence enabling matching on top of adapta-
tion.

Besides semiconductor and use case specific preprocessing including recipe removal with
sensor data or text removal for images, we exploit adversarial training and model structures in-
spired by domain adversarial neural networks (DANN) combined with a domain adaptation
alignment approach using a residual inspired setting as for generative adversarial networks
(GAN). DBAM consists of 3 parts: (i) the baseline or reference prediction or classification
model P, (ii) an alignment model called aligner A used to map the target domain to the source
domain (the output of the aligner is called aligned) and (iii) a domain discriminator D for
classification of the domains and that necessary for the adversarial training approach that is
especially useful for semi-supervised or unsupervised settings beside the supervised one.
DBAM can be set up with different neural network architectures depending on the data
type at hand hence it is applicable to a broad range of application fields. Since the aligner
part is set up in style of an encoder-decoder network, it can be used for source and target do-
main with different dimensions respective features available. The extended version DBACS
has additional aligner and discriminator models inspired by CycleGAN. Hence it is suitable
for unpaired mappings and enables a bijective transformation between source and target do-
main. For further improvement specific loss functions like Wasserstein loss, structural simi-
larity index measure (SSIM) and feature matching loss are applied for the training respective
alignment process. All those methods are well known and proven very useful in the context
of generative adversarial networks (GAN) in the field of computer vision and are transferred
to semiconductor context involving different data types like stationary features, times series
data and images.

Three different use cases are presented in the thesis and DBAM respective its extended
version DBACS are tested against state-of-the-art methods presented in relevant literature:
Virtual metrology (VM), predictive maintenance (PdM) and defect classification (DC).

Virtual metrology/ soft sensing (VM) estimations are typically monitored in process con-
trol alongside real metrology measures to widen the monitoring perspective of process results.
VM is formalized as a regression task where sensor data collected from an equipment during
a process is treated as input, while the corresponding inline measurements on the product
itself are used as output. In detail VM aims at estimating metrology quantities that are costly
to be measured by means of data-driven algorithms and exploiting the availability of histori-
cal data where such measures are performed.

The first VM use case propose a common VM model for two identical-in-design tools whose

vi



process data follow different distributions; therefore, DBAM is working directly on the avail-
able raw sensor data in form of time series. Different kind of mismatch can be visualized like
overall horizontal shifts as well as partly different functional behavior between sensors of the
analyzed equipment.

The second VM use case presents a VM prediction model for one process running on two
different equipment types resulting in different data representations respective different in-
put dimensions for source and target domain while the underlying physical information is
identical. Therefore, DBACS is applied to enable heterogeneous domain adaptation mean-
ing unpaired mapping and bijective transformations between source and target. Equipment
matching on top of adaptation is further discussed and evaluated.

Predictive maintenance (PdM) in general, but especially Remaining Useful Life (RUL)
prediction for avoidance of uncontrolled machine breakdowns hence product losses and re-
pair costs plays a major and critical role in automation of manufacturing. Relevantliterature
heavily discusses the scalability issue of PdAM models when it comes to different equipment
or failure causes. Here we explore a scenario where identical equipment can be split in two
groups based on their process behavior. Specific preprocessing like recipe effect removal and
feature selection besides others are analyzed. Since a common model cannot be successfully
deployed, a dedicated prediction model is trained on equipment data from group 1 and both
DBAM as well as the DBACS are applied to align data from group 2 to enable the usage of
the dedicated model for all involved equipment. The interpretability properties of the model
are exploited and relevant features as well as equipment group behavior especially towards
the end of a life before and after the alignment and for the two groups are compared. We
close with a discussion on imperfect data and its influence on RUL model performance and
generalization.

Defect classification (DC) is a necessary and reoccurring part for quality assurance in semi-
conductor manufacturing. Before the rise of Al those inspections were done manually caus-
ing time delay, high costs and were prone to human errors. The main goals are increased
productivity, speed up and creation of additional value by involvement of un- or under used
data. Great results on dedicated models with a high accuracy are achieved especially by apply-
ing transfer learning to already existing pretrained networks like EfficientNet. Nevertheless,
the scaling of those methods is still under research due to high complexity of the data; e.g.
same defects can occur at different stages of the process. We observe a decrease in accuracy for
defects occurring on such different layers resulting in different image backgrounds. There-
fore, DBACS is applied to align images with complex structural backgrounds (for example
horizontal line or squares) in order to neutralize their background and make them usable
in an already existing classifier trained on images with steady grey background. The model
abilities for un- and semi-supervised training are tested and evaluated.

Semiconductor manufacturing is one of the most exciting field for Machine Learning-

vii



based solutions, with a broad range of methodological challenges that needs to be faced: the
scalability of such solutions is, in our view, one of the most important aspects to be tackled in
this context. We believe that our work, by leveraging the flexibility of modern deep learning
architectures and by considering a holistic set of tasks and applications, represents an impor-
tant contribution in this area that we believe will be one of the most important topic in the
industry in the near future.

viii



Sommario

La manifattura di semiconduttori ¢ caratterizzata da processi complessi e da un’elevata vari-
etadi prodotti. Per garantire un’elevata qualita, i processi devono essere il pit1 possibile stabili
e riproducibili e la standardizzazione ¢ uno dei fattori chiave per un’eflicace controllo dei pro-
cessi. Inoltre, le tecnologie basate sull’apprendimento automatico/Machine Learning (ML)
per la manifattura, come la Virtual Metrology/Soft Sensing, la Classificazione di Difetti, la
Manutenzione Predittiva e il Rilevamento di Guasti, sono state applicate con successo negli
ultimi anni nelle industrie manifatturiere ad alta intensita di dati, come la produzione di
semiconduttori, per migliorare monitoraggio dei processi e delle relative operazioni.

Riproducibilita, generalizzazione, standardizzazione ed allineamento su pitt macchine sono
elementi chiave per garantire I'adozione e la scalabilita delle le tecnologie basate sul ML in
manifatture complesse.

Per affrontare tali problemi di generalizzazione e scalabilita nel contesto della produzione,
la letteratura relativa alla manifattura di semiconduttori presenta principalmente due ap-
procci: il matching e il transfer learning.

(1) MaTcHING Il matching mira ad analizzare, trovare ed eliminare le differenze esistenti
nella produzione per evitare futuri problemi di qualita, guasti alle macchine e disallineamenti
sconosciuti con aiuto di dati e conoscenza di dominio. Cio si traduce in proprieta e im-
postazioni identiche, quindi standardizzazione generale e di conseguenza risultati identici
per apparecchiature € processi mirati.

(11) ADAPTATION Llapproccio dell'adaptation come parte del transfer learning ¢ basato
sulla teoria dell'adattamento di dominio e come tale puramente basato sui dati; vengono
presi in considerazione i rispettivi domini delle distribuzioni di dati e vengono sviluppati
metodi dedicati per affrontare scenari in cui si verificano distribuzioni di dati diverse. In
quest’area, le reti neurali sono approcci particolarmente interessanti, fra cui citiamo in par-
ticolare I'architettura Domain-Adversarial Neural Network (DANN). Le DANN sono pro-
gettate per attivita di modellazione che includono processi o apparecchiature con caratteris-
tiche nominali identiche ma che differiscono in realta (si pensi, ad esempio, al fenomeni di
degrado legati all’utilizzo o alleffetto di manutenzioni).

I metodi presentati nella tesi - il modello di allineamento basato su DANN chiamato
DANN-based Alignment Model (DBAM) e la sua versione estesa DANN-based Alignment
with Cyclic Supervision (DBACS) - sono in grado di apprendere un modello scalabile da un
dominio all’altro in contesti in cui si verificano distribuzioni di dati incoerenti. L’idea alla

ix



base dell’approccio di modellazione proposto, rispetto agli approcci gia esistenti, ¢ di man-
tenere le informazioni necessarie accessibili per consentire 'interpretazione fisica e il con-
fronto dei dati originali rispetto a quelli allineati, pur mantenendo I'elevata precisione di un
modello di previsione o classificazione dedicato. Inoltre, la sua funzionalitd gestisce la map-
patura non accoppiata, la comparabilitd di origine e destinazione in modo biunivoco, con-
sentendo quindi la corrispondenza oltre all'adattamento.

Negli approcci proposti in questo lavoro, oltre a pre-elaborazioni dei dati specifiche per il
mondo della manifattura dei semiconduttori (ad esempio la rimozione delle ricette dal dato
di sensoristica), sfruttiamo le domain-adversarial neural network (DANN) combinate con
un approccio di allineamento dei dati che sfrutta le generative adversarial neural network
(GAN). Lapproccio proposto (DBAM) ¢ costituito da 3 parti: (i) la previsione o il modello
di classificazione di riferimento P, (ii) un modello di allineamento chiamato allineatore A
utilizzato per mappare il dominio di destinazione sul dominio di origine e (iii) un discrimi-
natore di dominio D per la classificazione dei domini e quello necessario per 'approccio for-
mativo contraddittorio che ¢ particolarmente utile per i contesti semi-supervisionati o non
supervisionati oltre a quello supervisionato.

Il framework DBAM puo essere utilizzato con diverse architetture di reti neurali a seconda
del tipo di dati in oggetto ed quindi ¢ applicabile ad unampia gamma di campi applicativi.
Poiché Ialigner ¢ configurato nello stile di una rete codificatore-decodificatore, puo essere
utilizzata per il dominio di origine e di destinazione con diverse dimensioni e rispettive carat-
teristiche disponibili. La versione estesa DBACS ha ulteriori modelli di allineatori e discrim-
inatori ispirati a CycleGAN; DBACS ¢ quindi adatto a mappature non accoppiate (dove
origine e destinazione hanno diverse dimensionalitd) e consente una trasformazione biuni-
voca tra il dominio di origine e quello di destinazione. Per un ulteriore miglioramento, fun-
zioni di loss specifiche - ad esempio la Wasserstein loss, lo structural similarity index measure
(SSIM) e la Feature Metrix loss - vengono applicate per il rispettivo processo di allineamento
dell’addestramento. Tutti questi metodi sono ben noti e si sono dimostrati molto utili nel
contesto delle GAN nel campo della visione artificiale e sono in questo lavoro trasferiti al
contesto della manifattura dei semiconduttori che coinvolgono diversi tipologie di dati (ad
esempio tabulari, serie temporali ed immagini).

Nella tesi vengono presentati tre diversi casi d’'uso per DBAM e per la sua versione es-
tesa DBACS che rappresentano avanzamenti rispetto allo stato dell’arte scientifico in tema
di soluzioni di Machine Learning per la manifattura di semiconduttori: la Virtual Metrology
(VM), manutenzione predittiva (PdM) e classificazione dei difetti (DC).

Le stime di Virtual Metrology/soft sensing (VM) sono generalmente monitorate nel con-
trollo di processo insieme a misure di metrologia reale per ampliare il monitoraggio della
qualitd dei processi. La VM ¢ formalizzata come un task di regressione in cui i dati dei sensori
raccolti da un’apparecchiatura durante un processo vengono trattati come input, mentre le



corrispondenti misurazioni in linea sul prodotto stesso vengono utilizzate come output. In
dettaglio, la VM mira, grazie alla disponibilitd di algoritmi di Machine Learning e storico
dati, a stimare grandezze di metrologia costose.

I primo caso d’uso considerato di VM propone un modello comune per due strumenti nom-
inalmente identici i cui dati di processo seguono distribuzioni diverse; in questo primo la-
voro, il framework DBAM viene applicato direttamente sui dati grezzi disponibili del sensore
sotto forma di serie temporali. Un secondo caso d’uso di VM presenta invece un modello di
previsione per un processo eseguito su due diverse apparecchiature la cui sensoristica genera
dati di ingresso al modello con diversa dimensiolitd, mentre il processo fisico sottostante é
il medesimo. Lapproccio DBACS viene applicato per abilitare trasformazioni biiettive tra
origine e destinazione.

La Manutenzione predittiva (PdM) e la sua formalizzazione pit diffusa, la Remaining
Useful Life (RUL), svolgono un ruolo fondamentale nello smart monitoring industriale per
evitare rotture inattese nelle macchine, con conseguenti scarti e costi di riparazione svolgono
un ruolo importante e critico nell'automazione della produzione. In letteratura, il problema
della scalabilitd dei modelli di PAM ¢ ampiamente dibattuto quando si considerano diverse
macchine o diverse cause di guasto. In questo lavoro, viene esplorato lo scenario in cui ap-
parecchiature identiche possono essere suddivise in due gruppi in base al comportamento
del processo. Considerando diverse macchine di processo, tipicamente un modello comune
di PAM non pud essere efficace: nel nostro approccio, DBAM E DBACS vengono addestrati
sui dati delle apparecchiature del gruppo 1 ed utilizzati per allineare i dati del gruppo 2 ed ot-
tenere un modello dedicato ed accurato per entrambe le macchine coinvolte. Nell’approccio
vengono sfruttate le proprieta di interpretabilita del modello e vengono confrontate le carat-
teristiche rilevanti e il comportamento del gruppo di apparecchiature, soprattutto verso la
fine della vita prima e dopo l'allineamento e per i due gruppi. Nella tesi viene anche riportata
una discussione su dati imperfetti e la loro influenza sulle prestazioni e sulla generalizzazione

del modello RUL.

La classificazione dei difetti (DC) ¢ una parte necessaria e ricorrente per la garanzia della
qualita nella produzione di semiconduttori. Prima dell’ascesa dell'Intelligenza Artificiale e
della Computer Vision, tali ispezioni venivano eseguite manualmente causando ritardi, costi
elevati ed erano soggette a errori umani. Gli obiettivi principali del nostro lavoro in questo
contesto sono l'aumento della produttivita, dellaccuratezza e la creazione di valore aggiun-
tivo attraverso il coinvolgimento di dati non utilizzati o sottoutilizzati. Grandi risultati su
modelli dedicati con un’elevata precisione si ottengono soprattutto applicando il transfer
learning a reti gi4 esistenti pre-addestrate. Tuttavia, il ridimensionamento di tali metodi ¢
ancora oggetto di ricerca a causa dell’elevata complessita dei dati; per esempio, gli stessi difetti
possono verificarsi in diverse fasi del processo, portando ad una diminuzione della precisione
per la classificazione, a causa dei diversi sfondi in immagini ottenute in fasi di processo diverse.

X1



DBACS viene applicato per allineare immagini con sfondi strutturali complessi (ad esempio
linee orizzontali o quadrati) con il fine di neutralizzarne lo sfondo e renderli utilizzabili in un
classificatore gia esistente addestrato su immagini con sfondo grigio costante. Le abilitd del
modello vengono testate e valutate in questo lavoro sia in un set-up non supervisionata che
in uno semi-supervisionata.

La manifattura di semiconduttori é uno dei campi piti interessanti per le soluzioni basate
sull'apprendimento automatico, con un’ampia gamma di sfide metodologiche che possono
essere incontrate in questo ambito: la scalabilita di tali soluzioni é, a nostro avviso, uno degli
aspetti pit importanti da affrontare in questo contesto. Riteniamo che il nostro lavoro, sfrut-
tando la flessibilitd delle moderne architetture di deep learning e considerando un insieme
olistico di task ed applicazioni, rappresenti un contributo importante in quest’area che rite-
niamo sard uno degli argomenti pid rilevanti del settore nel prossimo futuro.

xii



ABSTRACT

LIST OF FIGURES

L1sT OF TABLES

LISTING OF ACRONYMS

II

Introduction

MoOTIVATION AND THESIS ORGANIZATION

1.1 Motivation . . . . . . . ...
1.2 Thesis Overview and Organization . . . .. ... ..

ELEMENTS OF SEMICONDUCTOR MANUFACTURING

2.1 Semiconductor Wafer Processing . . . . . ... ...
2.2 Production Flow and Processes . . . . . . . ... ..

2.3  Process Control: Maintenance and Metrology

Methods and Mathematical Tools

Basics

3.1 Neural Networks . . . ... ... ... .......

Contents

XV
Xix

xxi

23

25

........... 25

3.2 Generative Adversarial Networks (GAN) and Adversarial Training Approach 37
3.3 Domain Adaptation Theory and Domain Adversarial Neural Networks

(DANN) . . oo

DBAM

4.1 DANN-based Alignment Model (DBAM) . . . . ..
4.2 SyntheticDataExample . . . . ... ... ... ...

DBACS: ExTENDED DBAM

5.1 DANN-based Alignment with Cyclic Supervision (DBACS)
5.2 SyntheticDataExample . . . . ... ... ... ...



6 BENCHMARK METHODS AND MODELS 73

6.1 General Linear Regression Models . . . . ... .............. 73
6.2 Ensemble Learning and Decision Trees . . . . . .. ... ... ... ... 75
6.3 Linear and Kernel Transformations . . . . . . . ... ... ... ..... 77
6.4 Deep Transformation and Domain Adaptation . . . . . . ... ... ... 82
7 METRICS AND LOSSES 97
7.1 Performance-basedLoss . . . . . . . ... ... .. ... ... .. ..., 97
7.2 Distribution-basedLoss . . . . . . . ... ... .. ... ... ... ... 98
III Applications and Case Studies 103
8 VirTUAL METROLOGY (VM) 105
8.1 Introduction . . . ... ... ... 106
8.2 Literature . . . . . . . . . .. 108
8.3  Virtual Metrology (VM) for Identical-in-design Equipment . . . . . . .. 112

8.4  Virtual Metrology (VM) for Equipment with Heterogeneous Data Repre-
SENTATION . v v v v v v v e e e e e e e e e e e e e e e e e e e e e e 134
8.5  Enabling EquipmentMatching . . . . . ... ... ... ... ... .. 151
8.6 Conclusion . . .. . . . .. . ... 156
9 PREDICTIVE MAINTENANCE (PDM) 159
9.1 Introduction . . ... . . . ... ... 160
9.2 Literature . . . . . . . . . e e e e e e e e 161
9.3 Remaining Useful Life (RUL) prediction for Predictive Maintenance (PdM) 163
9.4 Imperfectdata. . . ... ... ... ... .. L L oo 188
10 DEFECT CLASSIFICATION (DC) 199
1o.1 Introduction . . . . .. ... 199
1o.2 Literature . . . . . . ... 200
10.3 Defect Classification (DC) for SEM Images with diverse Background Pattern 202
1o.4 Conclusion . . . . . . . . . ... 215
IV Conclusion 219
11 CONCLUSION 221
REFERENCES 223
ACKNOWLEDGMENTS 249

Xiv



2.1
2.2
2.3
2.4
2.5

2.6

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

8.1
8.2
8.3
8.4

Listing of figures

Implantion source filament [176] . . . . . ... ... L Lo IS
Visualization of a run-to-runsystem (R2R) . . . ... ... ... ... 18
Virtual metrology schemata[70] . . . ... ... ... ... ... .. .. 19
SEM image variations based on detectorandangle . . . . ... ... ... 20
Twelve examples of SEM defect images in silicon wafer . . . . .. ... .. 21
Defect classification schemata for processcontrol . . . . . ... ... ... 22
Iustration of basic deep learning model structures . . . . . . .. ... .. 26
Layer schemata for neural network . . . . . . ... ... oo 0L 29
Visualization of LeakyReLU and sigmoid activation. . . . . ... ... .. 30
Visualization of a 1-dimensional convolution [70] . . . . ... ... ... 32
LSTM cell overview from [232] . . . . . . . . . . .. .. .. ... .... 33
Visualizationof DBAM [69] . . . . . . . . . . . .. ... ... ..., 53
Visualization of DBAM training routine . . . . .. ... ... ...... 56
DBAM predictor scatter plot for synthetic data use case [70] . . . . . . .. 60
DBAM aligner histogram for synthetic datause case [70] . . . . . . .. .. 60
Visualization of DBACS includingdataflow . . . ... ... ... .... 64
DBACS predictor scatter plot for synthetic datausecase . . . . . . . . .. 71
DBACS aligner F histogram for synthetic datausecase . . . . . ... ... 71
DBACS aligner G histogram for synthetic datausecase . . . . . . ... .. 71
Visualization of Random Forestinspired by [23] . . . . .. ... ... .. 75
Visualization of a kernel mapping inspired by [93] . . . . ... ... ... 78
Visualization of Canonical Correlation Analysis [81] . . . . .. ... ... 8o
Visualization of DL based TF categories, methods and corresponding use

cases. [81] . . . . L 83
Visualization of feature-based DA methodology . . . . . ... ... ... 88
Visualization of instance-based DA methodology . . . . .. .. ... ... 93
LAM Research plasma etchingtools . . . .. ... ... ... ... ... 107
Visualization of metrology/inline measurements . . . . .. .. ... ... 107
Boxplot of normalized layer thickness [70] . . . . . ... ... ... ... 114
T-SNE visualization before and after alignhment with DBAM [69] . . . . . 119

XV



8.5
8.6
8.7
8.8

8.9
8.10

8.14
8.15
8.16

8.17
8.18

8.20

8.21

8.22

9.1
9.2
9.3

9.4
9:5

sfold cross validation model error for prediction including DBAM after

alignment[69] . . . . .. L Lo 121
True vs. predicted scatter plot for DBAM before and after alignment and
bestbenchmark [69] . . . . . . ... ... 122
Aligner visualization with 6 raw sensor measurements of both source and
target before and after the alignment [69] . . . . . . . ... ... L. 123
True vs. predicted scatter plot for TCN and LSTM predictor . . . . . . . . 129

True vs. predicted scatter plot for TCN and LSTM predictor in DBAM . . 131
T-SNE visualization before and after alignment with DBAM using LSTM

predictor . . ... 132
TCN aligner visualization of raw sensor measurements of both source and
target after thealignment. . . . . . .. ..o L L Lo Lo 132
LSTM aligner visualization of raw sensor measurements of both source and
target after thealignment. . . . . . . ... .o o000 133
True vs. predicted scatter plot for LSTM predictor and LSTM aligner in
DBAM . . e e e 133
Boxplot of normalized layer thickness from two equipments . . . . . . .. 136
T-SNE visualization before and after alignment with DBACS . . . . . .. 140
s-fold cross validation model error for prediction including DBACS after
alignment . . ... L Lo 143
True vs. predicted scatter plot for DBACS before and after alignment . . . 144
Aligner F' and G visualizations of 2 times 3 raw sensor measurements of
both equipment types before and after the corresponding alignment . . . . 145

Aligner F' and G visualizations of 3 times 2 paired raw sensor measurements

of both equipment types before and after the corresponding alignment . . . 152
Aligner F' and G visualizations of 2 times 3 cycled raw sensor measurements

of both equipment types in its original form as well as after its bijective map-

PING . . e e 153
Comparison of raw source sensor measurements via barycenter average grouped
into low, middle high label values . . . . . . ... ... ... .. .. .. I54
Visualization of equipment matching: mapped source sensors vs. target
sensors grouped into low, middle high label values . . . . . ... ... .. Is5

Linear and piecewise linear target/label function for RUL inspired by [233] 164

Visualization of equipmentlives . . . . . ... ... .. ... .. . ... 166
Visualization of feature thresholding for non-natural versus natural death

filtering/flagging . . . . . .. ... Lo L Lo 167
Visualization of recipe effectremoval . . . . . . ... o 0oL 169
Boxplot of feature accepted by BorutaShap with relative importance . . . . 171

Boxplot of feature tentatively accepted by BorutaShap with relative impor-

Xvi



9.7
9.8

9-9
9.10
9.11

9.12
9.-13

9.14

9-15

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Boxplot of feature rejected by BorutaShap with relative importance . . . . . 172
Boxplot of s-fold cross validation prediction performance of dedicated source
models. . . . . .. 180
True vs. predicted scatter plot for dedicated ANN source model . . . . . . 181
True vs. predicted scatter plot for dedicated benchmark source models . . . 185
True versus predicted scatter plots for ANN DABM and DBACS before
andafteralignment . . . ... L L Lo L L L oo 186
T-SNE visualization before and after alignment with DBACS . . . . . .. 187
Aligner histogram for feature visualization before and after alignment with
DBACS . . . e 188
True vs. predicted scatter plots for feature-based domain adaptation models

with LR before and after alignment . . . . . ... ... .. ... ... .. 194
True vs. predicted scatter plots for feature-based domain adaptation models

with ANN before and after alignment . . . . ... ... ... .. ..., 195
True vs. predicted scatter plots for instance-based domain adaptation mod-

els with LR before and after alignment . . . . . ... ... ... ... .. 196
True vs. predicted scatter plots for instance-based domain adaptation mod-

els with ANN before and after alignment . . . . ... ... ... ... .. 197
5 fold cross validation model error for prediction including all DA models
afteralignment . . . ... L Lo Lo 198
Visualization of defectimages . . . . . .. ... ... .. .. .. .. ... 203
Bar diagram of defect class distributions . . . . .. ... .o 000 204
AdaMatch schedule of the weight of the unsupervisedloss . . . . . . . .. 207
Visualization of augmented defectimages . . . . . .. ... ... ... .. 209
Grad-Cam visualization of dedicated classifier . . . . . . ... .. ..... 211
SHAP visualization of dedicated classifier . . . . . . ... ... ...... 212
Visualization of remaining unlabeled data during pseudo-labeling . . . . . 214
Visualization of defect images before and after alignment with DBACS . . 215
Accuracy of the pseudo-labels generated by themodels . . . . . . ... .. 217

Xvil



xviii



8.1
8.2
8.3
8.4
8.5
8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16

9.1
9.2
93
9-4
9:5

9.6
9.7
9.8
10.1

10.2
10.3

Listing of tables

KL-divergence of inner vs. outer domain distance [69] . . . . . ... ... 118
Source test score average over sfold cross validation [69] . . . . ... . .. 120
Target test score average over sfold cross validation [69] . . . . . . . .. .. 120
TCN predictor: VM performance evaluation . . . . . .. ... ... ... 128
LSTM predictor: VM performance evaluation . . . . ... ... ... .. 129
DBAM Alignment with TCN and LSTM predictor: VM performance eval-

L 7 (0 o 130
DBAM Alignment with LSTM predictor and LSTM aligner: VM perfor-

mance evaluation . . . . ... L. e 132
DBAM alignment with LSTM based DBAM: VM performance evaluation 134
Lower bounds for DA using dedicated ML algorithms . . . . . . ... .. 141
DBACS performance errors for source and aligned target . . . . . . . . .. 142
Feature pairs and corresponding Pearson’sr . . . . . . ... ... ... 146
VM prediction model performance for paired features . . . . .. ... .. 147
VM prediction model performance for PCA based principle components . 148
VM prediction model performance for PCA plus domain adaptation . . . 149
VM prediction model performance for CCA based canonical components . 150
VM prediction model performance for CCA plus domain adaptation . . . 151
Evaluation of ML algorithms after filtering for natural deaths . . . . . . . . 179
Upper and lower bounds of dedicated ML algorithms . . . . . . . .. .. 183
Evaluation of DBAM,DBACS for aligned target . . . . . ... ... ... 184
FID evaluation of inner and outer domain distance . . . . . . .. ... .. 184
Evaluation of feature-based domain adaptation on linear regression model

forsourceand targetdata . . . .. ..o L Lo 189
Evaluation of feature-based domain adaptation on ANN model for source

andtargetdata . . . .. ... L L Lo 190
Evaluation of instance-based domain adaptation on linear regression model

forsourceand targetdata . . . ... ..o Lo Lo oL 190
Evaluation of instance-based domain adaptation on ANN model for source

andtargetdata . . . . ... oL L 191
Evaluation of baseline models without alignment . . . . . . ... ... .. 210
Evaluation of UDA for target domain - source domaino . . . . ... ... 211
Evaluation of UDA for target domain - sourcedomain3 . . .. ... ... 213

Xix



10.4 Evaluation of UDA for target domain - source domain 8
10.5 Evaluation of SSDA for targetdomain . . . . . . . ..
10.6 Comparison of different distribution alignment methods

XX



Listing of acronyms

1IDCNN ....... One Dimensional Convolutional Neural Network
2DCNN ....... Two Dimensional Convolutional Neural Network
AdaBN ........ Adaptive Batch Normalization

Al ............. Artificial Intelligence

ANN .......... Artificial Neural Network

APC ........... Advanced Process Control

CA............ Correlation Analysis

CCA .......... Canonical Correlation Analysis
CD............ Critical Dimension

CNN .......... Convolutional Neural Network

CORAL ....... Correlation Alignment

DA ............ Domain Adaptation

DANN ........ Domain Adversarial Neural Network

DBACS ........ DANN-based Alignment with Cyclic Supervision
DBAM ........ DANN-based Alignment Model
DC............ Defect Classification

DD ............ Defect Density

DL ............ Deep Learning

EM ............ Equipment Matching

EV ............ Explained Variance (regression score)
FDC........... Fault Detection and Classification

XXi



FNN .......... Fully-connected Neural Network

FID ........... Frechet Inception Distance
GAN .......... Generative Adversarial Network
GTB........... Gradient Tree Boosting

IQR ........... Interquantile Range

KL ............ Kullback-Leibler
KN............ Keynumbers

KS ............ Kolmogorov—-Smirnov

LDM .......... Linear Discrepancy Minimization
LSTM ......... Long Short Term Memory

LT ............. Layer Thickness

MAE .......... Mean Absolute Error

MCCV ........ Monte Carlo Cross Validation
ME............ Maximal Residual Error

ML ............ Machine Learning
MLE........... Maximum Likelihood Estimation
MLP .......... Multilayer Perceptron

MMD ......... Maximum Mean Discrepancy
MSE ........... Mean Squared Error

MVL .......... Multi-View Learning

NNW ......... Nearest Neighbors Weighting
OES ........... Optical Emission Spectroscopy
OLS ........... Ordinary Least Squares
PCA........... Principle Component Analysis

xxii



PAM ........... Predictive Maintenance

R ............ R-square (coefhicient of determination)
RKHS ......... Reproducing Kernel Hilbert Space
RL ............ Reinforcement Learning

RNN .......... Recurrent Neural Network
RIC........... Resource Time Classification

SA ... Subspace Alignment

SSL ............ Semi-Supervised Learning
SL............. Supervised Learning

SPC ........... Statistical Process Control

TCA .......... Transfer Component Analysis
TCN .......... Temporal Convolutional Network
TL ............ Transfer Learning

TrAdaBoostR2 . Transfer AdaBoost for Regression

t-SNE ......... T-distributed Stochastic Neighbor Embedding
UDA .......... Unsupervised Domain Adaptation

UL ............ Unsupervised Learning

VM ............ Virtual Metrology

xxiii



XXiv



Part 1

Introduction






Motivation and Thesis Organization

This chapter gives the motivation for the presented work as well as the organization and
structure of the book at hand. It is an enriched consolidation of already published work
([70l, [69], see Chapter 4 and first part of Chapter 8), manuscripts that are submitted for
publication but are not yet published (see extension of first part of Chapter 8, Chapter s,
second part of Chapter 8 and Chapter 10) and unpublished studies (see Chapter 9).

Infineon Technologies AG is gratefully acknowledged for the financial support of this

research in form of an industrial PhD position and further cooperation.

1.1 MOTIVATION

Process control and monitoring are standard components of any automated production en-
vironment. Virtual metrology (VM) also known as soft sensor for example is based on a sta-
tistical model that predict wafer inline properties based on process information and sensor
measurements. VM together with predictive maintenance (PDM) and defect classification
(DC) besides others, is not only a key mechanism for direct/early fault detection but also
an enabler for quality - by increasing the monitoring capacity -, for control - for example in
combination with a run-to-run system that facilitates real time process corrections - and for
smart capacity usage - by avoidance of unscheduled downs, preparing the input for smart

sampling strategies and improved decision making. All those production control mecha-



nisms including control systems like advanced process control (APC), run-to-run (R2R) and
metrology combined with statistical process control (SPC) are key factors in (semiconductor)
manufacturing to monitor and assure quality, speed and stability in a highly automated and
increasingly digitized production environment.

Thanks to the availability of structured information, big data and new technologies to
build powerful infrastructures, Machine Learning (ML)-based solutions are becoming per-
vasive in (semiconductor) manufacturing to further improve equipment and operations ef-
ficiency as well as process control, to increase production performance [149] and bring man-
ufacturing yield to the next level.

A broad range of machine and especially deep learning methods are already successfully
implemented, trained and made usable for a whole bunch of different data types. In the
realm of ML-based applications for production and related application focused research
there are mentioned technologies like VM [182, 219, 183], PAM [192] and DC [4]. In
addition a lot of effort and research is present for anomaly detection (AD) [106, 25, 200],
equipment health factor or equipment monitoring (EHF) [21] and fault detection and classi-
fcation (FDC)[s9] in general. R2R and ML shows a limited amount of overlap and research,
nevertheless [193] and [37] presents promising directions and insights.

Beside the rise and hype-up of ML-based technologies to level up automation in produc-
tion, there are several issues that still limit their diffusion and the broad success of such: lim-
ited data availability in the phase of cold start or due to cost and time limitations leading to
small data issue, lacking statistics, various data types, lack of standardization, low/inconsistent
data quality, and over all high data complexity and data fragmentation. This accumulates
into transfer and generalization as one of the main obstacles to achieve next level fab automa-
tion and overall digitalization. Therefore, the focus is now shifted towards standardization
and scalability especially for application driven research.

The traditional (and without a doubt expedient) approach to deal with differences in pro-
duction is overall standardization from technical as well as technological point of view. Iden-
tical environments enable easy, fast and straight forward deployment, role-outs, control and
decision transfer and updates. Unfortunately, this copy exactly approach is often affiliated
with extreme effort and costs; if possible at all. Even in industries where standardization of
production is already adopted, data - and all its related aspects of identical as well as different
systems (parallel running equipment, same process equipment or equipment from different
vendors, different process equipment, ...) - is typically versatile, elusive, imperfect and highly

variant. Therefore, production automation requires high-effort and most of the time dedi-



cated development of ML models. Given the financial and technological efforts that needed
to be spent for method/model development, 24/7 support for critical production infrastruc-
ture and maintenance - on top of the already existing high degree of automation - ML-based
technologies are mandatory to be rolled out and deployed on broadest scale possible (e.g. for
all available equipment/processes), hence they need to be scalable.

The power of ML already inherits a solution here: if overall standardization is not achiev-
able, only partly achievable or achievable but limited in practice by cost, effort or time, data-
driven transfer approaches combined with the power of ML - and especially DL methods -
can be used to successfully tackle model generalization and enable scalability. The smart us-
age of advanced ML methods including its ability to combine, explain and visualize, finally
results in successful and high quality transfer interventions with long term benefits on qual-

ity, stability and speed.

This work describes a newly developed approach to tackle model transfer in the style of do-
main adaptation for homogeneous as well as heterogeneous data representations to support
generalization and scalability of DL-based statistical control methods. State of the art meth-
ods and well known and established classical methods are compared and tested against each
other. A broad range of use cases are presented to showcase functionality but also variability
of the approach.

Scalability inherits two different views: View one addresses active learning and the so
called cold start problem. Active learning has its focus on the time component, meaning
that at the beginning no or only very few data samples are available; known as the ‘cold-start’
problem. Active learning is applied to use available related data to improve the model perfor-
mance for the new domain faster over time. Both cases show promising results by applying
domain adaptation methods. By having only one model for multiple equipment we allow
direct comparison but also reduced model maintenance effort, hence support scalability. By
active learning the training of a model for new and unknown domain is enabled, allowing to
fast include new data to a digitalized fab for example.

In the thesis a different view is addressed since the focus is on enabling the direct usage
of an already trained and well performing dedicated domain-specific model to another iden-
tical (homogeneous) or non-identical (heterogeneous) domain where the underlying infor-
mation but not the data representation is the same. Main attention lies on static use cases
where data is available but unlabeled or where labels are partly (semi-supervised) or even fully

(supervised) available. Nevertheless, since involved domain data is collected already for a cer-



tain amount of time, the final goal is to scale up and deploy one well performing model to

multiple domains independently of the data representation.

Even if the thesis content including presented methodology is inspired by the needs, high-
est standards and complexity of semiconductor manufacturing, it can be seen as representa-
tive and paradigmatic of industry4.o problems for variety, volume, complexity of products,

processes and data in all kind of productive industrial environments.

1.2 THESIS OVERVIEW AND ORGANIZATION

The rest of the present work is organized as follows: Content related to semiconductor man-

ufacturing are covered after this overview section.

Part II: Methods and Mathematical Tools focuses on general theory, methodology and
mathematical foundations of all methods independently of any application:

Chapter 3: Basics recaps the building blocks of deep learning. Section 3.1: Neural Net-
works first covers important foundations of deep learning like learning paradigm, supervi-
sion, architectures and training of neural networks including hyperparameter tuning and
backpropagation and a comparison of individual characteristics between discriminative and
generative models. The presented basic ideas and methods are important for overall under-
standing of methodological design as well as use case sequence and set up.

Section 3.2: Generative Adversarial Networks (GAN) and Adversarial Training Approach
introduces generative adversarial networks (GAN) including important literature. The fo-
cus here lies on one side on an existing methodological extension of classical GAN using
Wasserstein loss to improve training and stability and on the other side on an architectural
extension called CycleGAN that enables unpaired mapping and different kinds of property
transfer; mathematical basics as well as their advantages are discussed. Wasserstein loss and
the bijective unpaired mapping from CycleGAN are later reused for development of the
main methodology.

Section 3.3: Domain Adaptation Theory and Domain Adversarial Neural Networks (DANN)
covers theory of transfer learning with a focus on domain adaptation. Domain adaptation
is based on information theory, learning theory, task relatedness and generalization. It deals
with the fact that the assumption of train and test data coming from the same underlying dis-

tribution does no longer hold. The definition of a domain is given and used to summarize

6



literature that define divergence measures and prove generalization bounds. Based on the
theoretical framework of domain adaptation, domain adversarial neural networks (DANN)
are introduced and mathematically explained including further research done in this field.
Inspired by the previous elucidations and content, Chapter 4: DBAM defines the DANN-
based alignment model (DBAM). DBAM is a domain adaptation inspired DL method with

the following advantages:

* deal with high context hence data complexity (e.g. caused by multiple systems in pro-
duction) and is applicable to various data types like time series data, stationary data
and image data;

* able to tackle supervised, unsupervised as well as semi-supervised regression and clas-
sification task for data containing different distributions and covariate shifts;

* assure interpretability and comparability of all parts of the model.

A deep-dive into the mathematical formalism of the corresponding optimization includ-
ing selected loss functions and training algorithm is given: The loss functions are defined,
adversarial training algorithm is detailed out and Wasserstein loss is put into context. The
chapter closes with a synthetic data example where two gaussian distributed data sets with a
shift in the mean are aligned with each other to showcase DBAM.

In Chapter 5: DBACS: Extended DBAM DBAM is extended with a cyclic supervision
approach covering the topic of unpaired mapping and heterogeneous data representation in
order to enable broad range of application and highest possible input flexibility. The method
is called DANN-based Alignment with Cyclic Supervision (DBACS) and has the following

additional advantages:

* heterogeneous domain adaptation;

* unpaired sample mapping;

* aligned features are comparable and interpretable in both directions;
* enables (feature) matching.

This chapter also closes with an the synthetic data example from the previous chapter to

showcase functionality of the extended approach.



Part IT closes with Chapter 6: Benchmark Methods and Models that gives an summary
of all relevant benchmark models that are selected for the different use cases following liter-
ature recommendations and performance winners in similar environments and use case set-
tings. Hence Chapter 6 covers classification and regression methods, ensemble learning and
decision trees, linear and kernel transformations, feature- as well as instance-based domain
adaptation methods, semi- and unsupervised transfer methods including DL-based methods

as well as classical approaches.

In Part III: Applications and Case Studies, three main applications are presented, for-

malized, analysed and evaluated:

* Chapter 8: Virtual Metrology (VM);
* Chapter 9: Predictive Maintenance (PdM);

* Chapter 10: Defect Classification (DC).

Those are selected since:

¢ all 3 are standard control applications for manufacturing and highly critical for pro-
duction success;

* all 3 are often used applications for deep learning methods applied to semiconductor
manufacturing while being active research fields themselves;

* all 3 show high data complexity while corresponding to different modeling aspects like
different statistical processes (regression versus classification) and different data types
(time series data, stationary data and image data);

¢ all 3 show the necessity for scaling and transfer in order to showcase their full potential
and benefits in an production environment.

Chapter 8: Virtual Metrology (VM) introduces the first use case where the topic is on
soft sensing/VM. The goal of such metrology technologies is to enrich collected data sets
containing quantities and properties of a product after a process that are important for qual-
ity/control purposes but are impossible or costly to be measured. The chapter starts with
an introduction to the metrology topic followed by more details on etching equipment and
etching process that are analyzed. This is followed by a literature deep-dive covering method-

ological as well as application and task related research. Then two different case studies are



presented: First virtual metrology for identical-in-design-equipment, covering solutions for
VM regression task as well as homogeneous supervised domain adaptation including DBAM,
is studied. Second virtual metrology for equipment with heterogeneous data representation
dealing with data from two non-identical equipment running the same process with a view
on the prediction task itself as well as domain adaptation possibilities including DBACS
are investigated. Inspired by heterogeneous domain adaptation and the functionality of
DBACS, Section 8.5: Enabling Equipment Matching focuses on (equipment or feature)
matching before the final section revisits and sums up results and findings of the whole chap-

ter.

Chapter 9: Predictive Maintenance (PdM) present the second use case that is connected
to process control namely predictive maintenance (PdM). In manufacturing, maintenance
describes the process of equipment life cycle planning including inspections of the equip-
ment, the equipment repair and anything else related to know and control the condition of
production equipment. Similar to VM, PdM systems exploit sensor data that is already col-
lected during a production process by the equipment itself avoiding additional costs to pre-
dict and estimate life cycle relevant values, here remaining useful life (RUL), to avoid uncon-
trolled equipment breakdown. The chapter starts with more details about PAM and discuss
its advantages for production. Next the concrete task including necessary background infor-
mation namely a prediction model for RUL for a group of implant equipment is explained.
This is followed by a literature deep-dive divided into different sections: classification task for
PdM, regression task for PAM and adaptation related methods for PAM. Next the use case
Remaining Useful Life (RUL) prediction for PAM is presented with a description of the
input data, modeling of target labels, data preparation including details about the specific
handling of data including repetitive lives and finally modeling details including DBAM as
well as DBACS, benchmark models and hyperparameter. Results are presented in detail and
discussed. To close up, the topic of imperfect data and its influence on prediction quality

for PAM modeling is addressed. This use case is ended with a recap and summary.

The third and final process control application presented in Chapter ro: Defect Classi-
fication (DC) is about different wafer defects occurring in front end production: Detecting
and classification of different defects on the wafer is one of the most important mechanism
for assuring highest quality and early as possible identification of faulty or malfunctioning
products and hence increasing overall yield. With the introduction of convolutional neural
networks including powerful architectures able to classify complex data sets including ver-

satile classes, literature shows tremendous success in fully automated defect detection and



classification. After giving a quick recap on defect classification, the chapter starts with a
literature overview focusing on semiconductor related publications. Then the task as well
as experimental design is explained followed by a detailed data preparation journey. Next
DBACS and AdaMatch are introduced - both are models able to deal with various domains
characterized by different image backgrounds - and architecture as well as hyperparameter
settings are detailed out. Finally results are presented including a deep-dive into specific mod-

eling details like distribution alignment and imbalance classes that deserve further attention.

Finally the thesis closes with a sneak peak into adjoining methods and an overall conclu-

sion in Part IV: Conclusion.

I0



Elements of Semiconductor Manufacturing

Semiconductor manufacturing is very complex and a complete explanation of processes and
procedures is outside the scope of this work. Here instead, we give a rough overview of the
first part of semiconductor manufacturing called front end and detail some aspects of direct

interest for the work reported in this thesis.

2.1 SEMICONDUCTOR WAFER PROCESSING

The basis for every semiconductor manufacturing process is a thin disc of pure (99.9999%)
silicon e.g. called raw wafer. A wafer is the base of microelectronic devices called chips. On
average there are several thousand chips build up on each wafer layer by layer depending on
its diameter and on the chip size. A wafer typically describes one discrete iteration or sample
for any modeling task considered in this work. Typically one box called lot is packed up with
25 wafers with common properties that will undergo similar processing steps.

The fabrication plant - called fab or site - is divided in different areas where dedicated pro-
cess steps are executed. An area includes multiple workcenter with a number of identical
and different equipment (same vendor and model, same vendor different model, different
vendor and different model). A workcenter is defined as a group of equipment that pairwise
have at least one common process step. A so called cluster equipment consists of multiple
chambers able to perform the same processes in parallel supported by some common gas and

energy sources for example. A cluster equipment can also describe an equipment where mul-

II



tiple chambers are available but each chamber is responsible for a sub-step of the total process
step. For some process steps each wafer is processed individually whereas some equipment
are able to process one lot (lot-by-lot process) or even multiple lots at once (batch processing).

Lots are transported by an automated transport system in general referred to as automated
material handling system and distributed via a so called dispatching system. Different dis-
patching rules are available depending on utilization and scheduling besides other influential
factors. In a modern fab - especially for 300 mm wafers - this is rule-based or fully automated
and not the responsibility of humans named operators anymore.

The product portfolio in front end manufacturing follows a certain hierarchy: Technol-
ogy - process class - process group - process line - product. Each product is defined via routes,
sometimes sequences of routes in case multiple sites are involved. Routes consist of a se-
quence of several hundred single process steps (SPS) that are well defined and deterministic
hence can be reused for different products. In addition wafers can be booked on additional
routes for inspections or defect measurements but return afterwords to the original route if
they fulfill product specific measurement criteria. The SPS defines the process a wafer has
to undergo, it is also called recipe. Usually the assignment of SPS to equipment is neither
unique nor equipment specific meaning multiple chambers as well as different equipment
are able and allowed to run the same SPS. A so called dedication matrix holds the necessary
information and permissions for that. The fastest available equipment stated in the matrix

is chosen to carry out the necessary process step.

2.2 PrRopUCTION FLOW AND PROCESSES

Semiconductors are constructed by linking circuit structures on various layers build upon a
wafer. The realization of those necessary layers including their complex individual structures
and patterns are done in a sequential manner in the front end processing. Front end relates
to the structure building part of chip fabrication and happens in a regulated environment
called clean room. There are multiple different process steps that are performed in a front
end wafer fab (see Monch et al. [148]) to build up the electrical circuits on the surface of the

wafer:

* Oxidation/diffusion with furnace for either healing of crystal damage and activation
of ions or thermal processing in order to grow or deposit a layer of material on the
surface of a wafer.

I2



* Deposition processes like physical and chemical vapor deposition as well as expitaxy or
metalization in order to deposit thin films on the wafer.

* Photolithography for structuring the wafer surface.

* Etching for (local) silicon as well as oxide, nitrite, metal removal. We distinguish be-
tween wet and dry etching, where liquids resp. gases are used. A more detailed de-
scription is given in section 2.2.

* lon implantation for definition of conductivity of the silicon.

* Planarization also called chemical-mechanical polishing as equalizer of the wafer sur-
face. A more detailed description is given in section 2..2.

* In addition a sample of processed wafers are tested in the metrology after a process
step to detect defects or any kind of particles and dirt on the surface. A more detailed
description is given in section .

Regular repetition of process steps and re-entry into the production flow are part of the ad-
vanced, highly specialized and highly automated fabrication process. In the following more
details about two highly complex and highly researched processes - ezching and implantation
- are given, since they give the basis and source of the involved data analysed later in Chapter

8 and Chapter 9.

ETrcHING PROCESS

This section follows the description of Hilleringmann [88], Chapter 5. The etching process
erodes a material from a surface or transfers a structure built up during the lithography step
to the layer below. This processes can be done by wet efching based on chemical liquids or by
dry etching based on physical processes together with chemical gases. In general etching can
be zsotropic where the etching evolves equally in all directions or anisotropic where clear and
well-controlled features are built up. The ratio of the etch rate in two different materials is
called selectivity. Wet etching cannot be used for creating precise structures, so it is mostly
applied to create uncritical structures, removal of whole layer or cleaning.

Dry etching is a process with a high reproducibility resulting in homogeneous isotropic
as well as anisotropic structures. The process involves vaporous material that are activated
through a high frequent alternating energy field in an area with sub-atmospheric pressure

range. The kind of erosion depends on the gases that are involved in the process.

13



Sputtering is a method based on purely physical reactions. For inert gases we see a purely
physical erosion since accelerated ions transfer their energy onto the surface of the wafer caus-
ing atoms or molecules to be knocked out. A chamber consists of two electrodes installed
opposite of each other. Applying an alternating energy field between those electrodes while
creating a chamber pressure in the area of 5 PA, an electrode voltage called bias is generated
that influences the positive loaded ions. Thus an electrostatic potential in the chamber is
build up. Instead of two parallel plates one can also use an electromagnetic coin to generate
plasma. Aggressive radicals arise as a consequence of collisions in the plasma attacking the
wafer positioned on the grounded electrode leading to a chemical isotropic reaction on the

surface of the wafer.

Plasma etching is a combination of physical and chemical reactions. For reactive gases, the
chemical reaction is supported by additional energy of ionized gas molecules. Reactive-ion
etching uses the same chamber construction described above plus a high-frequent alternating
energy field that is applied on the cathode the wafer is positioned on. Ions with positive
loading within the plasma are accelerated to the wafer where they hit its surface upright due
to their high kinetic energy. This etching is anisotropic. The atoms of the wafer surface are
freed from the crystal lattice resulting in a partly physical and a partly chemical reaction in
addition to the chemical etching of the radicals described before.

In summary, the result of the etch process depends on various factors: the material that
has to be etched, the properties of the preprocessing like layer thickness, layer constitution, di-
mension of the mask and the process properties like the pressure, the applied high frequency
voltage, the gas type, the gas flow and the wafer as well as the electrode temperature and as
a consequence on bias, etching rate and selectivity. The physical quantities are explicitly or
implicitly measured by the preinstalled sensors and collected. The etching recipe can include
a fixed etching time or an automated end point detection is installed to detect the best pos-
sible time point to end the process where all the necessary material but not more is eroded.
Atomic emission spectroscopy can be used for such an end point detection as well as interfer-
ometry. If the detection is based on optical properties, a change in the chemical components
of the plasma or a change in the itensity of the light waves (meaning the spatial period if there
is a transition from one layer to another) is recognized. By using interferometry, a direct mea-

surement of the etch thickness is possible on the center of the wafer.

A plasma etching process step can consists of a high number of sub-steps with different
duration and gases involved that are defined in the recipe. Before the start of a new sub-step,

the chamber has to be in a stable condition hence a settling time has to be taken into account.

14



The end point detection resp. the etching time are very critical, highly sensitive and highly
correlated to other involved variables like gases, pressure, current, temperature. Incorrect
etching times, insufficient end point detection but also unpredictable reactions and interfer-
ence in the chamber can lead to so called under or over etching. In both cases the geometry
especially the etch thickness is influenced negatively, leading to failure or malfunction of the

chip. In all cases undirectional etching has to be prevented.

