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Abstract
Sky surveys represent the fundamental data basis for detecting and locating as yet 
undiscovered celestial objects. Since 2008, the Fermi LAT Collaboration has cata-
logued thousands of �-ray sources with the aim of extending our knowledge of the 
highly energetic physical mechanisms and processes that lie at the core of our Uni-
verse. In this article, we present a nonparametric clustering algorithm which iden-
tifies high-energy astronomical sources using the spatial information of the �-ray 
photons detected by the large area telescope onboard the Fermi spacecraft. In par-
ticular, the sources are identified using a von Mises–Fisher kernel estimate of the 
photon count density on the unit sphere via an adjustment of the mean-shift algo-
rithm which accounts for the directional nature of the collected data and the need of 
local smoothing. This choice entails a number of desirable benefits. It allows us to 
bypass the difficulties inherent on the borders of any projection of the photon direc-
tions onto a 2-dimensional plane, while guaranteeing high flexibility. The smoothing 
parameter is chosen adaptively, by combining scientific input with optimal selection 
guidelines, as known from the literature. Using statistical tools from hypothesis test-
ing and classification, we furthermore present an automatic way to skim off sound 
candidate sources from the �-ray emitting diffuse background and to quantify their 
significance. We calibrate and test our algorithm on simulated count maps provided 
by the Fermi LAT Collaboration.
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1 � Motivation and rationale

1.1 � High‑energy astrophysics

The past 3 decades have been a golden era for Astronomy. Pioneering technology 
has driven remarkable acceleration in the rate of detection and characterization of 
celestial objects, and new space missions will have more and better quality data to 
help find and characterize these objects. Discoveries in this field are of utmost rele-
vance as they contain a wealth of information about the history of the Universe, and 
impact on the understanding of our Galaxy and our own Solar system. An impor-
tant example is high-energy astrophysics, which acts at the interface between par-
ticle physics and astronomy to study the multitude of extreme phenomena which 
inhabit the Cosmos. To date, the observation of �-ray photons, that is, of quanta of 
light in the highest energy range, has provided the basis for a large number of astro-
nomical discoveries. �-rays are usually generated from accelerated charged particles, 
such as electrons or protons, boosted by extreme celestial objects such as supermas-
sive black holes, supernova remnants, pulsars and active galactic nuclei, to name a 
few. The study of these �-ray emitting sources improves our understanding of high-
energy astrophysical phenomena, and might even resolve the mystery of the funda-
mental nature of dark matter.

The Fermi Gamma-ray Space Telescope1 is an international and multi-agency 
space mission launched in June 2008 which studies the Cosmos in the energy range 
10 keV–300 GeV. The primary instrument onboard the Fermi spacecraft is the 
Large Area Telescope (LAT), a wide field-of-view pair-conversion telescope which 
was designed to perform an all-sky survey aimed at discovering and locating high-
energy emitting sources. The data provided by the Fermi LAT Collaboration typi-
cally consist of an event list which gives the direction in the sky of each detected 
photon together with additional information, the primary one being its energy con-
tent and the so-called event type which expresses the quality of the measurement. 
This information is used to determine the number of the emitting extra-galactic 
sources, measure their intensities, and assign to them the corresponding individual 
photon counts.

A major challenge of trying and detecting high-energy phenomena from 
astronomical data is to separate the signal of the emitting sources from noise. 
The Fermi LAT data, in particular, are characterized by two types of noise: (1) 
measurement error associated with the components of the LAT (tracker, calo-
rimeter etc.) and (2) the diffuse �-ray background which spreads over the entire 
area observed by the telescope. The former is expressed through the LAT’s point 
spread function (Ackermann et  al. 2013), which is typically included into the 
model. Different phenomena contribute to the residual�-ray background (Acero 
et  al. 2016). Broadly speaking, its origins can be brought under two headings: 

1  https://​fermi.​gsfc.​nasa.​gov/.

https://fermi.gsfc.nasa.gov/
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galactic interstellar emission (GIE), that is, the interaction of galactic cosmic rays 
with gas and radiation fields, and a residual all-sky emission. The latter is com-
monly called the isotropic diffuse gamma-ray background (IGRB), and includes 
the�-ray emission from faint unresolved sources and any residual galactic emis-
sion which is approximately isotropic.