IMPLANTATION PROCESS

. This section follows the description of Sze and Lee [195], Hilleringmann [88], Chapter
5 as well as May and Spanos [146], Chapter 2, Section 2.1.4. First introduced in the 1950s
as impurity doping in semiconductor manufacturing, wafer implantation also know as 707
implantation - besides diffusion - is one of two possible processes of impurity doping. A
so called impurity - meaning energetic dopant ions - is implanted into the semiconductor
atomic structure by means of an ion beam. The implant profile and distribution is mainly
defined by properties like mass and energy of the ion itself. One distinguish between high,
middle and low current smplanter. The implanter dose is defined as the number of ions
implanted in 1 cm? of semiconductor surface area. A so called ion source is releasing source
gas that is then broken up into single positive charged ions. An important part of the ion
source is the filament. It is stressed a lot and regular breakages occur. Hence it is one of the
main causes for maintenance. Figure 2.1 showss a picture of an ion source including different

filament conditions by Scheibelhofer et al. [176].

Figure 2.1: Implant ion source filament. Implant ion source and different filament conditions as presented in [176].

A mass analyzer is filtering released ions with the right properties. Selected ions are then
accelerated to the necessary implantation energy. This charged particle beam (ion beam) is

scanned finally over the wafer surface and the ions are implanted. Therefore the ions loses

Is



some of their energy by crashing with electrons until they come to rest at a certain depth
within the lattice of the wafer.

Due to the ion collision the wafer lattice can be damaged. (Thermal) annealing for exam-
ple with a furnace can be used to repair those damages. A plasma flood gun (see [100]) is used
to neutralize the charge-up of the target surface by the ion beam. It provides a flow of low-
energy electrons and directs it over the wafer surface. It avoids the breakage of the insulating
film on the wafer if the surface charge grows greater than the insulation breakdown voltage of
the film. Unwanted effects corresponding to the wafer that can occur during implantation

are sputtering or crystallographic damage besides others.

2.3 PROCESS CONTROL: MAINTENANCE AND METROLOGY

INTRODUCTION TO PROCESS CONTROL

On the equipment, a process step is specified by a recipe. It defines process properties like
number of steps and equipment conditions for those steps. During the wafer processing,
sensors on the equipment collect physical measurements of important parts and materials
involved. Unfortunately not all parameters of interest can be measured. One example is the
exact wafer temperature. Instead the temperature of the e-chick is measured. It is useful to
distinguish between raw sensor data called #7ace data and descriptive statistics called fault
detection and classification (FDC) or keynumbers that are directly computed from the trace
data. On the one hand, those measurements are used to keep the process stable meaning
automated regularization by the equipment itself installed by the vendor. On the other hand
it is the main data source for process control where for example each recipe includes some
limits within an unproblematic flow of the process is assured. In univariate process control,
the exceed of such limits raises an alarm that can - if detected early enough- avoid damage
of a wafer or an unscheduled down hence unplanned maintenance action. Interruptions
like this or equipment shut downs with unknown cause are cost intensive. Hence a lot of
research and control effort is put into the so called predictive maintenance (PdM). Based on
FDC data the goal is to predict as early as possible and therefore avoid as much unplanned
down times as possible to assure a smooth process and production flow without unnecessary
damage on equipment and wafers. Besides that there are frequent scheduled maintenance
actions based on experience and empirical values in order to replace highly worn-out parts
(due to sedimentation, dirt or degradation for example) of the equipment in time to prevent

poor process results. So called unscheduled downs (UD) as well as scheduled downs (SD)

16



are documented in the resource time classification (RTC). The ratio between SD and UD is
supposed to be as high as possible with a low overall number of actions in order to guarantee

a smooth process flow and highest fab performance.

MAINTENANCE

In manufacturing, maintenance describes the process of equipment life cycle planning in-
cluding inspections of the equipment, the equipment repair and anything else related to
know and control the condition of production equipment. For an introduction to main-
tenance including its history see Mobley [147], for a broad range of applications in different
industrial fields see Cerquitelli et al. [27]. There are different modes and strategies available
how to tackle maintenance in order to find the best balance between running/production

time and cost avoidance:

* Run-to-Fail describes a strategy without human involvement before the machine breaks
down with the risk of damaging processed wafers and other equipment parts. Never-
theless, this provides accurate and highest information data to train a statistical (pre-
diction or classification) model;

* Reactive Maintenance stands for the responds to a breakdown and the then triggered
repair. Run-to-fail can be seen as a subcategory of reactive maintenance.

* Preventive or Scheduled Maintenance stands for planed and in regular time intervals
reoccurring inspection or repair of equipment to avoid possible uncontrolled break-
downs;

* Condition-based Maintenance describes the usage of fixed indicators or triggers. If
those are sending alarms then a maintenance is performed;

* Predictive Maintenance is the one mostly connected with industry 4.0. PAM stands
for some kind of heuristic or statistical method/model used to foresee upcoming break-
downs and time to failure or estimate the time often referred to as remaining useful
life (RUL) - until such a breakdown occurs next. Usage-based Maintenance is a sub-
category where utilization is a main indicator for failure;

* Prescriptive Maintenance Prescriptive Maintenance is an expanded PAM with a root
cause analysis on top, meaning it automatically detects why a failure happens on top
of what fails and when it is going to fail. It is seen as a whole intelligent analytical
monitoring system.

17



Down events can be caused by a versatile amount of root causes often not clearly distin-
guishable. They depend on the degradation effect of run processes and life span of different
equipment parts. Other impact factors on maintenance schedule are logistic, availability of

personal, spare parts, equipment utilization and internal prioritization rules.

VIRTUAL METROLOGY AND RUN-TO-RUN

If the process resp. the process technology is well understood - meaning you can build a
model to describe the influence of process parameters on the process result for example in-
fluence of etching time on etching thickness or gas flows on profile width of contact wholes-
an advanced process control (APC) system called run-to-run (R2R) can be introduced to an
equipment. Itallows automated modifications of the recipe between two runs (between two
wafers are processed) in order to minimize drifts, shifts or variance and therefore increases the

control over the process step. After a lot is processed a sample of wafers from this lot go to

equipment metrology | equipment
> (e.g. layer Ll
rocess1 rocess 2
P thickness) P
F 3
model [+

Figure 2.2: Visualization of a run-to-run system. Visualization of a run-to-run system (R2R)

a metrology equipment where product measurements are taken in order to assure quality
and to verify the target of the process step. In the statistical process control (SPC) data multi-
ple product related measurements are taken on multiple spots on the selected sample wafer.
Since this causes high costs or even effect the functionality of the tested wafer, another APC
system called virtual metrology (VM) or soft sensing (SS) can be provided for an equipment

if necessary knowledge is available and a statistical model can be formulated and trained.

18



‘[0£] (INA) ASojos3oW [ENYIIA JO UOLEZI[ENSIA "eJewayds AS0jos3aW [enLIA €' anSi4

walsAs - =
£ SCHEEIE = E£55HESY 211 | =
ABojona zoor |usu £V £5SPETLSAL 6661 |goLn v
|||||||||||||||||||||||| [enuIA 56l |pEEROC 0 d sceezray I | 1HoL3 v
OIx.L.?ﬂ-In!\\nV\OJTJf‘XL}erJLP. « T0T8  |#EcEOS wd ZgrETIEY 2350 ETTE] v
I O I B, 0 N R ) N O O I S S PR 0 O S A o8 Z00E05 wd 9SHEETEY I | HaLI v

dwsy|  =unssasd adipa I3PEM 10]| wewdmnbs| ssuuEmpom| -
.\St\.\ _ UoneJlISSE]D pUE UOl23)}ap Jine4 _ t

ejep ABojosjs|\ [ENHIA

Multiple physical
sensor measurements
for all wafers

-— juswdinbg i~ S8 uawdinbg
— T T BuLouUOp KBojonay Buyduwes uononpoiy

ejep ABojojaly [eay

19



VM is a model based statistical prediction of the wafer properties based on sensor data
measured during the process and therefore takes the place of the indispensable costly product

measurements.

SEMICONDUCTOR SCANNING ELECTRON MICROSCOPE METROLOGY

A scanning electron microscope (SEM) is a type of electron microscope which produces im-
ages of a specimen by scanning its surface with a focused beam of electrons. The electrons,
by interacting with atoms in the specimen, produce several informative signals about the
surface topography and composition of the specimen. Secondary electrons emitted by the
specimens’ atoms excited by the electron beam can be detected by using an in-lens detector
or an external detector. Depending on the type of detector, SEM images can be therefore di-
vided into in-lens detector images and external detector images. This means that there may
exist more than one image of a single defect. These images are very similar but present vari-
ations, for example a small translation, or different contrast due to the different tilt angle of

the in-lens and external detectors as presented in Figure 2.5.

Figure 2.4: SEM image variations based on detector and angle. Example of possible image variations for one specific
defect sample. The appearance depends on the used detector and angle when the image was taken.

Defect detection and classification is a fundamental part of production control and man-
agement to ensure highest product quality and production performance. Scanning Electron
Microscopes (SEM) images of the wafer are acquired after the completion of certain process
steps, in particular between etching and deposition.

The collected data is examined by humans or automatic systems and divided into different
defect types. Often detected defect classes are particles, scratches, spots, points or irregular con-
nections besides others. Twelve examples of defect classes are shown in Figure 2.5. If a defect
is detected, corrective actions or declaration of ‘defective’ products are triggered. The de-
tailed inspection procedure involving SEM images is depicted in Figure 2.6. The procedure

follows the following steps:

20



Figure 2.5: Twelve examples of SEM defect images in silicon wafer. Example of possible SEM image defects variations
The appearance and background depends various context categories.

(i) anoptical inspection tool locates defects (marked in red) by comparing multiple neigh-
bouring dies on a wafer and looking for anomalies;

(ii) high resolution SEM images are taken at each defect location;

(iii) defects are classified.

21



*3]qISIA 2Je 34n3onuls punouSyoeq aSew aY3 Ul S92UBIYIJ ISJEM IO 3P Y3 UO UOLEIO| 3Y3 SUIMOUX JNOYIIM PaYISSE|D 3. $199)3p (Ill) "uoLjedo|
109J9p Yoea e uaye) aJe saSewl |\JS uonnjosas Y3y (i) ‘sajjewoue 1oy Supjoo| pue Jajem e uo salp Suunoqysiau ajdiynw Suniedwod Aq (pad ul payJew) s323)ap $93ed0| |00}
uonadsul |eordo ue (1) :puey e ss9d0.d SuLinidejnuew 103INPUODIWSS 3Y3 J0) 94Npad0.ad UoLeIYISSe|d 129)9(] *|043u0d $$920.4d 10 ejRWaYIS uoedyissed 30949 :9°g a4nsi4

payisse[o
S G

UoneITISSE])) 199

S dFew! WS
depA 19970 93ew 19Jep [RUISLIO

uonoadsuy feondo

payisse[o 5
[# d8ewl NAS

UoneITISSE])) 1997

[# 93ewl INFS

22



Part 11

Methods and Mathematical Tools






Basics

In this chapter we introduce methods and models that are later exploited for use case eval-
uation in Chapter 8, Chapter 9 and Chapter 1o. Again, we want to stress that presented
methods are not bound to semiconductor field in general or limited to semiconductor man-
ufacturing use cases. Hence they are formally introduced and theoretically analyzed com-

pletely independent from Part I1I of the thesis.

3.1  NEURAL NETWORKS

INTRODUCTION AND IDEA

Artificial or feedforward neural networks (ANN) also called multi-layer perceptrons (MLPs)
are the simplest but also most known and applied deep learning models. A summarized
historic overview including important references is given for example by Schmidhuber [178]
starting from the first theoretical ideas in the 1940s over development of backpropagation
to usage of restricted boltzmann machine to model each layer. While Goodfellow et al. [74]
also shortly addresses the historical development at the beginning, it focuses on a detailed
theoretical explanation of main concepts and methods applied in deep learning.

The biggest advantage of a neural network compared to classical machine learning ap-
proaches are its ability to model nonlinear relationships without knowing the underlying
functional structure. In addition its model quality is independent of the concrete represen-

tation of the data, as long as the hidden or relevant information is identical; for example

25



cartesian versus polar coordinates, logarithmic vs normal scale.

The basic idea is to successively connect simpler, affine linear functions in a way that allows
to achieve the necessary functional complexity needed for the modeling problem at hand.
An illustration of deep learning model structure dependent of the corresponding modeling
task is given in Figure 3.1: Each circle called node represents multiple parameter whose values
have to be learned during the training process based on training data as well as a performance
measure called loss. Each ‘column’ or layer of nodes increases the depth of a ANN. The
depth adds complexity but also enables a new latent feature representation for extracting,

evaluating and keeping the information hidden in the data.

(a) (b) (c)

Figure 3.1: lllustration of basic deep learning model structures. Graphical representation of the concept of deep learn-
ing models: (a) regression, (b) classification and (c) autoencoder. Regression and classification are typical examples for
supervised learning problems while autoencoder belongs to the unsupervised category.

The training for minimizing the loss is done in a repeating manner until a stopping criteria
is reached. First evaluating the performance with an algorithm called forward-propagation,
then the parameters are updated using an algorithm called back- propagation. The upcoming

sections give further insights into neural network methodology, architecture and training.

LEARNING PARADIGM AND SUPERVISION

In general there are 3 basic ’paradigms’ of deep learning:

* Supervised Learning (SL): Given an input X as well as an output Y called labels or
target, the objective is to learn a mapping respective the parameter values of the neural
network based on given (input,output)-sample pairs such that it gives the best possible
representation of the unknown underlying function.

* Unsupervised Learning (UL): No output data and hence no labels are available so
the training has to work with indirect feedback or based on input data where the focus
is put on the density or distribution itself.

26



* Reinforcement learning (RL): A reward function instead of direct comparison with
aloss is used to assess actions in an environment the so called agent can interact with.

In cases where only a small data set or only a limited amount of labeled data is available,
a hybrid paradigm between supervised and unsupervised learning called semi-supervised
learning (SSL) can be introduced. Chapelle et al. [29] gives an introduction and describes
different assumptions used for SSL as well as algorithms and practical examples. If only a few
samples or only one single labeled sample is available, specified SSL methods called few-shots
or one-shot learning show very promising results, see for example the approaches presented
in Koch etal. [115] and Vinyals et al. [208].

Another closely related hybrid category that becomes more and more relevant due to its
success in the field of natural language processing (NLP) is self-supervised learning. A
well-known example called bidirectional encoder representations from transformers (BERT)
is presented by Google in Devlin et al. [52]. Compared to more traditional SSL approaches,
self-supervised learning focuses on a pre-training step. The goal is to presents a well initial-
ized network that is task independent on the one hand but on the other hand already in-
cludes powerful context-based latent representations. With the help of self-supervised learn-

ing state-of-the-art results are also achieved in the field of computer vision, see for example
Grill et al. [76].

DISCRIMINATIVE VERSUS GENERATIVE

ML methods and ANN are categorized into discriminative and generative models, depend-
ing on their study and usage of probabilities (see [102]).

In the discriminative case a functional representation of the conditional probablility is
assumed and training data is used to estimate corresponding defining parameters. Super-
vised machine learning methods for solving classification or regression problems - like (multi-
)linear regression, support vector machines and decision tree based models - are typical ex-
amples for discriminative models. Figure 3.1 presents a structural scheme of ANN for (a)
regression and (b) classification task. ANN used in that context are also discriminative.

The goal of a generative model is to describe the underlying data distribution (or the
distribution of different classes) based on the sample data. Hence it tries to learn defining
parameters of the joint probability of input and output and therefore often does not rely on
the availability of labels. Well known generative methods in the field of deep learning are vari-

ational autoencoder (VAE), bayesian networks and generative adversarial networks (GAN).

27



[74], Chapter 20 contains a general description of generative models. GAN are a main source
of inspiration for the presented work hence a detailed description is presented in Section 3.2:
Generative Adversarial Networks (GAN) and Adversarial Training Approach. It is closely
related to domain adversarial neural networks (DANN) described in Section 3.3: Domain
Adaptation Theory and Domain Adversarial Neural Networks (DANN). Evaluating gener-
ative models is difficult because the ground truth distribution is unknown. see Goodfellow
etal. [74], Chapter 20. Deeper discussion about occurring problems and challenges are pre-
sented in Theis et al. [201]: It shows that state-of the art methods are independent of each
other in the sense that consistent results cannot be expected above them. Hence, a selection
of methods can only be done application specific. Following this approach, use case and
data type specific benchmarking is introduced and use case specific evaluation is done in the

corresponding use case chapters.

NEURAL NETWORK ARCHITECTURES

Depending on the input data type, different deep learning architectures are developed. In the
following we summarize the explanations given in Ramsundar and Zadeh [164] and Good-

fellow et al. [74]. Some valuable insights are also presented in MacKay [143] and Bishop
[20].

FuLLY CONNECTED NEURAL NETWORK (FNN)  Fully connected neural networks (FNN)
consist of a series of layers where each neuron, also called activation units, is connected to all
other neurons of the neighboring layer. Three layer schemata are distinguished in general as

visualized in Figure 3.2:

* Input layer: First layer of the neural network that takes the input data and features to
subsequent ones without doing any transformations;

* Hidden layer: A network can have one to many layers that connect the input and the
output. They are build up using different building blocks and the main transforma-
tions are performed here. If a network has multiple hidden layers it is called deep. An
investigation of deep versus shallow neural network is given by Delalleau and Bengio

[51].

* Output layer: Last transformation before the final result is read out. Output depends
on the problem type.

2.8



input layer hidden layer

|

@

output layer

KA e —e—
e

Figure 3.2: Layer schemata for neural network.

Since no assumptions need to be made about the input (this is called “structure agnostic”
in [164]), FNN can be used for all kinds of data and problems and are suitable for a broad
field of applications. Top-performing for stationary one-dimensional data, it shows a weaker
performance applied to for example image data where dedicated architectures are developed.

Let f : x — y define a modeling step/ transformation step of a fully connected layer
with x € R" be the input and y € R™ be the output. Then y is computed via matrix

multiplication
y=f(r)=0 (W x) (3.1)

with o defining a fixed nonlinear transformation (applied element-wise) called activation
function, and the layer transformation f is parameterized by W € R™*" where W is de-
scribed as a matrix with the parameters to be trained. The activation function is used to
define the output of the layer and can be as simple as a affine linear function (default value)
but also highly nonlinear. Nonlinearity can enhance the representation skills of a network,
hence is a more powerful modeling tool for various tasks. A special activation often used for
classification in the final output layer is the so called sigmoid (binary classification) and soft-
max (multiclass classification) activation that maps the output to a probability distribution
over classes. For more details on output units see [74], Section 6.2.2. Another example is the
rectified linear unit (ReLU); see [74], Chapter 6, Section 6.3. It is a piecewise linear func-
tion, that is identical to the identity function for positive values and zero for negative values.
It avoids the vanishing gradient problem, hence it is fast and stable in training. A variant is
called LeakyReLU that has a small slope instead of a flat slope for negative values. Visualiza-
tion of LeakyReLU and sigmoid are presented in Figure 3.3. More interesting details on the
aspect of nonlinearity are discussed for example in Oja et al. [152] in the context of principle

component analysis versus neural networks.

29



X
ax, x<0 l1+e

1
ﬂ,x):{x, x=0 flx) =——
_— — " x o T x

Figure 3.3: Visualization of LeakyReLU and sigmoid activation function. Left graph shows LeakyReLU, right graph shows
the sigmoid function.

CONVOLUTIONAL NEURAL NETWORK (CNN) Convolutional neural networks (CNN)
are developed and optimized for analyzing grid-based data like time series or images. First
introduced in the late 1980s - for one of the first publications including the base architecture
see LeCun et al. [121], for one of the first describing and applying the backpropagation al-
gorithm see Lecun et al. [122] - it is now thanks to high effort in research e.g. architectural
structure, training methods as well as availability of high compute power and hardware - the
go-to and state-of-the-art architecture for solving computer vision tasks. For example the
model scaling of CNN for solving image classification tasks based on transfer learning (see
Tan and Le [199]).

A convolution is mathematical operation based on the integral over the product of two
functions (input and kernel). A multi layer network is called CNN if at least one of the
layers conduct a convolution since most of the time at least the final layers are build using
tully connected layers. For a mathematical description and example see [74], Chapter 9.1.
With x(t) as input function, w(t) as kernel, s(t) the output function and ¢ describing the
index of the corresponding grid (one dimensional vector for time series, two dimensional for

images), a discrete convolution can be defined as

s(t) = (zxw)(t) = Y w(a)w(s). (3.2)

a+s=t

For real world data, the assumption that t is an integer value and the assumption that there
exists only a finite number of addends (equals to a finite sum) holds true. The kernel w is
a multidimensional array with parameters that needs to be learned during training. A well-
known example of such an operation is the Fourier transformation or the discrete Laplace
operator (the kernel there is known and predefined). Some variants of the original convolu-

tions are available that can level-up the model depending on specific use case at hand, exam-

30



ples are transposed convolutions, dilated convolution, separable convolution and depthwise
convolution besides others. The mathematical operations that are often combined with a
convolutional layer is activation and pooling. While activation is the same as for FNN since
it is applied element-wise, pooling stand for a simple mathematical operation based on de-
scriptive statistics like min, max or average in order to change (mostly reduce) the output
dimension. For an overview of advances and alternatives see Gu et al. [77].

Bello etal. [12] shows the advantage of combining both CNN and so called self-attention
to include more global or longer-term information instead focusing only on local neighbor-
hoods. In comparison to pooling or convolution a similarity function between hidden units
is introduced and a weighted average of those values is computed based on the similarity.
Hence the importance of relative location can be replaced by important long term relations.
For neural networks, let W () and b(t) be respectively the layer’s weights and bias, and z(t)
the input at time t. Then, the attention weight a(t) at time ¢ is computed with

a(t) = softmax(tanh(x(t) - W(t) + b(t)). (3-3)

Softmax is used to ensure that the sum of all attention weights is 1. The attention layer
output is then the sum of observation weighted with the attention weight. A very common

attention function called additive attention is presented in Bahdanau et al. [8] for example.

ONE DIMENSIONAL CONVOLUTIONAL NEURAL NETWORK (IDCNN) CNN uses filters
that extract valuable information from a region of a certain size to detect underlying shapes
and topologies from the data it is applied on. Since convolutional filters of any dimension
can be applied, CNN are also usable for one-dimensional time series input data: Figure 3.4
shows a graphical explanation of a one dimensional convolutional layer and a pooling layer
with time series data. A convolutional layer suitable for one dimensional input includes a
kernel that only slides along one dimension. The kernel size is representing the width of
the kernel and stands for the number of time-steps that are considered at once comparable
to a moving window. The filters defines the number of output features you have from this
layer. Kiranyaz et al. [114] for example presents an overview including different industrial

applications and case studies.

TEMPORAL CONVOLUTIONAL NEURAL NETWORK (I'CN)  Temporal convolutional neu-

ral network (TCN) presented by Lea et al. [120] are an advanced version of CNN especially

31



time order of sequence

input features

EEEEEEEEEEEEEEEEEEEEEEEE

kernel size
one ] !
i i filter weights
dimensional
convolutional
layer output features

dot product
pooling layer pooling operation

[(TTTT T T ATTT]

Figure 3.4: Visualization of a 1-dimensional convolution. Representation of a one-dimensional convolutional layer fol-
lowed by a pooling layer applied on time series input data [70].

designed for time series input data and include further time series specific methodological
advances. An intensive study on RNN and TCN for time series data in general is given by
Bai et al. [9]. TCN architecture is based on CNN. The convolutions are causal to avoid
information leakage and zero padding of length (kernel size —1) is added to keep the subse-
quent layers of the same length as the previous ones. Main enhancements in TCN are the
implementation of dilated convolution by Yu and Koltun [227] and residual connections by
He et al. [84]. The WaveNet model by van den Oord et al. [205] shows the advantages for a
text to speech /speech synthesis use case.

A dilated convolution is a widened convolutional filter with spaces or skipped steps in the
kernel element. An additional parameter d called dilation factor tells how much the input is
expanded. Let again x(t) be a time series input function and let w(t) define a (finite) kernel
and ¢ describing the index of the corresponding one dimensional grid. Then the dilated

convolution operation s; on element ¢ of the sequence is defined as:

sa(t) = (xxaw)(t) = Y w(a)w(s). (3.4)
a+d-s=t
with *4 dilated convolution and d is the dilation factor. The summation makes the skipping
of some values visible, see Equation (3.1). Dilated convolution with dilation d = 1 yields
the standard convolution.
Residual connections are used to connect functional representation learned during train-

ing with the original input. So called shortcut connections that skip one or more layers are

32



introduced, working as identity functions. The identity output is then simply added to the
output of the preexisting layers, the activation function is finally applied to the whole sum.
Since no additional parameter are added and the computational effort is unchanged, it ad-
dresses the degradation problem (exploiting or vanishing gradient, accuracy loss,...) of deep
neural nets without adding any complexity. The residual connection set up makes deep neu-

ral networks seem very similar to shallow networks in a ensemble setting.

LONG SHORT TERM MEMORY NETWORK (LSTM) Long short term memory (LSTM) by
Hochreiter and Schmidhuber [91] is a variant of recurrent neural network (RNN) with im-
proved information flow and consideration of long-term dependencies. LSTM has a typi-
cal RNN chain structure with repeating modules and recurrent connections. One module
called memory cell includes four neural network layers. A visualization of such a memory
cell by Yuan et al. [232] is given in Figure 3.5. The notations in Figure 3.5 are reused for

turther explanations. There are three different gates in a memory cell:

¢, ;=c(t—1)

- > i »C = C(t)
] . ] _ h® h, = h(t)
orget gate: input gate: output gate:
. =70 i, =1i(1) c‘f=c‘(t)I o, =o(1)
o g tanh a
h, ;=h(t—1) T T T T

X = x(t)

Figure 3.5: LSTM cell overview from [232].

* Input gate;
* Output gate;
* Forget Gate.
First step is that the forget gate manages how much information from the current input

and the output of the previous cell is kept. The notation from Figure 3.5 is used and the

explanations follow [232]. Let 2(¢) be the current input for timestep ¢ and h(t — 1) the

33



hidden representation from the previous step; let o be an sigmoid activation function. Let f
be the layer transformation that is parameterized by Wy. Then, the forget gate/layer output

f(t) is defined as (in form of a neural network layer output with sigmoid activation function)

o= [(t) = oWy - [n(t = 1), 2(t)] + by) (3.5)

where Wy as parametrization can be expressed as weight matrix for the network layer and by
is the bias term.

The input gate has the task to decide what new information to consider. This is an update
of the so called cell state. A sigmoid layer gives the input what values should be updates and
a tanh layer gives candidates for the new values to be added to the state. Let i be the sigmoid
layer from the input gate parameterized by W; and the bias b;. Let C be the tanh layer to
form the input gate parameterized by W, and bias b.. Then, the input gate/layer outputs
i(t), C(t) are defined as (in form of a neural network layer output with sigmoid and tanh

activation function)
iy = i(t) = o(Wi - [a(t — 1), z(t)] + bi); (3.6)

é1t = é(t) = tanh(Wc ) [h(t - 1),:13(t)] + bc) (3.7)

The new cell state C'(t) is then computed by multiplying the old state C; := C'(t — 1) with
the sigmoid output from the forget gate plus the new values as output from the sigmoid layer

from the input gate scaled by the tanh layer output from the forget gate.
Ct = C(t) = ft . Ct—l + Z‘t . ét. (38)

The final output is a filtered version of the cell state. Let the output gate be defined as a
sigmoid layer o parameterized by W, and bias b,. The sigmoid layer is used to decide the
parts that are finally used. A tanh activation function is applied to the cell state to decide on

the values that are outputted. The final selection for the output is then computed via

=
~

Il

QS
—~
~
~—
||

/-\
§

[A(t = 1), 2(t)] + bo) (3.9)
= h(t) = oy - tanh(Cy). (3.10)

For a successful application in the area of gene sequence classification see Hochreiter et al.

[90]. A variation of LSTM by Cho et al. [39] (see Chung et al. [43] for a first empirical

34



evaluation) uses Gated Recurrent Unit (GRU) that significantly can speed up the training

since it has a reduced number of gates (reset and update).

NEURAL NETWORK TRAINING

A neural network consists of layers that contains a number of connected neurons. A neuron
is a parametrization of a mathematical function. It has an input (input vector) and weight
(weight vector plus bias) that are learned during training. Optional a activation function can
be added. Therefore a layer consisting of neurons is a combination of inputs and weights -
vector multiplication meaning linear combination of single vector entries - and a nonlinear
function. In a neural network with multiple stacked layers the neurons are connected hence
the linear functions are cascaded. Training the neural network means changing the weights
to get an optimized approximation of the true underlying (unknown) functional relation-
ship between input and output. The training starts with randomly initialized weights. To
evaluate the performance of the neural network a loss function is selected. It compares the
neural network output with a predefined target value. More details and examples for loss

functions are given in Chapter 7.

GRADIENT DESCENT  Different gradient-based optimization methods are applied in the
training of DL methods. Stochastic Gradient Descent (SGD) (Ruder [168]), RMSprop by
Hinton [89] and ADAM by Kingma and Ba [113] can be named as most common ones (Wil-
son et al. [215]) that are contained in all state-of-the-art deep learning library (for example
keras [40]). ADAM is explained further since it is applied in Chapter 8, 9 and 1o. For all

other methods we refer to the cited relevant literature.

ADAM is a stochastic gradient-based optimization algorithm that combines the advan-
tages of RMSprop and AdaGrad by Duchi et al. [57]. Let f be the objective function that
is parameterized by 6. The goal is to minimize the expected value of f with regard to it
parameters 6. The function is evaluated at ¢ (or on a batch/minibatch of multiple steps
t € [1,...,T]). Itis assumed that f is differentiable towards 6 and the gradient of f is

defined as the vector of partial derivatives of 6 at step t. The parameter update is computed

35



using moving averages via the following update rules ([113]):

Getgradients at step t: ¢, = Vg fi(0,-1);

Update biased first moment estimate: m; = 51 - my—1 + (1 — 1) - gs;

2.
)

Update biased second raw moment estimate: vy = [ - v;—1 + (1 — 52)(g¢)

(3.11)
(3.12)
(3.13)
Compute bias-corrected first moment estimate: 71, = m; /(1 — 57);  (3.14)
Compute bias-corrected second raw moment estimate: ¥, = v;/(1 — 35);  (3.15)
(3.16)

Update parameters: 6; = 6;_1cv - mt/(\/th +€);

where 0 is the randomly initialized parameter vector, o defines the stepsize and 31, 2 €
0, 1) describes the exponential decay rates for the moment estimates. The bias-corrected
estimates are computed to balance out the towards zero biased estimates (my = 0, vy = 0).
The algorithm runs until convergence. More details on the stepsize that is an important

property of ADAM including upper bounds are discussed in [113].

BACKPROPAGATION A key element of successfully training deep learning models with
stacked layers is the backpropagation algorithm. It was first introduced by Rumelhart et al.
[169]. Itis a special version of a gradient based optimization approach. To address all the
neurons representing parameters that are involved, partial derivatives with relation to the
model parametrization ¢ are computed applying the chain rule. The chain rule is used to
compute the derivative of a function that can be expressed as composition/product of two
simpler functions. For further details and explanations see Bishop [20], chapter 5. For a

bayesian focused look onto neural network training see MacKay [143].

HyPERPARAMETER TUNING  Hyperparameter optimization is done on all models (includ-
ing benchmarks) to select best suitable hyperparameters and to maximize model training and
performance - the model itself is trained with respect to the model parameters 6 after select-
ing and fixing hyperparameter \. Therefore a p-dimensional - p is the number of parameters
to be set - search/parameter space A is defined where each of the p hyperparameter spans one
dimension of the space. Each point in the space corresponds to one specific model config-
uration. Let & € X be samples from data set X following the distribution D,. Then, the
search for the best model configuration A*) can be defined as optimization problem [16] for

AeA:
]EwNDw [L(QT,A)\(f, ‘9))] (3'17)

36



A the hyperparameter configurations, A € A as search space and A the actual learning

algorithm for fixed A that optimizes f parameterized by 6 for each fixed parameter setting \.

In general, a data set used for solving a modeling task is split in three parts: training data
used to train the learner and learn the model parameters 0, test data used for evaluation when
model training is finalized and parameters are fixed and for additional parameter A search in
the hyperparameter optimization part, the third so called validation data set is used. There-
fore, the expectation value over D, is approximated by the mean of a validation set S, in

general better known as cross-validation technique. Then

A = argr/{lei[{lmeanmegv [L(z, Ax(f,0))] (3.18)
This is a valid method if S, is independent of the data sample used for training model param-

eters 0 respective data used by A,.

For an efficient hyperparameter search, A as search space is restricted. There are different
strategies available to select trial points {1, ..., Ag} for fast convergence and best A selec-
tion: Grid Search is often used because of its simplicity. A grid is defined on the search space
and each point is evaluated in an iterative manner. If the parameter space is real-valued or
unbounded, discretization including bounds is recommended. Hence it is best suited for
small search spaces to avoid high computational costs. Stochastic Search uses a stochastic
distribution for trial points selection; Random Search for example selects them randomly,
iteratively evaluate them and best performing parameters are chosen at the end. It should be

preferred when the search space is large e.g. for ANN or XGB.

3.2 GENERATIVE ADVERSARIAL NETWORKS (GAN) AND ADVERSARIAL TRAINING AP-

PROACH

The following descriptions assume a basic knowledge about probability and information
theory including maximum likelihood estimation (MLE) and divergence metrics. An intro-
duction on those topics can be found in Goodfellow et al. [74] (see Chapter 3 for a solid
understanding of basic concepts and Chapter 5 for MLE), other well-known reference are
MacKay [143] and Bishop [20] mentioned before. More details on distribution-based losses

that are based on divergence measures is given in Chapter 7.

37



PROBABILITY DISTANCE METRICS

Main property of generative models like GAN is the generation, comparison or adaptation
of probability distributions. Selection of metrics highly influences possible numerical ap-
proximation and upper or lower bounds and drawn convergence conclusions. To cover a
distance between probability measures, two classes of probability distance metrics are con-
sidered here: F-divergences and integral probability metrics (IPM). Based on Sriperumbudur

etal. [185] the following general class definitions are given. First F-divergences is defined via:

Ju® (&)@ P<Q

00 otherwise.

Dy (P,Q) := (3.19)

where P, Q are two probability measures, M is a measurable space, ® : [0, 00) — (—00, o0
and P < Q describes that IP is absolutely continuous w.r.t. Q. Examples used in GAN or
DANN settings from the class of F-divergences are

* Kullback-Leibler (KL) with ®(¢) = tlog(t);

* Jensen-Shannon (JS) a smoothed and symmetric version of KL.

integral probability metrics (IPMs) are defined by:

/M fdP - /M fd@’ (3.20)

where F is a class of real-valued bounded measurable functions on a measurable space M.
Examples used in GAN or DANN settings from the class of IPMs are

7r (P, Q) := sup
fer

* Maximum Mean Discrepancy (MMD) with F' = {f : || ||z # 1}, H reproducing
kernel hilbert space;

* Wasserstein with F' = {f : || f||z # 1}, L Lipschitz semi-norm.

GENERATIVE ADVERSARIAL NETWORKS (GAN)

Generative Adversarial Networks (GAN) are first introduced by Goodfellow etal. [75]. The

goal is to generate synthetic data samples. A GAN consists of two models, a discriminator D

38



and a Generator G. The generator’s task is to create data samples as close as possible to a given
data distribution and the discriminator’s task is to classify generated versus original samples.
The generator tries to generate samples that the discriminator cannot distinguish from the
original anymore meaning label them as original. The discriminator ties to detect the syn-
thetic data samples. Compared to other generative approaches it introduces a two-player
game approach for training where the two parts D and G of the network pursue opposite
goals. The training happens iterative with a certain ration and each player is only able to up-
date its own parameters during training. The used minimax is inspired by game theory. A
global loss is defined based on difference of expectation of true versus generated data distri-
butions and it can be shown that minimizing the D loss (G parameters are fixed) is equivalent
to minimizing Jensen—Shannon divergence (JSD) that is based on the Kullback-Leibler di-
vergence (KLD). More theoretical/mathematical insights about training dynamics for GAN
including for example instability and choice of divergence metrics is given by Arjovsky and

Bottou [5].

Let X be defined as the input space and Y as the output space. Let hp : X — Y define
the domain discriminator meaning a statistical model for classification of two domains. Let
hp be parameterized by 6. Let D(x,0p) be the parameter representation of the domain
classifier where D is the model function with parameters 5 that outputs the prediction for
x € X. Lethg : Z — X be the statistical model function mapping a second data space
Z to X and G(z,0¢) be its parameterized representation where G is the model function
with parameters ¢ that outputs the prediction for z € Z. Let Dyq, be the data generating
distribution (identical to what is called source domain for domain adaptation) based on X
and D anoise distribution (identical to what s called target domain for domain adaptation)
based on Z. Using the definition of the metric for JSD as basis for defining a loss function
for a GAN network and the introduced notation, the optimization problem respective the

value Function V is presented as follows:
V(D,G) = Egnpyy,[log D(2)] + E.p. [log(1 — D(G(2)))], (3.21)

with [E the expectation value as defined by measure theory. For detailed theorems and proofs

see Goodfellow et al. [75].

One of the first and very well known example of a successfully implemented GAN based
on convolutional layers called DCGAN is presented by Radford et al. [163]. It applies the

idea of unsupervised representation learning and its advantages compared to original GAN

39



comes from a set of carefully selected constraints on the chosen architecture.

WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS (WGAN)

Difficulties like instability and mode collapse can occur during GAN training. Hence so
called Wasserstein GAN (WGAN) is introduced by Arjovsky et al. [6]. Compared to the
original GAN setting, it makes use of the Lipschitz property of Wasserstein distance - 1-
Wasserstein distance is also called earth mover’s distance (EMD). It is stable meaning well
behaved in the sense that if the input changes a little, the output also does not change heav-
ily. Instead of a binary classification using sigmoid as output function), the discriminator
D outputs continuous scores for realness or fake. The linear output function allows values
that go to infinity respective minus infinity in order to differentiate. The sensitivity towards
the training ratio of D and G does no longer exists and unlike before one explicitly wish to
train D to its optimum since vanishing gradient due to zero loss when coming too close to
the optimal D is no longer a problem. Using the Kantorovich-Rubinstein duality for the
Wasserstein metric as basis for defining a loss function for a GAN network, the optimization

problem respective the value Function V' is presented as [6]:
V(D,G) = Eonpyor, [D(2)] + Eonp, [(D(G(2)))], (3.22)

with D and G being discriminator and generator as described before, [ the expectation value
as defined by measure theory, Py, is the data generating distribution and P, the prior noise
distribution.

By definition of the loss, D needs to fulfill the properties of a set of 1-Lipschitz functions.
As presented in Arjovsky et al. [6] this can be done by so called weight clipping that restricts
the maximum weight values. Tuning the values for the clipping is still a challenge and bad
choices lead to poor convergence and low quality outputs.

With further improvement of WGAN presented in Gulrajani et al. [78] (WGAN-GP) the
problems arising with weight clipping for standard WGAN and overfitting in the original
GAN are addressed. A regularization term called gradient penalty (GP) is introduced that
regularizes the gradient during training instead of weight clipping where poor settings for
the corresponding hyperparameter can lead to decaying (selected too small) or exploding (se-
lected too large) loss again. In addition, WGAN-GP assures that if D struggles to distinguish
between real and generated samples, the generated synthetic data is truly similar to the tar-

geted one. In detail: The Lipschitz constraint is covered either by applying weight clipping

40



as described in [5] or by introducing gradient penalty (GP) regularization term as described
in [78]. GP is defined as:

GP = Aap Eanr, [(IV.D(G()]l2 — 1] (3.23)

with Ag p as weight factor for the total loss. As presented by Arjovsky etal. [6] and Gulrajani
et al. [78], the Wasserstein based GAN shows convenient behavior towards the gradient of

the discriminator with favor of the gradient penalty that shows the most stable training.

CycCLE GENERATIVE ADVERSARIAL NETWORKS (CYCLEGAN)

GAN is a powerful method and heavily used for difterent applications and very present in
literature especially for computer vision task. A specific GAN construction that enables un-
paired sample matching is the so called CycleGAN presented in Zhu et al. [239]. It targets
domains where no 1:1 matching of samples is possible. Therefore a second generator and
a second discriminator is introduced and a cycle consistency loss is formulated comparing
input-recreated input pairs instead of input-output pairs. Another optional loss is the iden-
tity loss assuring that the generator is close to an identity mapping in cases where real data
meaning data that does not need a distribution shift is given as input. Further improvements
of CycleGAN are now available like for example Xie et al. [221] introducing a self-supervised
aspect in addition and Chen et al. [32] that includes attribute transfer for improved style
transfer for more complex images. A combination of domain adversarial methods like pre-
sented in the following section and the CycleGan for an image semantic segmentation task

is presented in Hoffman et al. [92].

DBACS, the method introduced in Chapter s, is based on that idea and gives the oppor-

tunity to apply domain adaptation on domains with different representations.

3.3 DOMAIN ADAPTATION THEORY AND DOMAIN ADVERSARIAL NEURAL NETWORKS
(DANN)

Domain adaptation (DA) is a sub field of transfer learning (TL) developed to transfer a well
performing dedicated statistical model trained on a specific data distribution to a second
similar but non-identical distribution. So called homogeneous DA assumes that the feature

space have the same dimensions and features, while in heterogeneous DA the features space

41



differ resulting in different space dimensions.

TRANSFER LEARNING

Transfer learning (TL) is the idea to use already existing knowledge about data, modeling
task as well dedicated statistical model to achieve better and faster results for the same or
similar modeling task for another related respective biased data set. An extensive overview of
transfer learning and its versatile aspects is given by Zhuang et al. [241]. In literature one can
find different paradigm of TL, here a deep learning focused categorization given by Bashath

etal. [10] is presented:

* Instance-based: re-weighting instances by minimizing distribution distance;

* Mapping-based: finding a common (lower dimensional) space with greater similarity
by optimizing a mapping function;

* Network-based: reusing weights for network initialization;

* Adpversarial-based: find domain invariant (latent) features using an adversarial train-

ing approach.
In this work the focus is on homogeneous as well as heterogeneous adversarial-based DA.

DOMAIN ADAPTATION THEORY

In order to assure generalization of a trained model, it is assumed that train and test data
come from the same underlying distribution. If this is not the case - meaning that data sets
show differences beyond just noise while the underlying relevant information is the same -
domain adaptation theory overcomes resulting generalization issues as well as scaling limita-

tions.

Based on the mathematical formalism of statistical learning theory - see Vapnik [207] for
a general introduction including detailed descriptions - as well as computational learning
theory - for an introduction see Kearns and Vazirani [111] -, theoretical discussions about
generalization are done by Baxter [11] in the context of single versus multi task training of
neural networks. It shows advantages of representations learned by multi task training for
model transfer to additional tasks and advantages about the number of necessary training

samples that are needed. Based on those findings, Ben-David and Schuller [15] states the

42



mathematical formulation of zask relatedness including error bounds for multi task learning
as well as mathematical proofs of its situation specific advantages concerning generalization.
Related work but with focus on noise - respective an algorithm able to deal with noisy data -
in a multi task setting is presented by Crammer et al. [46].

While mentioned results rely on the one hand on labeled data as well as on the other hand
on a given measure of similarity and task relatedness, Ben-David et al. [14] addresses the

situation where the similarity of two different data sets with partly missing labels is in focus.

Definition 3.1 Let F' define a modeling task, X be defined as the input space and'Y as the
output space. A domain is defined as a distribution over X X Y : in more details as a pair
consisting of a distribution over the input space X as well as a modeling function f : X — Y.
Then, a supervised learning algorithm is provided with a labeled sample set S drawn 1.i.d.

from a domain Dg where

S = {xi’yi}?:l ~ {DS}n7 (3.24)
withn = |S| being the number of drawn samples.

The theoretical generalization properties described above (easier model transfer, less train-
ing samples) for example multi task learning for one selected domain does not hold when
the trained model is applied to a second domain based on data samples following a different
distribution. Let now Dg describe the original domain - called from now on source domain
following the naming conventions of domain adaptation theory - used for the model train-
ing. Let T' be a second labeled sample set drawn i.i.d. from a different domain D7 over
X x Y with a different distribution in case of labeled samples and D7 over X with a differ-
ent marginal distribution in case of missing labels. Dy (D7) is called target domain.

Then [14] states a generalization error bound of a classifier on the target domain D7 when
transferred from a source domain Dg. Furthermore, Ben-David et al. [13] extents this result
in the direction of semi-supervised learning: It describes settings and properties in order to
optimize the accuracy for both source and target while considering the amount of available
labels and overall sample sizes. For more insights into useful measure for divergence between

source and target is we refer to the given literature.

DoMAIN ADVERSARIAL NEURAL NETWORKS (DANN)

Neural Networks are heavily used models in the field of domain adaptation since they char-
acterize as a data driven and data centric approach. Ganin et al. [68] first present a neu-

ral network architecture used for domain adaptation: domain adversarial neural network

43



(DANN). DANN including its adversarial training algorithm is applicable to both unsuper-
vised as well as semi-supervised (or totally supervised) training. [68] provides theoretical ex-

planations and mathematical formalism based on [14], [13]. Here a quick overview is given:

First the paper recaps the results given in [13]: The H-divergence dy between source and
target domain is defined as metric. dy is based on a hypothesis class H, meaning a set of
all possible modeling functions that are considered. The empirical H-divergence EZH can
be computed using two sample sets from source respective target domain using the discrete
representation. Then an approximation of ElH is computed using properties of a chosen
learning algorithm respective its model error. Finally, using upper bounds for EZH, properties
are given under which the target risk- the probability that the prediction for input samples
from target domain is different from the corresponding respective paired output label - can

be kept small.

Ganin etal. [68] conclude that in order to enable domain generalization one needs to find
a common feature space for source and target. The common feature space has the following
properties: The original domain differences do not appear anymore while the source risk is

kept small.

Therefore, the idea of DANN is to map domain specific input features to a domain-
invariant latent feature space while keeping the necessary task specific information available.
First case studies including synthetic and real world data are presented [68]. The DANN
architecture plus the training routine (see [68], Chapter 4.2) can be summarized as follows:

Let F' : X — R™ beafunction that maps the input space X into a domain invariant rep-
resentation space with the dimension m and let F' (-, 0) be the representation of the neural
network with parameters 0, let P : R™ — Y the model function for prediction or classi-
fication with the output space Y. Let P (-, §p) be the representation of the neural network
with parameters fp. Last, let D : R™ — [0, 1] the model function for classification of two
domains with the labels o for source and 1 for target and D (-, §p) be the representation of
the neural network with parameters 6/ p. Let the prediction loss and the domain classification

loss called adversarial loss be defined as

Lp(0rp,0p) == Lp(P(F(x:,0r),0p), y:) (3.25)
LZD(Hpng) = LD(D(F(IZ,QF),HD),dl) (326)

with d; € [0, 1] describing the domain label and (x;, ;) € X x Y and where L, are

44



selected loss functions. Then the optimization objective is defined as

i=n-+1

E(r,0p,0p) = ZU (O, 0p) — ( Z/f (0, 0p) +— Z Lh( 9F,9D>.
(3.27)

with a labeled sample set S drawn i.i.d. from a domain Dg wheren = |S| being the number
of drawn samples and another unlabeled sample set 7" drawn i.i.d. from a marginal domain
D wheren’ = N — n + 1 = |T| being the number of drawn unlabeled samples. The

function is solved using an adversarial training approach such that

(ép,ép) = argminE(@F,Qp,éD) (328)
0p,0p
0p = argmax E(ép,ép,QD). (3.29)
0p

[68] uses a gradient reversal layer (GRL) for tackling the maximising part of the optimiza-
tion problem using gradient descent. A similar approach called adversarial deep averaging
networks (ADAN) but with an stability advantage is presented in Chen etal. [35]: The used
architecture is the same but the paper applies an approximation of the Wasserstein-distance
including weight clipping for the domain discriminator loss similar to Arjovsky et al. [6] for
GAN:Ss. This increases not only the training stability for their language sentiment classifica-
tion use case but makes the usage of the GRL redundant. More details on adversarial training

are presented in Chapter 3.2.

Based on the presented work by [68], lots of related methods and architectures are intro-
duced including all kinds of applications: An up-to-date survey focused on visual applica-
tions is presented by Zhao et al. [238]. The work by Berthelot et al. [18] with the method
called AdaMatch that makes use of pseudo-labels can be considered state-of-the-art of UDA
for computer vision related use cases. More work is done in the field of semantic segmenta-
tion (see Zou et al. [242] for example) as well as object detection (see the survey presented by
Ozaetal [154]).

One of the first works of domain adaptation in NLP for a cross lingual sentiment clas-
sification is presented in Chen et al. [35] also using Wasserstein loss and weight clipping
as introduced in Arjovsky et al. [6]. Wang et al. [211] put powerful state-of-the-art trans-

former architectures used for NLP in relation to adversarial training and combines the two

45



approaches for increased model robustness.

Time series data and regression problems are underrepresented in domain adaptation
compared to computer vision and classification tasks. Nevertheless Farshchian et al. [62]
introduces not only domain adaptation for both regression and time series but also consid-
ers a different distribution based metric by evaluating the distribution of the residuals of
original versus reconstructed time series data. Therefore it extents the work from Warde-
Farley and Bengio [214] by using autoencoder inspired architectures for the discriminator.
Another important publication on domain adaptation for time series data is Purushotham
etal. [162]

SuPERVISION IN DANN

Generative models like DANN combined with adversarial training are especially designed for
unsupervised or semi-supervised learning settings where labels for source data are available
but none or only a few for target. Overall there are different so called data shifts that can
occur in a DA setting, for an extensive summary we refer to Pan and Yang [157]. Most of
the publications about DA assume covariate shifts related to the input space meaning either
marginal or conditional shift occurs in the distributions. Hence, methods are often set up
in a way that the target is aligned according to the source label distribution. In cases of so
called target shift - for example due to class imbalance - this can lead to poor performance.
For an early discussion on so called distribution alignment see Zhang et al. [236] and for a
more recent discussion on ”..multi domain adaptation under target shift” based on optimal
transport see Redko et al. [165].

In the supervised settings the prediction or classification loss of target labels automati-
cally takes care that alignment is happening according to class distributions by comparing
the pseudo target label distribution (the predicted labels are called pseudo labels) with the
real target label distribution. Hence class imbalance for target domain is already indirectly
considered. If no target labels are available the target label distribution needs to be approxi-
mated as closely as possible. Therefore, in the optimal case, the target pseudo label distribu-
tion fits the true target label distribution. Selecting the available source label distribution is
an obvious always available choice for distribution alignment and often improves adaptation
results. A survey targeting UDA is given by Wilson and Cook [216] structuring approaches
on the applied methods and comparing them. State-of-the-art UDA presented by Berth-
elot et al. [18] takes a factor based on expectation value of source label distribution if no

labeled target information is available into account. Nevertheless, if one expects significant

46



differences between source and (unknown) target label distribution those can still lead to
poor performance. Methods that are available for approximating the target label distribu-
tion prior to the alignment (besides source data and expert knowledge) are given by Jiang
etal. [103] for example. For a more theoretically focused paper see Tachet des Combes et al.
[197]. An interesting dimension to this topic is introduced by Yang and Xu [225] discussing
class-imbalanced learning in a self-supervised setting. An improvement of CycleGan using
self-supervised learning seems as well a powerful tool for improving domain adaptation re-

sults as presented in Xie et al. [221].