In addition, astronomical data typically come in the form of big data, whose 
volumes have increased over the past years from gigabytes into terabytes and 
petabytes. The Fermi LAT database currently holds over 1 billion photons in the 
energy range from about 20 MeV to more than 300 GeV collected in over a dec-
ade of operation. Efficient tools to account for the computational burden required 
to analyse these huge amounts of data, possibly on the entire sphere, are in high 
demand.

1.2 � Statistical models for astronomical source detection

The discovery of celestial objects is an intrinsically interdisciplinary field which 
combines both, statistical and astrophysical methodology. The standard procedure 
of the Fermi LAT Collaboration for point-like source detection relies on so-called 
single-source models (Hobson et al. 2009, par. 7.4), which require the sky map to 
be split into small regions. The presence of a possible new source is assessed on 
a pixel-by-pixel basis: Poisson regression is used to model the number of photons 
associated with each pixel and likelihood ratio tests assess the significance of the 
source (Mattox et  al. 1996). See also van Dyk et  al. (2001) for a Bayesian treat-
ment with application to low-count X-ray data collected by the Chandra X-Ray 
Observatory.

Conversely, variable-source-numbermodels address the problem from a more 
global perspective, as they simultaneously identify and locate all possible sources 
in a given sky map (Hobson et al. 2009, par. 7.3). Since point-like sources present 
themselves as spatially concentrated photon emissions, the problem can naturally 
be recast as a clustering problem. A recent example within this latter approach is 
Costantin et  al. (2020) who reconstruct the spatial distribution of the�-ray counts 
by means of a finite mixture of parametric component densities. The model is esti-
mated via maximum likelihood and associates each component of the finite mixture 
with a putative high-energy emitting source. In the same guise, yet according to a 
Bayesian perspective, Jones et al. (2015), Costantin et al. (2020) and Meyer et al. 
(2021) model X-ray or �-ray photon counts using finite mixtures which may include 
auxiliary information to properly account for the background contamination. Cos-
tantin et al. (2020), for instance, translate the simulation-based background model 
developed by Acero et al. (2016) into a workable parametric formulation. However 
efficient, these proposals rely on a simplified specification of the background dis-
tribution. Twoinfinitemixture models are used in Sottosanti et  al. (2021), the first 
to pinpoint the sources and the second to reconstruct the background via a smooth 
Bayesian nonparametric model based on B-splines. This provides a substantially 
flexible, yet highly computationally demanding solution.
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In this paper, we advocate the use of nonparametric, or modal, clustering for 
�-ray source detection. This less widespread formulation, which, for instance, is 
reviewed in Menardi (2016), associates clusters with the domains of attraction 
of the modes of the density underlying the data, which are usually reconstructed 
by suitable nonparametric estimators. The considered framework presents vari-
ous elements of novelty. First of all, unlike Jones et al. (2015), Costantin et al. 
(2020), Sottosanti et al. (2021), and Meyer et al. ( 2021), who use the longitude 
and latitude of the data points as if they were rectangular coordinates located 
in a 2-dimensional rectangular map, we directly work with the spherical coor-
dinates of the 3-dimensional directions placed in a Cartesian system. As in 
Costantin et al. (2020), this allows us to bypass the difficulties inherent on the 
borders of any 2-dimensional projection of the photon directions. Targeting the 
identification of �-ray sources by means of modal clustering is itself a further 
novelty worth to be explored in addition to the use of flexible nonparametric 
methods, which Sottosanti et al. (2021) started exploring yet to only model the 
background. Indeed, the accounted notion of cluster as modal region complies 
with the spatial distribution of photons from a source, which may spread into 
an arbitrary shape.