47



48



DBAM

In this chapter we describe the DANN-based Alignment Model (DBAM) based on the ba-
sics, descriptions, figures, graphs and notations introduced in Section IT. DBAM is presented
and published in Gentner et al. [70] and Gentner et al. [69], where all explanations are tar-
geted towards a specific VM application use case. Here, we address the theoretical part of
DBAM independently of any concrete use case. Therefore, even if the presented methodol-
ogy is inspired by the needs, highest standards and complexity of semiconductor manufac-
turing, the following mathematical explanations of all methods and their usage are indepen-

dently of any application.

4.1  DANN-BASED ALIGNMENT MoDEL (DBAM)
The idea of the so called DANN-based Alignment Model (DBAM) is to create one common
model for multiple datasets showing different behavior. Therefore it addresses settings where
* different data distributions occur;
* no direct model transfer of a dedicated model is possible;

* a generalized model would suffer accuracy decay.

The main purpose of DBAM is to maintain the high accuracy of a dedicated model while
keeping all necessary data information in order and allowing interpretability and comparison

of all data sets and features involved.

49



Therefore, the idea of Domain Adversarial Neural Networks (DANN) by Ganin et al.
[68] is exploited and combined with a domain adaptation alignment approach using a resid-
ual inspired setting as presented by Farshchian et al. [62]. In addition, the training approach
is adopted from Gulrajani et al. [78] including gradient penalty (GP) regularization and
Wasserstein loss. The main contributions of the DANN-based Alignment Model (DBAM)

with regards to related literature can be summarized as follows:

* anovel approach that can cope with high context complexity respective multiple sys-
tems as well as a large variety of data types like stationary feature based data, time-series
data and image data;

* able to tackle supervised, semi-supervised and unsupervised regression as well as clas-
sification tasks for two (and more) domains following difterent distributions while
assuring interpretability and flexibility towards input dimensions and feature repre-
sentations of different domains;

* applicable to broad range of (semiconductor) industry applications independent of
task (regression or classification) and availability of labels.

The following notations are used throughout the whole section. Let f define a modeling
task, let X be defined as the input space and Y as the output space. In a typical scenario
where only numerical input data is present, the feature space is selected as X C RY . In case
of categorical data, text data or image data a function called embedding 2 : I — X is de-
fined that maps the set of instances I to a numerical feature space X. For time series data we
define X C T x R where T describes the set of considered points in time and x; € RN a
sample from the feature space taken at a fixed pointin time ¢ € 7. For a supervised modeling
task - semi-supervised and unsupervised settings are discussed in the DC use case in Chapter
10 - the output space Y is defined as Y = {0, 1} in case of a binary classification respective
Y = {0, 1}“in case of a categorical classification with ¢ classesand Y C R in case of a regres-
sion task (assuming data is already normalized). A domain is defined as a distribution over
X x Y: in more details as a pair consisting of a distribution over the input space X as well
as a modeling function. Let a hypothesis class H be a set of all possible modeling functions

h that are considered for a specific task.

First a statistical task model hp : X — Y is build so that the modeling error Lp de-

fined on a metric L suitable for regression or classification is minimized. Hence a supervised

50



learning algorithm is provided with a labeled sample set S drawn i.i.d. from a domain Dg

where
S =A{xi,yi}tiey ~ {Ds}", (4.1)

with n = |S| being the number of drawn samples and Dy is the so called source domain.

Then, the prediction loss L p for source is defined as

Lp(X) = Lpps(X) = Lzy~ps (hp (7),y). (4.2)

with L defining a selected loss function suitable for supervised learning based on the model-
ing task at hand. The name source is chosen based on the naming conventions of domain
adaptation theory - for a detailed definition including useful properties see Chapter 3.3.
Let hp be parameterized by 0 p and P(x, 6p) be the representation of our statistical model
from input to output where P is the model function with parameters 6p that outputs the
predicted target value for # € X. Then the optimization problem used to train P on source

in order to minimize the parameterized error function L p can be formulated as follows:

juin Lp(X) = min Lps(hp(X)) = min Lpg(X, 0p) = minLyes (P (,0p),y)

(4.3)

In DA scenarios, at least two data sets are given. Let 1" be a second labeled sample set fol-
lowing a distribution Dy called target domain. In the SSL setting, itis distinguished between
labeled and unlabeled data: Let 7" = T'L U T'U be the second data set 7" drawn i.i.d. from
target domain Dy with a distribution over X7 x Y7, X7 C X, Y7 C Y, and consisting of
unlabeled 7'U and/or labeled T'L samples.

TL = {2}, y} ;n;ll ~A{Dr}" (4-4)
TU = {21 }}"pisr ~ {D7 ) (4-5)

with m being the number of drawn target samples. Let DX, DX and D5, DX be the
marginal distributions of Dg and Dy over X, Y and X7, Y7 respectively. Then:

* DY = D2 and DY = DY = no transfer needed
* DY = D7 and DY # D2 = label or target shift

« DY # D# and DY = DX = marginal or conditional shift

5T



* DY # D and DY # DX = strong or generalized shift

Here the focus is on cases where the same underlying learning task is considered. DBAM
is generated for dealing with marginal and conditional shift for homogeneous input space
representation where a direct model transfer is not possible. For the supervised case involv-
ing labels for both source and target domain automatically handles target shift and assures
correct causal alignment with target prediction loss being part of the overall optimization
objective. A generalized shift would be a class-imbalanced domain adaptation task. Further
discussion are given in the context of the affected use case, Chapter 10: Defect Classification
(DC). Further assessment related to unsupervised or semi-supervised domain adaptation un-
der target or generalized shift hence discussion on published methods and ideas how to deal
with label shift using distribution alignment especially on top of conditional shift is also pre-

sented in Chapter ro.

The DBAM approach, as visually presented in Figure 4.1, consists of three parts. Each

one corresponds to a specific part of the overall DBAM optimization objective:

* the baseline or reference prediction model P, already introduced at the beginning of
this section;

* an encoder/alignment model called a/igner A used to map the target domain to the
source domain. The output of the aligner is called aligned. It enables the usage of a
dedicated prediction model for aligned target data;

* a domain discriminator D for classification of source and target domain. Its loss is
used for the adversarial training approach. Different output activation functions are
necessary, depending on the specific choice of the loss function.

The predictor model itself is a dedicated model trained only on source data. The weights
are frozen after successful training. The goal is to reuse the dedicated model as predictor for
aligned target data in order to keep the high source prediction accuracy while enabling model
usage under comparable prediction accuracy for aligned target data.

Lethp : X — I-where I C Ror/ = R depending on the objective and implemen-
tation - be a domain discriminator meaning a statistical model for binary classification of
source and target domain. It can be modeled as a domain classifier that has a high positive or
high negative scalar value as output indicating the corresponding input domain (source or

target) or as classical binary or multi categorical classification model. Itis the first competitor

52



datasetl

data 'set 2
(a)
dataset 1
aligned
dataset2 —— data set 2
Discriminator
(b)

Figure 4.1: Visualization of DBAM [69]. Graphical representation of DBAM (panel (b)) exploiting input data from two
different domains where a direct model transfer is not possible (panel (a)). The arrows represent data flow during forward
propagation.

of the adversarial training that is applied. Let hp be parameterized by 6. Let D(x, 0p) be
the parameter representation of the domain classifier where D is the model function with

parameters 0 that outputs the prediction for z € X.

An encoder model called aligner as second competitor of the adversarial training is con-
sidered. The aligner is the main part of DBAM where the actual feature mapping happens.
Let hy : X — X be the statistical model function aligning target to source and A(z, 64)
be its parameterized representation where A is the model function with parameters 64 that

outputs the prediction for x € X.

53



Using discriminator D and aligner A, the adversarial loss L, is defined as

Laao(X) = Lp,pg(X) = Lp,p,(X) = Lypx (hp (7)) = Lypx (hp (ha(z)))
=L, px (D (2,0p)) = Lypx (D (A(z,04),0p)) (4.6)

where L is a selected loss function, based on the training strategy of two competing networks
as well as their selected architecture. The adversarial training routine using L g, for training

DBAM hence of both aligner and discriminator are described in the following:

* The first competitor of the adversarial training is the discriminator trained to distin-
guish between source and aligned target data meaning minimizing a classical classifi-
cation loss. Then, the optimization of the discriminator loss Lp,,,, is defined as

ngaxLDtom(X) :n;aXLadU(X, 0p,04)
= II;&XLDJ)S(X, HD) — LD,DT(A(Xa QA), HD)
:HégXLxESX (D (%,0p)) — Lyerx (D (A(2,04),0p)) (4.7)

where S, TX define the part of the drawn sample set S, T' that corresponds to the
input space X.

* In the supervised setting where labels are also available for the target domain we define
L 4 using both the prediction as well as the adversarial loss. Hence, (in case of labeled
target data) the aligner is on the one hand updated in order to minimize prediction
loss L p also for aligned target domain. On the other hand, the adversarial part of the
aligner loss is set in opposite direction compared to the discriminator. If training the
discriminator involves a loss minimization with respect to the discriminator parame-
ters, training the aligner means a loss maximization with respect to the update of the
aligner parameters and vise versa. Based on equation (4.7):

nelinLA(X) = r%in Loaw (X,0p,04) + ALp (A(X,04),0p)
A A
= HGHH _L.Z‘ETX (D (A({L’, 914)7 QD)) + A L(:E,y)ETL(P (A(‘Tv 014)’ GP))
A
(4.8)

where A > 0 is a coefficient that needs to be defined and optimized in order to bal-
ance out possible differences in rank and influences between the discriminator and
the predictor loss. For A = 0 no prediction loss is considered, hence it defines the
aligner loss of an unsupervised setting where no target labels are available. A gradient

54



penalty regularization term (for details see Chapter 3.2) is added in addition based on
the recommendations of [78] that are followed during training of the aligner.

The training itself happens in an adversarial setting with a two-player game approach: the

pseudo-code of the approach is reported in Algorithm 4.1 similar to [69] for unsupervised

training with no target labels. For a graphical representation see Figure 4.2 [70].

Algorithm 4.x DBAM training
Default values to be set: A\, m, ratio, 31, B2, Itgisc, (Taiign

Require: loss weights A, the ratio between discriminator and aligner update, batch size m,

optimizer, hyperparameters [7 (learning rate), 31, 82, Lp, Lp, L a

Require: pretrained and frozen predictor parameter 6p, initial discriminator parameter

0 p,» initial or pretrained aligner parameter 04,

1: while 04 and 6p have not converged

2:

9:

N v &

fort = 1...ratio
unfreeze 6 p, freeze 64
sample Sy — Lo}y ~ {DF}, Ty = {21, ~ {DF}"
update 0p
end for
freeze 0p, unfreeze 64
sample Sy — {2}y ~ {DEY™, Ty = {2}, ~ {DF}
update 04

1o: end while=o

The following step-by-step description summarizes the training procedure:

. First a dedicated prediction model is trained on labeled samples from the source do-

main. During training the parameters respective weights ¢p are fitted via minimiza-
tion of the L p loss. The source domain is selected under consideration of quality, sta-
bility, availability of data respective labels and best performance for the corresponding
modeling task. For all following training steps the predictor weights are kept frozen
in order to preserve the high quality of the dedicated model.

. The aligner is mapping the target domain to the source domain and is set up in a

way that after training it allows the direct comparison of the source domain with the
aligned target domain and enables interpretability and further analysis of domain ditf-
ferences. The set up as well as its initialization and the possibility of a pretraining step
depends highly on the underlying input structure of source and target. A pretraining
is recommended due to better initialization. The aligner is trained on samples from
source and target domain based on the discriminator output in the adversarial setting.
The parameters respective weights 6 4 are fitted via optimization of the L 4 loss.

55



Pl &
S \ /

/

aligned
dataset2 — data set 2

\\5 Discriminatora

Figure 4.2: Visualization of DBAM training routine. Graphical representation of the proposed training procedure of DBAM
exploiting input data from two different domains. The arrows represent the different feedback during training.

3. The discriminator model is trained on samples from source as well as aligned target
data and Lp,,, , is optimized in opposite direction compared to the aligner loss and
its weights 0/ p are updated accordingly. In the adversarial setting 6 4 are fitted via min-
imization of the L4 loss that contains (besides the prediction loss for aligned target
data in supervised setting) the part of Lp, ., that depends on 64 while for 0p the
Lp,,,., is maximized and 0p is fitted accordingly. The iterative training is set up with
a predefined training ratio between aligner and discriminator update.

Details, specifications and tuning of hyperparameter are data respective use case specific

and therefore discussed in the dedicated application chapters.

For an improved training stability it is recommended to follow the approach presented in
Gulrajani et al. [78] and define the adversarial loss based on an approximation of the Wasser-

stein metric:

Laao(X) = E,opx [D (2,0p)] — E,opx [D (A(z,04),0p)] (4.9)
where [E defines the expected value, z € X. For a detailed introduction of Wasserstein loss

56



including related methods and literature see Chapter 3.2.

Difterent implementation methods are possible for achieving the necessary min-max two
player game between discriminator and aligner e.g. a so called gradient reverse layer (GRL)
is suggested for DANN [13]. Here, an approach is used that makes use of changing a max-
imization to a minimization task by reversing the sign of the function to be optimized plus
artificial domain labels and linear output function of the discriminator models combined
with a distance based loss:

Therefore, an approximation of Wasserstein loss as discriminator loss function as pre-
sented above and in section 3.2 is implemented. Hence, the goal of the discriminator is to
increase distance/divergence (Wasserstein is a divergence measure) between domain distribu-
tions, the goal of aligner is to decrease distance/divergence of domain distributions. Param-
eter updates of the aligner are done by minimizing Wasserstein distance hence backpropaga-
tion of Wasserstein loss as usual. Forward pass of source data is not going through the aligner,
therefore does not influence the parameter update and the loss function can be simplified to
only minimizing expectation value of aligned target data. For parameter updates of the dis-
criminator the goal is to maximizing Wasserstein distance. Instead of maximizing we can
also minimize the negative Wasserstein distance. This is implemented by assigning artifical
-1 labels to the samples.

Based on the implementation using linear output activation, Wasserstein has no bounds,
meaning we theoretically allow the loss going to —/ 4 0o. Wasserstein loss cannot be inter-
preted in an absolute manner hence is not usable for direct comparison of GAN/DANN
models. As relative distance measure, it highly depends on model configuration and used
dataset. It is consistent for a given discriminator model and convergence of the aligner does
correlate with better generated data quality.

Negative scores for source and positive scores for target are possible but not mandatory.
An offset based on initialization can lead to all positive or all negative scores. The loss func-
tion encourages a separation between scores for source and target as larger and smaller, not
necessarily positive and negative.

As described in the paper [78] a perfect discriminator using Wasserstein is working well -
a discriminator always able to distinguish. As the training continuous, the goal is to make it
harder for the discriminator to distinguish between the domains, therefore the aligner needs
to improve and converge - that is the goal at the end. Both, aligner and discriminator are

trained by an iterative process with a defined ratio. Therefore, for stable training correspond-

57



ing losses need to be balanced by the right setting of ratio and learning rate for a given archi-

tecture.

4.2 SYNTHETIC DATA EXAMPLE

In order to showcase the functionality of the presented approach, a simple use case with syn-
thetic data is presented. The same study is presented in [70], for the sake of completeness we
report a short summary of the presented results. For proof of concept a synthetic scenario
for a regression model using stationary data is shown. For the same example but with time

series input see [70].

Let X = R be the input space and ¥ = R the output space. Let source and target
domain be defined by a normal/gaussian distribution over X¢ C X, X7 C X with source

mean ptg = 0.6, target mean i = 0.2 and standard deviation 05 = o7 = 0.2. Let

Ds = N(us,05); (4.10)
Dy = N(MT, or). (4.11)

Labels are generated by quadratic mappings

gs: Xs = Y, y = gs(x) = 2, (4.12)
qr: Xr =Y, y=qr(z) = (xr — 0.4)% (4.13)

qs, gr are the underlying (unknown) modeling functions. Input sample sets .S respective 7'

are generated by sampling i.i.d. 1000 times from both domains.

The three parts of DBAM are set up in the following way:

* In order to approximate the mapping gg we define a statistical model predictor hp :
X — Y usinga ANN architecture. Let hp be parameterized by 0, hence represented
by P(x,6,) withz € X. Pistrained and then fixed using the sample set S and Huber
loss. Using P directly on the target domain gives low accuracy due to the shifted mean
value when calculating corresponding target labels.

* Toenable the usage of P for the target domain with high accuracy DBAM is applied as
described by defining aligner 24 : X — X usinga ANN parameterized by 6 4 hence
A(x,04) defining the aligner model outputfor z € X. The aligner is pretrained with

58



mean squared error in an autoencoder style before it is trained as part of the adversarial
training using S and 7.

* The discriminator hp : X — R is defined using a ANN parameterized by 6p hence
D(z,0p) defining the model output for z € X. It is trained as second part of the
adversarial training using S and 7T". The discriminator is set for usage of Wasserstein
loss (see Section 3.2 and3.2).

All models are set up using ANN architecture with the following details:

* The ANN predictor model consists of 1 dense layers with dimension 4 and linear
activation and an output layer with sigmoid activation. The model is trained by min-
imization of huber loss and default learning rate using Adam optimizer.

* The domain discriminator has 1 dense layer with dimension 4 with leaky ReLU acti-
vation function and linear activation for the output layer.

* The aligner consists of 1 dense layers with dimension 4 and relu activation (bottleneck
layer) and an output layer with sigmoid activation. For an improved initialization
the aligner is pretrained in an autoencoder style hence trained to recreate its input.
Adam optimizer with MSE as loss function is used for pretraining using ADAM with
learning rate Ir = le — 2.

The whole system is trained according to Algorithm 4.1 with ratio 1:20 and gradient

penalty with weight 10. Labels for source and target are used during training.
The results of the alignment corresponding to aligner A are presented in Figure 4.4 show-

ing the alignment of the two domains after o, 100 and 200 epochs, results corresponding to

the predictor P are shown in Figure 4.3 of both source and target before and after alignment.

59



1.0 =

—— chamber 1
—— chamber 2
—— chamber 2 aligned
0.8 [
o
. e
L
0 -
006 -
% . -’ 7
* »
b P
8 o -
2 »'f{.&"’
S04 /;' -
/ '
-
0.2 . °*
oo **
- aoes® -
oot "
p———
0.0 32 cosvmn cmmmenme®
0.0 0.2 0.4 0.6 0.8 1.0
true values

Figure 4.3: DBAM predictor scatter plot for synthetic data use case [70]. Graphical representation of true vs. predicted
labels for synthetic test data for X ¢ (black), X; (red) and X after alignment (blue) for stationary

(a) (b) ()

Figure 4.4: DBAM aligner histogram for synthetic data use case [70]. Stepwise shift (blue) during training procedure of
the normal distributed training data from X (red) to X4 (black) after (a) 0, (b) 100 and (c) 200 iterations. Graph originally
published in [70].

6o



DBACS: Extended DBAM

In this chapter we present DANN-based Alignment with Cyclic Supervision (DBACS). Since
DBACS is a methodological extension of DBAM introduced in the previous chapter, the

main focus is to address the additional theoretical parts of DBACS in a general matter and

independently of any concrete use case. Therefore, even if the presented extended methodol-
ogy is again inspired by the needs, highest standards and complexity of semiconductor man-
ufacturing, the following mathematical explanations of all methods and their usage are in-
dependently of any application. DBACS is applied in the use cases in Chapter 8 for VM,
Chapter 9 for PAM and Chapter 10 for DC.

5.1 DANN-BASED ALIGNMENT WITH CycLIC SUPERVISION (DBACS)

Inspired on the one hand by work done in the field of GANs (see Chapter 3.2) to improve
training, transfer as well as quality besides others and on the other hand by the necessity of
scaling up the method and to offer the most general approach as possible suitable for all kind
of production application and data types, a extended version of DBAM called DANN-based
Alignment with Cyclic Supervision (DBACS) is presented. Using the base architecture of
DBAM, a second encoder model named again aligner as well as a second discriminator in
the style of so called CycleGAN (see Zhu et al. [239]) is added to enable adaptation in more

complex settings, meaning:

* Heterogeneous DA and adaptation of domains that have different dimensions;

61



* Unpaired sample mapping;
* Aligned features are comparable and interpretable in both directions;

* Trained cycle architecture enables matching on top of adaptation.

Besides the ability to showcase a broad range of semiconductor use cases, this also enables

improved alignment (related to prediction as well as alignment quality).

For formalizing the extended model structure of DBACS, the notations used in Chapter 4
are adopted and extended. The source and target input space not necessarily have a common
subspace. Hence, the modeling task itself can be domain specific. A common output space
is assumed, so no target shift besides class imbalance - hence subsets of the overall output

space - is considered explicitly.

Let fg define a modeling task, let a hypothesis class H be a set of all possible modeling
functions i € H that are considered for a specific task. Let Xg C R™S be defined as the
first input space and Y as the output space. The output space Y is defined as Y = {0, 1}
in case of a binary classification respective Y = {0, 1} in case of a categorical classification
with ¢ classes and Y C R in case of a regression task. A distribution over Xg x Y is called
source domain. In case of not only numerical data but also categorical data, text data or
image data, a function (called source embedding) Eg : Is — X is defined that map the set
of instances /g to the numerical feature spaces Xs. For time series data, let Xg C T X RNs
where T describes the set of considered points in time and % € R™s a sample from the
source feature space taken at a fixed pointin time ¢ € 7. A learning algorithm is provided
with a source data set S drawn i.i.d. from the source domain Dg with Xg x Yq, Xg C X,
Ys C Y. In the SSL setting, it is distinguished between labeled and unlabeled data and
define S := SL U SU where SU stands for the unlabeled source sample subset and SL
for the labeled one. Without loss of generality for UDA and SSL, SU = () sine the source

domain is assumed to be labeled. Hence
S = {l’fg,yfg}?jl ~ {DS}nsv (5-1)

with ng being the number of drawn samples (all labeled) and therefore S = SL and Xg; =
Xg C R¥s Yg;, C Yg C Y in case of numerical data.

62



A learning algorithm is provided with a second set 1" drawn i.i.d. from the target do-
main Dp with different data distribution, representation and feature space. Hence, let T" =
TLUTU be the second called target data set 7" drawn i.i.d. from a target domain Dy with
adistribution over X7 x Y7, X7 C RN?, Y, C Y, and consisting of unlabeled 7'U and/or
labeled T'L samples.

TL = {af, yp 77 ~ {Dr}" ™ (5.2)
TU = {ah}i7, i~ {DF}, (5.3)

with 17 being the number of drawn target samples, therefore X7, C Xp C RNT Y, C
Yr € Yand Xppy € Xp C RM in case of numerical data. Again, in case of not only
numerical data but also categorical data, text data or image data, a function (called target em-
bedding) £ : Iy — X7 is defined that map the set of instances /7 to the numerical feature
spaces X7. For time series data, let Xp C T X RNT where T describes the set of considered
points in time and 2%, € R"T a sample from the target feature space taken at a fixed point in
timet € T.

The DBACS approach (as presented in Figure 5.1 for binary domain adaptation using

source and target domain) consists of three extended parts:

* the baseline or reference prediction model P thatis identical to DBAM in use and role;

* an encoder/alignment model called a/igner F' used to map the target domain to the
source domain (the output of the aligner is called aligned), connected to a second en-
coder/alignment model aligner G that maps the source domain to the target domain.
By combining both aligner, it is possible to introduce cycle-consistency by comparing
source samples with its cycled sample and target samples with its cycled samples.

* a domain discriminator A for classification of source domain versus aligned target
domain. Adversarial training in both directions is enabled by adding a second domain
discriminator (called discriminator B) for target versus aligned source comparison.

Let hp : Xg — Y be a dedicated statistical model already trained on a labeled source
sample set S drawn i.i.d. from a domain Dg with ng = |S| being the number of drawn
samples. The neural network representation is parameterized by 0p and P(zg, 0p) where

P is the model function with parameters 0 p that outputs the prediction for vg € Xg. The

63



v

dataset 1

-

P aligned
data se: 2 — data set 2
Q —
%o |
A o
() [
K S
o — %'}. Discriminator A
%
()
: >
b b

aligned
data setl

\4
«— dataset1

AlignerG

Figure 5.1: Visualization of DBACS including data flow. Graphical representation of DBACS system exploiting input data
from two non-identical domains. The arrows represent the data flows. An autoencoder shaped aligner can be used for
noise reduction especially for homogeneous DA but is not mandatory.

loss L p used for training and minimization is taken from Chapter 4, equation (4.2) and (4.3):

join Lp(Xs) = min Lpg(hp(Xs)) = nin Lps(Xs, Op)

- n"gllijnL(J:s,y)ES (P (x57 QP) 7y) . (54)

The DBAM architecture - see Figure 4.1 and explanations in Chapter 4 - is used as ba-
sis and is extended based on the already existing aligner - called aligner F' for better distinc-
tion - by adding a second aligner GG. The two are connected in a cyclic manner to enable
forward/backward transformation between source and target feature spaces; hence transfor-
mations in both directions and in a bijective manner. This leads to the introduction of an
additional loss summand called cycle-consistency loss. Here, the optimization goal is to re-
produce a bijective mapping so that each x5 € X is mapped to X7 and back to Xg with
F(G(zg)) = xg. The same goes for 7 € X with G(F(27)) = x7.

Lethp : X7 — Xgbeastatistical model function aligning target to sourceand F'(zr, Or)

be its parameterized representation where F' is the model function with parameters 6 that

64



outputs the prediction for 7 € Xyp. Let hg : Xg — X7 be a statistical model function
aligning source to target and G(xg, O¢) be its parameterized representation where G is the
model function with parameters 6 that outputs the prediction for xg € Xg. Then, the

cycle-consistency loss is defined as:

Lcycles (XS) = LG7F,DS (XS) = LxSNDS (F(G (xs, QG)’ 0F>>
= Logops (F(G(25)), x5) (s-5)

Leyeter (X1) = Lrc.pp (X1) = Loyan, (GF (27,0F),06))
= LJCTNDT (G(F(xT))v IT) (5~6)

To give an example we follow the description in [239] where the L1 norm is used as cycle loss

function:

Leyetes(Xs) = Ly (F(G(25)), v5) = Evgupg [|F(G(2s)) — xs]l}]  (5.7)
Leyeter (X1) = Ly, (G(F(27)), v7) = Epprpy [|G(F (27) — 27ll)]  (5.8)

In short, the cycle consistency loss is defined as

'Ccyc(Fa G, XSa XT) = Lcycles (XS) + LcycleT (XT) (59)

The adversarial loss is applied to the output of both discriminator. During the aligner
training phase, it is minimized, during discriminator training phase it is maximized (or its
negative value minimized). First we define it for the target to source alignment where aligner
F tries to map target domain to source domain, then for source to target alignment with
alignerG. Lethp, : Xg — I,hp, : X7 — I be two statistical model functions describing
distance or classes of source versus aligned target and target versus aligned source. Let i p , be
parameterized by 0, andlet D 4 (g, 0p , ) be the parameter representation of discriminator
A where D 4 is the model function with parameters 6 p , that outputs the prediction forzg €
Xs. Lethp,, be parameterized by 0, andlet D (27, 0, ) be the parameter representation
of discriminator B where Dp is the model function with parameters 6, that outputs the

prediction for 7 € X7p. Then the adversarial loss first for source L4, and second for

65



target Lqqy,. is defined based on a selected loss function L:

Ladvs(X57XT) = LDA,DS(XS) - LDA,DT(XT)
=L, px (hp, (x5)) = Lopopx (ho, (hr(zr)))
= Lazstg (DA (:L‘S’ GDA)) - LxTqu)f (DA (F(xTv HF)v QDA)) (5~IO)

LadvT(XSaXT) = LDB,DT(XT) - LDB7DS (XS)
= L., ~px (hpy (27)) = Lygapx (hp, (ha(zs)))
=L, cpx (Db (21,0ps)) — Logupx (Dp (G(s,66),0p,)) (5.11)

Two scenarios are further discussed where L is explicitly chosen based on the modeling task

at hand:

* First for a classification modeling task: Let I = {0, 1} and the discriminator a binary
classification model with suitable/sigmoid output activation function. Then the ad-
versarial loss is defined as

‘Cadvs (X57 XT) = EUESNDS [log (h‘DA (xs))] + EHETNDT [log (1 - hDA (F<x{)))])
5.12
Loavr (Xs, X1) = Esrupy [l0g (hpg (27))] + Ergupg [log (1 — hDB(G(ﬂi(s)))])
5-13

This is the original loss function used in GAN [75] and in DANN [68] for classifica-

tion.

* Second for a regression modeling task: Let I C R or I = R and the discriminator a
regression model with linear output activation function. Then the adversarial loss is

defined as
Ladvs (X57 XT) = ]E:ESNDS [DA ('Z'Sa QDA)} - EzTNDT[(DA(F<xT7 0F)> 9D,4>>]7
(5-14)
Ladavr (Xs, X1) = Eypany (DB (27,0p,)] — Eegons [(Dp(G(75,06),0p5))],
(s.15)

where [E defines the expected value and the loss is an approximation of the Wasserstein
distance of two sampled distributions, for details see [78].

In cases where Xg and X share the same feature representation and dimensions, it can

happen that very similar samples - meaning samples where important properties should not

66



be changed during the adaptation process, [239] is mentioning color as an example in the
field of computer vision - show up in the other domain. Hence it is recommended by [239]
based on Taigman et al. [198] to add one more additional loss term namely the identity loss.
The idea is that if almost identical samples occur, the aligner should perform close to an

identity function. Hence the identity loss is defined as,
Lia(Xs) == Lpps(Xs) = Lygpx (F (zs,0r)) = Ly px (Fxs), x5)

Lia(Xr) = Le,py (X1) = Lyyopx (G (27, 0c)) = Ly opx (G(zr), 27)

with L defining a selected loss function e.g L; loss. The so called identity loss is added to
the overall loss function. In the scenario of heterogeneous domain adaptation hence in cases
where source and target space are not identical due to different representations the identity

loss is omitted.

The training itself happens in an adversarial setting with a two-player game approach. The
adversarial training routine for DBACS is based on Algorithm 4.1 and adopted to parallel

training of both aligner and both discriminator plus inclusion of the additional loss terms:

* The first competitor of the adversarial training is the discriminator D 4 trained to dis-
tinguish between source and aligned target data meaning optimizing a classification
loss. In parallel the discriminator Dp is trained to distinguish between target and
aligned source data also meaning optimizing a classification loss. Then, the optimiza-
tion of the discriminator A and discriminator Bloss Lp, ,., is defined as

max LDtoml<Xs, XT> = IglaX Ladvs (Xs, XT> + IglaX LadvT (Xs, XT)

0D ,.9Dp Dy Dp
= fax Lp,ps(Xs,0p,) = Lp,,p. (F(Xr,0F),0p,)
+ e Lpp,ny(X1,0p,) = Lpg,ps(G(Xs,6c),0p,)
:TngiXLmsesX (Da(2s5,0p,4)) = Lygers (Da (F(zr,0r),0p,))
+I;}31XLxTeTX (Dp (zr,0p,)) — Lygesx (Dp (G(zs,0c),0p,)) (5.16)

where S, T'X define the part of the drawn sample set S, T' that corresponds to the
input space X, X7. Depending on additional loss terms chosen to improve discrim-
inator stability and quality, more loss term can be added accordingly.

* Thesecond competitor in the adversarial training is the aligner cycle. Wedefine Ly, , ,

67



using the adversarial loss for both aligners, the cycle consistency loss and if possible the
identity loss. In case of labeled target data the aligner /" is also updated in order to op-
timize prediction loss L p for aligned target data. The adversarial part of the aligner
losses is set in opposite direction compared to the two discriminator. If training both
discriminator involves a loss minimization with respect to the discriminator param-
eters, training both aligner means a loss maximization with respect to the update of
both aligner parameters and vise versa. Based on equation (5.16):

mln LAtotal (XS7 XT)

0r,0c

= H;iﬂ [Aadvs * Ladvs (X5, X7) + Niag - Lia(Xs) + Ap - Lp (F(X7))]
F

+ HGHH P\advT : LadvT (X5'7 XT) + )\z’dT : de(XT>]
G

= Helln [_)\advg : La:TETX (DA (F(fﬂT, 9F>7 QDA))

F
+ Nidg - L, csx (F(zs,0r),xs) + Ap - L(zT,y)eTL(P (E(zr,0p), QP))]
N [~Aadey - Lagesx (D (G(2s,06),0p,))
G

+ )\idT 'LJ;TETX (G($T79G)>$T)] (5~I7)

where \(.) represents the weight assigned to each corresponding loss term. As it can
be seen later in the use cases this is necessary especially if the overall scale of different
error functions for different model parts differ; for example mean absolute error for
predictor versus categorical cross entropy for discriminator: both are used in parallel
to update the aligner weights, hence based on their range need to be weighted accord-
ingly. For A\p = 0 the training happens in an unsupervised setting where no target
labels are available. A gradient penalty regularization term (for details see Chapter 3.2
is added when updating both aligners. The recommendations of [78] are followed
during training of the two aligner.

For training of DBACS, the algorithm presented in Algorithm 4.1 is used as base and

enriched in a way that both discriminator as well as both aligner get updated simultaneously.

Aligner F' (the one also existing in DBAM) has the predictor loss as well as a gradient penalty

regularization included hence has a supervised training (if target labels are available) while

aligner G is trained in an unsupervised manner only using discriminator loss, cycle loss (plus

identity loss if applicable) and gradient penalty regularization. Use case specific losses can be

added to improve prediction quality. Feature matching loss (FM) inspired by [72] and SSIM

(see7) are added and discussed in Chapter 10: Defect Classification (DC). The training itself

happens in an adversarial setting with a two-player game approach: the pseudo-code of the

approach is reported in Algorithm 4.1. The following step-by-step description describes the

68



extended training procedure used for DBACS:

1. Firstadedicated prediction model is trained on samples from the source domain. Dur-
ing training the parameters respective weights 6/ p are fitted via minimization of the L p
loss. The source domain is selected under consideration of quality, stability, availabil-
ity of data respective labels and best performance for the corresponding modeling task.
For all the following training steps all predictor weights 6p are kept frozen in order to
preserve the high quality of the dedicated source prediction model.

2. The aligner F' is mapping the target domain to the source domain and is set up in a
way that after training it allows the direct comparison of the source domain with the
aligned target domain and enables interpretability and further analysis of domain dif-
ferences. The aligner G is mapping the source domain to the target domain and is set
up in a way that after training it allows the direct comparison of the target domain
with the aligned source domain and enables interpretability and further analysis of
domain differences. The set up as well as its initialization and the possibility of a pre-
training step depends highly on the underlying input structure of source and target.
The parameters respective weights 0 and 0; are fitted via optimization of the L 4, , ,
loss.

3. The discriminator models are trained on samples from source as well as aligned target
data respective target as well as aligned source dataand L p, , , is optimized in opposite
direction compared to the aligner loss. The parameters respective weights 0, and
Op,, are fitted via optimization of the Lp, , , loss. In the adversarial setting 0, 0¢
are fitted via minimization of the Ly, , , loss while for 0p,, 0p,, the Lp, , , loss is
maximized. The iterative training is set up with a predefined training ratio between
aligner models and discriminator models update. Whenever one of the adversarial
competitors is trained, the weights of the other competitor are short-term frozen.

Details, specifications and tuning of hyperparameter are data respective use case specific

and therefore discussed in the dedicated application chapters.

5.2  SYNTHETIC DATA EXAMPLE

To showcase the functionality of DBACS and to present a proof of concept, the synthetic
data example presented at the end of Section 4 is revisit and adopted according to the ex-
tended scenario: It is again based on gaussian distributed features with shifted mean and a

quadratic mapping as underlying target function.

69



The predictor P : Xg — Y, parameterized by 0, is trained on a sample set of source
domain and then fixed by freezing all weights. In addition to a first aligner called aligner F'
with F' : X7 — Xg and parametrization F'(zr, ) that defines the predicted outputs for
xp € Xp. -asecond aligner G : Xg — Xp with G(zg, 0¢) that outputs the prediction
forzg € Xgisdefined. In addition to the previous existing discriminator - renamed to D 4 :
Xs — Rwith Dy(xg,0p,) that defines outputs for g € Xg. - a second discriminator
with identical architecture Dp : X7 — R with Dg(zr,0p,) that predicts outputs for
xr € X isintroduced. All models are set up using ANN architecture with the following
details:

* The ANN predictor model consists of 1 dense layers with dimension 4 and linear
activation and an output layer with sigmoid activation. The model is trained by min-
imization of huber loss and default learning rate using Adam optimizer;

* the domain discriminators both have the same architecture 1 dense layer with dimen-
sion 4 with leaky ReLU activation function and linear activation for the output layer
since Wasserstein loss is used;

* both aligner consist of 1 dense layers with dimension 4 and relu activation) and an
output layer with sigmoid activation. For an improved initialization both aligners are
pretrained in an autoencoder style hence trained to recreate their input. MSE as loss
function is used for pretraining with ADAM optimizer and learning rate [ = le —2.

Algorithm 4.1 is modified so that both aligner are trained in parallel, aligner F' using su-
pervised training with adversarial loss in form of Wasserstein, prediction loss in form of MSE,
cycle consistency loss using L loss, and gradient penalty; aligner G using unsupervised train-
ing with adversarial loss, cycle consistency loss and gradient penalty. Discriminator D 4 and
Dp are trained using the adversarial loss in form of Wasserstein. The ratio 1:5 (aligner versus

discriminator) is used.

The results of the supervised alignment corresponding to aligner I’ are presented in Figure
5.3 showing the alignment of target to source after o, 10 and 20 epochs, the results of the
alignment corresponding to aligner GG' are presented in Figure 5.4 showing the unsupervised
alignment of source to target also after o, 10 and 20 epochs. Results corresponding to the

predictor P are shown in Figure 5.2 of both source and target before and after alignment.

70



1.0

0.8

predicted values
o
o

I
'S

0.2

"6.——-0.-_'——"

—— chamber 1
—— chamber 2
—— chamber 2 aligned

0.2 0.4

true values

Figure 5.2: DBACS predictor scatter plot for synthetic data use case. Graphical representation of true vs. predicted Y for
synthetic test data for X g (black), X; (red) and X after alignment (blue) using DBACS

100

75

50

25

(b) ()

Figure 5.3: DBACS aligner F histogram for synthetic data use case. Stepwise shift (blue) during training procedure of the
normal distributed training data from X; (red) to X (black) after (a) 0, (b) 10 and (c) 20 iterations.

(b) ()

Figure 5.4: DBACS aligner G histogram for synthetic data use case. Stepwise shift (blue) during training procedure of the
normal distributed training data from X ¢ (red) to X (black) after (a) 0, (b) 10 and (c) 20 iterations.

71



72



Benchmark Methods and Models

In the following chapter multiple benchmark models and statistical methods are described
that are later used as challenger for DBAM and DBACS in Chapter 8, Chapter 9, Chapter
1o0. The methods are selected based on application specific literature, hence we apply use case
specific benchmarking. For more details on relevant literature we refer to the corresponding
use case chapters. Here, the methods are defined in a general way independent of the appli-

cation they are later used for.

6.1 GENERAL LINEAR REGRESSION MODELS

A regression model describes the relationship of one or more variables (called independent)
with an output variable (called dependent). There exists different kind of regression tech-
niques based on factors like number of variables and shape of the expected function. An

introduction is given by following the explanations in [69].

The following notations are used throughout the whole section. Let X C RY be the
N-dimensional input space and z € RY one sample containing values for each feature and

Y the target or output space with y € [0, 1] C R a scalar value.

LINEAR REGRESSION AND ORDINARY LEAST SQUARED (OLS):  Forlinear regression (LR)

the modeling function is assumed to be linear. Hence, the Ordinary Least Squares (OLS) es-

73



timates {3; }}_, are obtained by:

N 2
= wgnin 3 (5= 30 -
i j=1

wherei € {1,...,n} withn = |S| and S defining a sample set. Since the OLS objective
function can yield to overfitting and computational issues for high-dimensional and collinear
data, additional regularization terms are introduced in the considered approaches to assure
better generalization performance and, in some cases, sparsity. Hence, Ridge Regression
RR, Lasso Regression LASSO and Fused Lasso Regression FL are all based on the classi-
cal ordinary least squared paradigm. For their usage in VM we refer to [Park and Kim] and

[ro1].

2

N N
Brr = argmﬁinz Yy — Z ziiBi | + A Z ﬁjQ (6.2)
i j=1 j=1
A N 2 N
Brasso = argmﬁinz Y- Z Tiifi | +A- Z 1551 (6.3)
i j=1 j=1
A N 2 N N
BeL = afgmﬁinz y— Y wB | M B+ Y 18— Bl (6.4)
i j=1 j=1 J=1

where A\, A\, A2 are non negative penalty parameters (called regularization parameters): the
Lo-penalty ) . ;% typically helps in case of collinear data, the L;-penalty 3 ; 18;] induces

sparsity while the combined term

N N
AlZWﬂ +>\2Z|5j — B (6.5)
=1 j=1

that favors neighboring features or timestamps and therefore allow to remove noise effects in
the models and can be used for time-series data as in [Park and Kim]. More details are given
by Friedman et al. [66]. OLS is used in Chapter 8: Virtual Metrology (VM) as benchmark

prediction model.

74



6.2 ENSEMBLE LEARNING AND DECISION TREES

Ensemble Learning uses a group of models to improve prediction performance. It consists
of a finite group of models but is very flexible towards individual model structure. Deci-
sion trees are based on decisions and their consequences in a tree-like or flow-chart structure.

Conditional probabilities are used to make predictions.

Ranpom ForesT (RF):  Random Forest (RF) is a tree-based ensemble method that is well-
known for its robustness, flexibility and high accuracy even when facing noise or nonlin-
earity. A random forest is based on a set of decision trees build up by a so-called recursive
partitioning algorithm applied on different random sample sets of the training data. The
prediction for an unseen input is then computed by averaging over the different predictions

from the individual trees.

For a more detailed description of the method see Breiman [23]. For a visualization of RF
see Figure 6.1. RF Regression (RFR) effectiveness in semiconductor process control with
VM technologies was shown for example in [31]. RFR is used in Chapter 8: Virtual Metrol-
ogy (VM) as benchmark prediction model.

: ® e O e o
© o 060 60 0 @ @ o 6 @
decision tree 1 decision tree 2 decision tree n

majority/average

Figure 6.1: Graphical representation of a random forest model. For regression the average over all decision tree results
are taken. For classification a majority vote leads to the final output

GRADIENT TREE BoosTING (GTB) Gradient Tree Boosting (GTB) respective its XG-

Boost implementation by Chen and Guestrin [34] is used to improve RF results. Boosting

75



by Friedman [67] describes an ensemble method consisting of multiple (weaker) models that
are combined into a single one. For GTB respective XGBoost, decision or regression trees are
used as weaker models. The training happens in a sequential way such that each predictor or
classifier outperforms its predecessor. The following summarizes the step-by-step training

procedure in [34]:

Let S = {(@;,y:)}, withz; € RY,y; € R alabeled sample set with N features
and sample size |S| = n, let K be the number of additive functions and F' = {f(z) =
Wy s (¢ : RY — T,w € RT) be the space of prediction/classification functions, in our
case regression trees, T stands for number of leaves in the tree and w describes the scores on
the leaves. Then the output is defined via model ensembling meaning the sum of K additive

functions:

i = P(x;) = fe(zi), hEF (6.6)

W

k=1

To learn the functions { fx } &, the following objective is minimized:
=Y LG ) + > _ Q) (6.7)
i k
| I
Q(f) =T + §Azw§
j=1

where L is a selected well behaved (differentiable and convex) loss function, {2 penalizes the
complexity of the model. Since (6.7) includes functions as parameter that cannot be solved
by traditional optimization methods, we transform it to enable additive training. Let ;Y be

the i-th prediction, then the loss function at the ¢-th iteration can be defined as:

= > Ll 6V + filwi) + Q) (6.8)

where the added component f; is the tree that most improves the model according to (6.7).

Second order Taylor approximation is applied:

= Z |: yzayz + glft(xl) +3 h ft (l’z) + Q<ft) (69)

76



where ¢; = 8@(1&—1)L(yi, y}-(t*l)) and h; = @g(t,l)L(yi, y}(tfl)). Removing the constant

terms and using the definition of {2 leads to:

n

T
E(t) = Z [gift(xi) + %hiff(xi)} +~T + é/\ZwJQ.
=1 o

(6.10)

where I = {i|q(x;) = j} is the set of indeces of points associated to a leaf j.

*_

2
Zielj 9i z(t)( 1 (ZiEIj gi)

Zieljh@"”)‘ 2 Q;Ziegh@"‘)‘ ! (611)

is used to compute the optimal weight w} of leaf j for a fixed structure g(z). L% can be
used to estimate the goodness of a tree structure g(x): the smaller the score, the better the
structure. To speed up performance a greedy algorithm is used to to rank all possible tree
structures. Loss reduction after splitting a leave into two branches is measured as:

1 (Zz‘eILgi>2 n (ZiEIRgi)Q n (Zielgi)Q

Lsplit = 3

2 Ziehhﬂr)\ Ziethi+>\ S bt A _

(6.12)

This function is used to evaluate splits in practice.

To further improve performance and speed together with avoiding overfitting, XGBoost
makes use of shrinkage and column subsampling. A short coming of XGBoost can beits high
number of parameters leading to longer training times and tendency to overfit. XGBoost is

used in Chapter 9: Predictive Maintenance (PdM) as benchmark prediction model.

6.3 LINEAR AND KERNEL TRANSFORMATIONS

Linear and kernel transformations are based on mappings into a new feature space. The
kernel trick - for an introduction to kernel for ML see Hofmann et al. [93], see Figure 6.2
for a visualization - describes an efficient way to transform nonlinear data by mapping it into

a higher dimensional space where it is linearly separable. It is a key factor for successtul and

77



easy numerical usage.

! kernel |
Do

Figure 6.2: Graphical representation of kernel trick meaning a mapping into a higher dimensional space to make data lin-
early separable. X describes the input space,® : X — X' describes the mapping with X the new (higher dimensional)
feature space . The example shows the kernel @ : R? — R3, ®(z, y) = (22, 9%, v2zy).

The following notations are used throughout the whole section. Let X be considered as
the input space and Y as the output space. It is recaptured that a distribution over X x Y’
is called a domain. A learning algorithm is provided with a data set S drawn i.i.d. from a
domain Dg with Xg X Yg, Xg C X, Ys C Y. For better differentiation Dy is called

source domain.

CORRELATION AND COVARIANCE: Covariance evaluates the relationship of two variables/features,
more precisely the level two variables/features vary with each other. Let C be the covariance
of two random variables from X with sample index ¢, j (I stands for number of samples, j
stands for number of features). Then the Pearson product-moment correlation coefhicients

R;; are computed with

Cyy

—— 6.

PRINCIPAL COMPONENT ANALYSIS (PCA):  Principal component analysis (PCA) is a lin-

Rij =

ear transformation of a vector space respective its points/vectors. The projection is created
in a way that highest occurring variance is represented by the first latent dimension - the so
called first principle component - second highest variance by the second principle compo-
nent and so on. For a detailed description including mathematical formula see Jollifte [105].
There, the following steps are followed:

1. standardization of variables in order to have a standardized range hence equal contri-
bution of each feature. Especially important if individual feature scales vary a lot;

2. computation of covariance matrix in order to understand pairwise correlation and
redundant information;

78



3. compute the eigenvalues and eigenvectors of covariance matrix. The eigenvectors are
sorted based on their corresponding eigenvalue that stands for the amount of variance
they represent. Then, the first principle components are defined by the eigenvectors
with the largest eigenvalue that represents the directions of the axes with the highest
variance (most information). By ranking the eigenvectors in order of their eigenvalues,
highest to lowest, you get the principal components in order of significance.

Let U : X — X’ define the nonlinear principle component transformation to be com-
puted with X" defining the space the features are projected on. Then principle component

transformation V¥ is formalized via
S =v(S) =178 (6.14)

where S’ € X’ describes the transformed/projected input sample set with .S being the sam-
ple set drawn i.i.d. from the domain defined over X x Y. I" consists of the eigenvectors and
is computed via A = 'Y, Aisa diagonal matrix defined by the eigenvalues and X is the

covariance matrix.

PCA can be used for dimensionality reduction of large input space. It is limited by its
linearity and the fact that smaller variance can still be an important factor for significant
misbehavior. Here it is used as benchmark transformation in Chapter 8: Virtual Metrology

(VM) for the heterogeneous domain adaptation part.

(KERNEL) CANONICAL CORRELATION ANALYSIS (CCA/KCCA): Canonical Correlation
Analysis (CCA) defines linear or in the more general case a kernel (KCCA) transformation
for two sets of variables/features such that after the transformation the projected features are
maximal correlated in the linear case and that the inner scalar product is maximized in the
kernel case. For a general visualization of CCA see Figure 6.3. A summary of the descrip-

tions is taken from Hardoon et al. [81]:

Let S = {25} = {ws,}5,-1 ~ {Ds}" with zs, € Xg the source sample set of size
|S| = r drawni.i.d. from Dg called source domain. For CCA asecond data set is considered.
LetT = {x7} = {ij }épjzl ~ {DT}Z with 27, € X7 and X7 C X be the second set of
samples of size |T'| = I drawn i.i.d. from Dr called target domain. Let @5 : X — Xgand

’ . . .
O : Xp — X define two linear transformations. Let those transformation be defined by

79



Source Target

Figure 6.3: Visualization of Canonical Correlation Analysis [81]. Visualization of (Kernel) Canonical Correlation Analysis
(CCA/KCCA). The canonical components of source and target are a weighted combination of corresponding input features.
The correlation respective inner product of the canonical components within the red box is maximized. Similar to PCA
the number of canonical components can be defined.

two projections into direction wg, wy via:

/

P5(5) =5 = Spgws = (Ws, Ts) (6.15)
Op(T) =T = Typp oy = (wr, 7). (6.16)

The objective is to find wg, wr such that the correlation between the projected vectors is

maximised, hence:

S, T.
p = max corr (Spgwes Tepwy) = Max Sasws: Terawn) . (6.17)
ws.wr w57 || S g ||| T or |

This is reformulated by using properties of the inner product:

wiE[z gzl wr

p = max (6.18)

ws,wr \/ng [stig] wSU)ITE [IT:U,T] wr

with E denoting the discrete empirical expectation, ’ denotes the transpose of a vector or a

matrix. Using the covariance matrix with

stxs Cszs
C =Cl(xg,zr) = Elzgzr] =
C:):S:L‘T CxTa:T

where C'is ablock matrix with the within-covariance Cy o, C 2 and the between-covariance

8o



matrices Cy gz, Copag as entries.