The use of modal clustering for directional data has been recently reviewed 
by Saavedra-Nieves and Fernández-Perez (2023) according to a level set-based 
approach. We rather follow amode bumping approach, which allows us to explic-
itly identify the direction of the point-like sources. This is performed via an adjust-
ment of the mean-shift algorithm to account for the directional nature of the Fermi 
LAT data and the need of local smoothing, required by the high heterogeneity of the 
sources with respect to size and spread. The issue of selecting the smoothing param-
eter is thereby addressed adaptively, by linking optimal selection guidelines, as 
known from the literature, to the use of auxiliary information from scientific input. 
We furthermore present an automatic way to pinpoint sound candidate sources and 
to quantify their significance by skimming off the �-ray emitting diffuse background 
using suitably adjusted results known from bootstrap-based hypothesis testing and 
classification built on previous knowledge provided by the Fermi LAT Collabora-
tion. A direct consequence of this approach is that we no longer need to specify the 
background component, as it was the case in Jones et  al. (2015), Costantin et  al. 
(2020), Meyer et al. (2021) and Sottosanti et al. (2021).

The paper is organized as follows. Section 2 sets the methodological background 
of kernel density estimation for directional data. Bandwidth selection is discussed in 
Sect. 3. Section 4 presents our proposal of modal detection on the unit sphere and, in 
particular, discusses how to evaluate the significance of a candidate source and how 
to skim off the photons emitted by the �-ray background. Section 5 illustrates the 
performance of our proposal when applied to simulated data of high-energy photon 
emission provided by the Fermi LAT Collaboration. The paper closes with the con-
cluding remarks of Sect. 6.
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This paper is an extended and improved version of the paper presented at the 
51st Scientific Meeting of the Italian Statistical Society on June, 2022 (Montin 
et al. 2022).

2 � Kernel density estimation for astrophysical count maps

2.1 � Directional data in astronomy

The position in the sky of a celestial object can be specified in different ways, 
depending on the coordinate system which is used. If the distance to the object 
is not known, we place its direction onto a 3-dimensional celestial sphere with a 
suitably chosen center and unit radius. This is shown in the left panel of Fig. 1, 
which traces the incoming �-ray photons collected by the LAT over a 5-year 
period. Directions are expressed through spherical coordinates, which emulate 
how the geographic coordinate system works on Earth’s surface. That is, the lon-
gitude l ∈ (−180,+180) and latitude b ∈ (−90,+90) of a direction correspond to 
special angles which are usually expressed in degrees. The different coordinate 
systems differ in the choice of the physical reference at the center of the sphere 
and of the plane used to divide it into two equal hemispheres. The Galactic 
coordinate system places the Sun at its center and aligns the fundamental plane 
with the Galactic plane, that is, with the plane on which the majority of the mass 
of our Galaxy, the Milky Way, lies.

Sometimes, it is useful to project the data points onto a 2-dimensional plane 
using an equal-area projection as when a whole sky view is aimed at. Different 
map projections exist, depending on how they distort the surface of the sphere. 
For instance, in the Mollweide projection shown in the right panel of Fig.  1, 
meridians form ellipses.

Fig. 1   Simulated Fermi-LAT �-ray photon count map for a 5-year observation period. Left: Directions 
of arrival projected onto the 3-dimensional unit sphere. Right: Mollweide projection of the directions of 
arrival onto the 2-dimensional plane. Yellow: region of size (l, b) ∈ [95◦, 135◦] × [− 40◦,− 10◦] analyzed 
in Sect.  5.3. Blue: region of size (l, b) ∈ [0◦, 60◦] × [10◦, 60◦] used to select the optimal bandwidth h. 
Green: region of size (l, b) ∈ [120◦, 150◦] × [15◦, 70◦] used to train the post-processing classifier. Red: 
Galactic plane. Longituide is expressed as [−180◦, 180◦] (color figure online)
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2.2 � The von Mises–Fisher distribution

Directions in a d-dimensional space, with d ≥ 2 , can be represented using Cartesian 
coordinates as unit vectors x , that is, as points on the sphere

with unit radius and centre at the origin. These can be retrieved from Galactic coor-
dinates, that is, from the longitude l and the latitude b of a given data point, by

See Section 9.1 of Mardia and Jupp (2000). A popular choice to model such type of 
data is the von Mises–Fisher (vMF) distribution

where � ∈ Ωd−1 represents the mean direction, while � ≥ 0 is a concentration param-
eter (Mardia and Jupp (2000), Section 9.3.2). As such, the von Mises–Fisher distri-
bution describes observations which scatter simmetrically around their mean direc-
tion � . The normalizing constant

includes the modified Bessel function of the first kind of order �

The von Mises–Fisher distribution for the random d-dimensional unit vector x 
can be obtained from the d-dimensional normal distribution Nd(�, �

−1
Id) , with Id 

being the d × d diagonal unit matrix and � a vector of length r, by conditioning on 
‖x‖2 = r (Mardia and Jupp 2000, p. 173). Ifd = 2 , the von Mises–Fisher distribution 
reduces to the von Mises distribution on the unit circle, while if d = 3

Furthermore, if � = 0 , the density (1) reduces to the uniform density on Ωd−1 , while 
if � → ∞ , it tends to a point mass at �.

Ωd−1 = {x ∈ ℝ
d ∶ ‖x‖2 = x2

1
+⋯ + x2

d
= 1}

x = [cos l cos b, sin l cos b, sin b]⊤.

(1)fvMF(x;�, 𝜅) = Cd−1(𝜅) exp{𝜅x
⊤
�},

Cd−1(�) =
�

d

2
−1

(2�)
d

2 I d

2
−1(�)

I
�
(z) =

(
z

2

)�

�1∕2Γ(� +
1

2
) ∫

1

−1

(1 − t2)�−
1

2 eztdt.

C2(�) =
�

1

2

(2�)
3

2 I 1

2

(�)
.



159

1 3

Locating 
‑ray sources on the celestial sphere via…

2.3 � Kernel density estimator

Let x1,… , xn ∈ Ω2 be a random sample of n observations generated by a distribu-
tion with density f (x) defined on the unit sphere Ω2 such that

where �2 is the Lebesgue measure on Ω2 . We can estimate the density fusing the 
kernel density estimator proposed by Bai et al. (1988) for directional data,

where K(⋅) is a suitable kernel function which decreases on [0,∞) , and h > 0 is the 
smoothing parameter. The normalizing constant ch(K) , is defined by

where c̃h(K) = ∫ 2∕h2

0
K(u)du . Using the von Mises–Fisher kernel, expression (2) 

becomes

That is, the kernel density estimator for direction data on the unit sphere is a mixture 
of 3-dimensional von Mises–Fisher distributions with � = h−2.

3 � Bandwidth selection

3.1 � Automatic selection based on error minimization

A major issue when using a kernel density estimator is the selection of the band-
width, h. Being able to specify a suitable amount of smoothing is crucial for the 
reliable identification of the sources. If the kernel function is too concentrated, 
false peaks may emerge from the background. Conversely, we may miss some faint 
sources when a too large bandwidth is selected. This is illustrated in Fig. 2, which 
plots the estimated density for a same sky region using two different values of h.

Also for the directional setting, selecting an optimal bandwidth generally entails 
minimization of a suitable measure of error. A first option is the likelihood Cross-
Validation selector hLCV which minimizes the Kullback–Leibler loss by maximising
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Here, f̂h,−i(xi) is the kernel density estimate we obtain after having omitted obser-
vation i, evaluated at xi . A further natural way to tackle the bandwidth selection 
problem is to minimize the Asymptotic Mean Integrated Squared Error (AMISE) 
which is readily obtained from the bias and variance approximations provided for 
the directional setting by Hall et  al. (1987). See also the discussion in Klemelä 
(2000) and Zhao and Wu (2001). This leads to the generalization of García-Portu-
gués (2013)’srule of thumb to spherical data,