Finally the optimization objective can be formulated in the following way:

/
WO gup WD

p = max

(6.19)
7 7
ws,wr \/wsczsws waTCszTwT

By checking that rescaling of wg, wr does not change the problem, (6.19) can be maximized

subject to

wngSxSwS =1, (6.20)

wpClpppwr = 1. (6.21)

Next, the formulation of the dual problem is used. Computing the corresponding Lagrangian
L leads to

A A
L\ wg, wr) = w,Cyyppwr — 75( Crozsws — 1) — TT(M'TCmeTwT —1) (6.22)
Then, the partial derivatives in direction of wg, wy are:
oL
- = CarsxTwT - )\Sstxst = 07 (623)
ws
oL
—_— = C’xTrSws — )\TCmeTwT =0. (6.24)
wr

Subtracting wg*(6.24) from wr*(6.23), set A = Ag = Ap, assuming Cy, o, is invertible,

rearrange the equation and usage of the partial derivative leaves to

Cosop Ol Corpaws = N2C

T~ rpry rgzg WS (6-25)

that is equivalent to a generalised eigenproblem of the form Az = ABx. By using Cholesky

decomposition, this can be further simplified to a symmetric eigenvalue problem: Az = Az.

To avoid the restrictions from the linearity of CCA, KCCA first maps the data to a higher

81



dimensional space before following the steps described above.

(i)s ;S — &35(5), és({ﬂg) = ((isl (xg), e ,&)SR(xs)), R > dlm(Xs)
(i)T T — (i)T(T), (i)T(ZET) = ((i)Tl (ZET), R (i)TL (IT)), L > dzm(XT)

The kernel trick [93], meaning exchanging one kernel representation with another respec-
tive mapping data into a higher dimensional space where it can be linearly separated, is used.
A visualization of the kernel trick is given in Figure 6.2. If then S and 7" are the data matrices,
Croag = S5'S, Crguy = ST, wg = S'aand wp = T3 (with «, 3 given the direction of
the mapping), it is possible to show that by using again the dual form and applying the same
transformations, the problem can be again characterized as generalized eigenvalue problem

Ax = A\z.

For a detailed discussion on computational aspects, trivial solutions and numerical com-
plexity see [81]. CCA is used as domain adaptation benchmark in Chapter 8: Virtual Metrol-
ogy (VM) in the heterogeneous DA part.

6.4 DEEP TRANSFORMATION AND DOMAIN ADAPTATION

The section is split up into pseudo-labeling based methods using neural networks followed
by feature-based and instance-based domain adaptation methods that both can be applied
on a broad range of statistical modeling methods. All methods are suitable for un- and/or
semi-supervised learning assuming labeled source but partly labeled or unlabeled target data.
For an overview of different learning paradigm see Chapter 3.1. Notation are taken from
chapter 3.3, chapter 4, chapter 5. For an introduction into domain adaptation theory see
Chapter 3.3. Figure 6.4 gives an overview of methods and the use cases they are later applied

to.

6.4.1 PsEUDO-LABELING

Pseudo-labeling by Lee et al. [123] itself is a semi-supervised learning method and consists
in producing artificial labels for not (yet) manually classified images and in training a model
to predict artificial labels when fed with unseen and unlabeled images as input. It uses the
model class prediction as a label to train again, if it is above a certain probability threshold.

Hence a classification model is trained on labeled data by minimizing a supervised loss func-

82



. TrAdaBoostR2
::"Mf"-:‘:: [ Instance-Based Approach } NNW

oc @
Heterogenepus = == ==
Homogeneous

DOMAIN
ADAPTATION

[ Pseudo Labeling ] —

[ Multiview Learning ] — CcA

Figure 6.4: Visualization of DL-based TF categories, methods and corresponding use cases. Visualization and illustration
to identify the relationship of applications to the corresponding methodologies and methods presented in this chapter.
The colored use cases are presented in Part Ill: Applications and Case Studies.

tion usable for classification. Then unlabeled data is used to enable more general usage hence

further improve accuracy for source but especially for unlabeled target data.

The following notations are used throughout the whole section. Let X be considered as
the input space and Y as the output space. It is recaptured that a distribution over X x Y
is called a domain. Let L : Y x Y — R describe a loss function. A learning algorithm is
provided with a dataset S drawn i.i.d. from a domain Dg with X¢ x Ygs, Xg C X, Yy C Y.
For better differentiation Dy is called source domain. In the SSL setting, it is distinguished
between labeled and unlabeled data and defined S := SL U SU where SU stands for the
unlabeled sample subset and S'L for the labeled one. Without loss of generality for UDA

and SSL, SU = () sine the source domain is assumed to be labeled. Hence
S = {X57 YS} = {xgv yg}?:l ~ {DS}n7 (6-26)

with | S| = n being the number of drawn samples (all labeled) and therefore X = Xg;, C
X, Ys=Yq, CY.

For DA, itis assumed to have two data sets available. Let T = T'LUT U be the second data

set ]’ drawn i.i.d. from a domain Dr called target domain with a distribution over X1 x Y7,

83



Xr C X,Yr CY,and consisting of unlabeled 7'U and/or labeled T"L samples.

TL=A{Xrp, Yro} = {of, vp} s ~ {Dr}™ (6.27)
TU = {Xqu, Yru} = {5} ~ {DF Y (6.28)

with |T'| = m being the number of drawn target samples, therefore X7, C Xy C X,
Yrr € Yr € Yand Xy € X7 C X. Let D?, D}g/ and D%(, D}/ be the marginal
distributions of Dg and Dy over X, Y and X7, Y7 respectively.

Pseupo-LaBELs: It is assumed softmax output unit, categorical cross entropy is selected
as loss function L = Leog. The goal is to build a statistical model A : X — Y so that
the classification error L is minimized. For labeled source data the following optimization

problem is given:

h() = IIlel L(h(Xs), YS)

h
= mﬁin Z L (ﬁ(z@),y%) . (6.29)
(zg,yg)es

where (2, y%) is any paired source (input, output) sample drawn i.i.d from Dg.
Pseudo-labels ¢/ are classes assigned to unlabeled target samples by using a classifier trained

on S = SL and selecting the class with maximum predicted probability:
i = argmax h(x).) (6.30)

The process of generating pseudo-labels can be accomplished in a so called on/ine and an

offline manner:

* Offline pseudo-labeling: A classifier is trained with the available labeled data for a
fixed amount of iterations. A probability threshold is defined. Then the classifier is
used to generate pseudo-labels for unlabeled target data. Pseudo-labels with a softmax
output higher than the threshold are selected, added to the labeled data and used for
the next training phase to further improve the accuracy of the classifier model espe-
cially for target data samples.

* Online pseudo-labeling: The threshold setting and pseudo-labeling is being performed
in a temporary manner on each mini-batch during the classifier training. Sample
weightage based on the number of training steps are introduced to account for the

84



lower classification accuracy especially at the beginning of the training. Slowly increas-
ing the weightage is reccommended as precaution measure to avoid local minima. The
loss function L is defined as:

~

where a/(t) is the weightage function respective schedule based on total number of
steps 1" defined as:
0 ift < T
a(t) = %ah ifTy <t<Thy (6.32)
ap, lng S t

with T, T, and o, are constants that shall be oriented on the percentile of the total
number of training steps 7" and the problem at hand. The overall ratio of the unla-
beled data with respect to the labeled data is influential but mostly dependent on the
availability of data.

ApaMatcH: AdaMatch by Berthelotetal. [19] is suited for both un- and semi-supervised
learning and domain adaptation. Itexploits pseudo-labeling and enriches it with consistency
regularization, addressing the distribution shift between source and target domains present
in the batch norm statistics, flexible pseudo-label confidence threshold and modified version
of distribution alignment. Let hy4q : X — Z = RC be a classifier model with X image
input and Z logit output for each of the C classes. Then, AdaMatch follows the following
pipeline:

* Image Augmentation: Each minibatch X7, X7y are augmented both with a with

a weak and a strong augmentation, respectively X¢;? = {Xsr.w, Xsrs} X717 =

{Xr0.w, XrU,s}. Thelogits of the augmented images are computed as:

{Zs1, Zrv} = heao(Xgr’, X707) (6.33)
ZgL = hada(nglL,g% (634)

where Zg; and Z§; could be different because of the batch normalization statistics,
since they are obtained from differently assembled batches (respectively with and with-
out the target domain images).

85



* Random Logit Interpolation: The logits Z; and Zg; are interpolated:
Zsp = Mg+ (1= N)Zgy, (6.35)

where \ is sampled from a uniform distribution with range (0, 1) to weight each logit.

* Distribution Alignment: The idea is to encourage the target unlabeled distribution
of pseudo-labels to follow the distribution of the source labeled data assuming simi-
lar source and target label distributions. AdaMatch estimates the source label distri-
bution from the output of the model on the labeled source data. Given the logits
for weakly augmented source Zgy, ., and target Zry,, samples, the pseudo-labels are
computed:

YSL,w = SOftm&X(ZSL’w), )A/TU’w = softmaX(ZTU’w). (636)

Distribution alignment is applied by multiplying the target unlabeled pseudo-labels
by the ratio between the expected value of the weakly augmented source pseudo-labels

E [Y s1.w) and the expected value of the weakly augmented target pseudo-labels E [YTU’w] :

]E[YSLM]>

?TU’w = normalize (YTU’W - (6.37)

TU,w]

where normalize makes the distribution sum to 1 again.

* Relative Confidence Threshold: The threshold ¢, applied to decide which target
pseudo-labels are used for calculating the categorical cross entropy loss during training,
is computed on the fly by taking the average of the weakly augmented source pseudo-
labels on the highest predicted class, multiplied by a constant parameter 7. Let ng/L
define the number of available labeled source samples. Then:

cr = T max (YSLJ)UJ) . (6.38)

¢, is then used to compute a mask:

mask™ = max (Y;é)w> > cr. (6.39)
JE[L.K] :

* Loss Function: The loss for the source labeled, both weakly and strongly augmented

86



data is defined as:

Esource - L ( 7Z(Z )
— Z SLyZspw) T
o (i)
—l—— L < ,Z S) 6.40
st Z SL»#SL (6.40)

The loss for the unlabeled, masked target data is defined as:

nru

Liarget = —— Z/L <5t0p grad(YTUw) Z(i()] )mask(i) (6.41)

nru

where L = L¢ is the categorical cross entropy loss and stop_grad is a function that
prevents gradient back-propagation on pseudo-labels, which is a standard practice in
SSL that improves training.

The final loss £ ¢, is then given by

ﬁf’inal = £source + //L(t)ﬁtarget (6-42)

where fu(t) is a warm-up function that schedules the weight to be assigned to the unlabeled
loss term similar to the weightage function within the online pseudo-labeling. [19] proposes

to use
1 cos (min(r, 2))

p(t) = 5~ 5 : (6.43)

where 1" again is the total number of training steps. In practice, this function goes from o to

1 in the first half of the training and stays at 1 for the second half.

Online and Offline pseudo-labeling as well as AdaMatch is used as benchmark domain
adaptation method in Chapter ro: Defect Classification (DC).

6.4.2 FEATURE- AND INSTANCE-BASED DOMAIN ADAPTATION

Domain adaptation is a field of transfer learning where data driven methods are used to
enable usage of models for multiple data sets following different distributions. Different
paradigm of TL are defined with feature-based and instance-based two important categories
especially useful in the field of ML.

87



The following notations are used throughout the whole section. Let X define the input
space and Y the label or target space with Y = {0, 1} for classification and Y C R for
regression task. In the DA setting it is assumed that the training sample S is drawn according
to a source distribution D, while target data is drawn according to a target distribution Dy
that may differ. Hence let S = {z;,y;}7, ~ {Dg}" withz; € Xg C X is the input
and y; € Y is the corresponding output of the source domain. Similar we denote 7' =
{wi,yi}7y ~ {Dr}™ withz; € Xp C X is the inputand y; € Y is the corresponding
output of the target domain (predicting those target labels is the goal, here we assume that
labels are also available but only used for testing not for training). Let f : X — Y be
the (unknown) labeling/target function. Let L : ¥ x Y — R describe a loss function
over pairs of labels and let Lp(f,9) = Ep|L(f,9)| = Eswp|L(f(x),g(z)) | describe
the loss over two functions f,g : X — Y and any distribution or domain D over X.
Let a hypothesis class H be a set of all possible modeling functions / that are considered.
Then the domain adaptation task consists of finding & € H such that the corresponding
loss Lpg . (h, f) = Epg,|L(h, f)| is minimized according to source Dy as well as target

domain Dr.

FEATURE-BASED MODELS

The goal of feature-based methods is to find features for source and target such that they show
in best case identical behavior and distribution in the sense of being not domain specific and
domain invariant. In general, features are projected into a new feature representation space.
Then a task model is trained on the new input features. Learning an optimal projection able
to still solve the task without keeping domain specific information in the data at hand is the

overall goal. For a visualization see Figure 6.5.

L . feature
- -0 "~ mapping

Figure 6.5: Visualization of feature-based DA methodology. Graphical representation of feature-based domain adaptation
methods. X describes the input space,® : X — X’ describes the mapping with X the new (lower dimensional)
feature space and Y the output space.

88



CORRELATION ALIGNMENT (CORAL) Correlation Alignment (CORAL) by Sun et al.
[188] is an unsupervised domain adaptation method that aligns second order statistics of
source and target domain. It aligns the original input spaces hence does not work with lower
dimensional latent representations. Itis simple hence fast and easily applicable to larger data
sets with a high number of samples. First, CORAL that works with linear transformation
of the source features is described. Therefore, the mathematical formula and the algorithm

for CORAL for unsupervised DA given in [188] is summarized.

Since Coral is unsupervised no target labels are used except for testing. Let T : Xg — Xrp
with T(Xg) = X§A describe the feature transformation of the source domain. Let pg, g
be the feature mean and C'g, C'r the covariance matrices. Then, the distance between the

covariance matrices (assuming normalized features with zero mean) is minimized by:
. 2 . T 2
HHHHCS_CTHF—HQHHA CsA—Crl|, (6.44)

where A defines the linear transformation that is applied to the source, C'g describes the co-
variance of the transformed source features and ||- ||fT denoting the squared Frobenius norm
selected as distance metric. The minimization objective is called CORAL loss. In order
to solve equation (6.44) Algorithm 1 in [188] is followed: First, the covariance matrices is
computed, followed by whitening the source and then recoloring it with the target covari-
ance. After the source features are aligned, another prediction model can be trained on the
adjusted features. For a comparison of CORAL with other related methods we refer to the

corresponding section in [188] and [189].

CORAL can be extended to a DL-based version called DeepCoral as presented in detail
by Sun and Saenko [189]. It uses nonlinear transformations by correlating activation layer.
Therefore a DL network architecture is introduced that is trained with the typical classifi-
cation or regression loss using labeled source data plus the above described CORAL loss.
Source and target batch covariance are used to compute COR AL loss while it can be defined
on which and on how many layers the loss is computed. Using the notation introduced in
[189] for a single feature layer, COR AL loss is defined in case of a d-dimensional activation
layer output of source respective target input (where the corresponding weights needs to be

learned) via.

1

12 |ICs — Crll5

Lcorar =

89



where the covariance matrices C'y, Cr are defined as batch covariances. The gradient for
backpropagation can be computed using the chain rule and network parameters are shared
for source and target (in the sense of copying the network and use them in parallel, one for

source and one for target input). The final loss is defined as

t
Lpeepcorar =L+ Y A+ Leorat

=1

with ¢ defining the number of COR AL layers used, A; the corresponding loss weight and LL

a classifier or regression loss of choice for the modeling task at hand.

Strong points - besides its simplicity- are avoidance of overfitting by simply using classifi-
cation/regression loss and avoidance of over simplistic features without task specific informa-
tion. CORAL is applied in Chapter 8: Virtual Metrology (VM) and Chapter 9: Predictive
Maintenance (PdM).

TRANSFER COMPONENT ANALYSIS (TCA) Transfer component analysis (TCA) by Pan
etal. [156] is an unsupervised domain adaptation method that tries to learn so called z7ans-
fer components in a reproducing kernel Hilbert space (RKHS) using maximum mean discrep-
ancy (MMD). The idea is to project the original features into a latent feature space such that
the transferred data distributions are close to each other. The new representations can then
be used to train a machine learning model dedicated to the labeled source domain that s also

applicable to the target domain.

Let D and D7 be the marginal distributions of Xs and X7. Let H be a universal RKHS
and © : X — H the nonlinear transformation to be found. Let Xg = {zg } = {O(zs,)},
X, = {ZU/TZ} = {O(zr,)} and X' = X4 U X be the transformed and combined input

sets from the source and target domains. Then the distance between two distributions in

is defined using the empirical estimate, two sample sets S, T" with |S| = n, |T| = m and
MMD: )
- 1 1 &
IS ) - |13 000s) - 130 (649
i=1 j=1 o

© can be found by minimizing (6.45). This is done by transforming it into a kernel learning

90



problem. Using the kernel trick with k(z x;) = O(xz;)7©(z;) we get:

DIST(Xg, Xy) =tr(KL); K = (6.46)

Kss Ksr
Krs Krr

Kisa(n+m) x (n + m) kernel matrix, Kg g, K77 and K g p respectively K g are the

kernel matrices defined by the kernel k on the data in the source domain, target domain, and

cross domains; and L = [L;;] > 0 with L;; = % if x;, x5 € Xg respective L;; = % if
1

mn’

x;,xj € X and otherwise L;; =

Learning the kernel function k can be solved by learning the matrix K. This is done in
[156] the following way: Let W bea (n +m) x [ dimensional transformation matrix map-
ping the feature space into a l-dimensional latent space, K is decomposed using the empirical
kernel mapand W = K ~1/21) € R(+m)xl Then the new kernel matrix respective kernel

function is defined as:

K = (KK-V*W)W' K-'V2K) = KWWTK
]’%((Ii,l’j) = kZZ;WWT]CzJ

Finally the distance between the transformed input spaces can be reformulated:
DIST(Xg,X7) =tr(KL) = tr(KWWTK)L) = tr(WTKLKW).  (6.47)
The final kernel learning problem then has the following formalism:

min tr(WTW) + utr(WKLKW) (6.48)
stWITKHKW =1 (6.49)

where the side condition is introduced to avoid the trivial solution W = 0, tr(WTW) is a
regularization term, /¢ is a trade off parameter, I the identity matrix, H = I,, 1, — H#m 117

is the centering matrix with 1 € R+,

For further details, use cases and performance discussion see [156]. TCA is applied as

domain adaptation benchmark in Chapter 9: Predictive Maintenance (PdM).

91



SUBSPACE ALIGNMENT (SA) Subspace Alignment (SA) presented by Fernando et al. [64]
linearly aligns subspaces generated by PCA; for details on PCA see the description further
above based on [105]. First each source and target domain is mapped to its according sub-
space, then a linear transformation is learned in order to adapt the projected source to the

projected target.

Let 8" = {a%. }, T" = {27, } be the PCA projected input sets from the mapped source
X§ and target X/, domains. Let ¢ : X§ — X7, be the linear transformation to be found
with ¢(X§) := X§*M and matrix M. Then:

M = arg]\;nin 1S'M —T'||5

with || - || 7 describing the Frobenius norm. M* = S"™T" holds since the Frobenius norm is

invariant towards orthogonal transformation.

For further instructions on unique hyperparameter tuning for the number of principle
components it is referred to [189]. SA was introduced as unsupervised DA method for clas-
sification task. Overall benefits lie in the simplicity hence speed of the method while pre-
senting comparative high accuracy. SA is used as benchmark domain adaptation model in
Chapter 8: Virtual Metrology (VM) in the heterogeneous DA part as well as in Chapter 9:
Predictive Maintenance (PdM).

6.4.3 INSTANCE-BASED MODELS

The idea behind instance-based methods is a weighting of instances respective samples such
that the difference between source and target distribution is minimized. Different distance
measures are chosen depending on the task at hand and are characteristic for each method.
The reweighted (source) samples (in the unsupervised case where no labeled target data is
available) are used to train a new model that solves the task for both domains. For a visual-

ization see Figure 6.6.

NEAREST NEIGHBORS WEIGHTING (NNW) Based on Dudani [58] with the idea of clas-
sifying unlabeled data by using their nearest neighbors, Nearest Neighbors Weighting NN'W
by Loog [136] transfers this idea to a DA setting. In more detail, it addresses a covariate shift,

meaning the conditional probabilities of the output values y given the input vector x from

92



b0 . P [ LA . @ | . f
e [t __instance /L e @0 __training .
L. Tl ..t . weighting | | - N ‘e "‘l

Figure 6.6: Visualization of instance-based DA methodology. Graphical representation of instance-based domain adapta-
tion methods. X describes the input space and Y the output space. The reweighted samples are visualized via decreased
or increased sample size.

source respective target are equal but input distribution Dg and D7 respective source and
target domain vary alot from each other. [136] recaps that the expected loss can be estimated

as

Eps [(w(z)L(h(x),y)] = Ep, [L(A(z),y)] (6.50)

withz € X, L(h(x),y) theloss function with h € H (H hypothesis class meaning class of

all possible modeling functions) and
w(r) = Ds(z) (6.51)

The following two step approach is then applied to minimize the loss of the target domain

based on the source domain and best modeling function h:

1. determine an estimate W for w based on training samples

2. minimize the empirical loss using the weighted samples with respect to h € H.

Due to its simplicity the approach is very easy to implement and very efficient since no
optimization needs to be solved. First a lattice structure is defined on the input feature space
via Voronoi or Dirichlet tessellation. A Voronoi cell or region is defined via a center and all
samples of the space that are closer than to any other center point. The source domain is
used as centers and target data is associated to a specific cell. Let 2, be a center point from
source and x7; the target samples associated to it. Then the weights of each source sample is

defined as number of target points associated to its Voronoi region via
’LAU<£E51> = |VSz N {ij }]| (6~52)
with ||- defining the cardinality of a set.In case of too many empty Voronoi cells, Laplace

93



smoothing is applied where every cell is expected to have already one count:
w(xsz) = ‘VSZ m{sz}j‘ + L (6'53)

[136] shows its advantages towards KLIEP (another importance weighting method pre-
sented by Sugiyama etal. [187]). NNW is applied as domain adaptation benchmark in Chap-
ter 9: Predictive Maintenance (PdM).

Two STAGE TRANSFER ADABOOST FOR REGRESSION (TRADABOOSTR2) Two Stage
Transfer AdaBoost for Regression (TrAdaBoostR2) presented by Pardoe and Stone [158]
is based on the adaptive boosting algorithm by Freund and Schapire [65] and adopted to
a DA setting. Boosting in general refers to the idea that a ensemble of weaker models can
outperform a strong one. TrAdaBoostRz2 is a supervised DA method for regression and
makes use of the available labeled target data to train together with the labeled source data
an regression model and use the errors then to update source as well as target sample weights

to improve transfer. [158] presents the following algorithm:

1. select initial weight vector w (size fits the number of available labeled data samples
fromsource | S| = ngandtarget|T’| = ny combined namely ng+mny)and normalize
it via _

w,
W, = ——————. (6.54)

ng+nr  J
Zj:l w;

2. train a model with weighted labeled data samples from source and target and get a

hypothesish : X — Y

3. evaluate h and get back the prediction error from labeled source and target data using
L as loss function

€g — L(h(S),Ys) (6.55)

4. Normalize error vectors and compute weighted error £ of target samples with wy the
part that belongs to the labeled target samples

1

ET = _w%ET,nor‘m) (657)
nr

94



5. Define with N number of overall iterations

Er

= 6.58
br=1— B, (6.58)
1

= 6.

A Jane/N (659)
and use this to update the sample weights

wg = wS/BES’""Tm (660)
wr = wTﬁ;ET’nOTm (661)

The final predictions are generated by the weighted median of the N/2 model functions h.

TrAdaBoostR 2 isapplied as domain adaptation benchmark in Chapter 9: Predictive Main-
tenance (PdM).

95



96



Metrics and Losses

Selection of correct, meaningful and strong metrics is essential for trustworthy evaluation of
models. Losses are used to quantify how good a model is performing (also during training)
and are the basis for optimization strategies like gradient decent.

To measure the success of the alignment besides overall performance of different mod-
els, two groups of losses are introduced namely Distribution-based loss and Performance-

based loss.

Let X be defined as the input space and Y as the output space. LetL : ¥ x Y — R
define a loss function. Let hp : X — Y define a a statistical task model and let hp be
parameterized by 6p and P(z, §p) be the representation of our statistical model from input
to output where P is the model function with parameters p that outputs the predicted

target value forz € X.

7.1 PERFORMANCE-BASED LOSS

Let y'rue = {yi"e}n | ~ {DY}" the labels from a sample set from source or target

and yP? = {y""*"\n = {P(x;)}", the predicted values computed from {z;}? | ~
{D*}". Let y'™¢ stands for the mean value and V'ar for variance, the square of the stan-
dard deviation.

Then the following performance-based loss function are defined:

97



MEAN ABSOLUTE ERROR (MAE) Mean absolute error (MAE) is one of the most common

loss functions and defined as

pred

true
Y —Y;

(7.1)

MAE(ytrue’ ypred) — Z
=1

RooT MEAN SQUARE ERROR (RMSE) Root mean square error (RMSE) is a common

metric often used in literature for PAM thanks to its robustness and interpretabiliy.

O P it
RSME 'I"'UJe7 pre — 2 3 i
(5" ) 2; - (7.2)
MAXIMAL RESIDUAL ERROR (ME) Maximal residual error (ME) is defined as
ME(ytrue7 ypred) = max yfrue . yipTEd (73)

R-sQUARE (R2) R-square (R2) is the coefficient of determination also called regression

score function and defined as

Rz(ytrue’ ypred) —1—

(7.4)

EXPLAINED VARIANCE REGRESSION SCORE (EV)  Explained variance regression score (EV)
is defined as

Va,r(ytrue . ypred)

EV (yrue predy __ 1—
(y Y ) VaT.(ytrue)

(7.5)

R2 and EV are equal if the mean error is equal to 0.

7.2 DISTRIBUTION-BASED LOSS

KorLmoGorov-SMIRNOV (KS)  The Kolmogorov—Smirnov (KS) test is a nonparametric

test to compare two one dimensional data distributions. Either a sample set is compared

98



to a given data distribution (called one-sided KS-test) or two sample sets are tested against
each other (called two-sided KS test). For our multidimensional input space we use it for a
univariate feature comparison and compute the average over all univariate test statistics. The
resulting statistics are the so called p-value - the probability that one achieves similar or more
extreme values under the null hypothesis - and the ks-score - the absolute maximum distance
between the two domains. The smaller the p-value and the higher the ks-score the more likely

it is to reject the null hypothesis.

T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE) T-distributed Stochas-
tic Neighbor Embedding (t-SNE) is a machine learning algorithm developed for data visu-
alization and especially suitable if the data contains nonlinear dependencies [206]: t-SNE is
based on gradient-descent minimization of the Kullback-Leibler (KL) divergence of the two
domains under investigation. The KL divergence itself is presented as metric for compari-
son of inner domain distance - meaning the divergence between training and test set of one
domain - with outer domain distance - meaning the divergence between training respective

test sets of source versus target domain.

FRECHET INCEPTION DISTANCE (FID)  Frechet inception distance (FID) is well known
in the field of GAN to evaluate the quality of generated data ([87]). A general introduction
to the Frechet distance between multivariate functions is given in [56]. The FID metric is
defined as the squared Wasserstein metric between two multidimensional gaussian distribu-
tions. Let N (11, £1) and NV (2, X2) two multivariate gaussian distributions with z1, o
the corresponding mean and ¥;, ¥ the corresponding covariance matrices. Then FID is
defined as:

FID = || — po| [ + tr (21 + S2 — 2% (£,52) 7). (7.6)

STRUCTURAL SIMILARITY INDEX (SSIM)  Structural Similarity Index (§SIM) is a metric
that takes structural information of data presented as images into account. The main fea-
tures are contrast, structure and luminance and the loss value is computed based on those
feature. Inspired by segmentation task, one application to a computer vision related domain

adaptation case is given by Gokaslan et al. [73]. Let x,y be two non negative images signals

99



with discrete representation, then the mean intensity in 2 is defined as

1 N
MM:NZ;%- (7.7)

For luminance comparison we then define the function [ as

2
U, y) = —etlu + Ch

= 8
pz + pz + Ch 7:8)

with C} = (K;L)? where K; << 1isasmall constant and L the dynamic range of pixel
values. Contrast is given by an unbiased estimate of the standard deviation of the signal

contrast as

LW 1/2
Oz = (m > (i — Mz)2> - (7.9)

i=1

The contrast comparison ¢(z, y) between x and y is then given as

20,0, + Cy

1021 Cy (7.10)

c(z,y) =
with Cy = (K3L)? where K5 << 1is a small constant and L the dynamic range of pixel

values. For structural comparison we first define a correlation coefficient o, as

Tay = 7 D (1 1) (s — 1) (7.11)

i=1

Then the structure comparison function is defined (using again a third constant C's as before)

as
Oy + 03

s(z,y) = oy + Oy (7.12)

Overall the Structural Similarity (SSIM) index between image signals x, y is given by

SSIM (x,y) = [I(z,y)]* + [e(z, y)]° + [s(z,y)]”
« (2papy + C1) (20,0, + C5) (7.13)

(12 + p2 + Cr)(02 4 02 4 ()

I00



with a, 3,7 > 0 and set to 1 for =and O3 = C5/2. SSIM € [—1,1] hence the index is a
value between —1 and 1 where values close to 1 predict a high similarity and values close to

—1 indicates significant differences.

SSIM is designed to fulfill the properties of a similarity measure meaning symmetry, bound-
edness and unique maximum. Itislocally convex that makes it a good candidate for optimiza-
tion. In order to apply the computation above to time series data, we expand its dimension.
Hence the last axis of the time series is multiplied and filled with copies of the corresponding

single value. The SSIM can be directly applied to the expanded time series data.

I0I



I02



Part II1

Applications and Case Studies






Virtual Metrology (VM)

Process monitoring and process control are key factors for a highest of standard production.
A detailed view on technologies, process, production and yield including monitoring, mod-
eling, diagnosis, control and analysis is presented in May and Spanos [146]. The goal of
metrology technologies is to estimated quantities that are important for quality/control pur-
poses but are costly or even impossible to measure. Such important quantities are typically
measured in so-called metrology stations where multiple product-related measurements are
taken after the process is finished. Metrology is monitored via univariate or multivariate con-
trol charts where upper control limits (UPC) and lower control limits (LCL) are defined
depending on application and applied (statistical) methods. Due to cost reduction and time
restriction, only a subset of processed wafers are physically measured after a process.

Virtual metrology (VM) (other terms like soft sensing are used outside of semiconductor
manufacturing) modules exploit the availability of data already collected by equipment or
information systems (with no additional costs) to make use of statistics to estimate virtual
measures for wafers where no real and physical metrology is performed. VM technologies

have a long history in being applied in production with many beneficial impacts, namely:

* costs metrology measures are performed for a subset of the produced products/process
iterations hence supporting cost and process time reduction

* quality - the availability of estimations for important process quantities allow to in-
creased process monitoring capabilities;

105



* control - the usage of VM estimations in combination with real metrology can be used
to update control modules (typically in Run-to-Run controllers) minimizing drifts,
shifts or variance of the production [186];

* data-driven sampling optimization - it has been shown how VM estimation-based de-
cision making in production sampling selection can lead to increased production de-
fect detectability [63].

Therefore, VM stands for methods that predict wafer properties based on sensor measure-
ments taken during the process within the process equipment. Hence the missing values of
the non tested products can be replaced by predicted values and used for analysis, control
and quality assessment. A general introduction to process control including metrology is

given in Chapter 2: Elements of Semiconductor Manufacturing.

The results presented in the first part of this chapter are covering the work published in
Gentner et al. [70] and Gentner et al. [69] about homogeneous domain adaptation for a
VM regression task. The extended benchmarking with focus on time series suitable DL ar-
chitectures are obtained in collaboration with University of Padua, Information Engineering
Department, Prof. Dr. Alessandro Beghi, Prof. Dr. Gian Antonio Susto and Filippo Dalla
Zuanna. A manuscript submitted for publication is not yet published. The second part
about heterogeneous DA is created under the supervision of University of Padua, Informa-
tion Engineering Department, Prof. Dr. Alessandro Beghi and Prof. Dr. Gian Antonio

Susto. A manuscript submitted for publication is not yet published.

8.1 INTRODUCTION

In this chapter the focus lies on two virtual metrology use cases related to advanced process
control (APC) and statistical process control (SPC). APC describes the equipment and the
process itself in the production line and measures, describes and monitors functionality and
properties on the productitself - properties are referred to so called wafer state measurements
- during as well as after one or multiple process steps as well as health status of process equip-
ment. The process analysed here, is a plasma etching process. The plasma etching process
runs on an equipment from a specific vendor, see Figure 8.1.

SPC stands for the part of metrology that is monitored via univariate or multivariate con-

trol charts where upper control limits (UPC) and lower control limits (LCL) are defined

106



Figure 8.1: LAM Research plasma etching tools. Two etching tools from the semiconductor fabrication supplier Lam
Research: (a) Lam Alliance series, (b) Lam 2300 series.

depending on application and applied (statistical) methods. Therefore, SPC contains opti-
cal or electrical measurements - often also referred to as inline measurements. Two examples
of optical metrology measurements for etching process are layer thickness (LT) and critical

dimension (CD). A visual graphic of those are presented in Figure 8.2.

Figure 8.2: Visualization of metrology/inline measurements. Graphical visualization of two metrology measurements
done in semiconductor manufacturing: on the left side it shows a gate width as example for critical dimension (CD), on
the right a remaining layer thickness (LT).

The following sections are organized into different parts: First a literature deep-dive is pre-
sented with a focus on process control and virtual metrology with a focus on semiconductor
manufacturing applications. Then, the first VM use case for identical-in.design equipment
is introduced. The first use case is split into 2 parts: First, modeling approaches presented

in [69] including linear regression, lasso regression, random forest and artificial neural net-

107



works are applied and discussed on the one hand for the VM prediction task and on the other
hand for DBAM as method for domain adaptation. Second, the benchmarking is enriched
by focusing on time series suitable DL architectures like LSTM, TCN and 1DCNN and
their utility for domain adaptation with DBAM.

Next, the second VM use case for equipment with heterogeneous data representation
is presented. Here, the domain adaptation method DBACS is applied and benchmarked.
Benchmark models include correlation analysis, principle component analysis and multi-
view learning using CCA besides COR AL as domain adaptation approach. In the last part,
(equipment) matching enabled by DBACS is discussed before the chapter is closed with a

summary.

8.2 LITERATURE

Due to the high complexity and necessity of early fault detection in semiconductor manufac-
turing, metrology related research has a long history with Chen et al. [33] being one of the
first papers presenting the basic idea behind VM and its advantages when it comes to process
control (see also Su et al. [186]) and quality while technical requirements related to product
as well as production are constantly increasing. Following [70], [69] we group the literature
by data type, give a short overview of content and innovation there and have a separate look

at current ML-based methods and domain adaptation related approaches.

FAUuLT DETECTION AND CLASSIFICATION (FDC) DATA

Most of the work related to semiconductor process and equipment are based on feature in-
put data meaning descriptive statistics computed on the raw time dependent sensor measure-
ments from the equipment. It is known under Fault Detection and Classification (FDC)
data, also called keynumbers. Since those features are either way computed and collected
thanks to standard process control mechanism, data is easy to access and methods are straight
forward to apply. Based on the huge amount of available features, it is recommended to ap-
ply feature selection. While a broad range of feature selection techniques exists and in general
are recommended as part of the data preprocessing (for a general review on feature selection
techniques including filters see Saeys et al. [170]), literature presents more advanced and VM
specific feature selection methods for example by Kang et al. [109]. It shows very promising
results related to accuracy but also computational time. For the prediction itself based on

FDC data, Lynn etal. [141] presents one of the first semiconductor VM example for an etch-

108



ing process using multiple linear regression and ANN compared with different preprocess-
ing steps (PCA, correlation, stepwise analysis). A set of very common regression algorithm
for VM prediction tasks are presented by Susto and Beghi [191]. Kernel based least square
optimization like Ridge Regression, Lasso and Efficient Net are also successfully applied
to a VM task by (author?) [Park and Kim]. It shows their potential as benchmarks against
raw sensor based methods. Tree-based methods including some optimization steps applied
on FDC for a VM task on a deposition process is presented by Chen et al. [31] and tested
against different regression based - kernel, support vector and gaussian process - methods as

well as ANN models to showcase their superiority.

TIME SERIES DATA

(author?) [Park and Kim] presents a Fussed-Lasso based approach using raw sensor data and
proves it advantage against standard feature based approaches in VM. The usage of raw sen-
sor measurements without preprocessing that resorts to descriptive statistics, prevents infor-
mation loss. To avoid such information gaps on one side, but also keep the simplicity of
a stationary data representation on the other side, Susto et al. [194] present an alternative

supervised feature extraction approach based on regularization called SAFE.

DEEP LEARNING BASED METHODS

Like in many other industrial areas and applications (for a chemical manufacturing exam-
ple including time series data see Guo et al. [79]) DL-based methods are successfully applied
to VM in semiconductor manufacturing. While in early stages shallow Ml-based approaches
prove to be superior (comparison of typical VM regression models are presented in Lynn etal.
[142] and [210] - with Gaussian process as winner - for example), current research shows the
superiority of DL-based methods as shown for example in Shang et al. [180] for soft sensing
in general. A very valuable but cost-intense input for VM prediction task is optical emission
spectroscopy (OES) data: Maggipinto et al. [144] presents a IDCNN architecture suitable
for time series data like OES. Other papers using the power of convolutional neural networks
for VM prediction are Lee and Kim [125] using a "recurrent feature incorporated approach”,
Maggipinto et al. [145] and Yuan et al. [231] for automated feature extraction - the former
based on OES images, latter for another industrial application - and Wu et al. [219] combin-
ing convolutional with gaussian processes to tackle a multi step problem. VM/soft sensor

model based on LSTM is presented by Yuan et al. [232] for a pharmaceutical use case.

109



MATCHING AND ADAPTATION RELATED METHODS

ML- and especially DL has been successfully researched and applied to a broad range of semi-
conductor applications. Models have to be made fast and flexible while being highly accurate
and reliable especially under complex production environment - including up to thousand
different product steps and constantly changing technology portfolios. But to address the ef-
fort of bringing those applications into non-standardized production, scalability of models
and methods has to be discussed: Following the explanations in [70], [69], it is distinguish

between two approaches that are often discussed in literature:

MATCHING: Matching - often done with production equipment hence referred to as equip-
ment matching (EM) - is a highly researched topic in semiconductor manufacturing based
on data as well as domain expert input to assure consistent processes and therefore quality
and output. As presented in Chouichi etal. [42] EM aims at finding and eliminating setting
and performance differences for increased control based on statistical methods applied on
sensor data. It often relies on the explainability of methods to detect most important fea-
tures and enable a root cause analysis. While [42] successfully applies traditional and well
explainable statistical methods like partial least square, discriminant analysis and correlation,
some patents like Heng et al. [86] addresses the matching approach with ANN. Matching is
resulting in aligned and equalized equipment or process properties hence production stan-

dardization.

DoMAIN ADAPTATION Domain adaptation (DA) is a purely data driven approach ap-
plied to deal and handle but not to necessarily eliminate existing differences in production;
meaning occurring differences in collected data samples and hence different data distribu-
tions.

DA is based on domain adaptation theory introduced in Chapter 3.3. Introduced meth-
ods are developed to deal with situations where multiple data sets with different data distri-
butions occur for identical or similar modeling tasks. Details about the related DL-based
approach called domain adversarial neural network (DANN) used for domain adaptation
are presented in 3.3 including application independent, theory focused literature. DA is a
sub field of transfer learning (TL) developed to transfer a well performing statistical model
trained on a specific data distribution to a second similar but non-identical data distribution

for the same or a similar modeling task.

110



Two examples for transfer learning tested on VM in semiconductor manufacturing are
presented in Kang [108] and Tsutsui and Matsuzawa [204]. Former focuses on transfer learn-
ing where previous gained knowledge is exploited to improve initialization hence accuracy
and efficiency for a second dedicated model; more recently active learning with DANN ap-
plied to such a cold start problem is presented in Shim and Kang [183]. Latter uses optical
emission spectroscopy (OES) data and convolutional neural network (CNN) plus additional
preprocessing able to handle time series data with different length to create chamber invari-
ant features. Semi-supervised approaches for transferable and invariant feature extraction
methods are presented in Farahani etal. [61] and Lietal. [126]. Unsupervised domain adap-
tation (UDA) for VM is presented in Shim and Kang [183] addressing the VM critical aspect
of time and cost savings by using DANN to achieve a good target model initialization hence
improving wafer selection for active learning and therefore leading to a significantly shorter
training time. For a domain adaptation method for fault diagnosis using MMD (see Chap-
ter 3.2 for more details on probability distance metrics) to assess distribution similarity see
Azamfar et al. [7].

While domain adaptation is a hot-topic for computer vision (see the survey by Wang and
Deng [212]) as well as optimal transport tasks (see for example Courty et al. [45]), still only
a limited amount of semiconductor manufacturing specific applications is available so far.
The same goes for heterogeneous DA where overall a limited amount of publications are
available: Yang et al. [224] with a classification task for heterogeneous information networks
and Tsai et al. [203] as well as Fang et al. [60] with an - in this area most common - image
to text transfer use case. Alipour and Tahmoresnezhad [3] combines distribution alignment
via subspace mapping under consideration of aligned second order statistics with pseudo-
labeling.

Another research field strongly related to heterogeneous DA is multi-view learning (MVL)
(also known as data fusion or data integration); for python specifications see Perry etal. [161].
While covariance based analysis is heavily used in various fields as presented in the surveys by
Sun [190] and Xu et al. [222], it is underrepresented for semiconductor related literature
with Chen et al. [36] applying Canonical Correlation Analysis (CCA) for fault detection
purposes and Yu et al. [230] applying correlation and CCA on evaluation of manufacturing
performance systems being rare exceptions. A review of MVL in the DL setting is given by

Yan et al. [223]; a similar collection called CCA zoo is provided by Chapman and Wang [30].

ITI



8.3 VIRTUAL METROLOGY (VM) FOR IDENTICAL-IN-DESIGN EQUIPMENT

We present an use case based on a plasma etching process during front-end production as
described in Chapter 2. The data is taken from an single-wafer etching equipment with 4
identical-in-design and parallel running chambers presented in Figure 8.1 part a). The task
is to create a virtual metrology model using raw sensor measurements and predict a specific
metrology measurement taken from a metrology equipment on the wafer after the etching
process is finished.

The data consists of physical sensor measurements like pressure, temperature, gas flows
beside others taken during the etching process in a half second range depending on the run-
ning process. An optical end point detection is installed and applied. Layer thickness (LT)
is selected as target inline measurement, it is visualized in Figure 8.2. Roughly 10 percent of
the processed wafers get measured after the process due to high cost and time effort hence
those can be used as labeled data. For the unmeasured wafer having a virtual prediction leads
to advantages in process control. The prediction model is trained on a dedicated chamber.

Since a clear data shift is visible between the chambers, a direct model transfer usage is not
possible. Hence as presented in Gentner et al. [69], the functionality of DBAM is applied
to keep the high accuracy of a dedicated model and to showcase an explainable and scalable
domain adaptation approach. DBAM is compared to other methods presented in literature.
First the results presented in [69] are summarized. Second, the research is enriched with
more time series specific benchmarking using different DL architectures and combinations

of those.

DATA PREPARATION

The etching chambers present overall 33 installed sensors where physical measurements in
form of time series are collected during the process. The data under consideration for this
use case is restricted to one recipe and one product group running parallel on two different
identical-in-design etching chambers. We consider a time period of around 2 years where no
statistical significant data shifts besides chamber differences occur. Multiple inline measure-
ments are taken for sampled wafers after the process, we select layer thickness (LT) as target
variable since it shows high dependency on the etching itself and there is no direct need to
consider multiple related process steps before; like deposition and lithography for example
where its influence on resulting metrology can be significant, see Chouichi et al. [42] for a

discussion on that including ANOVA as method to select relevant operational data.

I12



The source sample set respective samples from chamber 1 consists of around 1200 samples
and the target from chamber 2 around 1 100 samples, both including labels. To enable broad

benchmarking, two data formats are considered as presented in [69]:

(1) Raw sensor measurements in form of time series where below described preprocessing

steps are applied;

(2) Computed features based on descriptive statistics of the raw sensor measurements
used in (1).

Set (2) is based on set (1) and no additional data cleaning, feature selection or feature
engineering is applied to assure comparability of the different methods independent of the
input data respective used information.

The following preprocessing steps are applied to the raw sensor measurements:

* removal of constant features and outliers (based on interquartile range (IQR))

* data normalization with min-max scaler (see sklearn python module by Pedregosa et al.

[x60])

* equal-distributed upsampling of timestamps to generate time series with equal length
of size 1024.

* for(2): computation of average value per step before normalizing with min-max scaler.

After preprocessing is finished, data set (2) consists of 252 stationary features with the
same amount of samples for both data sets. The layer thickness (LT') as target data for both
chambers shows no significant distribution shift - meaning no target shift can be detected;

see Figure 8.3 for a boxplot graph of one of the folds used later in cross validation.

8.3.1 EXPERIMENTAL DESIGN: PART 1

Part 1 corresponds to results presented in [69] and the experiment is split in two phases:

In the first phase of the experiment we evaluate benchmark models for VM prediction task
suitable for stationary data inspired by VM related literature. Selected methods suitable for
stationary feature data are RR, LASSO, RF and ANN. Modeling details are presented in the
following section. ANN is also used as prediction model for the alignment with DBAM in

order to showcase its usability for stationary when it comes to scalability and generalization.

I13



Normalized metrology measurements for chamber 1 and 2

1.0

0.8

0.6

0.4

0.2 )t

0 occomo
o

® owo o

i

chamber 1 - train data chamber 1 - test data chamber 2 - train data chamber 2 - test data

o

0.0

Figure 8.3: Boxplot of normalized layer thickness [70]. Boxplot graphs of normalized metrology measurements namely
layer thickness from both chambers as presented in [70].

In the second phase of the experiment we evaluate two benchmark models presented in lit-
erature suitable for time series date: FL and dedicated iIDCNN model. Architectural details
see below. Similar to the stationary data in order to prove scalability and generalization, first
the dedicated IDCNN model is trained as separate prediction benchmark and then used also
as baseline predictor for a time series suitable DBAM. Since stationary and time series data
are created based on the same raw sensor measurements, we analyse performance related to

captured information in different data types.

BENCHMARK MODELS

The benchmark model selection is based on pertinent literature, paper use case recommenda-
tions and suitability. For the VM prediction task, (ridge regression (RR), LASSO and fused
lasso (FL) - all based on the classical OLS paradigm - are analyzed. Random forest (RF), a
tree-based ensemble method, is also applied and evaluated as model for VM prediction. An

introduction into the methodology of the selected benchmark models is given in Chapter 6.

ANN and 1DCNN are used on the one hand in phase 1 as VM prediction models but are
also used for domain adaptation within DBAM in phase 2. For more details about neural

network architectures see Chapter 3.1.

114



METRICS AND LOSSES

To measure the success of the alignment besides overall performance of different models we
use two groups of losses; for detailed descriptions see Chapter 7:

For overall performance comparison, the following performance-based losses are applied:

* Mean absolute error (MAE), maximal residual error (ME), R-square/R2 and explained
variance regression score (EV) are used.

For distribution comparison and alignment evaluation, the following distribution-based

losses are applied:

* T-distributed Stochastic Neighbor Embedding (t-SNE) is used for visualization of dis-
tribution alignment;

* Kullback-Leibler (KL) divergence is used for comparison of inner domain distance -
meaning the divergence between training and test set of one domain - with outer do-
main distance - meaning the divergence between training respective test sets of source
versus target domain;

* Kolmogorov—Smirnov (KS) test is applied for a univariate feature comparison by com-
puting the average over all univariate test statistics. Inner domain equality - meaning
train sample set vs test sample set of one domain - is tested and compared to outer
domain equality - meaning train respective test sample set from source versus target.

MODELS AND HYPERPARAMETERS

5 fold cross validation is applied hence both data sets are split in 5 subsets and 4 merged sets
are used as train and 1 as test set per fold. Architectures of all models stays fixed for all 5 folds.
The presented results are performance averages over all s folds.

For selected benchmark models, the following available python implementations are used:

* scikit-learn by [160] plus available and in the python module included model specific
hyperparameter optimization based on cross validation.

For the neural network based models, the following architectures are used for prediction:

I1§



* The ANN predictor model consists of 5 fully connected dense layers each with recti-
fied linear unit (ReLU) activation function followed by batch normalization layer and
a 1o percentdropoutlayer. The ANN is trained using stationary features by minimiza-
tion of MAE using Adam optimizer including exponential learning rate decrease after
so epochs and early stopping with learning rate lrp = 0.0001, min; = 0.000001
and patience = 20. For training ANN-based DBAM the previously on source
trained ANN predictor is reused with fixed weights.

* The iDCNN predictor model consists of two convolutional layers with dimension 16
and 8, kernel size 17 and stride of 2, exponential linear unit (elu) activation function,
one max pooling layer, batch normalization layer in between, The last two layers after
the flattening has dimension 16 and 1 and the output activation function is sigmoid.
The 1DCNN is trained under usage of preprocessed sensor data by minimization of
MAE using Adam optimizer with including exponential learning rate decrease after
so epochs and early stopping with learning rate lrp = 0.00001, mins = 0.00001
and patience = 20. For training IDCNN-based DBAM the previously on source
trained IDCNN predictor is reused with fixed weights.

AllDBAM models are trained using Algorithm 4.1 presented in Chapter 4. The predictor
models are reused and trained weights are frozen. For the other DBAM parts the following

architectures are used:

* The domain discriminator for the ANN has 4 fully connected dense layers with Leaky
ReLU activation function and linear output function. The aligner in form of an au-
toencoder consist of 3 dense layers plus ReLU activation function in the encoder part
as well as in the decoder part plus batch normalization in between. The output acti-
vation function is linear. The aligner is pretrained to mirror the target data using also
Adam optimizer with MAE as loss function to ensure a good initialization. For train-
ing ANN-based DBAM the previously on source trained ANN predictor is reused
with fixed weights.