where the concentration parameter 𝜅̂ is estimated by maximum likelihood.
The above two bandwidth selection rules are known to, respectively, unders-

mooth and oversmooth the true density. As the empirical evidence reported in 
Sect.  5.1 will show, this is especially true for the current astronomical context. 
Here, the density structure embraces thousands of sources which are highly het-
erogeneous in size and spread so as to require the smoothing parameter to adapt 
to the local behaviour of f. To the best of our knowledge, the issue of adaptive 
smoothing didn’t receive much attention by the literature on directional data. To 
have the bandwidth h to depend on the current location xi of the estimator, we 
hence decided to adapt some results which are well-established in the linear case. 
A first possibility is to use Abramson’s (1982) rule, wherehi varies proportionally 
with the inverse of the square root of f̂h(xi),

CV(h) =

n∑

i=1

log f̂h,−i(xi).

hTHUMB =

[
8 sinh2(𝜅̂)

𝜅̂[(1 + 4𝜅̂2) sinh(2𝜅̂) − 2𝜅̂ cosh(2𝜅̂)]n

] 1

6

,

Fig. 2   Two examples of von Mises–Fisher kernel density estimates using the high-energy photons 
simulated for the validation region (l, b) ∈ [0◦, 60◦] × [10◦, 60◦] (blue area in Fig. 1) for the two values 
h = 0.01 (left) and h = 0.001 (right) which over- and undersmooth, respectively (color figure online)
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Here, f̂hP(xi) is a winsorized (or clipped) version of a suitably constructed pilot ker-
nel density estimate with fixed bandwidth hP , which may be, for example, hTHUMB 
or hLCV . A further possibility is to use the modification proposed by Silverman 
(1986, Section 5.3), where the values of f̂hP(xi) are scaled by a factor which depends 
on their geometric mean. In the following, we refer to this criterion as hS

i,P
.

3.2 � Using scientific input

A valid alternative for determining the smoothing parameter h is to use scientific 
input. As mentioned in Sect.  1.1, the spatial scattering of the photons around the 
source direction � is modelled by the LAT’s point spread function (PSF). This func-
tion depends on the energy of the incoming photon, on its inclination angle, and on 
the quality of the recorded event (Ackermann et al. 2013). The latter is expressed 
by the PSF event type, that is, an event-level quantity which indicates how well 
the LAT managed to reconstruct the direction of the incoming photon and which 
assumes four values, from the lowest quality (PSF0) to the best quality (PSF3). Most 
importantly, the PSF depends on the scale factor

which describes the uncertainty of the event as a decreasing function of the energy 
Ei , expressed in Mega electron Volt (MeV), and of the two parameters c0,i and c1,i , 
which are given distinct values for the different event qualities and can be retrieved 
from the Fermi LAT web site.2 The first constant, ci,0 , represents multiple scattering 
while c1,i represents the spatial resolution of the LAT tracker. On this basis, we may 
specify a variable bandwidth as

The left panel of Fig. 3 illustrates how the precision of the measurements depends 
on the energy content. The right panel plots the values we obtain for hi,SE for the 
four different event types. Note how proposal (4) is coherent with optimal selection 
guidelines of adaptive bandwidth selection in the linear setting, as hi varies inversely 
with the photon scattering and hence with f.

hA
i,P

= hP
[
f̂hP(xi)

]− 1

2 .

S(Ei) ∝

√[
c0,i

( Ei

100MeV

)−0.8]2
+ c2

1,i
,

(4)hi,SE =

√(
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( Ei

100MeV

)−0.8)2

+ c2
1,i
.

2  https://​fermi.​gsfc.​nasa.​gov/​ssc/​data/​analy​sis/​docum​entat​ion/​Cicer​one/​Cicer​one_​LAT_​IRFs/​IRF_​PSF.​
html.