* The domain discriminator for the IDCNN has 2 convolutional layers of dimension
32 and 16, kernel size 17, valid padding and leaky ReLU activation function, max
pooling of size 4 between the two layers followed by a flattening layer and 6 dense layers
again with leaky ReLU activation and linear output function. The aligner in form
of an autoencoder consist of 2 convolutional layers with filter size 32 and 16, kernel
size 7 in the encoder part and 2 upsampling plus convolutional layers (dimension 32
and input shape, kernel size 21 and 33) in the decoder part, plus ReLU activation
function, plus 15 percent dropout in between. The output activation function is
linear. For a good initialization the aligner is pretrained to mirror the target data using
also Adam optimizer with MAE asloss function. For training IDCNN-based DBAM
the previously on source trained tIDCNN predictor is reused with fixed weights.

116



ADVERSARIAL TRAINING

Here, the training approach that makes use of changing a maximization to a minimization
task by reversing the sign of the function to be optimized plus artificial domain labels and
linear output function of the discriminator models combined with Wasserstein loss includ-

ing gradient penalty regularization is used.

For training details including hyperparameter setting see Algorithm 8.1 that is use case
specifically adopted from Algorithm 4.1 as presented in [69], for details about loss and al-

gorithm see Section 4. As stated in [69] the source domain is selected under consideration

Algorithm 8.x DBAM training with gradient penalty for VM.
A = 10, ratio=20, 51 = 0.5, B2 = 0.9, lrgisc = 0.0001, {rasign = le

Require: The gradient penalty coefficient A, the ratio between discriminator and aligner
update, batch size m = 32, Adam optimizer [113] hyperparameters {1 (learning rate),
/813 52
Require: pretrained and frozen predictor parameter ¢p, initial discriminator parameter
0p,, pretrained aligner parameter 6 4,
1: while 64 and 6 have not converged
fort = 1...ratio

2

3: unfreeze 0p, freeze 64

4 sample Sy, = {2} ~ Dg, T, = {2z} ~ {Dr}™
5 Lpypu = LD7DS(va Op) — Lp,p, (A(T5n,04),0p)
6: 6D — Adam(—LDtoml, ZT')

7. end for

8:  freeze Op, unfreeze 6 4

9:  sample S, = {z}", ~ Dg, T, = {2}y ~ {Dr}™
ro: Lpyyu = LD7DS(Sm’ QD) —Lpp, (A(Tma OA)a 6)D)

La=Lp,,, + ALp(A(Tn,04),0p)
12: «914 — Adam(LA, l?”)
13: end while=o

—
—

of quality, stability, availability of data respective labels and best performance for the corre-
sponding regression task. First a baseline prediction model is trained on source via minimiza-
tion of Lp defined as mean absolute error to fit the parameters 0 p. The weights are frozen
after the training hence the high quality accuracy of a dedicated model is preserved. The
aligner is then pretrained in form of an autoencoder using target data for best possible ini-

tialization. Residual loss is selected for parameter updates 8 4 comparing input and recreated

117



signals as output via mean absolute error. After pretraining is finished the DBAM training
starts as explained in Algorithm 8.1. The iterative training in form of two player min-max

game between discriminator and aligner is done with a ratio of 20.

RESULTS AND DI1sCUSSION: PART 1

In this section, the training and benchmarking done in [69] is presented and a summary
of the use case results is given. First the necessity of the adaptation approach is declared
by checking distribution based statistics and metrics presented in Section METRICS AND
Lossks: First, the KL-divergence is presented in Table 8.1 between source and target for
train as well as test data. Inner-domain distance is significant smaller than outer domain dis-

tance for train as well as test set. For similarity comparison of input data respective sensor

KL-divergence of inner vs. outer domain distance

Source Target
Domain Train  Test ‘ Train Test
Trai - . 68. -
Source rain 23413690
Test || -22.4 - - 342.7
Target Train || 367.2 - 22.9 -
Test - 347.4 - -22.0

Table 8.1: KL-divergence of inner (train-test) versus outer (train-train, test - test) domain distance. The results are taken
from [69].

measurements taken from source and target domain, univariate KS-test is applied. KS-test is
used to confirm the null hypothesis meaning estimate the probability that two sample sets are
drawn from the same distribution. The results are very consistent through all 5 folds hence
average values over all folds as well as all features are reported. For inner domain feature com-
parison - train versus test of the same domain - a very high p value with 57 percent for source
and 64 percent for target as well as a very low ks score with o.051 for source and o.049 for
target is presented. For outer domain feature comparison of source and target domain for
both train and test data, a very low p value with 9.8 percent for train and 12.8 percent for
test and a very high ks score with o.51 for train and test is registered. Hence the null hypoth-
esis is not rejected for inner domain comparison of train and test data in all 5 cases, but the
null hypothesis for comparison of train respective test data of the two different domains is
always rejected. For visual comparison based on KL-divergence a T-SNE plot before (a) and

after (b) the alignment is created. As stated in [69] and as it can be seen in Figure 8.4, a clear

118



10

-10

-15

Figure 8.4: T-SNE visualization before and after alignment with DBAM [69]. Graphical t-SNE representation from [69] of
source and target domain before (see (a)) and after (see (b)) the alignment via DBAM. The source is colored in blue and
contains data from the reference chamber, the target is colored red and contains data from the second chamber. The
axes are dimensionless. The effect of the adaptation of the input features after DBAM is applied during training. The
adaptation brings the distributions of the two domains closer.

correlation between domain separation and domain overlap is visible before and after the
alignment.

Having confirmed a significant difference in input between source and target equipment
data, we compare generalization and scaling capacities of VM models presented in literature.

Following two learning strategies as presented in [69]:

(i) trainand testeach model on source domain and directly apply this model on the target
domain;

(ii) freeze the prediction models (in case of neural network based architectures), apply the
DBAM method and train the aligner with data from target (aligner input) and source
(aligner output) and then reuse the already existing model also on the aligned target
data.

A third strategy including training a model on both source and target to achieve a gener-
alized model is omitted in favor of showcasing the transfer power of a dedicated model with
very high accuracy needed for productive deployment. The focus is to study the behavior of
models when context shift occurs and possible solutions for such a scenario.

Table 8.2 taken from [69] shows average results for all models when used on the source
test set. Table 8.3 taken from [69] shows average results for all models when used on the
target test set. While RF is the most robust model, none of the benchmark model shows

acceptable results when applied directly to the target data hence no benchmark is suitable

119



Source test score average over sfold cross validation
X: Feature data

X: Time-series data

| RR Laso RF ANN DBAM | FL 1DCNN DBAM
MAE || 0.06 0.06 o0.07 0.06 0.06 0.07 0.07 0.07
ME || 0.30 0.29 o0.34 0.32 0.32 0.33 0.37 0.37
Rz 0.88 0.88 085 0.87 0.87 0.83 0.83 0.83
EV 087 0.88 0.85 0.387 0.87 0.83 0.84 0.84

Table 8.2: Source test score average over 5fold cross validation. Regression models are trained only on source data, ANN
and 1DCNN show the scores where no additional adaptation is applied. DBAM uses the already trained ANN and 1DCNN
predictors with fixed weights as well as labeled target training data during training.

Target test score average over sfold cross validation
X: Feature data X: Time-series data

| RR  Laso RF ANN DBAM | FL 1DCNN DBAM
MAE 1.31 0.48 o0.11 0.20 0.10 0.14 0.26 0.09
ME 2.01 1.27 0.45 0.58 0.37 0.42 0.58 0.34
Rz -0.55 -0.62 0.64 0.25 0.69 0.70 0.63 0.67
EV -48.77 -8.47 0.41 -0.54 0.57 0.24 -1.26 0.65

Table 8.3: Target test score average over 5fold cross validation. Regression models are trained only on source data, ANN
and 1DCNN show the scores where no additional adaptation is applied. DBAM uses the already trained ANN and 1DCNN
predictors with fixed weights as well as labeled target training data during training.

for direct transfer. Overall best results are achieved with IDCNN DBAM applied to time
series data respective sensor measurements. A summary including average prediction errors
is presented in Table 8.2 and Table 8.3. Detailed information about evaluation of prediction
scores of all 5 cross folds for (a) test source as well as (b) test target are summarized in Figure
8.5.

RF is the most robust VM benchmark model and therefore also presented in Figure 8.6.
Nevertheless the plots there show that RF is not able to achieve continuous predictions also
visible in the higher ME score presented in table 8.3 when compared to source.

Figure 8.6 from [69] shows true vs predicted values of [a] IDCNN of source and target
domain before alignment, [b] iIDCNN of source and target domain after alignment and
[c] source and target domain of best performing benchmark model (RF). The visualization
supports the results presented in Table 8.3: clear improvement for [b] compared to [a] and

overall good results for RF but with visible discontinuities confirmed by the higher ME score.

120



~#—RR =—#—Llasso —#—RF ANN =@—FL =—+—1DCNN

——RF ANN =¥—ANN DBAM —@—FL =—=—1DCNN === 1DCNN DBAM

0.05

FOLD

(b)

Figure 8.5: 5fold cross validation model error for prediction including DBAM after alignment[69]. 5fold cross validation
results taken from [69] to present inner model variance and overall stability of each model. Panel (a) shows test results
of the source domain and panel (b) the test results of the target domain (for DBAM after alignment). In panel [b] RR and
LASSO are omitted due to their poor performance.

I21



~— source train set
. « — targettrain set
. ’
. source and target test set
. T eE

st
Ha

predicted values
4
Y

e
S

., e,
S |
0.0 0.2

0.8 1.0

true values

()

~—— source train set 4
= target train set

source and target test set

858

predicted values

true values

(b)

—— source train set

—— target train set
source and target test set
e

predicted values
e
3

<
ks

“0.0 0.2 04 06 0.8 10
true values

()

Figure 8.6: True vs. predicted scatter plot for DBAM before and after alignment and best benchmark [69]. Predicted
versus true labels from source and target domain of best performing benchmark model (based on MAE, RF, see panel (c))
and 1DCNN DBAM (example plot of one selected fold, see panel (a) - before alignment and panel (b) - after alignment).
All prediction plots are taken from [69]. The train source data is colored in blue, the target as well as the aligned target
data is colored in red and the test target is colored grey for both. The effect of the adaptation for the predicted values in
the target domain is visible comparing (a) and (b). The adaptation brings the distributions of the two domains closer and
improves predictions to a high degree. RF shows a comparable low MAE but a high ME.

I22



‘[69] wouy usyer si ydea3d ay] pad 1934e] pausije syl pue yoe|q 193.1e] ay3 ‘an|q payJew ulede S| 924N0s 3y | ‘S pue T JoSuas J0) dals ulead e uoy Ajuo 1ng
HIYs Jes|d ‘g pue g Josuss J0J PIYS [eJL1ISA JB|D B 31| JYSIW SIBIIBAIUN JO S93.33P JUSJSHIP YIM Juswusije Sy3 Jo)e pue a104aq pue 393.1e3 pue 924n0s L30oq JO sjuswainsesw
JOSU3S MelJ 9 Jo uonejuasaidal [ealydel ‘[49] Juswusije ay) J91e pue 210j2q 1954e] pue 324N0S Y10q JO SJUSWISINSEIW J0SUIS MEJ § Y}IM uoljezifensiA Jauslfy :/'g ainSi4

aw awn awn
0001 008 009 oor ooz 0 00 000T ooe 009 Lile 0oz i) o0 0001 oog 009 0ot ooz i) 0o
r e
0 z'0
k- i1 b1
= = =
b ] %
1 ¥0 5 ¥o 5
-3 -3 L
“w %] w
[ 1] m
Z 90 @ 90 7
g 8 2
o w IS
80 BD
o1 0T
i awn awn
0001 008 009 oo 0oz 0 000T oo8 009 0ot 0oz 0 0001 Qo8 009 oor ooz a
00 00 +0'0
0 0 0
- - -
= - =
- - -
v0 5 t0 5 0 5
-3 L3 L3
w w w
[ 1] 1]
90 3 an m 90 3
o o
= 2 =
w L] -
80 80 B'O
paubie ulewop j26ie] ——
uewop jabie] —

UIBLIOP 22UN0S —— 01 ot 0T

123



A visualization of the aligner output is presented in Figure 8.7. The aligner set up enables
interpretability as well as a comparison between source and aligned target sensor measure-
ments. The presented sensors are taken from [69] and are selected to showcase different

kinds of mismatch or shifts that occur naturally in the data.

8.3.2 EXPERIMENTAL DESIGN: PART 2

Part 2 enriches the published work [69] by considering more time series suitable deep learn-
ing architectures for the VM use case for the plasma etching process. Itapplies LSTM, TCN,
1DCNN and combinations of those - all prove to be successtul based on published literature
- to the different DBAM parts. Therefore, data including preprocessing, the explanations

about Metrics and Losses as well as the Adversarial Training are identical to Part 1.

BENCHMARK MODELS

The benchmarking starts with the best configurations of the first part phase 2, hence with
DBAM using iDCNN architecture. Each part of DBAM is successively changed, trained

and evaluate using time series suitable DL architecture.

First the predictor architecture is studied. Two different configurations are examined us-
ing TCN architecture. For a description of TCN see Chapter 3. The first configuration
uses the canonical architecture and consists only of TCN layers. The second configuration
is inspired by Thill et al. [202] and used TCN layers to extract latent features followed by
1DCNN layers for further dimension reduction. The following parameter search space is
defined and hyperparameter tuning using grid search is applied to determine the final archi-

tecture:

* Activation function: ReLU, Leaky ReLU;

* Number of TCN layers: 1, 2;

* Number of dilated convolution blocks: 1, 2, 4;
* Number of filters: 16, 32, 64, 128;

* Kernel size: 3, 15, 50;

* Dilated convolution depth: 4, 6.

124



For the LSTM based predictor architecture considers 3 different configurations inspired
by Zhangetal. [235] and by Mutegeki and Han [150]. For a description of LSTM see Chap-
ter 3. The first configuration uses purely LSTM layers to create the prediction model. The
second configuration uses first stacked LSTM layers to create time sequences of features, fol-
lowed by iDCNN layers for dimension reduction. The final two layers are fully connected
dense layers. The third configuration uses first IDCNN layers for feature extraction and di-
mension reduction, model lightening and simplification, followed by LSTM layers to extract

time dependencies. The hyperparameter search space is defined as:

* Number of LSTM layers: 1, 2, 3;
* Number of units per layer: 25, 50, 100;

* Dropout rate: 0, 0.1, 0.25.

Again, hyperparameter tuning using grid search is applied to determine the final architec-

ture.

Next, domain adaptation using DBAM is checked under consideration of difterent DL
time series suitable architectures. The starting point is the IDCNN DBAM architecture
discussed in the first phase part 2. The following step-by-step approach is applied:

1. The predictor architecture is changed by testing the above selected TCN and LSTM
predictor models. The adversarial elements are kept unchanged. The performance
is analyzed and the best performing predictor model is used for further architecture
evaluation with changed aligner and discriminator architectures;

2. thealigner architecture is changed and tested using LSTM and TCN architecture. For
better initialization a warm-up training of the aligner is done identical to the pretrain-
ing described for the IDCNN benchmark and as recommended in [69].

3. Based on the previous performance result, alternative architectures using TCN and
LSTM are discussed for the discriminator model within DBAM.

The following aligner architecture are studied: The following parameter search space is
defined for TCN aligner again based on [202] and hyperparameter tuning using grid search

is applied to determine the final architecture:

* Activation function: ReL.U;

125



* Number of TCN layers: 1, 2;

* Number of dilated convolution blocks: 1, 2, 4;

* Number of filters: 8, 16, 32;

* Kernel size: 15, 50;

* Dilated convolution depth: 4, 6.

* Type of compression: Average pooling, IDCNN pooling.

A series of TCN layers are used to extract features that subsequently are compressed, de-
compressed and finally passed through another series of TCN layers to reconstruct the sig-
nals. The first stack of TCN layers uses causal convolution while the second stack uses valid
padding. After upsampling with an upsampling layer of 16, TCN layers for the reconstruc-
tion uses a dilated convolution depth that is inverted.

The LSTM aligner follows the recommendations by Sagheer and Kotb [171] and Li et al.
[127]. LSTM layers are stacked together to produce the features. They are compressed, de-

compressed and finally used to reconstruct the original signals with a new series of LSTM

layers. The following parameter search space is tested for the LSTM aligner architecture:
1 Number of LSTM layers: 1, 2;
2 Number of units: 25, 50;
3 Dropout rate: 0, 0.1, 0.25;
4 Type of compression: Average pooling, IDCNN pooling.

As for the TCN aligner, the last parameter owns 16 as the compression factor. Instead of

an upsampling layer, features are repeated NV times to restore the original dimension.

Based on the results of the aligner study, TCN discriminator is skipped and only one
LSTM based discriminator is tested under consideration of training time, dimensionality,
computational complexity and literature recommendations. Hence, the LSTM discrimina-
tor uses both, LSTM as well as IDCNN layers.

Further test are done for the adversarial training approach, hence on the training ratio and

the adversarial loss weights:

126



* Adversarial loss weight (a): chosen from the set {0.1,0.25,0.5,1, 5};

* Discriminator training extra steps: chosen from the set {5, 10, 20}.

MOoODELS AND HYPERPARAMETERS

Hyperparameter tuning is done on a validation set. s fold cross validation is finally applied

using the same data split as before. The following architectures are used for prediction:

* The TCN predictor model consists of one TCN layer with 1 dilated convolution
block, 64 filters, kernel size 50 and dilated convolution depth 6; one iIDCNN layer
with kernel size and stride of 5 reducing by 5 the time dimension; a fully connected
layer with 16 units applied to the flattened version using a flattening layer of the fea-
tures extracted previously; finally an output layer with 1 fully connected unit, the
1DCNN layer and the fully connected layer have LeakyReLU activation function,
the final output activation is linear. The used hyperparameter are marked in the sec-
tion above. Other hyperparameters are selected based on recommendations by Cao
etal. [24].

* The LSTM predictor model has one iIDCNN layer with kernel size and stride of 5
reducing by 5 the time dimension; one LSTM layer with 50 units per layer and o
dropout rate; one fully connected layer with 16 units applied after a flattening layer
and an output layer with 1 fully connected unit. The tIDCNN layer and the fully con-
nected layer have LeakyReLU activation function, the dense output layer has a linear
outputactivation function. Other hyperparameter are taken from [Reimers and Gurevych].
The selected hyperparameter are marked in the section above.

AllDBAM models are trained using Algorithm 4.1 presented in Chapter 4. The predictor
models are reused and trained weights are frozen. For the adversarial training using DBAM

the following training parameters are kept fixed:

* Available data: same data used with 32 as batch size;
* Training epochs and early stopping criterion: fixed at 300 without early stopping;
* Optimizer: Adam;

* Learning rates and their schedule: fixed for the aligner at 0.00001 and the discrimi-
nator at 0.0001, without decreasing during training;

127



* gradient penalty regularization by [78]: with a loss weight fixed to 10.

For the aligner and discriminator DBAM parts the following architectures are used:

* The TCN aligner structure takes inspiration from [202]. None of the tested hyper-
parameter settings give acceptable performance results since too much noise is intro-
duced and reconstructed signals are not identifiable.

* The LSTM aligner consists of one LSTM layer with 50 units and no dropout; one
average pooling layer with 16 as compression factor; one repeat layer of 16 to recon-
struct the length of the signal; finally one LSTM layer with 33 units and no dropout
to reconstruct the signal.

* The LSTM discriminator has one iIDCNN layer with 50 filters, kernel size 5 and
stride 5; one IDCNN layer with 50 filters, kernel size 3 and stride 3; one LSTM layer
with 16 units and no dropout; a fully connected layer with 512 units applied to the
flattened version of the features using a flattening layer; a series of fully connected layer
with 256, 128, 64, 32 units respectively; one output layer with 1 fully connected unit
with linear activation function. 1IDCNN and the fully connected layers use Leaky
ReLU as activation function.

RESULTS AND DiscuUssioN: PART 2

First the evaluation of the predictor models is presented. The hyperparameter tuning is done
on a first division of the data using a validation set. The presented results are averages over

all 5 folds. The results for the TCN based predictor are given in Table 8.4. The results for

Evaluation of TCN predictor for VM
| MAE | ME | EV | Rz
Source Validation || 0.0531 | 0.185 - -
Source Test 0.0560 | 0.164 | 0.895 | 0.893
Target Test 0.129 | 0.357 | 0.720 | 0.377

Table 8.4: TCN predictor: VM performance evaluation. Source and target test score average over 5fold cross validation.
Regression models are trained only on source data.

the LSTM based predictor are given in Table 8.5.

128



Evaluation of LSTM predictor for VM
| MAE | ME | EV | Ra

Source Validation || 0.0535 | 0.177 - -
Source Test 0.0624 | 0.165 | 0.900 o.
Target Test 0.141 | 0.338 | 0.689 | 0.302

Table 8.5: LSTM predictor: VM performance evaluation. Source and target test score average over 5fold cross validation.

Regression models are trained only on source data.

08

predicted values
14
o

e
=

—— source train set
—— target train set
source and target test set

R e

true values

(a)

predicted values
e
>

)
Iy

—— source train set
—— target train set
source and target test set

o te TR,

0.8

true values

(b)

Figure 8.8: True vs. predicted scatter plot for TCN and LSTM predictor. Predicted versus true labels from source and
target domain of TCN and LSTM predictor. The train source data is colored in blue, the target is colored in red and the
test target is colored grey for both. A better generalization capability is visible for both.

The results of both TCN and LSTM predictor show improved results in regards to the

source accuracy but also to the generalization capabilities towards the target accuracy. A scat-

ter plot of predicted versus true labels from source and target domain of TCN and LSTM

129



predictor are shown in Figure 8.8. The higher complexity of the models leads to better re-
sults on the dedicated task as well as the transfer task under a stable training. Thanks to the
1dCNN plus LSTM architecture set up, the LSTM predictor model size is kept small and
problems with the limited receptive field are avoided. The same goes for the TCN model.

Next, the DBAM results are presented and the architectural changes are progressively an-
alyzed. The first check includes changing the predictor model architectures while keeping
the aligner and discriminator part unchanged. First, the TCN predictor model is used and
DBAM is trained using ov = 0.1 after parameter optimization and a training ratio of 5. Then
the LSTM predictor model is used and DBAM training is done using v = 0.25 and same
training ratio. The results for both TCN and LSTM predictor for source and target test data
after DBAM alignment is presented in Table 8.6. Both, TCN as well as LSTM predictors

DBAM Alignment with TCN and LSTM predictor for VM

| MAE | ME | EV | Rz
TCN predictor || 0.0881 | 0.387 | 0.687 0.646
LSTM predictor || 0.0822 | 0.320 | 0.713 0.707

Table 8.6: DBAM Alignment with TCN and LSTM predictor: VM performance evaluation. Target test score average over
5fold cross validation. Prediction/regression models are trained only on source data. DBAM is used to align the target
data and the performance of the dedicated model is checked on the mapped target data.

also improve the alignment performance of DBAM. A scatter plot of predicted versus true
labels from source and target domain of TCN and LSTM predictor after alignment with
DBAM are shown in Figure 8.9. The LSTM predictor shows best performance compared
to IDCNN and TCN for both the regression task itself as well as the DBAM alignment. For
visual comparison based on KL-divergence, a T-SNE plot before (a) and after (b) the align-
ment is created. It can be seen in Figure 8.10, a clear correlation between domain separation

and domain overlap is visible before and after the alignment.

The second check includes changing the aligner model architectures while selecting the
corresponding predictor model and keeping the discriminator part unchanged. The TCN
aligner (and all tested variations in the parameter search space) introduces noise to the recon-
structed signals, hence make it not suitable for the DBAM model that is no longer able to
rely on its functionality to recreate therefore visualize and interpret the aligned signals. Exam-

ples of the noisy signals are presented in Figure 8.11. It is obvious that none of the possible

130



— source train set

— target train set

source and target test set
20 a0

08

predicted values
o
o

)
=

0.2

true values

(a)

—— source train set
—— target train set
source and target test set

predicted values

true values

(b)

Figure 8.9: True vs. predicted scatter plot for TCN and LSTM predictor in DBAM. Predicted versus true labels from source
and target domain of (a) TCN and (b) LSTM predictor after alignment with DBAM. The train source data is colored in blue,
the aligned target is colored in red and the test target is colored grey for both. A significant alignment and improved

prediction accuracy is visible for the aligned target domain.

TCN aligners can improve previously achieved alignment results, hence further evaluation

is skipped.

The LSTM aligner is trained using & = 0.25 and a training ratio of 20. The performance
results are given in Table 8.7 (compared to the LSTM predictor plus IDCNN aligner). The
results are comparable but slightly lower in accuracy. A visualization of the aligned signals is
given in Figure 8.12. The LSTM aligned signals are more regular and smooth thatleads to an
overall good fit except for the peaks where the recreated signals are smoothed compared to the
original ones. The LSTM aligner weights are kept frozen and due to comparable prediction
accuracy using LSTM aligner, no significant changes in the prediction plots are visible in

Figure 8.13.

131



10
o &
-10
-20
-20

Figure 8.10: T-SNE visualization before and after alignment with DBAM using LSTM predictor Graphical t-SNE represen-
tation of source and target domain before (see (a)) and after (see (b)) the alignment via DBAM using a LSTM predictor
model. The source is colored in blue and contains data from the reference chamber, the target is colored red and contains
data from the second chamber. The axes are dimensionless. The effect of the adaptation of the input features after
DBAM is applied during training. The adaptation brings the distributions of the two domains closer.

Feature 1 Feature 2
12 = original = original
— TCN 1.0{ — Tcn
1.0 —— benchmark = benchmark
0.8
0.8
0.6
0.6 04
0.4 0.2
0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 8.11: TCN aligner visualization of raw sensor measurements of both source and target after the alignment. Graph-
ical representation of 2 raw sensor measurements of both source and target after the alignment using TCN predictor
and TCN aligner model. The source is marked red, the aligned target blue and the aligned target via benchmark model is

marked green.

DBAM alignment with LSTM predictor and LSTM aligner

| MAE | ME | EV | Rz
LSTM predictor || 0.0822 | 0.320 | 0.713 0.707
LSTM aligner 0.0856 | 0.342 | 0.693 0.691

Table 8.7: DBAM Alignment with LSTM predictor and LSTM aligner: VM performance evaluation. Target test score
average over 5fold cross validation. Prediction/regression LSTM based model is trained only on source data. DBAM
using LSTM predictor and LSTM aligner is used to align the target data and the performance of the dedicated model is
checked on the mapped target data.

132



Feature 1

Feature 2
1.0 = original -
— ISTM 0'8 — original
—— benchmark — L™
—— benchmark
0.8
0.6
0.6
0.4
0.4
‘ , ’ . i . 0.2
O 200 400 600 800 1000 0 200 400 600 800 1000

Figure 8.12: LSTM aligner visualization of raw sensor measurements of both source and target after the alignment. Graph-
ical representation of 2 raw sensor measurements of both source and target after the alignment using LSTM predictor
and LSTM aligner model. The source is marked red, the aligned target blue and the aligned target via benchmark model
is marked green.

—— source train set
— target train set

source and target test set
. g " 'y - ., -

predicted values

true values

Figure 8.13: True vs. predicted scatter plot for LSTM predictor and LSTM aligner in DBAM. Predicted versus true labels
from source and target domain of LSTM predictor after alignment with DBAM including LSTM alinger model. The train
source data is colored in blue, the aligned target is colored in red and the test target is colored grey for both. A significant
alignment and good prediction accuracy is visible for the aligned target domain.

Last check is the LSTM discriminator in the DBAM model. Again « = 0.25 and a
training ratio of s is chosen. The performance results are given in Table 8.8. The IDCNN
benchmark is improved again, but DBAM using LSTM predictor plus iIDCNN aligner and

discriminator performs the best.

Overall, changing the predictor leads to the biggest improvement related to generaliza-
tion of the predictor model itself as well as the transfer capabilities of DBAM. Since some

architecture set ups have a larger dimensionality and computational complexity, it can be rec-

133



DBAM alignment with LSTM based DBAM
| MAE | ME | EV | Rz
LSTM predictor 0.0822 | 0.320 | 0.713 | 0.707
LSTM aligner 0.0856 | 0.342 | 0.693 | 0.691
LSTM discriminator || 0.0917 | 0.324 | 0.676 | 0.663

Table 8.8: DBAM alignment with LSTM predictor, LSTM aligner and LSTM discriminator: VM performance evaluation. Tar-
get test score average over 5fold cross validation. Prediction/regression LSTM based model is trained only on source data.
DBAM using LSTM predictor, LSTM aligner and LSTM discriminator is used to align the target data and the performance
of the dedicated model is checked on the mapped target data.

ommended to use the most simple architecture when facing small number of data samples
(if comparable performance results can be achieved). Nevertheless, the analysis presented
here showcase the power of LSTM for time series based regression tasks and confirms the

promising results presented in literature.

8.4 VIRTUALMETROLOGY (VM)FOR EQUIPMENT WITH HETEROGENEOUS DATA REP-

RESENTATION

One of the biggest advantages of DBAM and its extended version DBACS is that it is appli-
cable to data sets with different input representations. Research on multi-view learning by
Xu et al. [222] deals with a very similar problem by comparing and analysing multiple rep-
resentations called views of a problem and its collected input data. This is rarely discussed
in semiconductor related literature so far but can happen in production when an already es-
tablished process is transferred to another nonidentical equipment due to for example avail-
ability or new equipment generations. Here, data from an etching process is presented that
runs on two different equipment types. Corresponding examples of both equipment types
are shown in Figure 8.1. The process was first set up on on the equipment presented in (a)
and then transferred to (b) by a domain expert in order to have identical processes including
identical process results. Hence it can be assumed that the underlying physical process and

therewith the physical information in the data is identical.

DATA PREPARATION

The data comes from two different equipment types from the same vendor. The two equip-

ment types are presented in Figure 8.1. The data set is restricted to a specific etching recipe

134



that runs on both equipment. Metrology measurements are taken after the process indepen-
dently of the process equipment. A time period of tree years is considered. The equipment
type 1 in Figure 8.1 a) is selected as source since it consists most of the data, around 10 coo
samples, the newer equipment type presented in Figure 8.1 b) is defined as the target having
almost 6000 data samples. Only raw sensor measurements in form of time series data that
is measured with preinstalled physical sensors on each equipment is considered and prepro-

cessed with the following steps:

* removal of constant features;

* removal of features that show small fluctuation that can be detect as noise (variations
smaller than 0.01) and a constant behavior underneath the noise;

* removal of samples showing label outliers based on IQR;

* removal of samples where the length of the time series lies below or above 25 percent
respective 75 percent quantile of time series length;

* equal-distributed upsampling of timestamps and feature values to generate time series

with equal length.

Since the available sensors are different - considering number of available sensors as well as
taken measurement - the two equipment are preprocessed separately. 32 features for equip-
ment type I respective 49 for equipment type 2 are finally selected and used as input for the
VM modeling task. No significant label shift is detected within metrology measurements

from different equipment types as presented in Figure 8.14.

EXPERIMENTAL DESIGN

In the first part of the experiment we show the applicability of the DBACS model to a VM
use case involving the two different equipment types for source and target hence heteroge-

neous data representations - different number of features as well as feature content.

In the second part of the experiment we test covariance based - meaning linear respective
kernel based - approaches in order to deal with heterogeneous input data inspired by [81],
[64] and [3]. The idea is to map both source and target via individual projections into a
common subspace in order to create feature representations that enable a common VM pre-

diction model. The following multi-step modeling approach is applied:

I35



Normalized metrology measurements for both equipment types

0.8

o L
11

0.0

0.4

equipment type 1 - train data equipment type 1 - test data equipment type 2 - train data equipment type 2 - test data

Figure 8.14: Boxplot graphs of normalized metrology/inline measurements from both equipment types considered in the
analysis.

1. generate common (latent) feature representation;

2. compare feature as well as domain similarity and inner versus outer domain difference
after the feature mapping;

3. optional refinement by applying additional domain adaptation methods on latent fea-
ture space;

4. train prediction model on aligned features.

In general, identical distributions of the latent source and target feature spaces cannot be
directly expected even if the applied method explicitly promotes an in-between relationship
of the representations. The optional application of additional domain adaptation methods
means to first test the similarity of the data distributions and depending on the results either
directly train one common model - if no significant difference can be detected anymore - or
discuss application of known transfer learning and domain adaptation approaches to further

improve the alignment before training the final prediction model.

BENCHMARK MODELS

DBACS architecture choice is made based on the findings in Section 8.3 that compares dif-
ferent prediction methods for the homogeneous VM task. Hence, IDCNN as simple but
good performing architecture is selected and used for all involved model parts: the predic-

tion model trained on time series data from equipment type 1 selected as source domain, the

136



aligner parts that are trained with data from both equipment types with the goal to create a
bijective mapping between the two domains and discriminator parts trained as domain clas-

sifiers. For more details on the IDCNN parts we refer to Chapter 3.1.

For the linear respective kernel based methods to treat heterogeneous data distributions
with the same underlying physical information, the multi-step approach described above is

followed and the following methods are compared against each other:

(A.) find best matching feature pairs by correlating analysis using Pearson’s r;

(B.) create common (latent) input features space by applying Principle Component Anal-
ysis (PCA) to both domains and select same number of principle components;

(C.) create common (latent) input features space by applying Canonical Correlation Anal-
ysis (CCA) respective Kernel Canonical Correlation Analysis (KCCA) to both do-

mains to generate highly correlated respective related feature representation.

For an introduction of applied benchmark models we refer to Chapter 6.

First (A.) correlation analysis is applied to match sensors from two equipment types and
select best matching pairs. The distribution similarity of matched features is tested. This
method is best suited if similarity between equipment types hence installed sensors and sen-
sor readings are expected e.g. same vendor.

If no identical sensors are expected, latent features are needed to create identical input
spaces that hold task relevant information while being equipment type hence domain invari-
ant. Secondly, (B.) PCA as linear approach is used and same number of latent features is
selected for both, covering high amount of variance hence relevant contribution for both
equipment types. PCA does not need labels hence is unsupervised. Soure and target do-
mains are treated completely separately and cross domain correlation or covariance are not
considered.

Inspired by research in the field of semantic representations respective kernel representa-
tions [81], (C.) Canonical Correlation Analysis (CCA) is applied. Its purpose is to analyze
the relationship between two sets of variables considering outer domain correlations while

PCA focus on relationship of variables within on set.

Selecting suitable domain adaptation approaches as benchmarks besides the DL based

ones is limited since the approach either needs to be a) suited for time series data or b) the

137



method needs to be unsupervised if there is the need to reshape time series data by concate-
nating and treat subsequent timestamps as separate samples. Hence for the optional refine-
ment by applying additional domain adaptation methods and for simplicity, the following

approach known from domain adaptation related publications is applied:

* Correlation Alignment (CORAL)

For an introduction and further details see Chapter 6. For PCA as well as CCA, a test
for distribution similarity is conducted as well as relationship and distance of latent feature
respective inner and outer domain distance are tested. Inspired by subspace alignment SA

[64], in a second step we combine PCA as well as CCA with COR AL and repeat evaluation.

METRICS AND LOSSES

To measure the success of the alignment besides overall performance of different models, two
groups of losses are reused as already introduced for the first VM use case in Section 8.3.

For Distribution-based loss we apply both (1) T-distributed Stochastic Neighbor Em-
bedding (t-SNE) - a machine learning algorithm developed for data visualization and espe-
cially suitable if the data contains nonlinear dependencies [206] - as well as (2) Kullback-
Leibler (KL) divergence - used in t-SNE that is based on gradient-descent minimization of
the (KL) divergence. For the purpose of comparing inner domain distance - the distance
between for example train and test set of one domain - and inter respective outer domain
distance - the divergence between data selected from source and data selected from target
domain - we use Frechet inception distance (FID). The Kolmogorov—Smirnov (KS) test is
used for a univariate latent feature comparison and compute the average over all projected
univariate test statistics. Here, we test a special kind of outer domain equality - meaning train
sample set vs test sample set of both latent feature spaces meaning mapped train respective
test sample set from source versus target.

For Performance-based loss and overall performance comparison, we apply a second time
mean absolute error (MAE), maximal residual error (ME), coefficient of determination also
called regression score function (R-square/R 2) and explained variance regression score (EV)

in case the mean error is not equal to 0. For a more detailed definition see Section 7.

For heterogeneous domain adaptation we additionally apply Structural Similarity Index

(SSIM). In order to apply SSIM, originally developed for image data, to time series data, its

138



dimension are expanded. Hence the last axis of the time series is multiplied and filled with
copies of the corresponding single value. The SSIM can be directly applied to the expanded

time series data.

MOoODELS AND HYPERPARAMETER

5 fold cross validation is applied, hence both data sets are split into 5 subsets each and using
4 merged sets as train and 1 as test set per fold. Architectures of all models stay fixed for all
5 folds. For selected benchmark models we use available python implementations. For the
correlation analysis we use the function implementation available in python module zumpy
[82] and for PCA and CCA we use existing function implementation in the python mod-
ule sczkit-learn [160]. More versions of CCA meaning KCCA and DCCA are implemented
in the python module muvlearn [161]. For CORAL we use the implementations from the
python module t7ansfertools [? ]. For further explanations concerning neural network archi-
tecture we refer to [74]. DBACS models are trained using the extended version of Algorithm
4.1 where for the Min-Max two player game all available aligner are updated together as well
asall available discriminators. For the neural network based models (including the prediction

model used in the benchmarking approaches) we use the following architectures:

* The 1DCNN predictor model consists of three convolutional layers with dimension
32, 16 and 8, kernel size 53,33 and 33, Leaky ReLU activation function and Batch
Normalization after each IDCNN layer. It is followed by one max pooling layer and
a flattening layer for reducing overall output dimension from 3 to 2. The last two
layers after the flattening has dimension 16 and 1 and the output activation function
is sigmoid. The 1DCNN is trained under usage of preprocessed sensor data from
equipment type 1 by minimization of MAE using Adam optimizer and learning rate

r = 0.00005.

* The domain discriminators both have the same architecture besides the respective in-
put shape: three convolutional layers of dimension 24, 16 and 8, kernel size 17, causal
padding and leaky ReLU activation function, max pooling of size 4 and 2 times 2.
Then we have one flattening layer and six dense layers size 512, 256, 128, 64, 32, 1
with Leaky ReLU activation and linear output function. Both aligner consist of 6
convolutional layers, first 5 followed by Leaky ReLU activation function, the final
output is kept linear.

* The aligner that maps target domain to source domain has filter size 48, 42, 36, 32, 32
and final filter size is set to number of features of the source domain. Kernel size is 37
four times, then 57 and 7. Upsampling with size 3 and 2 is done after 4th and sth layer

139



block. The aligner that maps source domain to target domain has filter size 32, 36, 42,
46, 48 and final filter size is set to number of features of the target domain. Kernel size
is 37 four times, then 57 and 7. Upsampling with size 3 and 2 is done after 4th and sth
layer block. For an improved initialization both aligners are pretrained: therefore we
select sample pairs from source and target based on closest label value. Hence we map
samples based on their label distance. Adam optimizer with SSIM as loss function is
used for pretraining. For training iDCNN-based DBACS the previously on source
trained IDCNN predictor is reused with fixed weights.

REsuLTs AND DiscussioN

First, the necessity of the adaptation approach from method as well as expert perspective is re-
captured. Therefore, it is stressed again that a direct comparison of features or distribution
before the alignment is not plausible due to different data representations. The different
number of available features do neither allow a direct transfer of a dedicated model nor the
usage of a commonly trained one. Having complete separate models would not only lead to
increased maintenance effort but also to limited possibilities to compare results and transfer
troubleshooting, correction of defects and hence process improvements. A comparison is

only possible on process result level but not on process monitoring level.

For the first part, the results for the heterogeneous DA done with DBACS are shown and

discussed. For visual comparison of the two domains based on KL-divergence we present T-

PN

—-20 0 20 40 -30 -20 -10 [ 10 20 30

(2) (b)

20

o

—20

Figure 8.15: T-SNE visualization before and after alignment with DBACS. Graphical t-SNE representation of source and
target domain in different stages of the alignment process: (a) shows features mapped by a randomly initialized aligner, (b)
after the pretraining of the aligner and (c) after DA with DBACS is done. The source is colored in blue and contains data
from equipment type 1, the target is colored red and contains data from the equipment type 2. The axes are dimensionless.
The effect of the adaptation of the input features after DBACS is applied during training. The adaptation brings the
distributions of the target domain closer and finally target overlaps source domain.

140



SNE plots in Figure 8.15. All plots are done using the aligner to map all features to the source
feature space, but in different stages of the alignment process: (a) shows features mapped by
a randomly initialized aligner, (b) after the pretraining of the aligner and (c) after the DA
with DBACS is done. An increasing correlation between domain separation and domain

overlap is visible.

First, lower and upper error bound are discussed and later (if possible) compared to the
error achieved by DBACS. The lower bound represents the error when using dedicated mod-
els individually trained and individually used for each equipment type. It is the best model
performance that can be expected hence the goal of a transfer learning approach is to come
as close as possible to this lower bound. Nevertheless, dedicated models have some disad-
vantages: 1. higher effort in maintaining multiple models including evaluation, analyzing
results, defining monitoring kpis, updating the models; 2. only applicable when enough
data and especially labels are available; 3. no direct comparison and knowledge transfer be-
tween equipment types and generated prediction models is possible. The upper bound is the
direct transfer of a trained model to unseen data coming from different equipment not used
for training. For heterogeneous data representation an upper bound cannot be directly com-
puted due to fixed model input shape. In the second part of this section alternative methods
to deal with heterogeneous input spaces are evaluated. Hence for now only lower bounds

are presented in Table 8.9.

Lower bounds for DA using dedicated ML algorithms

Source lower bound Target Lower bound
Train Test Train Test
MAE 0.08 0.09 0.10 0.13
ME 0.60 0.53 0.63 0.62
R2 0.82 0.75 0.66 0.50
EV 0.66 0.69 0.64 0.47

Table 8.9: Evaluation of dedicated ML algorithms for VM predictions. Models are trained only on source respective target
training data and afterwards evaluated with corresponding source respective target test data. All scores are mean values
for 5 fold CV. Based on the different input space dimensions and data representations, dedicated models cannot be directly
transferred.

Next we state generalization and scaling results of DBACS for VM prediction model
used on heterogeneous domains. Following the learning strategy presented in Section 8.3:

1. freeze the prediction model trained on source data, 2. pretrain the aligners on samples

141



paired based on closest labels, 3. apply the DBACS method and extended version of Algo-
rithmus 8.1 to train the aligners and discriminators. Finally the already existing prediction
model is reused for the aligned target data (target data gets mapped to source domain using
aligner F'). Table 8.10 shows the average 5 fold CV results for DBACS.

DBACS performance for source and aligned target

Source domain Target domain
Train Test Train Test
MAE 0.08 0.09 0.10 0.13
ME 0.60 0.53 0.59 0.61
R2 0.82 0.75 0.74 0.55
EV 0.66 0.69 0.63 0.47

Table 8.10: Source and aligned target data training and test scores average over 5 fold CV. VM prediction models are
trained only on source data and evaluated on test data. Target data is mapped to source domain using trained aligner F’
from DBACS and evaluated after the mapping using the VM prediction model trained on source.

The numbers given in Table 8.10 confirm the visual convergence seen in the t-SNE plot in
Figure 8.15. The target data is successfully mapped to the source space and the dedicated
source prediction model shows comparable errors for aligned target data. Detailed informa-
tion about mean absolute error (MAE) of VM prediction model for all 5 fold CV for predic-
tion of train and test source data as well as prediction of aligned train and test target data are
summarized in Figure 8.16. DBACS shows overall a very good stability and reproducibility.
Next, Figure 8.17 shows true vs predicted values of (a) target data mapped to source space
by a randomly initialized aligner, (b) target data mapped to source space by the aligner af-
ter the pretraining and (c) target data mapped to source space after the DA with DBACS is
done. Again, the visualization supports the results presented in Table 8.10: Enabling using
of dedicated source model to mapped target data with clear improvement for (c) compared
to (a) and (b). A visualization of both aligners output is presented in Figure 8.18. The cyclic
aligner set up enables a bijective mapping between both domains hence interpretability as
well as a comparison between source and aligned target sensor measurements as well as tar-

get and aligned source sensor measurements.

142



g |2 ni2d Target Test

0,10 0,09 | )
0,00 : 0,00 : (MAE)
0,13 e & 0UrCE Test (MAE)
0,11
.~ . 0 o,oe 0,09 =
e = e e g =~ = ge= Mlpned Target Train
(WAE)
0,09 0,08 0,09 0,08 0,08 s
Source Train (MAE)
1 2 3 4 5

CV folds

Figure 8.16: 5-fold cross validation model error for prediction including DBACS after alignment. 5fold cross validation
mean absolute error (MAE) to present inner model variance and overall stability of DBACS model for DA. Panel shows VM
prediction train and test results of the source domain and the VM prediction train and test results of the target domain

after alignment with DBACS.

143



10

. s —— source test set i
K aligned target test set |

R TIL Mg
.‘1 » g Cl

Pl > .;..?‘h‘

wst! -2, (L

*". e % °,
A

2 i-t;,&?:? o e
A & #ee

0.8

predicted values
e
o

S
kS

true values

()

Figure 8.17: True vs. predicted scatter plot for DBACS before and after alignment. Predicted versus true labels from
source and aligned target domain.(a) shows predictions of aligned target data after mapped to source space by a randomly
initialized aligner, (b) predictions of aligned target data mapped to source space after the pretraining of the aligner is done
and (c) predictions of aligned target data after DA training with DBACS is done. Only test data is presented as a matter of
form. The test source data is colored in blue, the the aligned target test data is colored in red. The effect of the adaptation
for the predicted values in the target domain is visible comparing (a),(b) and (c). The adaptation brings the distributions of
the two domains to a common representation space hence enabling high quality predictions for both domains.

144



'SaN|eA JUSWAINSEaW JOSUSS dy}
sIxe A ‘sjeusis J0suas ay3 Jo sduelsawly 3yl SMoYs SIXe X ay] °[|9M Se 3|qISIA Sl Juawusije poos v »de|q ul papold sjeusis Josuas 398.e3 |euiSLio Suipuodsaliod 03 31 sasedwod
pue an|q ui ujewop 3234e3 0} 324N0S WoJy sjeusis Josuas paddew pue ) Jaudje paulel} Woly SHNSAI SMOYS (q) "9SIOU [[ews dWOS apisaq 3|gISIA S| Juawusije poo3 v de|q ul
papo|d sjeudis Josuas 924nos |eui31I0 Sulpuodsa.iod 0} 3 saledwod pue pal Ul Ulewop 24n0s 03} }934e} wody s|eudis Josuas paddew pue ,J Jaugije paulel) 404 S}NSAI SMOYS
(e) -3ued saudije Sulpuodsaliod ayl Suisn Juswusije Sulipuodsaliod 3yl Jaye pue 240jaq sadAl Juswdinba Yylog JO SJUBWSINSESW JOSUSS Med € SaWL} OM] JO uolejuasaldal
[ed1ydess -juawusije Suipuodsaliod ay) e pue 310j3q sadA3 juswdinba yjoq Jo sjuswdINSESW JOSUS MEJ € SAWL Z JO suoljezijensia ©) pue g Jauslly 81’8 ainsi4

(q)

awn
0001 008 009 00t 00z
=
-
~
i
n
-3
S
3
g
3
c
™
80 80
paublje ulewop 83JN05s ——
ulewop 18biey —— 0T 01
(¥)
awn awn
00¢ 0 0001 008 009 oor 00z 0 . 0001 008 009 oo 1174 co.o
0o
=
~
v
[al
ro2
w
[
=
w
908
<
a
c
g0
paubie ulewop j@bie} —
ujeuwIop 83nos —— 01

145



To conclude the first part of the result section, we stress the fact that there exists multiple
sensors from both equipment types that show almost identical behavior. This is expected
since the equipment types come from the same vendor and are suitable for similar process
types, nevertheless it shows that the alignment works also without the usage of any expert
knowledge hence purely data driven. See Figure 8.19 for features showing very similar be-

havior. A detailed analysis of feature pairing follows below.

For the second part, first results for (A.) correlation analysis are presented including fea-
ture pairing and distribution comparison using FID. In order to speed up and reduce data
size we first compute over time average value for each sample and feature and use those as
stationary input for correlation analysis. Since this do not give any significant correlated fea-
tures we do not present any results here. Hence we keep the original data and just reshape
the 3 dimensional sample into a two dimensional one by concatenating and subsequent re-

shaping where each value at each time step as separate sample:
(samples, timesteps, features) — (samples X timesteps, features).

We only consider significant correlations with > 0.7, if a feature correlates over that thresh-
old with multiple other features from the other equipment, the feature pair with the highest
correlation value is chosen. Selected feature pairs and its average correlation value is given in

Table 8.11. Sensor pairs (10,4), (3,12) and (15,38) are presented in Figure 8.19.

Feature pairs and corresponding Pearson’s r

Source feature index | Target feature index | Pearson’s r

o o 0.97
3 12 0.78
5 22 0.72
7 6 0.79
10 4 0.89
11 3 0.73
Is 38 0.77
23 19 0.75
26 21 0.75



Table 8.11: Selected feature pairs with correlation scores averaged over 5 fold CV.

FID between features that are matched from source and target by correlation is tested and
compared to FID of train and test also with reduced features from only one domain. FID of
original versus aligned features created by DBACS is tested as well. Inner domain FID - mean-
ing FID between train and test set of one domain - is very close to 0 with 2e 6 for equipment
type 1 and 7e 1% for equipment type 2. Outer domain distance for paired features based on
correlation analysis is 0.25, in comparison to outer domain FID after DBACS alignment
with 0.01. It hints that DBACS with its complexity is superior towards correlation analy-
sis and that chosen subset of features do not contain all necessary information. To confirm,
we train the IDCNN prediction model again with reduced number of features based on
detected pairings of source and target inputs. The performance is presented in Table 8.12.
Using only a reduced number of features leads to overall lower accuracy and higher overall
error for dedicated models as well as a model trained on both domains - using a common
model is enabled by the feature pairing. Since overall MAE is significant higher for reduced
inputalso for complete supervised training on both domains, only limited improvement and

knowledge gain is expected by further modeling and analysis.

VM prediction model performance for paired features

Source domain Target domain
Train MAE | Test MAE || Train MAE | Test MAE
Train on source 0.15 0.16 0.52 0.52
Train on target 0.24 0.25 0.46 0.46
Train on both 0.15 0.16 0.15 0.16

Table 8.12: Results for VM prediction models that are trained with reduced number of features that are paired and selected
via correlation analysis.

Second, results for (B.) PCA analysis are presented. Principal components (PCs) are com-
puted for each equipment type separately and then compared. PCA expects a two dimen-
sional input. Again, the 3 dimensional input is reshaped into a two dimensional one by
treating each value at each time step as separate sample as done for the correlation analysis.
For each equipment type we select the first 10 PCs in order to cover around 95% variance
and to create same dimensional input space. For equipment type 1 we cover 97% of the
variance and for equipment type 2 we cover 94%. We test FID between PCs of equipment

type 1 (source) and equipment type 2 (target) and compare this to the FID between train

147



and test data from one equipment type only (source respective target only). Inner domain
FID - meaning FID between PCs of train and test set of one domain - is very close to 0 with
7e'% for equipment type 1 and 7e !¢ for equipment type 2. Outer domain distance for
features mapped onto the PCs is 0.03, that is slightly higher in comparison to outer domain
FID after extended DBAM alignment with 0.01 but significant lower compared to correla-
tion bases paired features with 0.25. We also do observe correlation between the first with
r1 = 0.68 and second PC with r, = 0.82 from source and target. Further PCs do not
show significant correlations. Again, we train the IDCNN prediction model with reduced
number of features based on PCA of source and target domain. In order to use time series
model we reshape the samples into its original form after PCA is applied. The performance

is presented in Table 8.13

VM prediction model performance for PCA based principle components

Source domain Target domain
Train MAE | Test MAE || Train MAE Test MAE
Train on source 0.09 0.09 0.32 0.33
Train on target 0.47 0.47 0.12 0.13
Train on both 0.10 0.14 0.09 0.14

Table 8.13: Results for VM prediction models that are trained with reduced number of latent features that are created via
PCA.

Using a reduced number of latent features leads to comparable high accuracy and small error
for the test sets when used for dedicated models and a slightly higher error for source as well
as target test set with one model trained on both domains - using a common model is again
enabled by the usage of same dimensional latent feature space. Nevertheless, a direct transfer
of a dedicated model is still not reccommendable, neither from source to target nor target to

source.

For creating PCs, only inner domain relations are considered so far. Ks test on PCs con-
firms existing differences since the average p value is almost 0 and the ks score is 0.17 in
average. Hence the null hypothesis is rejected and an optional DA on the PCs is applied.
As already discussed, electing suitable domain adaptation approaches as benchmarks besides
the DL based ones is limited. We first apply COR AL and optional TCA. TCA is a strong
but computationally expensive approach. Hence we can only select a small sample set (1%

of the original sample size) for training. We test for number of components set to 2,5 and 10

148



and test linear as well as radial basis functional (rbf) kernel. Nevertheless no sufficient adap-
tation results could be generated and we skip result presentation. The FID score for outer
domain distance after CORAL on the latent features generated by PCA is significant lower
than before with 0.0001 for train and 0.001 for test. The adapted samples are used to bring
it back in its original time series format. The back-shaped date is used to train a prediction

model with the previously selected IDCNN architecture.

VM prediction model performance for PCA plus domain adaptation

Source domain Target domain
Train MAE | Test MAE || Train MAE | Test MAE
PCA 0.10 0.14 0.09 0.14
PCA + CORAL 0.08 0.9 0.12 0.13

Table 8.14: Results for VM prediction models that are trained in a multi step approach. 1. reshape data by concatenating
into 2 dimensions, 2. create reduced number of latent features via PCA, 3. optional apply CORAL and TCA for domain
adaptation 3. reshape back into original time series format, 4. train 1DCNN VM prediction model with aligned features.
All models are trained on aligned labeled data from both source and target.

Finally, the results for (C.) (K)CCA analysis are presented. With PCA only a limited
amount of significant correlations between principle components from source and target
can be observed. CCA takes explicit care of this relationship when computing canonical
components. Due to computational complexity leading to memory issues, KCCA can only
be applied using 1% of available samples. Unfortunately no high enough accuracy and us-
able results could be achieved with this very limited amount of data. Hence, only the results
for CCA based on linear transformations and correlations are presented in the following.

CCA expects a two dimensional input. Again, the original data is kept and reshaped from
the 3 dimensional sample into a two dimensional one by treating each value at each time
step as separate sample as we do for the correlation analysis. First, linear transformation with
CCA isapplied. For each equipment type, 27 canonical components (CCs) are selected since
it shows the most stable results. FID is tested between CCs of equipment type 1 (source) and
equipment type 2 (target) and the resuts are compare to the FID between train and test data
from one equipment type only (source respective target only). Inner domain FID - meaning
FID between CCs of train and test set of one domain - is very close to 0 with 5~ for equip-
ment type 1 and 2¢~? for equipment type 2. Outer domain distance for features mapped
onto the CCs is very close to 0 with le™?, that is significant lower in comparison to outer
domain FID after DBACS alignment, after PCA as well as significant lower compared to

correlation bases paired features. We also do observe correlation between the first five CCs

149



higher than r = 0.5. First ten CCs show correlations higher than » = 0.15. Again, the
1DCNN prediction model is trained with 27 mapped features based on CCA of source and
target domain. In order to use time series model the samples are shaped back into its original

form after CCA is applied. The performance is presented in Table 8.15

VM prediction model performance for CCA based canonical components

Source domain Target domain
Train MAE | Test MAE || Train MAE Test MAE
Train on source 0.12 0.13 0.29 0.29
Train on target 0.29 0.29 0.10 0.14
Train on both 0.10 0.13 0.12 0.14

Table 8.15: Results for VM prediction models that are trained with latent features that are created via CCA.

Using a CCA based latent features show very similar behavior compared to PCA based la-
tent features. It leads to comparable high accuracy and small error for the test sets when
used for dedicated models and a slightly higher error for source as well as target test set with
one model trained on both domains - using a common model is again enabled by the usage
of same dimensional latent feature space. Nevertheless, a direct transfer of a dedicated model

is still not recommendable, neither from source to target nor target to source.

The cross-modal retrieval method is tested as presented in [81] where the inner product
of the latent features respective CCs are used for so called mate-based retrieval meaning find-
ing the sample pairs with the highest inner product and use the labels of the corresponding
paired labeled sample for solving the task. In the paper, cross-modal retrieval is used for classi-
fication, here it is transformed for the VM regression task at hand. Selecting only one sample
based on maximized inner product leads to errors with MAE of 0.24 comparable to what
is achieved using correlation analysis. Selecting 1o respective 30 closest samples based on in-
ner product and using the average label value both gives MAE of 0.19. This goes in hand
with the paper results mentioning that this approach is most successful for tasks where the
relevant information can be stored in a low number of CCs.

Ks test on CCs confirms existing differences since the average p value is almost 0 and the
ks score is 0.07 in average. Hence the null hypothesis is rejected and an optional DA on the
CCs is applied. Again we apply CORAL and skip TCA due to computational limitations.
The FID score for outer domain distance after COR AL on the latent features generated by
CCA stays very close to 0. We use the adapted samples to bring back in its original time series

150



format and use them to train again a prediction model with the previously selected IDCNN

architecture.

VM prediction model performance for CCA plus domain adaptation

Source domain Target domain
Train MAE | Test MAE || Train MAE | Test MAE
CCA 0.10 0.13 0.12 0.14
CCA + CORAL 0.07 0.8 0.13 0.13

Table 8.16: Results for VM prediction models that are trained in a multi step approach. 1. reshape data by concatenating
into 2 dimensions, 2. create reduced number of latent features via CCA, 3. optional apply CORAL and TCA for domain
adaptation 3. reshape back into original time series format, 4. train 1DCNN VM prediction model with aligned features.
All models are trained on aligned labeled data from both source and target.

Optional DA on top shows slightly improved results if model is trained on data from both
domains (see Figure 8.16) but does not provide usable features for transfer of a dedicated

model since accuracy does not significantly improve for the domain not used for training.

8.5 ENABLING EQUIPMENT MATCHING

Having with DBACS a methodology that allows parallel training and transfer in both di-
rections - source to target but also target to source - mis- or abnormal behavior detected for
aligned data can not only be compared to abnormal as well as normal data from source but
also can be mapped back into its original space and analyzed there. These kind of comparison
enables equipment matching for nonidentical equipment as it was described above namely
finding and eliminating setting and performance differences for increased control based on
statistical methods applied on sensor data. First, source signals are compared with its cycled
signals on the signal shape itself as well target signals with its cycled target signals. Examples

from both are presented in Figure 8.20.

I51



1.0

physical sensor value

200 400 600 800 1000

physical sensor value

1.0

0.8

0.6

—— original domain (source resp. target)
—— target domain aligned
—— source domain aligned

200

"o 200 400 600 800 1000

0.2

0 200 400 600 800 1000
time time

1.0

0.8
L8]
=
o
>
5 0.6 AN ‘
i i
[ W,
® 0.4
@
>
=
o

200

-..__JI'

Figure 8.19: Aligner F' and (G visualizations of 3 times 2 paired raw sensor measurements of both equipment types
before and after the corresponding alignment. Graphical representation of 3 times 2 raw sensor measurements of both

equipment types before and after the corresponding alignment using the corresponding aligner part. Results for trained

aligner I’ and mapped sensor signals from target to source domain are marked in red and corresponding original source

sensor signals plotted in black (right column). Results from trained aligner G' and mapped sensor signals from source to

target domain are marked in blue and corresponding original target sensor signals are also plotted in black (left column).

A good alignment is visible as well and visual inspection shows identical sensors exist on both equipment types.

152



*SIN|BA JUSWSINSEIW JOSUSS SU3 SIXe A ‘S|eudis Josuas ay}
Jo sdwejsawy 9y} SMOYS SIXe X 3Y ] ‘||9M Se 3|qIsIA S| Juawusije poo8 v de|q ul papold sjeusis Josuas 398.e} euilio s31 03 pasedwod pue anjq ul papold aJe sjeusis pajoAd
9yl -ulewop }38.e} 0] }oeq 324n0s 0} 398J4e1 WoJ) sjeusdis 1984e3 pa|2Ad pue sjeusis 1984e) 10) S}NS SMOYS (q) "9SIOU [[BWS SWOS dpIsaq S[qISIA S| Juswusije poos v “»jde|q
ul papo|d sjeusdis J0suas 924n0s |eui3io S31 03 pajedwod pue pas ul papo|d ale sjeudis pajdAd 3y ‘ulewop 324n0S 0} 39343 03 324N0S WOJ) S|eudis 921N0s pPajIAd pue sjeusis
924N0S 10J S3|nsaJ smoys (e) “Suiddew aAI3(iq s3I Se ||9M Se W0y [eulS1io s3I ul sadAy Juawdinba y1od JO SJUSWINSEIW J0SUSS MEJ € SaWl Z JO uorejussaldal [edlydel

‘Suiddew aARD3(1q s} J9Ye Se ||om Se w0y [eulS1io sy ul sadA} Juswdinba y30q JO SHUSWAINSEIW JOSUSS MEI PIJIAI € SaWL Z JO suoljezijensia 1) pue .7 JBusly :0Z'g insl4

(q)

awn awn
000T oog 009 oor 0oz oo.o 000T 008 009 0ot 0oz co.o

=
=
2
i
(]
-3
B
=]
8
<
-
3
o

pajpAd ujewop 3@bie) —

ujewop yabie; — 01
awn
0001 oo8
/N
b=l
=3
-
@
g
o
=
g
=
o
c
m
80 80
pa|242 ulewop axunos —

Ulewop anos —— 01 01 01

153



The differences within source domain of samples having a high, middle and low predic-
tion value are checked. The middle prediction is the preferred and targeted one. Figure
8.21 shows euclidean barycenter averages of tree example signals from source domain for
low, middle and high label values. Sensor offsets for deviating metrology measurements are

clearly visible for some of the signals. For final equipment matching, there is a comparison

10 10 10 — low
middle
high

0.8

o
%
o
o

E} E} E}

K] ] s

2 2 2

508 508 508

g § T g

g 04 - ﬁ“\ g 041 f \ g 0.4 = =i |
g |/ s | L £ \ A

02{ \ 02 g‘f — = 0.2 =

200 400 600 800 1000 0 200 400 600 800 1000 200 400 600 800 1000
time time time

Figure 8.21: Comparison of raw source sensor measurements via barycenter average grouped into low, middle high label
values. Graphical representation of euclidean barycenter averages for 3 example sensors of the source domain. The x
axis shows the timestamps of the sensor signals, y axis the sensor measurement values. Example sensor measurements
of samples corresponding to low label values - meaning values smaller 0.1 - are plotted in green, example sensor mea-
surements of samples corresponding to middle therefore preferred label values - meaning values around 0.5 - are plotted
in grey and example sensor measurements of samples corresponding to high label values - meaning values higher than
0.9 - are plotted in orange. Sensor offsets for deviating metrology measurements are clearly visible.

between preferred shape of signals from the source domain meaning signals with metrol-
ogy measurements close to 0.5 to corresponding and deviating signals from target domain.
Therefore, DBACS is used to map selected source signals into the target domain. Hence,
signals representing recipe input can be tuned to reach an optimal setting while signals from
feedback sensors can be tracked and compared for better understanding of misbehavior. Dif-
ferent sensors measurements and their euclidean barycenter averages of groups according
to low, middle and high metrology measurements are shown in Figure 8.22 and compared
to mapped sensor signals (source to target) corresponding to the middle meaning preferred
metrology group in the source domain. Some signals do not show shape differences accord-
ing to their label value while others clearly show an overlap of middle mapped source and
middle target grouped sensors versus shifts of sensors corresponding to low respective high

target metrology measurements.

154



‘sjeusis 924nos a|ppiw paddew se ||om
se }98.Je} 3|ppiw wolj 3|qISIA AjJea|d ale sjuswainseaw ASojo43aw SuLjBIASp JO4 S19SHO JOSUSS "JB|q PaJojod e San|eA [9ge| 3|ppiw Yim sajdwes 221nos 03 Suipuodsatiod
sjeusis Josuas padde|y “a3uelo ul papo|d aJe - () uey3 Jaysiy sanjeA Suluesw - sanjea [age| ysiy 03 Sulpuodsailod sa|duies JO SJUBWINSEIW JoSUDS 3|dwexa pue >de|q ul
panoid ale - G*() punoJe sanjeA 3ujueaw - sanjeA |age| patajaid 3104243y} 3|ppiw 0} Sulpuodsailiod sajdwes JO SpUBWIRINSEaW JoSuds a31e) ajdwexa ‘Uaaid ul payold ale -
T°0 43]|ews sanjeA Sujueaw - sanjeA [3ge| Mo| 03 Sulpuodsallod sajdwes JO SIUSWINSeSW JOSUIS 1981e3 Pa3I3J9S "SSN|BA JUSWSINSEIW J0SUas 3y} sixe A ‘sjeusis Josuas ay} Jo
sdwejsawy ay3 SMOYS SIXe X 3| “SJ0]02 JudJayIp ul pano|d pue sanjea Aojoaw J1ay3 Aq pauyap aJe sdnouo) 'sjeusis jo sadelane Ja3uadAleq ueapiona moys syold ay] sjeusis
JOSUas 9 jo uonejuasaidal [ediydels) ‘sanjea [aqe| Yysiy s|ppiw ‘Mmoj| ojul padnoJs siosuas 1984e} "SA s1osuas 92anos paddew :Suiydjew juswdinba jo uonezijensiA :zz'g 24nsi4

awn awg awin
000T 008 009 00F 00z co,o 0001 008 009 00F 002 0 0001 008 009 oot 002 0
__
fl zo

b= gl =]
= = =
= - -~
' [ &, i
w o w
m (] 1
= = =1
w w w
90 § 90 8 -
= < <
X & &
c c | I3
m m m

80 80

.
01 0T
alg auwg auwi
0001 008 009 0or ooz 0 0oot 0 0001 oos 009 0ot 0oZ 0
00 00 = = 00
! N
J.Q \

o o
h=] = =l
= = =
= < =
@, il il
2 v0 B Y
w w w
m 1] 1]
=3 = =]
g 8 8
5 90 S 90 =
g 5 b
9 c c
m m m

ubiy 80 8'0 80
appw ——
a|ppiw paddew

MO — 01 0T 0T

155



8.6 CONCLUSION

In this chapter a virtual metrology use case for a plasma etching process is discussed under
various perspectives: First a VM modeling transfer task for homogeneous data representa-
tions coming from two parallel running chambers is discussed. Transfer is necessary since
data from different chambers show differences in their data distributions hence a dedicated
source model is not able to compute sufficient predictions hence small enough performance
errors when used on the target domain. First the VM prediction model itself is tested with
different classical statistical methods. Confirming latest research results, the deep learning
model using tdCNN architecture on raw sensor measurements shows significant better pre-
diction performance compared to classical approaches. Introducing more time series suitable
DL methods like TCN and LSTM show their advantages above 1tdCNN for prediction but
also transfer. Nevertheless, the transfer capabilities of all models are limited, hence DBAM
is applied a method that is introduced to allow interpretability and comparison of aligned

versus original sensor signals. Overall, the results can be summarized as follows:

* DBAM shows its functionality for for stationary and time series under different archi-
tectures and data types;

* raw sensor measurements in form of time series data is preferable, giving best predic-
tion results since they contain all information that is registered during the process;

* recent publications suggest the combination of tdCNN and LSTM architectures, ex-
ploiting the best of both worlds. Applying those finding to the VM use case show on
the one hand improvement for the prediction task and on the other hand confirms
the superiority of those methods. Those combined architectures can also be used for
DBAM.

The second part of this chapter covers a VM modeling transfer task for heterogeneous
data representations coming from two non-identical equipment running the same process.
Since a common prediction model is not possible, DBACS an extented version of DBAM is
applied. Therefore, a common prediction model can be used and the sensor measurements
of both equipment can be compared after transformation. The cyclic architectures allow
equipment matching on top of adaptation. The appraoch is compared to methods inspired
by multi-view Iwearning but the DL based approach show again its superiority especially for
complex VM modeling tasks. Overall, the results of the second part can be summarized as

follows: Heterogeneous VM2:

156



* DBACS is applied to a heterogeneous domain adaptation task and shows teh possibil-
ity of a common prediction model for different data representations;

* multi-task learning in the context of semiconductor manufacturing and process con-
trol it exploited as benchmark;

* linear transformation show their potential when it comes to heterogeneous data rep-
resentations, but also have limitations for kernel since kernel too computationally ex-
pensive. Nevertheless, the selected benchmark models based on their simplicity are
promising alternatives especially for small amount of data;

* DBACS enables equipment comparison and matching so a combination of domain
adaptation and matching is presented.

The presented work can be further enhanced by smart sampling approaches that could
enable an even better performance of the most simple models but as well speed up the deep

learning based transfer approaches.

157






Predictive Maintenance (PdM)

Predictive maintenance (PdM) as maintenance option targeting to foresee failure or estimate
time to failure based on data and statistical methods, is a key part of industry4.0 and manu-
facturing automation. Successful PAM leads to longer equipment uptime, production speed
improvement, better quality assurance and lower costs. Down events or equipment break-
downs can be triggered by various causative events depending on equipment, equipment
parts and running processes besides other influential factors. While scheduled maintenance
is planed based on average usage and average degradation of equipment, PdM is especially
useful for avoidance of unscheduled breakdowns and enables best effort and preparation for
upcoming maintenance tasks.

Predictive maintenance systems exploits raw sensor measurements or descriptive statistics
of sensor data that is already collected during a production process by the equipment itself
avoiding additional costs. In addition so called (RT'C) data describing the equipment status
in the sense of up, down, stand-by, productive beside others is used to define equipment life
cycles as well as distinguish between scheduled and unscheduled maintenance events. PdAM
developed, evolved and improved tremendously over the last years as described in Iskandar
et al. [98]. Main advantages in general but also compared to traditional maintenance ap-

proaches are:

* uptime shorter down times due to immediate availability of people as well as necessary
spare parts.

I59



* speed arrange compensation and updated dedication of running equipment to avoid
bottlenecks

* quality no further harm towards tool and product compared to run-to-fail

* costs proper and full usage of all equipment parts in a controlled manner

The research presented in this chapter are obtained in collaboration with University of
Padua, Information Engineering Department, Prof. Dr. Alessandro Beghi, Prof. Dr. Gian
Antonio Susto, Luciano Lorenti and Marco Zanetti. The focus topic is predictive mainte-
nance (PdM) for implant equipment including different failure types with focus on plasma

flood gun related breakages.

9.1 INTRODUCTION

In manufacturing, maintenance describes the process of equipment life cycle including in-
spections of the equipment, the equipment repair and anything else related to know and
control the condition of production equipment.

In this chapter the focus is on the equipment health and maintenance of five implant
equipment. In order to enable a wide usage of a highly automated prediction model, de-
ployed methods need to be transferable and applicable when confronted with all five equip-
ment or in a bigger picture running modes, failure types and process history up to different
equipment types. Hence, this existing high data complexity demands more effort and re-
search in the field of scalability especially when it comes to continuously needed equipment
transfer. This aspect of existing equipment behavior differences leading to differences in
data distributions represents a challenge but also an opportunity to exploit the full potential
of all collected equipment and failure data, hence equipment group wide therefore scalable
installation of automated prediction of remaining useful life (RUL).

Here, those issues are addressed by exploiting domain adaptation methods for RUL pre-
dictions for five implant equipment grouped into two cluster showing similar behavior. In
addition, diverse influences and data imperfections are discussed that typically occur for
PdM related tasks. Differences in data - respective the data distribution - can occur from
the beginning and are caused by not or not directly influenceable factors.

The upcoming sections are structured in the following way: First use case specific litera-
ture is covered from a historical overview up to classification methods for PAM, regression

tasks for PAM and closing with adaptation related methods for PAM. Then the PAM use case

160



for Remaining Useful Lifetime estimation is introduced. This is followed by a detailed dis-
cussion on data preprocessing steps: filtering of non-natural deaths, equipment grouping,
recipe specific outlier removal, recipe effect removal, scaling, feature selection and time win-
dow definition. The following experiments are split in two; first the focus is on the RUL
prediction model and testing of prediction benchmarks. Then the results for domain adap-
tation via DBAM as well as DBACS are presented. In the last section called imperfect data
feature- as well as instance-based domain adaptation benchmarks are covered and results as

well as overall difficulties and hurdles in PAM scalability are discussed.

9.2 LITERATURE

Due to the long history of maintenance and all its aspects and advantages, a long list of of
literature is available: A pre industry4.0 and historic overview of maintenance is presented by
Mobley [147], a current survey with focus on PdM for industry4.0 is given by Krupitzer et al.
[117]. A project-based summary of different PAM applications for smart factories is given by
Cerquitelli et al. [27]. Overall random forest (RF), neural networks (ANN), support vector
machine (SVM) and k-means clustering are the most commonly used methods for PAM as
stated in Carvalho et al. [26].

In the following, a short overview is given of selected survey paper that cover the overall
history of maintenance. Then, for a deep-dive we further distinguish between literature on
classification and regression tasks and have a separate look at published approaches related to
transfer learning with a focus on literature related to semiconductor manufacturing. Next,
the experimental design is detailed out and DBAM, DBACS as well as selected feature- and
instance based domain adaptation benchmark models are evaluated. The use case chapter
closes with a detailed discussion on imperfect data, data complexity and their influence on

PdM prediction in general.

CLASSIFICATION TASK FOR PDM

Sustoetal. [194] compare multiple standard ML-methods like descriptive statistics, k-nearest
neighbors (k-NN) and different SVM methods - linear, gaussian kernel, standard. They are
used in a multiple classifier setting where different classifier models with different input and
focus are evaluated at the same time for better results. Those classification types used in [194]
for PAM either predict if the next or current run is faulty or to classify the following m € N

runs for early detection of possible failures hence avoidance of breakdowns. Strong results

161



using LSTM for predicting RUL ranges or time intervals instead of classes are presented by
Vishnu et al. [209] (winner of 2018 PHM Data Challenge) and by Jalali et al. [101].

REGRESSION TASK FOR PDM

A very common regression target for PAM is to predict remaining useful life (RUL) of the
corresponding equipment, see Figure 9.1. Heimes [85] are successfully comparing perfor-
mance of different MLP based architectures for RUL prediction. In addition, different ways
- upper limited RUL versus linear decreasing RUL - of modeling the target output are consid-
ered. Jalalietal. [ror] presentan estimation of time-to-failure (T'TF) testing very similar ML
models as seen for the PAM related classification problem described above. Ensemble learn-
ing and sample (in this case degradation-dependent) weighting are successfully implemented
by Lietal. [133] for a semiconductor PAM use case. Li et al. [13 1] makes use of well studied
deep convolution neural networks based on one dimensional convolutional filter, showing
its superiority towards classical ML methods. LSTM are the leading architecture when it
comes to PAM and RUL prediction for time series input data, see Wu et al. [218] where mul-
tiple deep recurrent neural network-based approaches are compared and Huang et al. [96]
where early fault detection combined with LSTM shows the best performance. Main idea of
both articles is to focus on the degradation phase for improved prediction; meaning to use
early degradation classifier respective a degradation related feature together with a recurrent
neural network architecture. Hsu et al. [95] confirms the superiority of time series based
RNN methods by combining TCN for feature construction and LSTM plus attention to

capture time dependencies.

ADAPTATION RELATED METHODS FOR PDM

Adaptive methods, like ensemble learning and sample weighting, are well researched in gen-
eral but also present in PAM related literature where they are used to cover the process com-
plexity behind different product and technologies besides other influential factors. An overview
of challenges towards PdM is given by Compare et al. [44]. While Li et al. [133] show the
power of sample weighting and ensemble learning for PAM RUL prediction for fault detec-
tion, Lu and Lee [137] show kernel-based ensemble techniques applied to RUL prediction
and Hsu and Chien [94] as well as Kang and Kang [107] the power of ensemble learning ap-
plied with CNN for wafer map classification with high data and pattern complexity, those
ensemble and weighting methods are rarely applied for transter/DA in semiconductor PAM

162



setting. Their success nevertheless is shown for other applications: Wang et al. [213] applies
TrAdaBoostR2 (by Pardoe and Stone [158]) to a fault detection use case, Xiao et al. [220]
combines CNN with TrAdaBoost for classification of induction motors under different op-
erating conditions and fault types and de Mathelin et al. [48] discuss multiple feature-based
(encoded feature space/subspace) as well as instance-based (sample weighting) DA methods
for a tire design use case. From the class of sample weighting, k-nearest neighbor [58] is an
elegant choice because of its non-parametric nature, [136] extents it to a transfer learning
setting. Zhang et al. [234] exploits NN'W for a semiconductor fault detection use case with
multiple process modes. de Oliveira da Costa et al. [50] presents a LSTM-DANN (besides
other time series suitable architectures) for RUL prediction and tests it against non-adaptive
methods, Transfer Component Analysis (TCA)(Pan et al. [156]), Correlation Alignment
(CORAL) (Sun and Saenko [189]) and the supervised domain adaptation method proposed
in Zhangetal. [233] (based on transfer learning and target fine-tuning applied on RNN) on
the NASA Commercial Modular Aero-Propulsion System Simulation (C-MAPPS) Turbo-
fan degradation data sets ([175]). Li et al. [132] proposes Adaptive Batch Normalization
(AdaBN) to increase the generalization ability of a ANN by simply changing the batch nor-
malization layers according to the target domain. AdaBN applied on PdM is presented by Li
etal. [129]. Another research applying AdaBN and improves additionally network parame-
ter finding and hyperparameter tuning using an bayesian optimization is presented by Liand
He [128]. Liu et al. [134] presents the original DANN approach combined with different
recurrent neural network architectures on the data from the 2018 PHM Data Challenge to

align failure modes as well as equipment in a two step approach.

9.3 REMAINING UseruL LIFe (RUL) PREDICTION FOR PREDICTIVE MAINTENANCE
(PDM)

We present an use case based on implant process data collected during front-end production.
For a description of the implantation process see Part I, Chapter 2.2.The data is collected
from s identical-in design implant equipment running in parallel. The equipment is clus-

tered into two groups that share same running modes and data behavior.

The task at hand is to create a prediction model to forecast so called remaining useful life
(RUL) of each equipment. Therefore, fault detection and classification (FDC) data derived

from the raw sensor measurements using descriptive statistics is taken into account for best

163



model selection. Labels are generated based on the available information in the resource
time classification (RTC) data. It logs the status and status changes of an equipment like
productive, stand-by, unscheduled down, scheduled down, repair. Detailed remarks on the
repair can be used for detailed failure labeling and helps to distinguish between run-to-failure,
unscheduled down and scheduled or preventive down. It can be used to classify different
failure types and corresponding equipment parts like ion source or plasma flood gun. Here
we focus on plasma flood gun related down events.

The time period between finished maintenance event respective first time the equipment
is set (back to) productive and down event is called ’life’. Mainly two ways of modeling
equipment degradation time - later used as labels for supervised training - are presented in

literature, e.g by [233]:
* affine-linear with negative gradient;

* piecewise affine-linear function with zero gradient first followed by negative gradient.

For a visualization of (piecewise) affine-linear target function see Figure 9.1. The selec-

Rermaining Useful Life {RUL)

L 4

Time

Figure 9.1: Linear and piecewise linear target/label function for RUL. Linear and piecewise linear target/label function as
presented in [233]. For the presented use case the linear target function is selected (blue).

tion of a piecewise afline-linear function is based on the assumption that the degradation at
the beginning is negligibly small respective hard to estimate. Hence modeling the decrease
only makes sense after a certain ’anomaly point’. We consider a group of equipment with
known differences in their running modes. Hence a specific ’anomaly point’ would be hard
to define. Therefore, we choose the linear modeling of the degradation as target function.

There exists different failure modes that can lead to unscheduled down. Plasma flood gun

164



is a very important part of implant equipment often responsible for breakage and therefore
often used as target failure group in PdM literature for semiconductor manufacturing.
DATA PREPARATION

We consider five different implant equipment from the same production side. In general,

they are able to run the same processes and no equipment dedication is specified:

* IMPPr3-or

IMPPr3-03
* IMPPr3-03
* IMPPr3-04

* IMPPr3-o05.

The considered time period is between beginning of the year 2020 until April 2022. Data
is separately collected for each equipment and only whole lives within the selected time pe-

riod are taken into account.

Each processed wafer is monitored and raw sensor measurements are taken during the pro-
cess and automatically used to compute descriptive statistics known as Fault Detection and
Classification data (FDC). For each equipment RTC data is stored and used to mark status
changes like down events. The information retained from RTC is used to filter out sched-

uled down events in the training data to simulate optimal run-to-failure conditions.

A first selection of features is done based on expert knowledge. In addition incomplete
lives from start and end of the whole time period as well as very long or very short lives are dis-
carded based on the 3rd percentile. The considered lives for all five equipment are presented
in Figure 9.2 and marked with different colors. Overall 49 lives are taken into account. The
following preprocessing steps are applied to the features and the corresponding lives due to

their benefits for the modeling process:

FLAGGING VERSUS FILTERING OF NON-NATURAL LIVES A discussion about ﬂagging ver-
sus filtering of non-natural deaths is necessary since no run-to-failure strategy is applied on

the involved equipment. If a life is ended early for example by scheduled maintenance, data

165



IMPP13-01
IMPP13-02
IMPP13-03
IMPP13-04
IMPP13-05

)

ext defect (hrs]

time n

Start_time

Figure 9.2: Visualization of equipment lives. Visualization of equipment lives in the form of linear target function. Differ-
ent colors mark different equipment.

features do not - or only to a limited extent - show any or sufficient signs of degradation.
Therefore the model is not able to correctly learn the relationship between input and health
status of the equipment. This fact influences not only the quality of training but especially
testing where the model evaluation gets unreliable if the used labels are incorrect. Three

different approaches are taken into account:

* taking all lives without preselection;
* flagging non-natural deaths;

* filtering out non-natural deaths.

. Specific features show distinctive pattern e.g. large value drops or high ascend when
coming closer to the end of a life. Such behavior is used to distinguish between natural and
non natural deaths and to select or flag natural deaths out of all available lives. For the use
case presented here two features strongly related to plasma flood gun exhibit a clear dominant
behavior towards end of a life. One of them is selected to determine the true nature of a life
and a corresponding value threshold is set. The feature including the threshold set to 0, 1 is

visualized in Figure 9.3.

EQUIPMENT GROUPING  Theselected 5 equipmentare splitinto two groups based on their
data properties like life lengths and feature data distribution. It is confirmed by process ex-

perts that matching and standardization efforts are finished and remaining data differences

166



100 { . \ P
p ) |
LR,

Feature value

025 1

e IMPP13-01

IMPP13-02
o IMPP13-03
e IMPP13-04
—0s0 IMPP13-05

Time

Figure 9.3: Visualization of feature thresholding for non-natural versus natural death filtering/flagging. Visualization of
feature thresholding for filtering or flagging non natural versus natural deaths. Different colors mark different equipment.

need to be handled within the modeling approach. IMPP13-01, IMPP13-03 and IMPP13-
04 build the first group. Group 1 is also selected as source for the domain adaptation ap-
proaches. IMPP13-02, IMPP13-05 together define group 2 that is later used as target do-

main for the domain adaptation modeling.

OUTLIERS REMOVAL VIA INTERQUANTILE RANGE (IQR) An outlier is a sample in the
data that shows some kind of different behavior compared to other observations - in the
sense of distance for example. Hence, it can be assumed that it is generated by a different
mechanism. While this can be of high interest during process evaluation, the idea of training
amodel is to learn normal or targeted behavior. Since some models are sensitive towards out-
liers as presented in Friedman et al. [66], we apply interquantile range (IQR) outlier removal

procedure: Let ()1, (3 describe the 25th, 75th percentile. Then:

IQR = Q3 — 1 (9.1)
FE=01—15%xIQR (9.2)
F,=Q3+15%xIQR (9-3)

F,,, Fj are used as upper and lower limits and all samples above or below those thresholds are

marked as outliers and removed during training.

REecIPE EFFECT REMOVAL  The description of how a process needs to be carried out on an

equipment is called recipe. A recipe consists mainly of 3 components: what ingredients to

167



use, how much of them and the set of instructions how and in what order to use them. The
recipe effect’ is a phenomena in the data where data heterogeneity occurs due to a change in
running recipes. This can result in differences in the sensor readings.

To avoid misinterpretation of those naturally occurring shifts, a removal of the recipe ef-
fect is done. The basic idea is to shift the data of each feature-recipe pair by its median value.
To consider time dependency in the data as well as to avoid jumps in the data caused by recipe
changes, a slightly adopted version is applied that does not consider the whole time period
at once but shorter time spans instead:

Leti = 1,..., N be the number of recipe shifts, let kn}; and kn;. ; be the last value before
recipe change ¢ respective the first value after recipe change i, and z! the recipe specific shift

to be optimized. Then the overall shift distance d is defined as:
d= 3 Vthnly — ) — (i = ) (4

= 3kt — k) =t 2
The goal is to minimize the overall shift distance d. Hence for all features and all recipes ¢:

d=>"|Akn -zl + 2" =0 (9.5)

Let A be a sparse matrix with {—1, 0, 1} entries indicating the recipe change, « the vector
of all recipe shifts and Akn the jumps of the features due to recipe changes. Then the op-
timization problem can be reformulated into a linear system of equations hence a matrix
equation:

Akn=A-x (9.6)

A solution of alinear system is an assignment of values to the variables x such that each of the
equations is satisfied respective optimized. The results of the recipe effect removal procedure

is shown in Figure 9.4.

DATA scaLING  The models considered for this use case expect scaled input data. Since
we need to cover the whole process history of an equipment in order to timely predict its
degradation, different recipes are included in the data. Hence, feature as well as recipe specific
scaling is applied to avoid different levels in the data that are known to not be degradation

or failure related. An adopted version of Min-Max scaling is applied (see [160]). It scales the

168



Sensor value

Sensor value
ey

Figure 9.4: Visualization of recipe effect removal. Visualization of recipe effect removal for a selected feature. Panel (a)

o, X The

Time

(b)

shows the feature for multiple lives without recipe removal and panel (b) with removed recipe effect. The alignment to
one level is clearly visible. Different colors mark the different recipes.

data to the range [0, 1]. Outliers, that are excluded for computing the scaler, can lie outside
of this range afterwards.

Let S = {;})¥, be a data sample from the input space X with k features and z; € R¥
with N = |S| the number of drawn samples in S. Let x;, C z; samples from feature ¢
that belong to a fixed recipe 7 and %, ;maz, s, min be the maximum respective minimum

recipe-feature specific sample values. Then:

‘/E. _‘/E .
/ i i, min .
T, = - - ,Vi,r.

r

(9.7)

xir,maw - xir,min

FEATURE SELECTION Both Chandrashekar and Sahin [28] and Khalid et al. [112] give a

general respective ML specific comparison of different feature selection methods. Feature

169



selection is divided into two techniques:

* supervised where labels are used to identify the importance or the influence of each
feature on a regression or classification task;

* unsupervised where relationship between the features or distances are analysed with-
out usage of labels.

Those two techniques can be further divided into:

* Filter methods where intrinsic properties of the features like correlation are used;

* Wrapper methods where a best performing (related to a task and method) feature sub-
set is selected like for example Recursive Feature Elimination (RFE);

* Embedded methods that uses interactions of features like Random Forest Importance
based on the Gini Impurity.

Autoencoder are a well known DL based method for feature selection and dimension re-
duction and very useful in high dimensional complex semiconductor environments, see for

example [138].

Boruta Shap by Keany [110] is a combined method. It combines Boruta - a wrapper
method selecting features by comparing the relevance of a feature with its randomly shuf-
fled counterpart or "shadow” feature. Boruta is stable and accurate, but computationally
expensive hence Shap - connecting game theory with local explanations [140] - is added to
speed up the included feature ranking. For simplification and speed, BorutaShap is applied
using a RF prediction model. The feature importance is shown in Figure 9.5, Figure 9.6
and Figure 9.7 respectively for accepted, tentative and rejected features. One-hot encoded
recipes features are discarded due to previously removing the recipe eftect, one-hot encoded
equipment features are originally kept but later removed for domain adaptation. Tentative
features are also kept due to preferences towards a conservative approach and usage of regu-

larization techniques.

TIME wINDOW  Since we use time-series models besides models that are applied on sta-

tionary features, we reshape the preprocessed data by building time-windows in order to use

them for IDCNN and LSTM:

170



Feature Impartance

h
L 3
+
L |

-
. *aig
iiié*i

T

i
:

festure sccepted_11
Bestutg socepiond_14
featutn accepoed 17
fosturg sccepted_19
fosture sccepted_X
feature socepbed_26
Mech shadaw -|
Mhwdtan Shadew |

Figure 9.5: Boxplot of feature accepted by BorutaShap with relative importance

Feature Impartance

4x10

e

g 2x107°

P 7 3 7 1 1
N DL B

Figure 9.6: Boxplot of feature tentatively accepted by BorutaShap with relative importance

Instead considering a single value z; per feature for a sample ¢ to predict RUL y;, it is

extended to an interval of consecutive samples ;_,, . . ., ;. The size n of this window is a

171



Feature Impartance

t

' i
T m——

s

R R R R R
ittt iR

Figure 9.7: Boxplot of feature rejected by BorutaShap with relative importance

hyperparameter that needs to be defined. Overall the data is reshaped from (sample, features)

to (sample, window, features).

ExXPERIMENTAL DESIGN

In the first part of the experiment the focus is on the RUL prediction model itself. Different
benchmark models including different neural network architectures are analyzed based on
their presence in literature. The best performing prediction model is selected and used in the

domain adaptation part.

In the second part of the experiment different domain adaptation methods are compared
to DBAM and DBACS presented in Section 4 and 5. The same features are used for all
experiments, for time series input the existing features are reshaped but not further processed.
Different hyperparameter settings are checked and K'-fold cross validation based on lives is

applied. For K-fold CV the data is split into K independent sets. A model is then trained

172



on the union of K — 1 sets and the remaining set is used for testing and evaluation. Mean m
and variance o of all K training rounds are then used a final model performance scores. The

pseudo code for K-fold CV is presented in Algorithm 9.1.

Algorithm 9.1 Pseudo code for K-fold cross validation (CV)

Data: Data set S, number of partitions K, learning algorithm A, performance measure L
Result: Final scores m, o
Split S'into K partitions of same size 51, . . ., Sk
fortr=1...Kdo
fit A(S\S;)
e; = L(A(S;))

end

_ 1K
m= 1 i1 €

0= % Zz‘I;(ei - m)2

BENCHMARK MODELS

LR, Lasso and RF are selected as benchmark prediction models. Gradient Tree Boosting
(GTB) respective its XGBoost implementation [3 4] is used instead of RF here for improved

results. The benchmark models are described in Chapter 6. For details and explanations on
ANN, 1DCNN and LSTM we refer to Chapter 3.1.

For the domain adaptation approach different benchmark models are considered that are
present in PAM related publications. Based on their prediction performance, LR and ANN
are selected as prediction models used for training benchmark models. If possible, bench-
mark methods are trained in an unsupervised DA manner meaning no target labels are used
for training but only for evaluation. For feature-based DA TCA, CORAL and SA are se-
lected. We apply different latent space dimensions for TCA: 5,10 and 20. For an theoretical
and use case independent introduction and further mathematical details see Chapter 6. For
instance-based DA we evaluate NNW and TrAdaBoostR2. Again more methodological de-

tails are presented in Chapter 6.

METRICS AND LOSSES

To measure the success of the alignment between the two equipment groups as well as com-

pare RUL prediction model performance we select two groups of losses. For more detail see

173



Chapter 7.
For distribution comparison and alignment evaluation, the following distribution-based

losses are applied:

* For the purpose of visualization T-distributed Stochastic Neighbor Embedding (t-
SNE, [206]) is applied;

* For the purpose of comparing inner domain distance - the distance between for exam-
ple train and test set of one domain - and inter respective outer domain distance - the
divergence between data selected from source and data selected from target domain -
we use Frechet inception distance (FID).

For overall performance comparison, the following performance-based losses are applied:

* For overall performance comparison we use mean absolute error (MAE) and mean
squared error (MSE).

MODELS AND HYPERPARAMETER

Preprocessing as described above is applied. Hyperparameter optimization using Random
Search is done on all models including benchmarks. In order to avoid bias caused by par-
ticular splits, a cross validation (CV) method is applied. K-fold cross validation is used for
comparing different domain adaptation approaches. In the PAM use case all data splits can-
not happen within one life to avoid information leakage leading to an overestimated model
performance on seemingly unseen data. Therefore only whole lives are assigned to the splits.
Only lives related to natural death are selected for training. Test lives corresponding to non-

natural deaths are either way removed to assure reliable high quality predictions.

The analysis is started with the selection of best performing RUL prediction model using
equipment Group 1 defined as source domain. RUL prediction models and selected hyper-
parameter are summarized. Based on the literature review, seven different ML methods are
selected as candidates for RUL prediction and evaluated. We summarize hyperparameter

optimization, model architectures and implementation details:

* Zero Rule algorithm (or Baseline resp. Dummy regressor) where mean RUL value is
always predicted. Let n € N be the number of samples in the training data, y?"*¢ =

174



{yP"*"yn_ the predicted values and "¢ = {4/"“}"_| the observed values or labels.

i
1 n
pred __ E true,
Yy - E Y; )
=1

Then:
Linear regression: To train the Linear Regression we use the implementation from
Scikit-Learn [160]. Default parameters are used;

Lasso Regression: Scikit-learn implementation [160] of Lasso is used. The parameter
Aissetto A = 1.2;

Gradient Tree Boosting: To train the gradient boosting mode, we use the regularized
implementation called XGBoost [34]. In particular, we set gamma = 5, learning rate
eta = 0.005, maximum depth of a tree maz_depth = 10 and number of estimators
n_estimators = 250;

Fully Connected Neural Network: ANN model is written using the keras library
[40]. It has four hidden layers with respectively 260, 130, 65 and 32 neurons in each
layer. Each hidden layer use ReLU activation function and a ¢; regularization equal
to /1 = 0.001. Neurons are initialized using He normal initialization [83], since it is
more stable compared to Xavier Initialization when hidden layers use ReLu activation
function. Each hidden layer is followed by a dropout layer, where the probability of
dropping a neuron is set to p = 0.2. As optimizer, Adam [113] with learning rate
Ir = 1le — 5,31 = 0.9and 3, = 0.99 is used. The model is trained using early
stopping, with patience set to 20 epochs. The loss function used to train this network
is Mean Squared Error (MSE); MAE is additionally added as second metric.

1 Dimensional Convolutional Neural Network: Here we experimented with two
different architectures, where one replaces the global pooling with an attention layer.
1DCNN models are implemented through the keras library [40]. The first architec-
ture has three 1D convolutional layers with 32, 16, and 8 filter size, with kernel sizes
of s, 3,and 3 respectively and stride of 1. ReLu activation function is applied to those
layers, and we use padding to preserve the input shape. The first two convolutional
layers are followed by a 1D Average Pooling layer with a pooling size of 3, while a 1D
Global Max Pooling layer follows the last layer. Two dense layers after the Global Max
pooling layer, with 120 and 5o neurons are defined. ReLu activation function is used
in those layers, together with a ¢; regularization of 0.02. Each layer is followed by a
dropout layer with probability p = 0.1. As optimizer, Adam [113] with learning rate
Ir = 0.00003, f; = 0.9 and B3 = 0.99 is used. The model uses early stopping, with
patience set to 30 epochs. The loss used to train the network is MSE.

The second architecture is the similar to the first one, but no pooling layers follows

175



the convolutional layers. Instead, a self-attention layer is placed after the last convolu-
tional layer. Three IDCNN layers have a filter size of 32, 16, and 8. Two dense layers
with 120 and 5o neurons respectively follows the self-attention layer. Window size is
setton = 15.

* Long Short Term Memory Network: To deploy the LSTM model, we use once
more the keras library [40]. The architecture is composed of three LSTM layers with
respectively 265, 128 and 64, followed by a dropout layer with p = 0.1. Two fully
connected layers with 100 and so neurons follow. ReLu activation function, ; =
0.01 regularization are applied and dropout with p = 0.1 are applied. Window size
is set ton = 15. Early stopping is used with patience set to 30. MSE loss is used once
more as loss function, the learning rate is raised to 0.0001.

All ANN architectures have a single neuron in their output with linear activation func-
tion applied to it since we are in a regression setting where RUL is not scaled but true to

remaining hours.

Based on the different RUL prediction models described above, different domain adapta-
tion methods based on literature review are presented. Depending on the specific principle
of the domain adaptation approach, RUL models are either directly involved in the data
alignment (task specific alignment, supervised) or later involved in a second step and sepa-

rately trained with already aligned features (no task specific alignment, unsupervised).

First, implementation details for DBAM and DBACS as representative of deep domain

adaptive methods are presented:

* Dann-based Alignment Model (DBAM): For training ANN-based DBAM the pre-
viously on source trained ANN predictor is reused with fixed weights. The domain
discriminator for the ANN has 4 fully connected dense layers with Leaky ReLU ac-
tivation function and linear output function. Layers have size 32, 16, 8, and 4. The
aligner in form of an autoencoder consist of 3 dense layers of size 64, 128, 256 plus
LeakyReLU activation function in the encoder part as well as in reversed order in the
decoder part. Dropout layers are used with p = 0.2 in the two middle layers and
p = 0.3 else. The output activation function is linear. The aligner is pretrained to
mirror the target data using Adam optimizer with MAE as loss function to ensure a
good initialization.

* Dann-based Alignment with Cyclic Supervision (DBACS): For training ANN-
based DBACS the previously on source trained ANN predictor is reused with fixed

176



weights. Both domain discriminators are build in an identical way copied from the
DBAM setting:each one has 4 hidden layers with 32, 16, 8, and 4 neurons respec-
tively. LeakyReLU activation function with alpha = 0.1 is used, Adam optimizer
is used with a learning rate [r = 0.0001, 8; = 0.5 and B = 0.9. The aligner set
ups are again identical: The encoder has 4 hidden layers with 600, 500, 450 and 350
neurons, respectively. Each layer use LeakyReLU activation function followed by a
dropout layer with p = 0.2 or p = 0.3. The central layer as bottleneck has 250
neurons and is followed by a batch normalization layer. The decoder part is built as
a mirrored encoder. Both input and output layers have the size of the number of fea-
tures that must be aligned. Adam optimizer is used with a learning rate I = 0.0001
and default values for 31, 85. Both aligner are pretrained to mirror the target data for
aligner [ respective source data for aligner G using Adam optimizer with MAE as
loss function for improved initialization. The aligner is pretrained with source-source
respective target-target pairs.

The training phase happens in iterations, with a ratio of 10 : 1 between domain discrim-
inators and aligners during the training phase to ensure stability. The predictor related part
is weighted by a factor o = 0.1. Batch size is set to 128 for both aligners and discriminators.
The gradient penalty weight is set to gp = 10. Pretraining is done for both aligners as sug-
gested in [69] and as mentioned above. MSE is used as loss function and batch size equals 32.

As before, the pretraining phase leads to a better initialization and overall helps convergence.

Second feature-based benchmark methods are defined based on PdM related mainly semi-

conductor literature that shows their potential for the RUL task at hand:

* Transfer Component Analysis (TCA): TCA is an unsupervised feature-based DA
method. We select LR and ANN as baseline models. For ANN the network archi-
tecture is adopted from the previously on source trained ANN predictor and reused
by reducing the input layer size accordingly. All other aspects are kept identical. The
implementation is used from python module z7ansfertools [? ]. Number of latent
components are selected as 5, 10 and 20. To speed up the computation a sample sub-
set consisting of 8ooo data points is randomly selected from the original training data.
First the TCA is applied and then the selected model is retrained using the transformed
features. The evaluation is done using transformed source and target test set.

* Correlation Alignment (CORAL, DeepCORAL): COR AL is an unsupervised feature-
based DA method. The implementation is used from python module transfertools [?
], LR and ANN are selected as baseline. First COR AL is applied and then the selected
model is retrained using the transformed source domain.

For DeepCOR AL the implementation is used from python module adapt [49], ANN

177



is selected as baseline using same architecture as described above meaning ANN for
task network and the aligner for the encoder part. Supervised training is applied with
ADAM as optimizer, MAE loss and batch size 32. The weightage of the COR AL loss
is a hyperparameter and tuned via testing the following values 0.01, 0.1, 1, 10, 100.
Unfortunately none of the tested settings lead to a successful training independent of
the selected fold. Hence the results are omitted.

* Subspace Alignment (SA): SA is an unsupervised feature-based DA method. Im-
plementation is used from python module adapt [49], LR and ANN are selected as
baseline. For ANN using same architecture as described above meaning ANN predic-
tor for the task network. The number of PCA components is selected equal to the
number of input features.

Last, instance-based benchmark methods are defined. Since they are (to the best of our
knowledge) not yet applied for DA in a PAM RUL prediction setting, the choice is based on

related literature showing their successful implementation to other but related tasks:

* Nearest Neighbors Weighting (NN'W): NNW is an unsupervised instance-based
DA method. The implementation is used from python module adapt [49], LR and
ANN are selected as baseline. For ANN same task/estimator architecture as described
above is used. The algorithm ’brute’ (standing for brute-force search or exhaustive
search for computing nearest neighbor, see for example Kumar et al. [118]) is used
since it gives best results in hyperparameter search and is default for sparse data in-
put. Number of neighbors is set to 5 (searched with 2,5,10,50) and radius to 1 after
hyperparameter search (default values). The standard euclidean metric is used (met-
ric="minkowski’, p=2). No parallelization is applied.