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html
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4 � Modal clustering on the unit sphere

4.1 � Mode hunting

Modal clustering associates clusters with the domain of attraction of the modes 
of the underlying density f. Recent insight into the theoretical foundations of 
modal clustering based on Morse theory (Milnor et  al. 1969) is provided by 
Chacón (2015). Operationally, two main strands are usually pursued to identify 
the modal regions, depending on whether the modes are detected explicitly or 
not (Menardi 2016). A first strand follows the route of Hartigan (1975) and iden-
tifies clusters with high-density regions of the sample space, defined by the den-
sity level sets

An estimate of the unknown Lc(f ) is obtained by replacing f (x) by its non-paramet-
ric estimate f̂ (x) . The rationale behind this class of methods is that any connected 
component of Lc(f ) includes at least one mode of the density function, while, on the 
other hand, for each mode of the density function, there exists c for which one of 
the connected components of the associated Lc(f ) includes this mode at most. The 
major drawback is that identifying the connected components of a multidimensional 
set is not straightforward. See the recent accounts of Saavedra-Nieves and Crujeiras 
(Saavedra-Nieves and Crujeiras 2022) and Saavedra-Nieves and Fernández-Perez 
(2023) for a discussion of density-level set estimation and modal clustering for 
directional data following this route.

Lc(f ) = {x ∈ Ω2 ∶ f (x) ≥ c}, 0 ≤ c ≤ max f .

Fig. 3   Left: Photon scattering as a function of their energy content. Right: Values of hi,SE as a function of 
energy and event quality, where PSF0 represents the worst event type. The higher the energy and quality 
of the event, the smaller is the smoothing parameter
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As our aim is to discover and identify unknown �-ray emitting sources, we rather 
address the modal clustering problem according to a bump-hunting approach, which 
allows us to associate the modes of the unknown density fwith the direction of the 
emitting sources. Yang et al. ( 2014) adapted themean-shiftalgorithm developed by 
Fukunaga and Hostetler (1975) to be used with the directional kernel estimator (3) 
and fixed bandwidth h. Straightforward calculations allow us to extend their pro-
posal to varying hi , that is, for adaptive kernel density estimation on the unit sphere.

Starting from a generic point x(0) , the algorithm recursively shifts it to a local 
weighted mean, until convergence. Denoted by wi(x

(s)) the vector of weights of the 
components of xi at step s, at the next step, (s + 1) , we have

where M(x(s)) =
∑n

i=1
wi(x

(s))xi − x
(s) denotes the mean shift. Up to a normalising 

factor, the weights wi(x) involve the derivative K�(h−2
i
(1 − x

⊤
xi)) of the kernel func-

tion, which leads to the weighted average

where ∣∣ ⋅ ∣∣2 is the Euclidean norm and the minus sign is due because K(⋅) is a 
decreasing function.

If we replace the kernel function K(⋅) by the von Mises–Fisher kernel, the above 
expression becomes

As in the linear setting, the resulting sequence follows the gradient ascent path of 
the associated kernel density estimate of the data. The set of data points whose paths 
converge to the same local mode hence approximate the pertaining modal region 
and produce a partition of the sample space.

4.2 � Post‑processing

As mentioned in Sect.  1.1, the incoming photons were either emitted from a high-
energy source or are part of the diffuse �-ray background which spreads over the entire 
area observed by the telescope. The directional kernel density estimator (3) tries and 
reconstructs the corresponding mixture distribution. Hence, the small peaks which 
emerge as modes may identify true sources, but they may equally well represent a false 

x
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signal generated by the irregularly shaped background radiation. To separate the true 
signal emitted by a source from the background, we developed a post-processing proce-
dure that combines the findings of two parallel quests. One establishes the significance 
of a candidate mode using a suitable statistical test. The second skims off the photons 
emitted by the �-ray background using a suitable classifier build on previous knowledge 
provided by the Fermi LAT Collaboration. By super-imposing the findings from these 
two quests, we identify candidate sources which are both, statistically significant and 
qualified as such according to a set of relevant features. Furthermore, we are now able 
to distinguish photons emitted by a candidate source from those pertaining to the back-
ground radiation.

4.2.1 � Statistical significance of the detected sources

Mathematically, we can verify whether a function reaches a local maximum by check-
ing whether all eigenvalues of the Hessian matrix evaluated at the candidate mode are 
negative. Statistically, developing a suitable test to verify the existence of a mode and 
deriving its null distribution using eigenvalues is tricky, as these are not continuously 
differentiable functions of the Hessian. This invalidates resampling-based methods 
such as the bootstrap and asymptotic expansion by the delta method, which we may use 
to reconstruct the finite-sample null distribution of the test statistic. In the linear setting, 
Genovese et al. (2016) suggest to use data splitting to separate the process of finding 
candidate modes from the process of hypothesis testing. They furthermore propose to 
base inference on confidence intervals, rather than onp values. The potential modes are 
hence estimated on the first half of the data, while the second half is used to construct 
asymptotically valid bootstrap confidence intervals for the eigenvalues of the Hessian 
matrix, which can be used for hypothesis testing.

The extension of this idea to directional data requires some care, as working on the 
unit sphere sets some constraints. To calculate the Hessian matrix Hf̂h(x) , we first need 
the total gradient

where ∇ represents suitable differentiation. The Hessian matrix hence is

Likewise, we may obtain the Hessian matrix associated with an adaptive kernel den-
sity estimator with variable bandwidth hi . The tricky part is that the eigenvalue of 
Hf̂h(�) , when f̂h(x) is evaluated at � , is always zero, whether � corresponds to a 
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true source or not. This entails that inference has to be based on the remaining two 
eigenvalues. We hence construct a 1 − � level confidence interval for the largest non 
null eigenvalue using bootstrap resampling. The candidate mode is validated if the 
interval includes only negative values.

A second possibility, which is operationally equivalent, is to reparametrize the 
von Mises–Fisher kernel in terms of the Galactic coordinates (l,  b). This worka-
round allows us to directly apply the results by Genovese et al. (2016).

4.2.2 � Background filtering

A post-processing step is added to further skim off the photons emitted by the diffuse 
background and identify those which originate from the extra-galactic sources. This is 
very much in line with the semi-supervision approach commonly used in particle phys-
ics searches to combine the quest for an as yet undetected signal with former knowl-
edge about the phenomenon under study. See, for instance, Casa and Menardi (2022). 
Our background filter uses features which can be extracted at the various steps of the 
mean-shift algorithm, such as the number of photons assigned to a mode, the density 
estimates for the signal and the background models and various types of distances 
between the photons and their mode, in addition to the information already provided 
by the Fermi LAT Collaboration which includes the energy content of the photons and 
their incoming direction. A tree-based classifier is trained and tested on a suitable area 
of the sky. The final classifier is then pruned so as to assign any cluster with a single 
photon to the background.

Table 1   Performance metrics for different choices of the bandwidth h of the von Mises–Fisher kernel 
density estimator applied to the blue sky region plotted in Fig.  1 of size (l, b) ∈ [0◦, 60◦] × [10◦, 60◦] : 
ARI = adjusted Rand index; d̄(s, ŝ) = median angular distance (in degrees) between the directions of true 
sources (s) and candidate sources ( ̂s ) identified by the algorithm; ns = number of identified sources

The number of true sources is 68

h ARI d̄(s, ŝ) ns

hi,SE 0.9976 0.0004 86
hTHUMB 0.6841 0.0079 10
hA
i,THUMB

0.6805 0.0139 18

hS
i,THUMB

0.8524 0.0063 25
hLCV 0.9777 0.0092 142
hA
i,LCV

0.9777 0.0092 142

hS
i,LCV

0.9777 0.0092 142
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5 � Application to Fermi LAT data

We benchmarked our algorithm on a simulated sample of �-ray photon emission for 
a 5-year period of observation provided by the Fermi LAT Collaboration3 based on 
the Fourth Catalog of Fermi-LAT  Sources (4FGL) (Abdollahi et al.  2020).