* Transfer AdaBoost for Regression (TrAdaBoostR2): TrAdaBoostRz2 is an super-
vised instance-based DA method. The implementation is used from python module
adapt [49], LR and ANN are selected as baseline. For ANN same task/estimator ar-
chitecture as described above is used. Number of estimators are checked via hyper-
parameter search (10,20,50,100) and set to 100. Default learning rate [r = 0.01 is
used.

REsSULTS AND DiscussioN PART 1: RUL PREDICTION

Evaluation results for the RUL prediction models based on the data set including only lives

corresponding to natural deaths are now presented. All non natural death lives are dropped

178



and excluded from training as well as evaluation. Performance scores based on s-fold CV
are presented in Table 9.1. Scores from s-fold CV for the target domain evaluated with the
models only trained by source data are given in addition. Figure 9.8 shows boxplot visualiza-
tion for all 5 folds for training (left) and testing (right) and all tested models (marked with

different colors).

Evaluation of ML algorithms after filtering for natural deaths

Source Target
Train (MAE) | Test (MAE) || Train (MAE) | Test (MAE)

Zero Rule 129,8 130,9 13455 134,1
Linear Regr. 41,2 57,9 106,7 119,1
Lasso Regr. 44,1 54,6 117,8 123,5
XGBoost 44,3 76,2 120,2 I115,I
ANN 42,2, 56,3 84,0 89,8
1DCNN 51,9 65,5 100,7 102,1
1IDCNN + 50,8 60,5 98,0 92,7
Attention

LSTM 42,4 67,4 92,4 91,9

Table 9.1: Evaluation of ML algorithms after removing non natural deaths. Errors are measured in hours (hrs). Models are
trained on training data from source and tested afterwards. Data from target is evaluated using source dedicated models
without retraining. All scores are mean values for 5-fold CV.

179



Boxplot: Train (source)
160,0

140,0
120,0

100,0

)
k<]
=)

RUL (hrs)

60,0

40,0 ﬁ

20,0

0,0

M zeroRule M IR [Jlasso [ xGB M ANN [ 1DCNN I 1DCNN +ATTENTION [ LSTM

Boxplot: Test (source)

!!

W zeroRule M LR [Jlasso M xGB [l ANN [l 1DCNN [l 1DCNN + ATTENTION [l LSTM

160,0

140,0

120,0

100,0

®
S
o

RUL (hrs)

T

1

20,0

0,0

(b)

Figure 9.8: Boxplot of 5-fold cross validation prediction performance of dedicated source models. Boxplot representation
of prediction performance for all used models and all 5 folds. Different colors represent different underlying models. (a)
presents results for training data and (b) results for test data. Errors are measured in hours (hrs).

180



*(s4y) sanoy ul painseaw s| 1NY ‘0T 6 24NSi4 Ul pajuasald a1e S|POW JSYI0 BY]'324N0S UO paules} AJUO S|DPOW Pa3edIpap ay3} YIM Pajen|eas uaym

ejep 159} }984e} 404 S}NSal (p)

pue ejep Sujulesy 398463 J0j S}Nsal S3UIsaId (3) “BIEP 1S3] 92NOS 104 S}NSAI () pue elep Sululel) 921nos oy synsal syuasald (e) *pjoy Sulwiogad

1594 pue [apow NNV 404 pajoipald snsuaA anJy uooipaid 1Ny JO uolejuasaidal sjo|d 19135 “[opowl 331nos NNV Paiedipap 1oy joid Japeds pajaipaid “sA and] :4°6 24nSi4

eaep Sunsa 19811 10§ sanjea pa1orpaid snsioa aniy (p)

s ues

e
a

3053531

eIEp wﬁ:uwou 92IN0S J0J sanjeA ._Uuuuﬂuvhﬁm STISIOA ONIT, AQV

sunues

eaep Sururen 1931e1 10§ sanjea pa1orpaid snsioa oniy (o)

NN

J,._.
,,,__ VL

,/

3053531

oo0r
395 utelL

elep ME_E_.W.U 92IN0S 10J sanjea ﬂuvuuﬂﬁuum STISTOA o1, A.mv

swnyes

385 ulelL

181



All models are beating the Zero Rule score, while all of them show high test variability
towards different data splits, see Figure 9.8. For more complex DL models, higher variations

can be seen already within the training data compared to traditional ML methods.

The performance of the dedicated source models for the target data set is not sufficient
for all models as presented in Table 9.1, nevertheless DL models are able to generalize better
for target data than the traditional ML models, hence would be a recommended choice for

increasing complexity in the data.

Figure 9.10 presents scatter plots for true versus predicted RUL for source training data
(left column) and source test data (right column). For Linear Regression and Lasso an over-
all shift of the RUL prediction is visible, meaning the equipment health is overestimated.
Both models are also allowing negative predictions that of course do not make much sense.
XGBoost seems to have a higher error at the beginning of each life causing an higher overall
error while towards the end the predicted values are very close to the true value. Its tendency
to underestimate the RUL seems more fitting if a more conservative maintenance strategy is

preferred.

ANN is the second best (for train and test) performing method but it shows most stable
performance over all folds and also the best transfer performance when applied to the target
data. Hence it is later the choice for the fixed RUL prediction model for domain adaptation
using DBAM. ANN RUL scatter plots are presented in Figure 9.9.

The usage of the ANN model on target data shows a poor estimate especially for longer
lives and a tendency to overestimate RUL respective equipment health. The models based on
the reshaped time series have comparable performances, with LSTM and iDCNN + Atten-
tion layer slightly better than standalone IDCNN. All time series based models show rainfall

shaped noise within their predictions.

REsSULTS AND DiscUssION PART 2

Evaluation results for the domain adaptation models based on the data set including only
lives corresponding to natural deaths are now presented. Here, DBAM and DBACS are ap-
plied and compared. Other domain adaptation benchmarks are evaluated and compared in
section 9.4: Imperfect data. Equipment group 1 is selected as fixed source domain since it

contains most of the lives and higher number of equipment. We refer to the same source

182



train-test split used to train the corresponding predictor model in Result and Discussion
Part 1. Data down sampling is performed of the source data to align total number of sam-

ples between source and target.

First, one takes alook at lower and upper bound. Lower bound are the results when using
dedicated models only trained and used for pre-selected equipment. It is the best possible
performance and all transfer learning approaches try to come as close as possible to the lower

bound. This approach faces some limitations:

1. high effort in maintaining multiple models including generate evaluation, analyzing
results, defining monitoring kpis, updating the models besides others;

2. only applicable when enough data and especially labels are available;
3. no direct comparison between equipment, RUL, hence available prediction models

is possible.

The upper bound is the direct transfer of a trained model to unseen data coming from
(eventually different) equipment data not used for training. If the unseen data does differ,
this direct model transfer has limited success. Lower and upper bound are both presented in

Table 9.2.

Upper and lower bounds of dedicated ML algorithms

Target lower bound Target Upper bound

Train (MAE) | Test (MAE) || Train (MAE) | Test (MAE)
Zero Rule 133,7 135,3 134,5 134,1
Linear Regr. 61,0 83,0 106,7 119,I
ANN 53,8 64,1 84,0 89,8

Table 9.2: Evaluation of dedicated ML algorithms after removing non natural deaths. Errors are measured in hours (hrs).
For the upper bound (see also Tab. 9.1) models are trained only on source and tested on target data afterwards. For
the lower bound dedicated models are trained on target training data and evaluated afterwards with test target data. All
scores are mean values for 5-fold CV.

Depending on the adaptation approach applied a) one either has the model directly involved
in the training where both source and target data gets mapped into a latent space, b) after
the domain alignment for both domains has happened a model is trained on both aligned

source and aligned target data, or c) the dedicated model is fixed and the alignment happens

183



only for the target domain such that the existing model can be reused.

Next, results for DBAM and DBACS are presented. DBACS is best suitable since the un-
paired setting is fitting for the PAM task at hand from theoretical perspective. The evaluation
results are presented in table 9.3 for RUL prediction accuracy using MAE and 9.4 for FID
comparison. An overview of all folds and CV deviations for DBAM and DBACS is given in
Figure 9.18.

Evaluation of DBAM and DBACS for aligned target

Target domain
Train (MAE) Test (MAE)
Lower bound 53,8 64,1
Upper Bound 84,0 89,8
DBAM 27,8 78,7
DBACS 16,9 78,6

Table 9.3: Source and aligned target data training and test MAE average over 5-fold CV. RUL prediction models are
trained only on source data and evaluated on test data. Target data is mapped to source domain using trained aligner F
from DBAM respective DBACS and evaluated after the mapping using the RUL prediction model trained on source.

FID evaluation of inner and outer domain distance

H Source ‘ Target
Inner Domain 0,4 ‘ 0,4
Train ‘ Test
Outer Domain 2,0 2,3
DBAM 0,2 0,9
DBACS 0,3 0,9

Table 9.4: FID evaluation of inner and outer domain distance on train and test data before and after the alignment on
average over all 5-fold training runs for source and target.

Scatter plots including RUL prediction true versus predicted for upper limit (no alignment)
from DBAM and DBACS are depicted in Figure 9.11.



LR

LASSO

XGB

o ¥ % 8 & B B &

CNN

ATT

LSTM

Figure 9.10: True vs. predicted scatter plot for dedicated benchmark source models. Scatter plots representation of RUL
prediction true versus predicted for all used models and best performing fold. Left column presents results for training
data and right column results for test data. The models are presented in the following order: Linear Regression, Lasso
Regression, XGBoost, 1IDCNN, 1DCNN + Attention, LSTM. ANN is presented in Figure 9.9. RUL is measured in hours
(hrs).

185



*(s4y) sdnoy ul paunseaw 1 JNY “6'6 24n3i4 ul
pajuasaud osje s ejep NNV 'SOvda Suisn pausile NNV ‘INvEd Suisn pausije NNV ‘924n0s uo pauies} Ajuo NNV :49pJo Suimo|jos ay3 ul pajuasaid e s|apow ay] ‘elep 3s9)
3ujuleu} 404 S3INSaJ UWIN|0d JY31J4 pue elep }23.e3 3uluies) Jo) S3NSaU sjuasald uwnjod Y7 *ploJ Sujwioiad 1594 104 SOVEQA PUe INVEA YHM Juswudije Joale pue 31049q NNV 404
paja1padd snsuaA anJj uoldipald 1Ny Jo uonejuasaidai sjold Jo13eds -Juawusije 191 e pue a10j2q SOV Pue INGVYAd NNV 404 s1o|d uanjeds pajdipald snsian and) :TT 6 24nSi4

s ues wn e

sovdd

(520) 333p vou sun

§
(50 92329 eou aun
8

ooor

35 vie

w5358,

sunyes

s

T 55: Y o
g : .

§

Wvdd

&
(510 Dapp vou 2w

8

ooor

oozt

ws3saL 385 vieaL,

s ues

AR

_,.
\

s ues

oot

n

&
o
8

feepe 395 view

186



The prediction MAE is reduced, bringing the MAE down to usable levels. FID scores
confirm the alignment. Distribution alignment is also supported by T-SNE plots shown in
Figure 9.12. T-SNE gives a visual comparison of the two domains based on KL-divergence.
All plots are done using the aligner F to map all target features to the source feature space,
butin different stages of the alignment process: Top row shows features without usage of the
aligner, bottom row shows after the DA with DBAM is done. An increased domain overlap

is visible.

TRAINING DATA TEST DATA

target data not aligned

50 A iﬂ ’ source data ) -
51 Wy 1 ““E g
25| QN 1 o, S

50 1 “f‘ﬁ‘.ﬁ- +  target data not aligned «m
e 1 source data o+
=75 T T T T T T T T T T T T
75 1 )
» 4 + target data aligned
50 _‘f- source data

% T . 1 i >l | Lunpais &
el R o

-~ - R
0 . 4 i - .t
(’,‘-. - - ‘-y =7 y r
- reRET L F 1 e €
: ~ T target data aligned Mefl? 4
=50 - ] 1 9 gned'te
y source data
-75 T T T T T T r T T T T T T T
-60 -40 -20 0 20 40 =] -60 -40 -20 0 20 40 60

Figure 9.12: T-SNE visualization before and after alignment with DBACS. Graphical t-SNE representation of source and
target domain in different stages of the alignment process: Top row shows features without usage of the aligner, bottom
row shows after the DA with DBACS is done. The source is colored in blue and contains data from equipment group 1,
the target is colored red and contains data from the equipment group 2. The axes are dimensionless. The effect of the
adaptation of the input features after DBACS is applied during training: The adaptation brings the distributions of source
and target domain closer and target overlaps source domain after the alignment.

The advantage of DBAM respective DBACS is used to compare input features before and
after the alignment. A visualization of the aligner output is presented in Figure 9.13. The
aligner set up enables interpretability as well as a comparison between source and aligned tar-
get features. The histogram of example features from test data before and after the alignment
are shown for example features, where source data is plotted in red and target data in blue
and the aligned target data in black. The alignment is visible through different kind of shifts:
the shape and the scale of the histogram is adapted.

187



= source data 700 = source data

EE target data W target data
m target data aligned

600

W target data aligned

= source data = source data
= target data 2000 | wum target data
EE target data aligned 1750 | mm target data aligned

1500
1250
1000

&
=

(c) (d)

050
075
100

S 5 =
5 & g
$ ¢ S

Figure 9.13: Aligner histogram for feature visualization before and after alignment with DBACS. Graphical representation
of the histogram of features respective keynumber of both source and target and before and after the alignment with
DBACS. A shift in shape and scale of the histogram is visible. The source is marked red, the target blue and the aligned
target black. The graph shows test data from one one fold.

9.4 IMPERFECT DATA

In this section we present evaluation results from selected benchmark models and discuss
their performance. A main focus for this discussion is the data itself since the interpretation
of the performance error is not always straight forward and often process or equipment ex-
pert revision is recommended. The given explanations shall point out different modeling

aspects crucial for a successful PAM prediction system, decision making and roll out.

FEATURE-BASED BENCHMARK MODELS

Feature-based methods are already successfully applied to PAM as discussed in the literature
section above. Introducing fast and easy to interpret DA based on classical methods can
speed up the transfer, support acceptance and enable fab wide model scalability. Table 9.5
shows the average s-fold CV results for all selected benchmark methods with LR as baseline
method.

188



Evaluation of feature-based domain adaptation on linear regression model

Source domain Target domain
Train (MAE) | Test (MAE) | Train (MAE) | Test (MAE)

Upper bound 41,2 57,9 106,7 119,1
TCA s 72,4 7957 117,0 113,9
TCA 10 57,0 73,2 154,5 162,9
TCA 20 48,6 75,4 228,6 241,2

CORAL 40,4 62,0 103,1 95,5
SA 41,2 57,9 101,0 104,8

Table 9.5: Feature-based domain adaptation for source and target data. Training and test MAE average over 5-fold CV is
given. RUL prediction models are trained both on features generated by mapped source and target data and evaluated
on new features from mapped test data. Task model is a linear regression.

Table 9.5 shows that COR AL slightly improves the target accuracy based on MAE over all
lives while keeping the source accuracy comparably low. Figure 9.14 supports those improve-
ments visually for CORAL but also shows some improved fits for TCA, especially TCA s
with s latent features and TCA 10 with 10 latent features, for target lives. For avoidance
of unpredicted failure and machine breakdowns, the samples at the end of a life are more
important and are getting special attendance when evaluating a model accuracy. Therefore
even if the numbers for SA look good, it still underestimates RUL over the whole period of
a life and especially towards the end. TCA (5,10 and 20) are able to give good predictions
towards the end of a life. Nevertheless, they have a big prediction offset at the beginning of

almost all lives.

For the results of benchmark models applied together with ANN the already existing
ANN based prediction model is reused. Table 9.6 shows the average s-fold CV results for all
selected benchmark methods with ANN.

189



Evaluation of feature-based domain adaptation on ANN model

Source domain Target domain
Train (MAE) | Test (MAE) | Train (MAE) | Test (MAE)

Upper bound 42,2 56,3 84,0 89,8
TCA s 84,3 83,0 102,4 10452
TCA 10 7553 77,8 113,8 95,8
TCA 20 69,1 74,5 104,9 96,8
CORAL 97,0 108,0 133,7 136,3
SA 71,9 83,2 97,1 94,0

Table 9.6: Feature-based domain adaptation for source and target data. Training and test MAE average over 5-fold CV is
given. RUL prediction models are trained both on features generated by mapped source and target data and evaluated
on new features from mapped test data. Task model is ANN.

None of the methods are able to improve the performance compared to the upper bound.
Figure 9.14 shows the corresponding scatter plots. It can be seen that the methods with
dimension reduction suffer from information loss leading to noise introduction to the pre-
dictions and hence higher source test errors. SA performs well from visual perspective, fitting
all target lives except one (thatleads to the high MAE) very good. COR AL shows a tendency
towards overestimating RUL that is especially critical when a conservative maintenance pol-
icy is applied. None of the benchmark models are able to achieve better or even comparable
results to DBAM and DBACS (see again Table 9.3). An overview of all folds and CV devia-

tions for feature-based DA models is given in Figure 9.18.

INSTANCE-BASED BENCHMARK MODELS

Instance-based models like ensemble learning and sample weighting show promising results
when applied to industrial settings as discussed in the literature section. Table 9.7 shows the
average s-fold CV results for two selected benchmark methods NN'W and TrAdaBoostR2
with LR as baseline method.

Evaluation of instance-based domain adaptation on linear regression model

Source domain Target domain
Train (MAE) | Test (MAE) | Train (MAE) | Test (MAE)
Lower bound 41,2 57,9 106,7 119,1
NNW 67,1 76,7 132,4 137,5
TrAdaBoostR2 52,6 57,7 60,9 70,9

190




Table 9.7: Instance-based domain adaptation for source and target data. Training and test MAE average over 5-fold CV
is given. RUL prediction models are trained both on weighted samples of source and target data. Task model is a linear
regression.

Table 9.7 shows that TrAdaBoostRz2 is significantly improving the target accuracy based
on MAE over all lives while keeping the source accuracy stable. Figure 9.16 supports those
improvements visually for TrAdaBoostRz2. All lives of the target test set are adapted if nec-
essary and improved accuracy are visible especially towards the end of a life that is the most
critical phase. While NNW is decreasing accuracy for both source and test set, visually it can
be noticed that despite adding noise in the source test prediction, some target test lives show
an overall improved fit.

For the results of benchmark models applied together with ANN the already existing pre-
diction model is reused. Table 9.8 shows the average s-fold CV results for the two selected
benchmark methods trained together with ANN.

Evaluation of instance-based domain adaptation on ANN model

Source domain Target domain
Train (MAE) | Test (MAE) | Train (MAE) | Test (MAE)
Lower bound 41,2 57,9 106,7 I119,1
NNW 41,3 56,9 87,5 92,7
TrAdaBoostR2 47,9 59,0 74,8 79,7

Table 9.8: Instance-based domain adaptation for source and target data. Training and test MAE average over 5-fold CV
is given. RUL prediction models are trained both on weighted samples of source and target data. Task model is ANN.

Both NNW as well as TrAdaBoost shows an improved target train and test accuracy. For
the visualization in Figure 9.17 fold2 is chosen that does not show much difterences when
compared to the upper bound. Nevertheless, for TrAdaBoost other folds show improve-
ments and a significantly decreased variation between the folds. Since for NN'W;, the results
vary between folds stronger than before and show higher variation, the stability of NN'W
is in question for ANN. An overview of all folds and CV deviations for instance-based DA

models is given in Figure 9.18.

CONCLUSION

PdM is a very complex task with a large set of influential factors hence modeling decisions
that need to be made including the ones mentioned in [209]:

There exists two type of sensors:

191



(i) inputsensor;

(ii) feedback sensor.

While feedback sensors are the one that are not controlled by recipe and therefore most
interesting to hint toward changed conditions and degradation, the input whose values are
keptata certain level, can also be of high interest when it comes to the different recipe settings
and influences. Hence keeping both feedback but also input can provide for example info
about the degradation speed of specific feature settings. But it also needs specific attention
in their preprocessing meaning removal of the recipe effect as shown earlier to avoid misin-
terpretations of jumps, peaks or drops due to a recipe change. A powerful feature selection
can also enable usage of simpler, lower dimensional methods, as presented for example by Lu

etal. [138].

There exists more than one function to define labels. This leads to different modeling
assumptions depending if degradation start is put right at the beginning of a live or a separate
step is necessary for its detection; meaning defining a constant RUL at the beginning of
each live for a certain time span (that also needs to be defined). There are three ways to

accommodate to this scenario:
1. using a piecewise affine linear target function as described in Figure 9.1;

2. upstream a classifier before the RUL prediction model that detects start time of degra-
dation as shown for example in [218] (as alternative you could create a input feature
that takes care of this [96]);

3. weighting your samples accordingly so that the samples closer to the end of a live are
predicted with best possible accuracy while some error at the beginning can be toler-
ated.

The latter fits to the idea to apply instance-based DA methods to focus on a best possible

transfer towards the end of the target lives.

More complexity is added by different failure mode and the task to distinguish them based
on the data at hand. Run-to-fail is not a common practice hence lives are corrupted. There-
fore, adding more lives means adding additional equipment to the data that could lead again

to new phenomena.

192



Last but not least the decision if a RUL PdM model is acceptable and scalable or not is
mainly based on use case focus and specifications: For uptime and utilization focused use
case the ratio between process duration, process time and RUL is a key factor. For a resource
planning use case RUL is an additional input factor that needs to be considered besides op-
erator availability, machine utilization, order fulfillment, dedications, spare part inventory
and more. Under certain circumstances a overestimation of RUL can be tolerated. For a
avoidance of destruction use case a very conservative approach is preferable. Run to fail and
further destruction of product avoidance has highest priority and underestimating RUL is

acceptable for a prediction model.

193



TCAj

TCA1o0

TCA20

CORAL

SA

Figure 9.14: True vs. predicted scatter plots for feature-based domain adaptation models with LR before and after align-
ment. Scatter plots representation of RUL prediction true versus predicted for LR before and after alignment with feature-
based benchmark models for best performing fold. Left column presents results for source test data and right column
results for target test data. The models are presented in the following order: Upper bound LR without alignment, LR
aligned using TCA with latent space dimension 5, 10, and 20, LR aligned using CORAL and LR aligned using SA. RUL is
measured in hours (hrs).

194



UB

TCAj

TCA1o0

TCA20

CORAL

SA

Figure 9.15: True vs. predicted scatter plots for feature-based domain adaptation models with ANN before and after
alignment. Scatter plots representation of RUL prediction true versus predicted for ANN before and after alignment
with feature-based benchmark models for best performing fold. Left column presents results for source test data and
right column results for target test data. The models are presented in the following order: Upper bound ANN without
alignment, ANN aligned using TCA with latent space dimension 5, 10, and 20, ANN aligned using DeepCORAL and ANN
aligned using SA. RUL is measured in hours (hrs).

195



UB

NNW

TrAdaBoostR 2

Figure 9.16: True vs. predicted scatter plots for instance-based domain adaptation models with LR before and after
alignment. Scatter plots representation of RUL prediction true versus predicted for LR before and after alignment with
instance-based benchmark models for best performing fold. Left column presents results for source test data and right
column results for target test data. The models are presented in the following order: Upper bound LR without alignment,
LR aligned using NNW and LR aligned using TrAdaBoostR2. RUL is measured in hours (hrs).

196



UB

NW

TrAdaBoostR2

Figure 9.17: True vs. predicted scatter plots for instance-based domain adaptation models with ANN before and after
alignment. Scatter plots representation of RUL prediction true versus predicted for ANN before and after alignment
with instance-based benchmark models for best performing fold. Left column presents results for source test data and
right column results for target test data. The models are presented in the following order: Upper bound ANN without
alignment, ANN aligned using NNW and ANN aligned using TrAdaBoostR2. RUL is measured in hours (hrs).

197



180,0

160,0

140,0

120,0

100,0

0,0

250,0

200,0

150,0

100,0

Source Test (MAE in hrs)

W upperdound B NNW [l TrAdaBoost [ TCAS M TCA10 M TCA20 M Coral M SA DBAM M DBACS

u *

(a)
Target Test (MAE)

&

M UpperBound [ NNW Il TrAdaBoost [ TcAS M TCA10 M TCA20 M Coral M SA [ DBAM M DBACS

ii,g-! i

(b)

Figure 9.18: 5 fold cross validation model error for prediction including all DA models after alignment. 5 fold cross
validation results to present inner model variance and overall stability of all presented domain adaptation models. Panel

(a) shows test results of the source test domain and panel (b) the test results of the target test domain after domain
adaptation is applied.

198



10

Defect Classification (DC)

Detecting and classification of different defects on the wafer is one of the most important
mechanism for assuring highest quality and early as possible identification of faulty or mal-
functioning products and hence increased overall yield. Starting from rule-based systems
as described in Chou et al. [41] or template respective golden wafer based detection as in
Shankar and Zhong [181]. With the introduction of convolutional neural networks (for an
overview see for example Albawi et al. [2]) including powerful architectures able to classify
complex data sets including versatile classes, literature shows tremendous success in fully au-
tomated defect detection and classification based on transfer learning (Yosinski et al. [226])

also in industrial settings ( Zhu et al. [240]).

The results presented in this chapter are obtained in collaboration with University of
Bologna, Department of Computer Science and Engineering, Prof. Dr. Samuele Salti and

Adrian Poniatowski. A manuscript submitted for publication is not yet published.

10.1 INTRODUCTION

While human inspection/classification for process control in semiconductor manufacturing
was heavily employed in the past, automatic modules are nowadays particularly appealing for
both performance and costs related reasons. The availability of pretrained models and the

application of transfer learning methods has tremendously changed and improved the field

199



of computer vision over the last decade. By applying such tools, industry 4.0 applications
like defect classification, holds great success even in the presence of limited amount of avail-
able data. Besides machine learning-based solutions to automate such procedure ([4, 80]),
semiconductor manufacturing heavily leveraged the advancement of deep learning (DL) in
the field of computer vision. Thanks to Convolutional Neural Networks (CNN) and to
many algorithmic advancements, automatic defect classification has become cost-effective
and widely adopted to bring classification performances to the next level.

Nevertheless, in order to enable fab wide usage of those highly automated classification
models, deployed methods need to be transferable and applicable when confronted with new
optical properties and different image structures aroused from technological diversity as well
as reoccurring production steps in different stages of the manufacturing process, see Figure
2.6 and depicted defect images. Hence, this existing high data complexity demands more
effort and research in the field of scalability when it comes to limited or missing labels and
diverse and complex image content. This aspect of existing differences in data distributions,
plus given the abundance of unlabeled data in modern manufacturing environment, repre-
sents a challenge but also an opportunity to exploit the full potential of all collected data

hence fab wide therefore scalable installation of automated defect classification.

Here, we address those issues and exploit transfer learning methods unified with un- and
semi-supervised learning. The upcoming sections are structured in the following way: First
use case specific literature is covered. Then, the use case defect classification for SEM images
with diverse background pattern is introduced. Data preparation followed by the experimen-
tal design is explained. The focus shifts towards benchmark models with pseudo-labeling
and AdaMatch. Then, DBACS set up as well as metrics and losses are defined. After pre-
senting model details and hyperparameter choices, the results are presented and discussed.
The use case is closed with a discussion on influence of data augmentation as well as distri-

bution alignment within AdaMatch inspired by [153].

10.2 LITERATURE

Literature about image classification in semiconductor manufacturing mainly covers two

areas:

* image defect classification, where images, like SEM images, are taken at relevant spots
in the wafer and classified into a-priori known defects. For a visualization of that pro-

200



cess see SEM image in Figure 2.6;

* wafer level/wafer-map defect pattern classification, describes a map of the wafer where
pre-identified anomalies/potential defects have been already identified and the task is
to classify such maps w.r.t. known defect patterns (see defect map in Figure 2.6).

Some research focusing on wafer-level wafer map defect classification and defect pattern
classification were published in the last recent years, eventually also driven by the wafer map
dataset WM-811k made publicly available by Wu et al. [217]. In Nakazawa and Kulkarni
[151] binary codes for wafer maps were generated by employing CNN and used for wafer-
level defect pattern classification. Kyeong and Kim [119] builds an individual CNN-based
classifier for each defect class: if two defect patterns coexist, two classification models are
expected to detect them, while the other models won’t notice them. In Yu et al. [229] an
architecture with a 8-layer CNN model to inspect wafer map defect and a 13-layer model
to classify defect patterns is proposed, while in Jin et al. [104] the authors a DBSCAN-like
method that allows to perform outlier detection and defect cluster pattern extraction at the
same time. In Saqlain et al. [174] the authors proposed a voting ensemble classifiers with
multi-types features (as described by the authors, density-, geometry-, and radon-based fea-
tures) to identify wafer map defect patterns. Hsu and Chien [94] confirms the power of
ensemble learning using CNN for complex defect wafer map classification. In Santos et al.
[173] authors showed how data-driven deep generative model can outperform classical ap-
proaches if enough data is available.

In Yu etal. [228] a semi-supervised deep transfer learning algorithm is proposed: the pre-
sented approach uses CNN to extract transferable features of wafer maps and then intro-
duces a multilayer domain adaptation and pseudo-label learning block based on the genera-
tive adversarial network (GAN); with this procedure the authors are able to reduce the distri-
bution discrepancy and the among-class distance of the transferable features. Lu etal. [139]
presents another GAN inspired approach using pix2pix (presented by Isola et al. [99]) to deal
with class imbalance in defect inspection in industrial settings. Another semi-supervised ap-
proach has been presented in Kong and Ni [116] where a ladder network and a variational
autoencoder are adopted to classify wafer bin maps: in the proposed approach, the authors
also exploit active learning and pseudo labeling. In Shim et al. [184] another active learning
framework is proposed by the authors to allow the defect pattern classification system to im-

prove over time thanks to the availability of new samples.

201



With regards to the first listed category image defect classification, literature has been typ-
ically focused on SEM images; the introduction of deep learning based approaches have
helped to drastically reduced the amount of time spent by human operators in manually
tagging images Imoto et al. [97]. It also shows that CNN-base transfer learning methods
can classify microscopic defect images with high accuracy hence shows the efficacy of CNN
applied to chip-level defect image data. In Schlosser et al. [177] authors proposed a stacked
hybrid Convolutional Neural Networks (CNN) that exploits modern approach of attention
mechanisms. Also in this case, CNN and deep learning approaches are the typical choice
Cheon et al. [38], O’Leary et al. [155] for performing the classification task. Cheon et al.
[38] additionally demonstrates that a single convolutional neural network model can extract
effective features for defect classification without using additional feature extraction algo-
rithm. Two publications exploiting pseudo-labeling in the are of defect classification are Liu
etal. [135] and Lietal. [130]. However only few works apply deep architectures in this con-
text; while, for example, models like InceptionV'3 by Szegedy et al. [196] are tested by Lee

and Lee [124] for similar tasks.

10.3 DEFECT CLASSIFICATION (DC) FOR SEM IMAGES WITH DIVERSE BACKGROUND
PATTERN

DATA PREPARATION

The data described in this section and used in the experiments is composed by SEM images.
An introduction into metrology and especially defect control is given in Part I, Chapter 2,

Section 2.3,

The data includes different predefined product technologies that are characterized by dif-
ferent backgrounds on which the defects lie. Only defects are selected that can occur on
multiple product technologies due to overlapping production steps. Therefore a subset of

the classes is chosen and occurring defects are merged into two final classes:
* points;

* particles.

A particle defect is characterized by some kind of foreign particle, like for example dust,

that is present on current surface layer of the wafer. Some particles are presented in the first

202



row in Figure 10.1. Point defects are impurity of the layer material and can disturb physical
properties like for example electrical conductivity of the wafer. Some points are presented in

the second row in Figure 10.1.

Three different product technologies presenting 3 different image backgrounds are se-
lected based on availability of training data. 3 domains are defined based on the correspond-
ing product technologies: images in domain o present a plain, unstructured background;
images in domain 3 have horizontal lines in the background; images in domain & exhibit
square-like shapes of different size and location in the background. Example images of de-

fect classes including diverse background pattern are presented in Figure 10.1.

(d)

Figure 10.1: Visualization of defect images. Image examples of particle a), c), €) (left column) and point b), d), f) (right
column) defects for each of the domains. First row shows domain O with plain, unstructured background, second row
shows domain 3 with horizontal lines in the background and third row shows domain 8 with squared structures in the
background.

The number of images per class and domain are shown in Figure ro.2. Class distribution

is balanced for domain o and 3 but imbalanced for domain 8.

203



Il particle
EEE point

number of images

0 3 8
domain

Figure 10.2: The number of images per class and domain. Class distribution is balanced for domain 0 and 3 but imbalanced
for domain 8.

We are going to simulate unsupervised domain adaptation (UDA) as well as semi-supervised
domain adaptation (SSDA). To simulate an UDA scenario a source domain is selected and
assumed to be fully supervised hence all available labels are considered during training. One
of the other domains is selected as target domain and all available labels are ignored and not
used for training. For example, for UDA from domain o to 3, the labels of the data from
domain o are considered, while those from domain 3 are ignored. In the SSDA scenario a
predefined percentage of data from the defined target domain, for example 5% of images for
each class, is selected as labeled. Those target data labels are also used during training. For

evaluation of model accuracy, available labels in the corresponding test data sets are used.

EXPERIMENTAL DESIGN

For all the experiments only labeled data is used. This means that in the UDA and SSDA
scenarios a part of the labels are ignored, for example the labels of the whole train set of
the target domain in the case of UDA. The data sets of the three domains were split into
folds and all the experiments evaluated with a s-fold cross validation. Grayscale images of
shape 128x128 were used. All the models are implemented in Python by using Tensorflow

(Abadi et al. [1]), with the exception of the AdaMatch model which was implemented in

204



JAX (Bradbury et al. [22]), by using its authors’ original implementation.

BENCHMARK MODELS

For training the baseline models a pretrained (on ImageNet) MobileNetV2 [172] architec-
ture is chosen. The same model is used for all models and trainings. Pseudo-Labeling includ-
ing online as well as offline training and AdaMatch are selected since they are state-of-the-art
in unsupervised domain adaptation right now. All benchmark models are described in Chap-
ter 6. DBACS (see 5) is selected for unpaired image alignment and used in semi-susupervised

as well as unsupervised fashion.

METRICS AND LOSSES

For pseudo-labeling and AdaMatch the classifier loss is defined as the categorical cross en-

tropy loss with softmax output.

For DBACS, the different parts of the final loss function used for trainingare defined as

follows:

* The classifier loss is the categorical cross entropy loss. For semi-supervised learning, it
supports task specific alignment of target data;

* for the adversarial loss applied on both discriminator outputs we use KL divergence.
This is the original loss function used in GAN [75] and in DANN [68] for classifi-
cation. Feature matching (FM) loss inspired from [72] added to the adversarial loss.
Itis introduced in order to encourage aligned and original samples to produce similar
activation at each layer of the discriminator instead of just output layer. We follow the
notations given in Chapter 5. Then FM is defined for discriminator A and B as as

Lina(F D) = 2= S Jau(Xs) ~a FED)E (ro)
=1

Liny (6. D) = 2= S Jau(Xe) —a(GXE (102)
=1

where a; € D 4 represents the raw activation of the [th layer of the discriminator D 4,
and n is the total number of discriminator’s layers including output.

* For improved alignment, cycle consistency loss and identity loss are defined as L,
norm and added to both aligner trainings. To preserve the most important informa-

205



tion by better preserving features visible to humans rather than noisy, high frequency
information, SSIM loss is added in addition to the cyclic loss. KL and SSIM are fur-
ther described in Section 7.

MoODELS AND HYPERPARAMETER

In order to avoid bias caused by particular splits, a cross validation (CV) method is applied.

5-fold cross validation is used for comparing different domain adaptation approaches.

For all models a classifier model needs to be selected. Therefore, a pretrained (on Ima-
geNet) MobileNetV2 [172] architecture is chosen as classifier model for training all models.
The MobileNetV2 is chosen because of its compactness and its computational efficiency,
thanks to the usage of inverted residual blocks with depthwise separable convolutions. The
model was created by loading the feature extractor part of MobileNetV2 without the classi-

fication head. The following changes are applied:

* A binary classifier head suitable for the task at hand is attached, made by one dense
layer;

* The network is pretrained on colored images hence build with a 3-channel input and
a specified shape (e.g. 128,128,3). Since the defect images are grayscale and it is more
convenient to work with one channel only, a Conv2D layer with 3 filters was added on
top as firstand new inputlayer; itsinput has shape (128,128,1) and output (128,128,3).

For pseudo-labeling the following settings are installed:

* The offline self-training models are trained with the same hyperparameters as the clas-
sifier baselines with a confidence threshold 7 = 0.9 for a total of N = 10 iterations.

* The online self-training models are also trained with the same hyperparameters as the
classifier baseline models with a confidence threshold 7 = 0.9, unlabeled to labeled
sample ratio is set to r = 3.

For AdaMatch models are trained with the same MobileNetV2 architecture as the classi-

fier baseline models. The following hyperparameter are set:

* aconfidence threshold 7 = 0.9 and unlabeled to labeled sample ratio is set to 7 = 3,

206



* for training a weight decay of 0.001, a learning rate of 0.0002, a batch size of 64 is
chosen.

This means that at each of the training steps the mini-batch would be composed of 64
source images and 64 * r target images. Given the limited amount of data, the models are
trained for 1M images, instead of the 8M suggested and used in [19]. Hence with a total
batch size of 64 * 3 = 256, the training lasts for 16 epochs, with 256 steps per epoch.

In order to compensate for the reduced training time, the weight of the unsupervised loss
is also adapted, to prevent too much weight to the unsupervised loss too early in the training.
The total number of steps used in the calculation of the weight of the unsupervised loss is
defined as if the model is trained for 8M images. This results in a slowly growing value of the

weight as shown in Figure 10.3.

1.0 — complete
—— slowed

0.8 1

0.6 1

0.4 1

0.2 A

0.0 1

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
le6

Figure 10.3: AdaMatch schedule of the weight of the unsupervised loss. Progress of the original schedule of the weight of
the unsupervised loss (‘complete (1 schedule’) as presented in [19] and the adapted one ('slowed 1t schedule’) in AdaMatch.

The final models are trained with no distribution alignment, as the label distribution of
the target domain data is unknown for unsupervised learning.
In AdaMatch, each source and target image is augmented both in a weak and in a strong

way:

* The weak augmentation is defined by a horizontal flip, or mirror. This means that
each weakly augmented image is randomly horizontally mirrored with a certain prob-

ability.

207



* Thestrongaugmentation is given by CTAugment [17] applied on top of the same hor-
izontal flip. CTAugment is based on AutoAugment [47], it randomly selects transfor-
mations for each sample and learns the magnitudes of each individual transformation
on-the-fly. In particular, given a collection of transformations (augmentations), each
sample of a mini-batch is augmented with a pipeline consisting of two transformations
which are randomly and uniformly sampled; Cutout [53], by a square as big as 1/4
of the image size by 1/4 of the image size, with an area of 1/16 of the total area, is ap-
plied on top of the two augmentations, as can be seen in Figure 10.4. The magnitude
of each transformation is first chosen randomly and then updated according to how
close model’s predictions are to the true labels. The set of augmentations is given by:
autocontrast, brightness, color, contrast, cutout, equalize, invert, identity, posterize,
rescale, rotate, sharpness, shear_x, shear_y, smooth, solarize, translate_x, translate_y.

The DBACS classifier is trained with the same MobileNetV2 architecture as the classifier
baseline models. Afterwards the classifier weights are frozen. The other parts are chosen as
follows:

* Bothaligner models have a U-Net [167] like architecture taken from [99] and adapted
to work with image size 128x128. It has one less downsampling/upsampling layer and
does not apply cropping after the second upsampling layer, in order to maintain the
same output size as the corresponding downsampling layer, so that the skip connec-

tion could be applied.

* The architecture for both discriminator models is taken from [72]. Itimproves Cycle-
GAN’’s shape deformation by introducing dilated convolutions, often used in seman-
tic segmentation: this allows the discriminator model to have a bigger receptive field
with respect to the input image, at the same cost of a convolution with a much smaller

filter.

The adversarial training of discriminators and aligners is carried out with a training ratio of
r = 2 in favour of the discriminators. The batch size is 64 * 2 = 128, the learning rate I =
0.00005, Adam the optimizer and the number of epochs is 300. An epoch has as many steps
as N/batch_size where N is the number of images in the training target domain data set.
No early stopping on a validation set is applied since the loss converges. The weights assigned
to the different loss terms are set inspired by the descriptions in [72]: Aee = 1.0, Aggy =
0.5, Aeyete = 0.3, Xig = 0.2, A gy, = 0.0. FM loss is dismissed due to no visible impact.

REsuLTs AND DiscussioN

The baseline models accuracy are summarized in Table ro.1. The out-of-domain accuracy

of the baseline model trained on domain o represent the lower limit tor UDA with domain o

208



()

Figure 10.4: Visualization of augmented defect images. Examples of AdaMatch strongly augmented images with CTAug-
ment for (a) domain O, (b) domain 3 and (c) domain 8.

209



as source domain. This means that the DA models should improve the accuracy on domain

3 and 8 in order to be considered successful.

Baseline models accuracy without alignment

Training domain | Domain o Domain 3 Domain 8

o) 94.26+0.68 | 77.82* 4.91 | 61.84 % 3.15

3 68.58 £3.47 | 92.56*0.75 | 53.50 £ 4.39

8 84.88t3.24 | 83.46 % 4.87 | 90.40t 2.01
o+5%3 94.90 £ 0.61 | 86.5612.98 | 64.46 % 1.98
o+5%8 94.38 £ 1.04 | 80.54t5.31 | 83.00 £ 3.06
o+3 94.48 £ 1.56 | 91.04 £ 1.06 | 67.66 + 3.56
o+38 94.58 £ 0.95 | 83.26t2.17 | 91.30 £ 2.71

Table 10.1: Baseline models accuracy without alignment. The first column denotes the domain of the train data, the
remaining columns the mean 5-fold cross validation accuracy on the corresponding test set and its standard deviation.

Two explainable approaches are presented to better understand the influence of the back-
ground towards classification of the baseline models. First, Grad-Cam (Gradient-weighted
Class Activation Mapping) by Selvaraju et al. [179] uses the gradient information of the last
convolutional layer to highlight most important neurons and hence areas of the image. Fig-
ure 10.5 shows Grad-Cam visualization for point defects for models trained on domains o,
domain 3 and domain 8 (left to right, first image presents the original image) while rows are
point defect image examples from domain o (a), domain 3 (b) and domain 8(c). Second,
SHAP (SHapley Additive exPlanations) by Lundberg and Lee [140] measure the influence
of data points to the classification outcome by measures of game theory. Figure 10.6 shows
SHAP used for visualization for point defects for models trained on domains o, domain 3
and domain 8 (left to right, first image presents the original image) while rows are point de-

fect image examples from domain o (a), domain 3 (b) and domain 8(c).

The results for unsupervised domain adaptation for different selection of source domain

are presented in Table 10.2 (domain o), Table 10.3 (domain 3) and Table 10.4 (domain 8).

210



real label: point
cl_0: point (prob. 1.00) cl_3: point (prob. 1.00) cl_8: point (prob. 1.00)

()

real label: point
cl_0: particle (prob. 1.00) cl_3: point (prob. 1.00)

.

(b)

a

cl_8: point (prob. 1.00)

real label: point
cl_0: particle (prob. 1.00) cl_3: particle (prob. 1.00)

cl_8: point (prob. 1.00)

()

Figure 10.5: Grad-Cam visualization of dedicated classifier. Grad-CAM visual explanations on domains O, 3 and 8. The
first image represents the original image, while the remaining images are the plots of the Grad-CAM visual explanations
with respect to the models trained on domain 0, 3 and 8, and the respective predictions. (a) shows an image example
from domain 0, (b) from domain 3 and (c) from domain 8.

Evaluation of UDA for target domain - source domain o

oto3 oto8
lower limit | 77.82 % 4.91 61.84 £3.15
DBAM 81.90 £ 2.46 66.90 £ 5.19
Offline ST | 79.02 £5.27 61.18 £ 6.34
Online ST | 74.18 £ 8.34 61.10% 3.22
AdaMatch | 87.46 t 2.00 82.34t1.78
Oracle 91.04 t 1.06 91.30 £ 2.71

211



real label: point
cl_0: point (prob. 1.00) ¢l_3: point (prob. 1.00) cl_8! point (prob. 1.00)

IS C
I 1 I
-0.002 -0.001 0.000 0.001 0.002
SHAP value

(a)

real label: point

cl_0: particle (prob. 1.00) cl_3: point (prob. 1.00) cl_8: point (prob. 1.00)
- R g
B
i | ; I I
-0.0015 -0.0010 -0.0005 0.0000 0.0005 0.0010 0.0015
SHAP value

(b)

real label: point

cl_0: particle (prob. 1.00)  cl_3: particle (prob. 1.00) ¢|_8: point (prob. 1.00)

)

G
&
¥ -fv ¥
I ! : J S T
-0.006 -0.004 =0.002 0.000 0.002 0.004 0.006

SHAP value
(c)

Figure 10.6: SHAP visualization of dedicated classifier. SHAP visual explanations on domains O, 3 and 8. The first image
represents the original image, while the remaining images are the plots of the SHAP visual explanations with respect to

the models trained on domain 0, 3 and 8, and the respective predictions. (a) shows an image example from domain 0, (b)
from domain 3 and (c) from domain 8.

212



Table 10.2: UDA models accuracy - source domain 0. The results are expressed as mean and standard deviation of the

5-fold cross validation accuracy.

Evaluation of UDA for target domain - source domain 3

3t00 3t08
lower limit | 68.58 £ 3.47 53.50 % 4.39
DBAM 71.68 + 2.88 56.98 £ 3.74
AdaMatch | 51.43 £ 4.75 50.18 £ 8.32
Oracle 94.48 £ 1.56 90.16 * 1.88

Table 10.3: UDA models accuracy - source domain 3. The results are expressed as mean and standard deviation of the

5-fold cross validation accuracy.

Evaluation of UDA for target domain - source domain 8

§too 8§to3
lower limit | 84.88 £ 3.24 83.46 + 4.87
DBAM 72.38 £ 3.86 68.16 £ 1.99
AdaMatch | 86.31 £ 2.63 82.93 £ 7.09
Oracle 94.58 £ 0.95 93.12 £ 0.81

Table 10.4: UDA models accuracy - source domain 8. The results are expressed as mean and standard deviation of the

5-fold cross validation accuracy.

In the SSDA scenario, all the models are trained in the same way as in the UDA scenario,

with the difference that 5% of the target domain data is treated as labeled.

Evaluation of SSDA for target domain

oto3 oto 8
lower limit | 86.56+2.98 | 83.00 % 3.06
DBAM 84.58 £5.98 | 69.36t 4.53
Offline ST | 84.40%3.12 | 80.42 % 3.32
Online ST | 86.32+t1.94 | 81.58 £1.83
AdaMatch | 87.10 £ 2.80 | 84.26 £ 1.82
Oracle 91.04t1.06 | 91.30 £ 2.71

Table 10.5: SSDA (5% of labeled data in the target domain) models accuracy. The results are expressed as mean and

standard deviation of the 5-fold cross validation accuracy.

213



The experiments show that more data are pseudo-labeled after each iteration. This means
that the model is more confident about the predictions on unlabeled target domain data as
more unseen target domain data is available for the training of the model. Figure 10.7 shows

the amount of remaining unlabeled data after each iteration during offline pseudo-labeling/
offline ST.

Figure 10.7: Visualization of remaining unlabeled data during pseudo-labeling. Offline ST - number of unlabeled data vs
iterations. The x axis represents the number of iterations of an Offline ST model while the y axis represents the number
of remaining unlabeled data after each iteration. Left side shows the labeling for domain 3 and the right one for domain
8. Source domain is domain O.

Figure 10.8 shows examples of defect images from domain 3 respective domain 8 aligned
to Domain o with DBACS in the UDA setting. Left column shows the original images, right

column the aligned images with changed background.

An important step in the pipeline of the AdaMatch model training is the distribution
alignment. The fundamental assumption behind it is that the target domain label distribu-
tion is the same as the source domain label distribution. This is true in case of domain adap-
tation from domain o to domain 3, as the classes in both domains are almost balanced, but it
doesn’thold in the case of domain adaptation from domain o to domain 8, since the label dis-
tribution in domain 8 is clearly imbalanced (see Figure 10.2). In fact, the label distributions
of domain o, 3 and 8 are, respectively, (0.529,0.471), (0.559,0.441) and (0.325,0.675).

Figure 10.9 and Table 10.6 show consistency within pseudo- label accuracy independent
of the applied distribution alignment for the o to 3 domain adaptation. For the o to 8 domain
adaptation, instead, the accuracy of the generated pseudo-labels drops significantly when
the alignment to the source “online” label distribution is applied, while the most accurate
pseudo-labels are obtained when aligning the pseudo labels to the true label distribution. A
slightly worse pseudo-label accuracy is obtained when no distribution alignment is applied

at all.

214



—_—
_—

Figure 10.8: Visualization of defect images before and after alignment with DBACS. Examples of defect images aligned to
Domain 0 with DBACS in the UDA setting. Left column shows the original images, right column the aligned images with

changed background. First two rows show domain 3 and last two rows domain 8.

Comparison of different distribution alignment methods

oto3 oto8
Source alignment 85.21 + 2.60 76.09 £ 2.44
True target alignment | 86.24 +2.64 84.20 = 1.02
No alignment 87.46 £ 2.00 82.34 T 1.78

Table 10.6: Comparison of different distribution alignment methods. The results are expressed as mean and standard
deviation of the 5-fold cross validation accuracy and represent models in case of alignment w.r.t. the model’s output on
source domain data on a single batch (source alignment), the true ('unknown in case of UDA) target distribution ('true
target alignment’) and in case of no distribution alignment ('no alignment’).

10.4 CONCLUSION

In this chapter a defect classification use case for SEM images with defects and diverse back-
ground is presented. Semi- as well as unsupervised training scenarios are covered and DBACS
as generative and adversarial approach is tested against pseudo-labeling and state-of-the-art
semi-supervised domain adaptation approach AdaMatch. All models show potential and
good performance in certain set ups while presenting lower accuracy in others due to var-

ious influential factors like image complexity, distribution alignment, number of training

215§



samples, various sensitive hyperparameter set ups and specific characteristics of each domain.

Nevertheless, the presented case study shows that improved results can be attainable espe-
cially compared to the baseline. Since it only covers binary classification task and pairwise
domain adaptation, an extension of this research is promising and straight forward. There-

fore, future development areas of this project are:

* multi-source domain adaptation [237];
* multi-target domain adaptation [71];

* extent binary to multi-class classification.

216



Pseudo labels accuracy 0 to 3 vs training time

0.95

eS~———
0.85 -
0.80 1
0.75 4 —— source alignment

—— true target alignment
—— no alignment

0.70 T T T T T

0.2 0.4 0.6 0.8 1.0

le6
(a)
0.95 Pseudo labels accuracy 0 to 8 vs training time
—— source alignment
—— true target alignment

0.90 - —— no alignment
0.80 1
0.75 A
0.70 T T T T T

0.2 04 0.6 0.8 1.0

le6
(b)

Figure 10.9: Accuracy of the pseudo-labels generated by the models. Accuracy of the pseudo-labels generated by the
models in case of alignment w.r.t. the model’s output on source domain data on a single batch (source alignment), the
true ('unknown in case of UDA') target distribution ('true target alignment’) and in case of no distribution alignment ('no
alignment’). Only one of the 5-fold cross validation curve is plotted.

217



218



Part IV

Conclusion

219






11

Conclusion

In this thesis the necessity, the possibilities but also the difficulties of scaling and generaliza-
tion of machine learning models in the context of process control in semiconductor manu-
facturing is discussed. Thanks to growing research, a broad variety of methods and models
are available to deal with automation and transfer learning and high efforts are spent to make
them usable for industry 4.0 applications.

Inspired by the need of manufacturing for a deep understanding, explainability of mod-
els and comparability of features in the context of scalability, the thesis presents DANN-
based Alignment Model (DBAM) and its extended version DANN-based Alignment with
Cyclic Supervision (DBACS) that unites an interpretable approach of domain adaptation
with (equipment) matching.

The application focus in this work is on process control, more precisely virtual metrology,
predictive maintenance and defect classification. Relevant examples for process, failure pat-
terns and data sets are selected to showcase all functionalities of the introduced methods but
also discuss encountered challenges and shortcomings or limitations when dealing with the
highest complexity of semiconductor production. Nevertheless, semiconductor manufac-
turing related descriptions presented in this thesis cannot be considered complete and the
given review only covers most important content directly related to the presented applica-
tions. All topics concerning data engineering like data collection, storage and pipelining are
also left out.

The selection of benchmark models is inspired by established statistical methods and cur-

221



rent state-of-the-art approaches presented in literature. An offline model training is executed
hence training time is not critical and therefore not explicitly discussed. Other research direc-
tions including optimal transport [165], diffusion models [54] and domain generalization

[55] presents alternative approaches and views but are outside of the scope of this thesis.

Deep learning continues to prove itself as first choice for data intensive, demanding and
complex manufacturing environments. Nevertheless, inevitable topics that come with fab-
wide roll outs and comprehensive use of DL are machine-human interaction as well as trust-

worthy, ethical and sustainable Al

222



[1]

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine
learning. In 12th Symposium on Operating Systems Design and Implementation (16),
pages 265-283.

Albawi, S., Mohammed, T. A., and Al-Zawi, S. (2017). Understanding of a convo-
lutional neural network. In zo17 International Conference on Engineering and Tech-

nology (ICET), pages 1-6.

Alipour, N. and Tahmoresnezhad, J. (2022). Heterogeneous domain adaptation with
statistical distribution alignment and progressive pseudo label selection. 52(7):8038-

80s5.

Arena, S., Bodrov, Y., Carletti, M., Gentner, N., Maggipinto, M., Yang, Y., Beghi, A.,
Kyek, A., and Susto, G. A. (2021). Exploiting 2d coordinates as bayesian priors for

deep learning defect classification of sem images. IEEE Transactions on Semiconductor

Manufacturing, 34(3):436-439.

Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training gener-

ative adversarial networks.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan.  arXiv,
abs/1701.07875.

Azamfar, M., Li, X,, and Lee, J. (2020). Deep learning-based domain adaptation
method for fault diagnosis in semiconductor manufacturing. JEEE Transactions on

Semiconductor Manufacturing, 33(3):445-453.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. a7X7v, abs/1409.0473.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic con-

volutional and recurrent networks for sequence modeling. 27X7v, abs/1803.01271.

223



[x0]

[15]

[x6]

[17]

Bashath, S., Perera, N., Tripathi, S., Manjang, K., Dehmer, M., and Streib, F. E.
(2022). A data-centric review of deep transfer learning with applications to text data.

Information Sciences, $85:498—528.

Baxter, J. (1995). Learning internal representations. In Proceedings of the eighth an-

nual conference on Computational learning theory, pages 311-320.

Bello, I., Zoph, B., Le, Q., Vaswani, A., and Shlens, J. (2019). Attention augmented
convolutional networks. In 2019 IEEE/CVF International Conference on Computer

Vision (ICCV), pages 3285-3294.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W.

(2010). A theory of learning from different domains. Machine learning, 79(1):151-

I75.

Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F. (2007). Analysis of represen-
tations for domain adaptation. In Schélkopf, B., Platt, J., and Hoftman, T., editors,

Advances in Neural Information Processing Systems, volume 19. MIT Press.

Ben-David, S. and Schuller, R. (2003). Exploiting task relatedness for multiple task
learning. In Schélkopf, B. and Warmuth, M. K., editors, Learning Theory and Kernel
Machines, pages 567—-580, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(2):281-305.

Berthelot, D., Carlini, N., Cubuk, E. D., Kurakin, A., Sohn, K., Zhang, H., and Rat-
fel, C. (2019). Remixmatch: Semi-supervised learning with distribution alignment

and augmentation anchoring. abs/1911.09785.

Berthelot, D., Roelofs, R., Sohn, K., Carlini, N., and Kurakin, A. (2021a).
Adamatch: A unified approach to semi-supervised learning and domain adaptation.

abs/2106.04732.

Berthelot, D., Roelofs, R., Sohn, K., Carlini, N., and Kurakin, A. (2021b).
Adamatch: A unified approach to semi-supervised learning and domain adaptation.

abs/2106.04732.

224



[20]

28]

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag, Berlin, Heidelberg.

Bleakie, A. and Djurdjanovic, D. (2013). Feature extraction, condition monitoring,

and fault modeling in semiconductor manufacturing systems. Computers in Industry,

64(3):203—213.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Nec-
ula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX:

composable transformations of Python+NumPy programs.
Breiman, L. (2004). Random forests. Machine Learning, 45(1):5-32.

Cao, Y., Ding, Y, Jia, M., and Tian, R. (2021). A novel temporal convolutional net-
work with residual self-attention mechanism for remaining useful life prediction of

rolling bearings. Reliability Engineering System Safety, 215.

Carletti, M., Maggipinto, M., Beghi, A., Antonio Susto, G., Gentner, N., Yang,
Y., and Kyek, A. (2020). Interpretable anomaly detection for knowledge discovery
in semiconductor manufacturing. In 2020 Winter Simulation Conference (WSC),

pages 1875-13885.

Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. d. P., Basto, J. P., and Alcald,
S. G. (2019). A systematic literature review of machine learning methods applied to

predictive maintenance. Computers & Industrial Engineering, 137.

Cerquitelli, T., Nikolakis, N., O’Mahony, N., Macii, E., Ippolito, M., and Makris, S.,
editors (2021). Predictive Maintenance in Smart Factories. Information Fusion and

Data Science. Springer, Singapore.

Chandrashekar, G. and Sahin, F. (2014). A survey on feature selection methods. Com-

puters € Electrical Engineering, 40(1):16-28.

Chapelle, O., Schlkopf, B., and Zien, A. (2010). Semi-Supervised Learning. The MIT

Press, 1st edition.

Chapman, J. and Wang, H.-T. (2021). Cca-zoo: A collection of regularized, deep
learning based, kernel, and probabilistic cca methods in a scikit-learn style framework.
Journal of Open Source Software, 6(68):3823.

225



[31]

[32]

(33]

[34]

(35]

(37]

[40]

Chen, C.-H., Zhao, W.-D,, Pang, T., and Lin, Y.-Z. (2020). Virtual metrology of
semiconductor pvd process based on combination of tree-based ensemble model. 754

Transactions, 103:192—202.

Chen, H., Guan, M., and Li, H. (2021). Arcyclegan: Improved cyclegan for style
transferring of fruit images. JEEE Access, 9:46776-46787.

Chen, P., Wu, S., Junshien Lin, Ko, F., Lo, H., Wang, J., Yu, C. H., and Liang, M. S.
(2005). Virtual metrology: a solution for wafer to wafer advanced process control.

In ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing,
2005., pages 155—157.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 16, page 785-794, New York, NY, USA. Association
for Computing Machinery.

Chen, X., Sun, Y., Athiwaratkun, B., Cardie, C., and Weinberger, K. (2018). Adver-
sarial deep averaging networks for cross-lingual sentiment classification. Transactions

of the Association for Computational Linguistics, 6:557—570.

Chen, Z., Zhang, K., Ding, S. X, Shardt, Y. A., and Hu, Z. (2016). Improved canoni-
cal correlation analysis-based fault detection methods for industrial processes. Journal

of Process Control, 41:26-3 4.

Cheng, F.-T., Chen, Y.-T., Su, Y.-C., and Zeng, D.-L. (2008). Evaluating reliance level
of a virtual metrology system. [EEE Transactions on Semiconductor Manufacturing,

21(1):92—103.

Cheon, S., Lee, H., Kim, C. O., and Lee, S. H. (2019). Convolutional neural network
for wafer surface defect classification and the detection of unknown defect class. JEEE

Transactions on Semiconductor Manufacturing, 32(2):163-170.

Cho, K., Van Merriénboer, B., Bahdanau, D., and Bengio, Y. (2014). On the
properties of neural machine translation: Encoder-decoder approaches. — arXiv,

abs/1409.1259.

Chollet, F. et al. (2015). Keras. https://keras.o.

226


https://keras.io

[41] Chou, P. B., Rao, A. R., Sturzenbecker, M. C., Wu, F. Y., and Brecher, V. H. (1997).

Automatic defect classification for semiconductor manufacturing. Machine Vision

and Applications, 9(4):201-214.

[42] Chouichi, A., Blue, ]J., Yugma, C., and Pasqualini, F. (2020). Chamber-to-chamber

[43]

[44]

[47]

(48]

discrepancy detection in semiconductor manufacturing. /EEE Transactions on Semi-

conductor Manufacturing, 33(1):86-95.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of

gated recurrent neural networks on sequence modeling. 27X7v, abs/1412.3555.

Compare, M., Baraldi, P., and Zio, E. (2020). Challenges to iot-enabled predictive
maintenance for industry 4.0. I[EEE Internet of Things Journal, 7(s):4585-4597.

Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2016). Optimal trans-

port for domain adaptation. 47Xzv, abs/1507.00504.

Crammer, K., Kearns, M., and Wortman, J. (1995). Learning from data of variable
quality. In n NIPS 18.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2018). Autoaug-

ment: Learning augmentation policies from data. abs/1805.09501.

de Mathelin, A., Deheeger, F., Mougeot, M., and Vayatis, N. (2021a). Handling
distribution shift in tire design. In NeurIPS 2021 Workshop on Distribution Shifts:
Connecting Methods and Applications.

de Mathelin, A., Deheeger, F., Richard, G., Mougeot, M., and Vayatis, N. (2021b).
Adapt: Awesome domain adaptation python toolbox. a7X7v, abs/2107.03049.

de Oliveira da Costa, P. R., Ak¢ay, A., Zhang, Y., and Kaymak, U. (2020). Remain-
ing useful lifetime prediction via deep domain adaptation. Reliability Engineering

System Safety, 195.

Delalleau, O. and Bengio, Y. (2011). Shallow vs. deep sum-product networks. In
Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Ad-

vances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.

227



[52]

[53]

[54]

[55]

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of

deep bidirectional transformers for language understanding. 47Xzv, abs/1810.04805.

DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolutional neu-

ral networks with cutout. abs/1708.04552.

Dhariwal, P. and Nichol, A. (2021). Diftusion models beat gans on image synthe-
sis. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W,
editors, Advances in Neural Information Processing Systems, volume 3 4, pages 8780—

8794. Curran Associates, Inc.

Dou, Q., Coclho de Castro, D., Kamnitsas, K., and Glocker, B. (2019). Domain
generalization via model-agnostic learning of semantic features. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates,

Inc.

Dowson, D. and Landau, B. (1982). The fréchet distance between multivariate nor-

mal distributions. Journal of Multivariate Analysis, 12(3):450-455.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for on-
line learning and stochastic optimization. Jjournal of Machine Learning Research,

12(61):2121-2159.

Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. JEEE Transac-
tions on Systems, Man, and Cybernetics, SMC-6(4):325-327.

Fan, S.-K. S., Hsu, C.-Y,, Tsai, D.-M., He, F., and Cheng, C.-C. (2020). Data-driven
approach for fault detection and diagnostic in semiconductor manufacturing. /EEE

Transactions on Automation Science and Engineering, 17(4):1925-1936.

Fang, Z., Lu, |, Liu, F,, and Zhang, G. (2022). Semi-supervised heterogeneous do-
main adaptation: Theory and algorithms. JEEE Transactions on Pattern Analysis and

Machine Intelligence.

Farahani, H. S., Fatehi, A., Nadali, A., and Shoorehdeli, M. A. (2020). A
novel method for designing transferable soft sensors and its application.  arXiv,

abs/2008.02186.

228



[62]

[63]

[65]

[68]

[69]

Farshchian, A., Gallego, J. A., Cohen, ]J. P., Bengio, Y., Miller, L. E., and Solla, S. A.
(2019). Adversarial domain adaptation for stable brain-machine interfaces. arXiv,

abs/1810.0004s5.

Feng, J., Jia, X, Zhu, F., Moyne, J., Iskandar, J., and Lee, J. (2019). An online vir-
tual metrology model with sample selection for the tracking of dynamic manufactur-

ing processes with slow drift. JEEE Transactions on Semiconductor Manufacturing,
32(4):574-582.
Fernando, B., Habrard, A., Sebban, M., and Tuytelaars, T. (2013). Unsupervised

visual domain adaptation using subspace alignment. In 2013 IEEE International

Conference on Computer Vision, pages 2960-2967.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences,

s5(1):119-139.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning,

volume 1. Springer series in statistics New York.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting ma-

chine. Annals of statistics, 29:1189-1232.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marc-
hand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural networks.

Journal of machine learning research, 17(1):2096-2030.

Gentner, N., Carletti, M., Kyek, A., Susto, G. A., and Yang, Y. (2021). Dbam: Making
virtual metrology/soft sensing with time series data scalable through deep learning.

Control Engineering Practice, 116:104914.

Gentner, N., Kyek, A., Yang, Y., Carletti, M., and Susto, G. A. (2020). Enhancing
scalability of virtual metrology: A deep learning-based approach for domain adapta-
tion. In 2020 Winter Simulation Conference (WSC), pages 1898—1909. IEEE.

Gholami, B., Sahu, P., Rudovic, O., Bousmalis, K., and Pavlovic, V. (2020). Unsu-
pervised multi-target domain adaptation: An information theoretic approach. JEEE

Transactions on Image Processing, 29:3993—4002.

229



[72]

[73]

[77]

(78]

[79]

[80]

Gokaslan, A., Ramanujan, V., Ritchie, D., Kim, K. I., and Tompkin, J. (2018a). Im-
proving shape deformation in unsupervised image-to-image translation. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 649—665.

Gokaslan, A., Ramanujan, V., Ritchie, D., Kim, K. I., and Tompkin, J. (2018b). Im-
proving shape deformation in unsupervised image-to-image translation. In Ferrari,
V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, Computer Vision — ECCV
2018, pages 662—678, Cham. Springer International Publishing.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Proceedings of

the 2 7th International Conference on Neural Information Processing Systems - Volume
2, NIPS’14, page 2672—2680, Cambridge, MA, USA. MIT Press.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doer-
sch, C., Pires, B. A., Guo, Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos, R.,
and Valko, M. (2020). Bootstrap your own latent: A new approach to self-supervised

learning. a7Xiv, abs/2006.07733.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang,
G., Cai, J., and Chen, T. (2018). Recent advances in convolutional neural networks.

Lattern Recognition, 77:354—377.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Im-
proved training of wasserstein gans. In Proceedings of the 3 1st International Con-

ference on Neural Information Processing Systems, NIPS’ 17, page s769-5779, Red
Hook, NY, USA. Curran Associates Inc.

Guo, F., Xie, R., and Huang, B. (2020). A deep learning just-in-time modeling ap-
proach for soft sensor based on variational autoencoder. Chemometrics and Intelli-

gent Laboratory Systems, 197.

Haddad, B. M., Yang, S., Karam, L. J., Ye, ]J., Patel, N. S., and Braun, M. W.

(2016). Multifeature, sparse-based approach for defects detection and classification

230


http://www.deeplearningbook.org

[81]

(83]

[84]

[85]

[86]

[88]

[89]

in semiconductor units. J/EEE Transactions on Automation Science and Engineering,

15(1):145-159.

Hardoon, D. R., Szedmak, S., and Shawe-Taylor, J. (2004). Canonical correlation
analysis: An overview with application to learning methods. Newural Computation,
16(12):2639-2664.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Rio, J. F., Wiebe, M., Peter-
son, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy. Nazure,

585(7825):357-362.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE

international conference on computer vision, pages 1026—103 4.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770-778.

Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation.

In 2008 International Conference on Prognostics and Health Management, pages 1-6.

Heng, H., Liao, T, Didari, S., and Rajagopal, H. (2021). Chamber matching with
neural networks in semiconductor equipment tools. Applied Materials, Inc., US Patent

11,133,204.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In
Guyon, L., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30.

Curran Associates, Inc.
Hilleringmann, U. (1996). Silizium-Halbleitertechnologie. Springer.

Hinton, G. (2012). Neural networks for machine learning lecture 6. Coursera.

231



[90]

[o1]

[92]

[93]

[94]

[o5]

[96]

[97]

[99]

Hochreiter, S., Heusel, M., and Obermayer, K. (2007). Fast model-based protein

homology detection without alignment. Bioinformatics, 23(14):1728-1736.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Com-
putation, 9(8):1735—1780.

Hoftman, J., Tzeng, E., Park, T., Zhu, ].-Y,, Isola, P., Saenko, K., Efros, A., and Dar-
rell, T. (2018). CyCADA: Cycle-consistent adversarial domain adaptation. In Dy, J.
and Krause, A., editors, Proceedings of the 3 sth International Conference on Machine

Learning, volume 8o of Proceedings of Machine Learning Research, pages 1989—1998.
PMLR.

Hofmann, T., Scholkopf, B., and Smola, A. (2008). Kernel methods in machine
learning. Annals of Statistics, 36(3):1171-1220.

Hsu, C.-Y. and Chien, J.-C. (2022). Ensemble convolutional neural networks with

weighted majority for wafer bin map pattern classification. Journal of Intelligent Man-

ufacturing, 33(3):831-844.

Hsu, C.-Y,, Lu, Y.-W,, and Yan, J.-H. (2022). Temporal convolution-based long-short
term memory network with attention mechanism for remaining useful life prediction.

IEEE Transactions on Semiconductor Manufacturing, 35(2):220-228.

Huang, W., Khorasgani, H., Gupta, C., Farahat, A., and Zheng, S. (2018). Remaining
useful life estimation for systems with abrupt failures. In Annual conference of the

PHM society. September, pages 24—27.

Imoto, K., Nakai, T., Ike, T., Haruki, K., and Sato, Y. (2018). A cnn-based transfer
learning method for defect classification in semiconductor manufacturing. In 2018

international symposium on semiconductor manufacturing (ISSM), pages 1—3. IEEE.

Iskandar, J., Moyne, J., Subrahmanyam, K., Hawkins, P., and Armacost, M. (2015).
Predictive maintenance in semiconductor manufacturing. In zory 26th Annual

SEMI Advanced Semiconductor Manufacturing Conference (ASMC), pages 384
389.

Isola, P., Zhu, J.-Y.,, Zhou, T., and Efros, A. A. (2017). Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 1125—1134.

232



[100]

[ro1]

[102]

[103]

[104]

[xo5]

[106]

[107]

[108]

[x09]

Ito, H., England, J., Plumb, F., and Fotheringham, I. (1995). Plasma flood system for

the reduction of charging of wafers during ion implantation. US Patent 5,399,871.

Jalali, A., Heistracher, C., Schindler, A., Haslhofer, B., Nemeth, T., Glawar, R., Sihn,
W., and De Boer, P. (2019). Predicting time-to-failure of plasma etching equipment
using machine learning. In 2019 IEEE International Conference on Prognostics and
Health Management (ICPHM), pages 1-8.

Jebara, T. (2004). Generative Versus Discriminative Learning, pages 17—6o. Springer
US, Boston, MA.

Jiang, X., Lao, Q., Matwin, S., and Havaei, M. (2020). Implicit class-conditioned
domain alignment for unsupervised domain adaptation. In III, H. D. and Singh,
A., editors, Proceedings of the 3 7th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 4816—4827. PMLR.

Jin, C. H., Na, H. ], Piao, M., Pok, G., and Ryu, K. H. (2019). A novel dbscan-
based defect pattern detection and classification framework for wafer bin map. JEEE

Transactions on Semiconductor Manufacturing, 32(3):286-292.

Jolliffe, I. (2010). Principal Component Analysis. Springer Series in Statistics. Springer
New York.

Jung, D, Ng, K. Y,, Frisk, E., and Krysander, M. (2018). Combining model-based
diagnosis and data-driven anomaly classifiers for fault isolation. Control Engineering

Practice, 80:146—156.

Kang, H. and Kang, S. (2021). A stacking ensemble classifier with handcrafted and

convolutional features for wafer map pattern classification. Computers in Industry,

129:103450.

Kang, S. (2017). On effectiveness of transfer learning approach for neural network-

based virtual metrology modeling. /EEE Transactions on Semiconductor Manufactur-

ing, 31(1):149-155.

Kang, S., Kim, D., and Cho, S. (2016). Efficient feature selection-based on random
forward search for virtual metrology modeling. JEEE Transactions on Semiconductor

Manufacturing, 29(4):391-398.

233



[110]

[r11]

[112]

[113]

[114]

[x15]

[116]

[117]

[118]

[119]

[120]

Keany, E. (2020). BorutaShap : A wrapper feature selection method which combines

the Boruta feature selection algorithm with Shapley values.

Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, USA.

Khalid, S., Khalil, T., and Nasreen, S. (2014). A survey of feature selection and fea-
ture extraction techniques in machine learning. In zo14 Science and Information

Conference, pages 372—378.
Kingma, D.P.and Ba, J. (2014). Adam: A method for stochastic optimization. a7Xzv.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., and Inman, D. J. (2021).
1d convolutional neural networks and applications: A survey. Mechanical Systems

and Signal Processing, 151:107398.

Koch, G., Zemel, R., Salakhutdinov, R., et al. (2015). Siamese neural networks for

one-shot image recognition.

Kong, Y. and Ni, D. (2020). A semi-supervised and incremental modeling framework

for wafer map classification. IEEE Transactions on Semiconductor Manufacturing,

33(1):62—71.

Krupitzer, C., Wagenhals, T., Ziifle, M., Lesch, V., Schifer, D., Mozaffarin, A.,
Edinger, J., Becker, C., and Kounev, S. (2020). A survey on predictive maintenance

for industry 4.0. arXiv, abs/2002.08224.

Kumar, N., Zhang, L., and Nayar, S. (2008). What is a good nearest neighbors al-
gorithm for finding similar patches in images? In Forsyth, D., Torr, P., and Zisser-
man, A., editors, Computer Vision - ECCV 2008, pages 364—378, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Kyeong, K. and Kim, H. (2018). Classification of mixed-type defect patterns in wafer
bin maps using convolutional neural networks. JEEE Transactions on Semiconductor

Manufacturing, 31(3):395—-402.

Lea, C., Flynn, M. D., Vidal, R., Reiter, A., and Hager, G. D. (2016). Temporal con-

volutional networks for action segmentation and detection. 47X7v, abs/1611.05267.

234



[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recogni-
tion. Neural Computation, 1(4):541-551.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86:2278 — 2324.

Lee, D.-H. etal. (2013). Pseudo-label: The simple and efficient semi-supervised learn-
ing method for deep neural networks. In Workshop on challenges in representation

learning, ICML, volume 3, page 896.

Lee, J.-H. and Lee, J.-H. (2019). A reliable defect detection method for patterned
wafer image using convolutional neural networks with the transfer learning. In JOP

Conference Series: Materials Science and Engineering, volume 647. IOP Publishing.

Lee, K. B. and Kim, C. O. (2020). Recurrent feature-incorporated convolutional
neural network for virtual metrology of the chemical mechanical planarization pro-

cess. Journal of Intelligent Manufacturing, 31(1):73-86.

Li, B., Wang, Y., Zhang, S., Li, D., Darrell, T., Keutzer, K., and Zhao, H. (2020a).
Learning invariant representations and risks for semi-supervised domain adaptation.

arXiv, abs/2010.04647.
Li, D, Li, L., Li, X., Ke, Z., and Hu, Q. (2020b). 411:351-363.

Li, J. and He, D. (2020). A bayesian optimization adabn-denn method with self-
optimized structure and hyperparameters for domain adaptation remaining useful

life prediction. JEEE Access, 8:41482—41501.

Li,J.,Li, X.,and He, D. (2019a). Domain adaptation remaining useful life prediction
method based on adabn-denn. In zo19 Prognostics and System Health Management
Conference (PHM-Qingdao), pages 1-6.

Li, K. S.-M,, Jiang, X.-H., Chen, L. L.-Y,, Wang, S.-]., Huang, A. Y.-A., Chen, J. E,,
Liang, H.-C., and Hsu, C.-L. (2022). Wafer defect pattern labeling and recognition

using semi-supervised learning. JEEE Transactions on Semiconductor Manufacturing,

35(2):291-299.

235



[x31]

[132]

[133]

[134]

[135]

[139]

[140]

Li, X., Ding, Q., and Sun, J.-Q. (2018a). Remaining useful life estimation in prognos-
tics using deep convolution neural networks. Reliability Engineering System Safety,

172:1—-11.

Li, Y., Wang, N., Shi, J., Hou, X., and Liu, J. (2018b). Adaptive batch normalization

for practical domain adaptation. Pattern Recognition, 80:109—117.

Li, Z., Wu, D., Hu, C,, and Terpenny, J. (2019b). An ensemble learning-based prog-
nostic approach with degradation-dependent weights for remaining useful life predic-

tion. Reliability Engineering System Safety, 184:110-122.

Liu, C., Zhang, L., Li,]., Zheng, J., and Wu, C. (2021a). Two-stage transfer learning
for fault prognosis of ion mill etching process. JEEE Transactions on Semiconductor

Manufacturing, 34(2):185-193.

Liu, J., Guo, F., Zhang, Y., Hou, B., and Zhou, H. (2021b). Defect classification on
limited labeled samples with multiscale feature fusion and semi-supervised learning.
Applied Intelligence, 52(7):8243-8258.

Loog, M. (2012). Nearest neighbor-based importance weighting. In 2012 IEEE In-
ternational Workshop on Machine Learning for Signal Processing, pages 1-6. IEEE.

Lu, H.-W. and Lee, C.-Y. (2022). Kernel-based dynamic ensemble technique for re-
maining useful life prediction. IEEE Robotics and Automation Letters, 7(2):1142—

1149.

Lu, Y.-W,, Hsu, C.-Y,, and Huang, K.-C. (2020). An autoencoder gated recurrent

unit for remaining useful life prediction. Processes, 8(9).

Lu, Y.-W,, Liu, K.-L., and Hsu, C.-Y. (2019). Conditional generative adversarial net-
work for defect classification with class imbalance. In 2019 IEEE International Con-
ference on Smart Manufacturing, Industrial Logistics Engineering (SMILE), pages
146-149.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model pre-
dictions. In Proceedings of the 3 15t International Conference on Neural Information
Processing Systems, NIPS’ 17, page 4768-4777, Red Hook, NY, USA. Curran Asso-

ciates Inc.

236



[141]

[142]

[143]

[144]

[145]

[146]

[147]

[149]

[x50]

[x51]

Lynn, S., Ringwood, J., Ragnoli, E., McLoone, S., and MacGearailty, N. (2009). Vir-
tual metrology for plasma etch using tool variables. In 2009 IEEE/SEMI Advanced
Semiconductor Manufacturing Conference, pages 143—148. IEEE.

Lynn, S. A., Ringwood, J., and MacGearailt, N. (2012). Global and local virtual
metrology models for a plasma etch process. IEEE Transactions on Semiconductor

Manufacturing, 25(1):94-103.

MacKay, D. J. C. (2002). Information Theory, Inference Learning Algorithms. Cam-
bridge University Press, USA.

Maggipinto, M., Beghi, A., McLoone, S., and Susto, G. A. (2019). Deepvm: A deep
learning-based approach with automatic feature extraction for 2d input data virtual

metrology. Journal of Process Control, 84:2.4—3 4.

Maggipinto, M., Masiero, C., Beghi, A., and Susto, G. A. (2018). A convolutional
autoencoder approach for feature extraction in virtual metrology. Procedia Manu-

facturing, 17:126-133.

May, G. and Spanos, C. (2006). Fundamentals of Semiconductor Manufacturing and
Process Control. IEEE Press. John Wiley & Sons.

Mobley, R. K. (2002). An Introduction to Predictive Maintenance (Second Edition).

Plant Engineering. Butterworth-Heinemann, Burlington, second edition edition.

Moénch, L., Fowler, ]J., and Mason, S. (2012). Production Planning and Control for
Semiconductor Wafer Fabrication Facilities: Modeling, Analysis, and Systems. Oper-

ations Research/Computer Science Interfaces Series. Springer New York.

Moyne, J. and Iskandar, J. (2017). Big data analytics for smart manufacturing: Case

studies in semiconductor manufacturing. Processes, 5(3):39.

Mutegeki, R. and Han, D. S. (2020). A cnn-Istm approach to human activity recogni-
tion. In zozo International Conference on Artificial Intelligence in Information and
Communication (ICAIIC), pages 362—366.

Nakazawa, T. and Kulkarni, D. V. (2018). Wafer map defect pattern classification
and image retrieval using convolutional neural network. JEEE Transactions on Semi-

conductor Manufacturing, 31(2):309-314.

237



[x52]

[153]

[154]

[155]

Oja, E., Ogawa, H., and Wangviwattana, J. (1992). Principal component analysis by
homogeneous neural networks: The weighted subspace criterion. IEICE Transac-

tions on Information and Systems, 75(3):366-375.

Oliver, A., Odena, A., Raffel, C., Cubuk, E. D., and Goodfellow, I.]. (2018). Realistic
evaluation of deep semi-supervised learning algorithms. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems, NIPS’18, page
3239-3250, Red Hook, NY, USA. Curran Associates Inc.

Oza, P., Sindagi, V. A., VS, V., and Patel, V. M. (2021). Unsupervised domain adap-

tation of object detectors: A survey. 47X7v, abs/2105.13502.

O’Leary, J., Sawlani, K., and Mesbah, A. (2020). Deep learning for classification of
the chemical composition of particle defects on semiconductor wafers. JEEE Trans-

actions on Semiconductor Manufacturing, 33(1):72-85.

Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q. (2011). Domain adaptation via

transfer component analysis. JEEE Transactions on Neural Networks, 22(2):199-210.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345-1359.

Pardoe, D. and Stone, P. (2010). Boosting for regression transfer. In Proceedings of
the 2 7th International Conference on International Conference on Machine Learning,
ICML’10, page 863—870, Madison, WI, USA. Omnipress.

[Park and Kim] Park, C. and Kim, S. B. Virtual metrology modeling of time-dependent

[160]

[161]

spectroscopic signals by a fused lasso algorithm. Journal of Process Control, 42:51-58.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, ]., Passos, A., Courna-
peau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825-2830.

Perry, R., Mischler, G., Guo, R., Lee, T., Chang, A., Koul, A., Franz, C., Richard, H,,
Carmichael, I, Ablin, P., Gramfort, A., and Vogelstein, J. T. (2021). mvlearn: Multi-

view machine learning in python. Journal of Machine Learning Research, 22(109):1-

7.

238



[162]

[163]

[164]

[165]

Purushotham, S., Carvalho, W, Nilanon, T., and Liu, Y. (2017). Variational recurrent

adversarial deep domain adaptation. In /CLR.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learning

with deep convolutional generative adversarial networks. a7X7v, abs/1511.06434.

Ramsundar, B. and Zadeh, R. (2018). TensorFlow for Decp Learning: From Linear
Regression to Reinforcement Learning. O’Reilly Media.

Redko, I., Courty, N., Flamary, R., and Tuia, D. (2019). Optimal transport for multi-
source domain adaptation under target shift. In Chaudhuri, K. and Sugiyama, M.,
editors, Proceedings of the Twenty-Second International Conference on Artificial Intel-

ligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages
849-858. PMLR.

[Reimers and Gurevych] Reimers, N. and Gurevych, I. Optimal hyperparameters for deep

[167]

[x70]

[171]

[172]

Istm-networks for sequence labeling tasks. 47Xzv, abs/1707.06799.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image

computing and computer—am’sted Intervention, pages 234—241. Springer.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv,

abs/1609.04747.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representa-
tions by back-propagating errors. Nature, 323(6088):533—536.

Saeys, Y., Inza, I, and Larrafaga, P. (2007). A review of feature selection techniques

in bioinformatics. Bioinformatics, 23(19):2507-2517.

Sagheer, A. and Kotb, M. (2019). Unsupervised pre-training of a deep Istm-based
stacked autoencoder for multivariate time series forecasting problems. Sczentific re-

ports, 9(1):1-16.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 4510—4520.

239



[173]

[174]

[175]

[177]

[180]

[181]

[182]

Santos, T., Schrunner, S., Geiger, B. C., Pfeiler, O., Zernig, A., Kaestner, A., and
Kern, R. (2019). Feature extraction from analog wafermaps: A comparison of classi-
cal image processing and a deep generative model. IEEE transactions on semiconductor

manufacturing, 32(2):190-198.

Saglain, M., Jargalsaikhan, B., and Lee, J. Y. (2019). A voting ensemble classifier
for wafer map defect patterns identification in semiconductor manufacturing. /EEE

Transactions on Semiconductor Manufacturing, 32(2):171-182.

Saxena, A., Goebel, K., Simon, D., and Eklund, N. (2008). Damage propagation
modeling for aircraft engine run-to-failure simulation. In 2008 International Confer-

ence on Prognostics and Health Management, pages 1-9.

Scheibelhofer, P., Gleispach, D., Hayderer, G., and Stadlober, E. (2016). A method-
ology for predictive maintenance in semiconductor manufacturing. Austrian Journal

of Statistics, 41:161-173.

Schlosser, T., Beuth, F., Friedrich, M., and Kowerko, D. (2019). A novel visual fault
detection and classification system for semiconductor manufacturing using stacked
hybrid convolutional neural networks. In 2019 24th IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA), pages 1511-1514. IEEE.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

Networks, 61:85—117.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.
(2017). Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pages
618-626.

Shang, C., Yang, F., Huang, D., and Lyu, W. (2014). Data-driven soft sensor develop-

ment based on deep learning technique. Journal of Process Control, 24(3):223-233.

Shankar, N. and Zhong, Z. (2005). Defect detection on semiconductor wafer surfaces.

Microelectronic Engineering, 77(3):337-346.

Shen, B., Yao, L., and Ge, Z. (2020). Nonlinear probabilistic latent variable regression
models for soft sensor application: From shallow to deep structure. Control Engineer-

ing Practice, 94:104198.

240



[183]

[184]

[190]

[x91]

[192]

[193]

Shim, J. and Kang, S. (2022). Domain-adaptive active learning for cost-effective vir-

tual metrology modeling. Computers in Industry, 135.

Shim, J., Kang, S., and Cho, S. (2020). Active learning of convolutional neural net-
work for cost-effective wafer map pattern classification. IEEE Transactions on Semi-

conductor Manufacturing, 33(2):258-266.

Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schélkopf, B., and Lanckriet, G.

R. G.(2009). On integral probability metrics, ¢-divergences and binary classification.

Su, A.-],, Jeng, J.-C., Huang, H.-P., Yu, C.-C., Hung, S.-Y., and Chao, C.-K. (2007).
Control relevant issues in semiconductor manufacturing: Overview with some new

results. Control Engineering Practice, 15(10):1268-1279.

Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P., and Kawanabe, M. (2007).
Direct importance estimation with model selection and its application to covariate
shift adaptation. In Plat, J., Koller, D., Singer, Y., and Roweis, S., editors, Advances

in Neural Information Processing Systems, volume 20. Curran Associates, Inc.

Sun, B., Feng, J., and Saenko, K. (2016). Return of frustratingly easy domain adapta-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30.

Sun, B. and Saenko, K. (2016). Deep coral: Correlation alignment for deep domain

adaptation. In European conference on computer vision, pages 443—450. Springer.
Sun, S. (2013). Neural computing and applications, 23(7):2031-2038.

Susto, G. A. and Beghi, A. (2012). Least angle regression for semiconductor manu-
tacturing modeling. In 2012 IEEE International Conference on Control Applications,
pages 658-663. IEEE.

Susto, G. A, Schirru, A., Pampuri, S., Beghi, A., and De Nicolao, G. (2018). A
hidden-gamma model-based filtering and prediction approach for monotonic health

factors in manufacturing. Control Engineering Practice, 74:84-94.

Susto, G. A., Schirru, A., Pampuri, S., De Nicolao, G., and Beghi, A. (2012). An
information-theory and virtual metrology-based approach to run-to-run semiconduc-
tor manufacturing control. In zor2 IEEE International C'onfermce on Automation

Science and Engineering (CASE), pages 358-363.

241



[r94]

[195]

[196]

[197]

[199]

[200]

[201]

[202]

[203]

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., and Beghi, A. (2015). Machine
learning for predictive maintenance: A multiple classifier approach. IEEE Transac-

tions on Industrial Informatics, 11(3):812—820.

Sze, S. and Lee, M. (2012). Semiconductor Devices: Physics and Technology. Semicon-
ductor Devices, Physics and Technology. John Wiley & Sons.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2818-2826.

Tachet des Combes, R., Zhao, H., Wang, Y.-X., and Gordon, G. J. (2020). Domain
adaptation with conditional distribution matching and generalized label shift. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 19276-19289.

Curran Associates, Inc.

Taigman, Y., Polyak, A., and Wolf, L. (2017). Unsupervised cross-domain image gen-

eration. a7X7v, abs/1611.02200.

Tan, M. and Le, Q. V. (2020). Efficientnet: Rethinking model scaling for convolu-

tional neural networks. abs/1905.11946.

Tedesco, S., Susto, G. A., Gentner, N., Kyek, A., and Yang, Y. (2021). A scalable deep
learning-based approach for anomaly detection in semiconductor manufacturing. In

2021 Winter Simulation Conference (WSC), pages 1-12.

Theis, L., van den Oord, A., and Bethge, M. (2016). A note on the evaluation of
generative models. In International Conference on Learning Representations (ICLR
20106), pages 1-10, San Juan, Puerto Rico. International Conference on Learning

Representations (ICLR 2016).

Thill, M., Konen, W., Wang, H., and Bick, T. (2021). Temporal convolutional au-
toencoder for unsupervised anomaly detection in time series. Applied Soft Computing,

II2.

Tsai, Y.-H. H., Yeh, Y.-R., and Wang, Y.-C. F. (2016). Heterogeneous domain adap-
tation with label and structure consistency. In 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 2842-2846.

242



[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

Tsutsui, T. and Matsuzawa, T. (2019). Virtual metrology model robustness against
chamber condition variation using deep learning. JEEE Transactions on Semiconduc-

tor Manufacturing, 32(4):428-433.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A. W., and Kavukcuoglu, K. (2016). Wavenet: A gener-

ative model for raw audio. 27X7v, abs/1609.03499.

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of

Machine Learning Research, 9(86):2579-2605.

Vapnik, V. (2000). The Nature of Statistical Learning Theory. Statistics for Engineer-

ing and Information Science. Springer.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016).
Matching networks for one shot learning. In Proceedings of the 30th International

Conference on Neural Information Processing Systems, NIPS’16, page 3637-364s,
Red Hook, NY, USA. Curran Associates Inc.

Vishnu, T., Gupta, P., Malhotra, P., Vig, L., and Shroff, G. (2018). Recurrent neu-
ral networks for online remaining useful life estimation in ion mill etching system.
In Proceedings of the Annual Conference of the PHM Society, Philadelphia, PA, USA,

volume 2.2..

Wan, J., Pampuri, S., O’'Hara, P. G., Johnston, A. B., and McLoone, S. (2014).
On regression methods for virtual metrology in semiconductor manufacturing. In
25th IET Irish Signals Systems Conference 2014 and 2014 China-Ireland Interna-
tional Conference on Information and Communications Technologies (ISSC 2014/CI-
ICT 2014), pages 380—38s.

Wang, D., Gong, C., and Liu, Q. (2019). Improving neural language modeling via
adversarial training. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of
the 3 6th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 6555-6565. PMLR.

Wang, M. and Deng, W. (2018). Deep visual domain adaptation: A survey. Newuro-
computing, 312:135-153.

243



[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

Wang, W., Wang, C., Wang, Z., Yuan, M., Luo, X., Kurths, J., and Gao, Y. (2022).
Abnormal detection technology of industrial control system based on transfer learn-

ing. Applied Mathematics and Computation, 412.

Warde-Farley, D. and Bengio, Y. (2017). Improving generative adversarial networks

with denoising feature matching. In /CLR.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht, B. (2017). The marginal
value of adaptive gradient methods in machine learning. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Ad-

vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Wilson, G. and Cook, D.]. (2020). A survey of unsupervised deep domain adaptation.
ACM Transactions on Intelligent Systems and Technology (TIST), 11(s).

Wu, M.-],, Jang, J.-S. R., and Chen, J.-L. (2014). Wafer map failure pattern recogni-
tion and similarity ranking for large-scale data sets. IEEE Transactions on Semiconduc-

tor Manufacturing, 28(1):1-12.

Wu, S., Jiang, Y., Luo, H., and Yin, S. (2021). Remaining useful life prediction for
ion etching machine cooling system using deep recurrent neural network-based ap-

proaches. Control Engineering Practice, 109:1047438.

Wu, X., Chen, ]., Xie, L., Chan, L. L. T., and Chen, C.-I. (2020). Development of
convolutional neural network based gaussian process regression to construct a novel
probabilistic virtual metrology in multi-stage semiconductor processes. Control En-

gineering Practice, 96.

Xiao, D., Huang, Y., Qin, C,, Liu, Z., Li, Y., and Liu, C. (2019). Transfer learning
with convolutional neural networks for small sample size problem in machinery fault
diagnosis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, 233(14):5131-5143.

Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., and Zheng, Y. (2020). Self-supervised cycle-
gan for object-preserving image-to-image domain adaptation. In Vedaldi, A., Bischof,
H., Brox, T., and Frahm, J.-M., editors, Computer Vision - ECCV z0z0, pages 498
513, Cham. Springer International Publishing.

244



[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

Xu, C., Tao, D., and Xu, C. (2013). A survey on multi-view learning.

Yan, X., Hu, S., Mao, Y., Ye, Y., and Yu, H. (2021). Deep multi-view learning methods:

A review. Neurocomputing, 448:106—129.

Yang, S., Song, G., Jin, Y., and Du, L. (2020). Domain adaptive classification on het-
erogeneous information networks. In Bessiere, C., editor, Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, [JCAI-z 0, pages 1410—

1416. International Joint Conferences on Artificial Intelligence Organization.

Yang, Y. and Xu, Z. (2020). Rethinking the value of labels for improving class-
imbalanced learning. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,
and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,

pages 19290—19301. Curran Associates, Inc.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are fea-

tures in deep neural networks? abs/1411.1792.

Yu, F. and Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions.

arXiv, abs/1511.07122.

Yu,]., Shen, Z., and Zheng, X. (2020). Joint feature and label adversarial network for

wafer map defect recognition. [EEE Transactions on Automation Science and Engi-

neering, 18(3):1341-1353.

Yu, N., Xu, Q., and Wang, H. (2019). Wafer defect pattern recognition and analysis

based on convolutional neural network. JEEE Transactions on Semiconductor Manu-

facturing, 32(4):566-573.

Yu, Q., Li, L., Zhao, H., Liu, Y., and Lin, K.-Y. (2021). Evaluation system and corre-
lation analysis for determining the performance of a semiconductor manufacturing

system. Complex System Modeling and Simulation, 1(3):218-231.

Yuan, X., Huang, B., Wang, Y., Yang, C., and Gui, W. (2018). Deep learning-based
feature representation and its application for soft sensor modeling with variable-wise

weighted sae. IEEE Transactions on Industrial Informatics, 14(7):3235-3243.

245



[232]

[233]

[234]

[235]

[236]

[237]

[239]

[240]

Yuan, X., Li, L., and Wang, Y. (2020). Nonlinear dynamic soft sensor modeling with
supervised long short-term memory network. JEEE Transactions on Industrial Infor-

matics, 16(5):3168-3176.

Zhang, A., Wang, H., Li, S., Cui, Y., Liu, Z., Yang, G., and Hu, ]J. (2018a). Trans-
ter learning with deep recurrent neural networks for remaining useful life estimation.

Applied Sciences, 8(12).

Zhang, C., Gao, X., Li, Y,, and Feng, L. (2019). Fault detection strategy based on
weighted distance of k nearest neighbors for semiconductor manufacturing processes.

IEEE Transactions on Semiconductor Manufacturing, 32(1):75-81.

Zhang, ]., Li, Y, Tian, J., and Li, T. (2018b). Lstm-cnn hybrid model for text classifi-
cation. In 2018 IEEE 3rd Advanced Information Technology, Electronic and Automa-
tion Control Conference (IAEAC), pages 1675-1680.

Zhang, K., Schélkopf, B., Muandet, K., and Wang, Z. (2013). Domain adaptation
under target and conditional shift. In Proceedings of the 3 oth International Conference
on International Conference on Machine Learning - Volume 28, ICML’13, page 819—
827.JMLR.org.

Zhao, S., Li, B., Yue, X,, Gu, Y., Xu, P,, Hu, R., Chai, H., and Keutzer, K.
(2019). Multi-source domain adaptation for semantic segmentation. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates,

Inc.

Zhao, S., Yue, X., Zhang, S., Li, B., Zhao, H., Wu, B., Krishna, R., Gonzalez, ]. E,,
Sangiovanni-Vincentelli, A. L., Seshia, S. A., and Keutzer, K. (2022). A review of
single-source deep unsupervised visual domain adaptation. IEEE Transactions on

Neural Networks and Learning Systems, 33(2):473-493.

Zhu, ]., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image transla-

tion using cycle-consistent adversarial networks. @7Xzv, abs/1703.10593.

Zhu, W., Braun, B., Chiang, L. H., and Romagnoli, J. A. (2021). Investigation of
transfer learning for image classification and impact on training sample size. Chemo-

metrics and Intelligent Laboratory Systems, 211:104269.

246



[241] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q. (2021).
A comprehensive survey on transfer learning. Proceedings of the Institute of Radio

Engineers, 109(1):43-76.

[242] Zou, Y., Yu, Z., Kumar, B. V. K. V,, and Wang, J. (2018). Unsupervised domain

adaptation for semantic segmentation via class-balanced self-training. In ECCV.

247



248



Acknowledgments

I want to thank Infineon Technologies AG for funding this research and for giving me the
opportunity to pursue my long-awaited goal of writing a doctoral thesis. I express my grat-
itude to Hans Ehm for giving me the freedom to follow my own research direction and for
his trustin my decisions. Your open-mindedness and dedication towards new research topics
and young researchers and co-workers is unique. My special thanks goes to Olaf Herzog who
not only initiated the topic of the thesis but was always available for deep dive discussion and
willing to teach me more about semiconductor manufacturing. You are a great, pragmatic
and smart boss. Thank you for your trust and support throughout this journey.

My deepest gratitude goes to my company supervisor Andreas Kyek. Thanks for all the
great discussions and for sharing your ideas and knowledge with me. Your creativity and
intelligence is inspiring and outstanding. Without your guidance and friendship this journey
would not have been as successful and wonderful as it was. Thank you for going above and
beyond!

A big thank you also goes out to my other colleagues at Infineon, my PhD years would not
have been so pleasant without all of you! I want to thank Yao Yang for her advice and all the
fruitful discussions throughout the last four years. I also want to thank Christa Bergmaier
for being the heart of the team and always making me laugh and feel at home. I wish to ex-
tend my gratitude to Thomas Ponsignon, Tim Lauer, William Parker, Marco Ratusny and
Lorenzo Servadei for being on this PhD journey together with me. Tim, I am looking for-
ward to continue working with you and conquer new research and application fields. I also
want to thank Johannes Sturm and Joon Khim Low for the interesting tasks we worked on
together and all the insights and learnings I had. Our cooperation will definitely continue

and grow.

Equally important, I want to thank University of Padua and my two advisors Alessandro
Beghi and Gian Antonio Susto for their support and guidance. A very special thanks goes to
Gian Antonio who has shown me his dedication, unbelievable work ethic and endless knowl-
edge. Further thanks goes to Luciano Lorenti and Mattia Carletti and all the other people

I met during the last 3 years. I consider myself blessed to get the chance to work with such

249



skilled, creative, knowledgeable but also warm, nice, trustful and special people.

Finally I want to thank some people outside the academic world for their support: Fore-
most, I want to thank my parents Wilfried and Anita and my brother Daniel for always being
there for me, giving advice when I needed it and above all always believing in me. Their love
and support helped me through all ups and downs and made me the person I am today.

I also want to thank all my friends, for being part of this journey and even long before.
Michael, thanks for inspiring and challenging me and getting me out of my comfort zone.

Last, I want to thank Mirfand. Your love, trust and believe give me the strength and the
consistency to pursue my dreams and to be the best version of myself. Thank you for always

being at my side, you are my future!

250



	Abstract
	List of figures
	List of tables
	Listing of acronyms
	I Introduction
	Motivation and Thesis Organization
	Motivation
	Thesis Overview and Organization

	Elements of Semiconductor Manufacturing
	Semiconductor Wafer Processing
	Production Flow and Processes
	Process Control: Maintenance and Metrology


	II Methods and Mathematical Tools
	Basics
	Neural Networks
	Generative Adversarial Networks (GAN) and Adversarial Training Approach
	Domain Adaptation Theory and Domain Adversarial Neural Networks (DANN)

	DBAM
	DANN-based Alignment Model (DBAM)
	Synthetic Data Example

	DBACS: Extended DBAM
	DANN-based Alignment with Cyclic Supervision (DBACS)
	Synthetic Data Example

	Benchmark Methods and Models
	General Linear Regression Models
	Ensemble Learning and Decision Trees
	Linear and Kernel Transformations
	Deep Transformation and Domain Adaptation

	Metrics and Losses
	Performance-based Loss
	Distribution-based Loss


	III Applications and Case Studies
	Virtual Metrology (VM)
	Introduction
	Literature
	Virtual Metrology (VM) for Identical-in-design Equipment
	Virtual Metrology (VM) for Equipment with Heterogeneous Data Representation
	Enabling Equipment Matching
	Conclusion

	Predictive Maintenance (PdM)
	Introduction
	Literature
	Remaining Useful Life (RUL) prediction for Predictive Maintenance (PdM)
	Imperfect data

	Defect Classification (DC)
	Introduction
	Literature
	Defect Classification (DC) for SEM Images with diverse Background Pattern
	Conclusion


	IV Conclusion
	Conclusion
	References
	Acknowledgments