5.1 � Optimal bandwidth selection

The first step was to select the optimal bandwidth h using a simulated sample of 
2335 photons emitted by the 68 sources which are present in the blue validation 
region (l, b) ∈ [0◦, 60◦] × [10◦, 60◦] of Fig.  1. Table  1 compares the selection cri-
terion based on scientific input discussed in Sect. 3.2, with the different proposals 
for bandwidth selection listed in Sect.  3.1. Three performance metrics are used, 
which are the adjusted Rand index (ARI), the median angular distance (in degrees) 
between the directions of true sources and candidate sources, d̄(s, ŝ) , and the number 
ns of identified sources. The three proposals based on the rule of thumb oversmooth 
the true photon density, leading to rather low ARI values. Likelihood cross valida-
tion, on the other hand, tends to over adapt the true density yielding too many can-
didate sources: 142 in place of the 68 present. The best partition of the selected sky 
region is obtained when using the variable bandwidth hi,SE , that is, the scale factor 
of the LAT’s point spread function.

Further support to the choice of hi,SE is provided by Table  2, which contrasts 
the selected optimal bandwidths (Columns 3–7) with the true photon scattering, as 
measured by its standard deviation (Column 2), for 5 selected sources of varying 
size, that is, which emit from a minimum of ns = 7 photons up to a maximum of 
ns = 151 photons. Again, hi,SE is the best performing choice.

5.2 � Post‑processing

We next trained and tested our tree-based classifier on the sample of 35,365 simulated 
photon emissions of the green sky region of size (l, b) ∈ [120◦, 150◦] × [15◦, 70◦] in 

Table 2   Standard deviation (Column 2) of photon scattering for 5 selected sources of varying size (Col-
umn 1) and average bandwidths computed using the scale factor of the PSF (Column 3) or selected by 
Abramson’s or Silverman’s rules (Columns 4–7)

Source sd h̄i,SE h̄A
i,LCV

h̄A
i,THUMB

h̄S
i,LCV

h̄S
i,THUMB

ns = 7 0.0019 0.0017 3.2958 × 10−06 0.1053 2.8623 × 10−07 0.0611
ns = 19 0.0048 0.0028 3.2225 × 10−06 0.0221 2.7986 × 10−07 0.0128
ns = 31 0.0042 0.0027 2.8184 × 10−06 0.0501 2.4477 × 10−07 0.0290
ns = 79 0.0030 0.0028 2.1721 × 10−06 0.0314 1.8864 × 10−07 0.0182
ns = 151 0.0068 0.0027 2.0684 × 10−06 0.0215 1.7963 × 10−07 0.0125

3  https://​fermi.​gsfc.​nasa.​gov/​ssc/​data/​access/.

https://fermi.gsfc.nasa.gov/ssc/data/access/
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Fig. 1. This area covers a large portion of the Northern sky to account for the rather 
prominent variability of the diffuse �-ray background as we move away from the 
Galactic plane. The classifier was estimated on the first 2/3 of the sample, for a total 
of 24,573 photons, and tested on the remaining 11,062 photons, where it selected a 
total of ns = 86 sources. In both sets, about 85% of the photons were emitted from 
the background. The average sensibility, computed on the candidate sources identi-
fied by the classifier, was 90.5%, while the average specificity was 99.5%. The ARI 
is 0.9752 and the median angular distance between the true sources and the identi-
fied ones is 0.0005 degrees.

The importance of the selected predictor variables is shown in the left panel of 
Fig.  4. The most discriminating features are the number of photons assigned to a 
cluster (n_photons), the difference between the two photon densities for, respec-
tively, the all sky and background counts only (density_differences), and the density 
observed for each photon (density). The final classifier was furthermore pruned so as 
to assign any cluster with a single photon to the background.

5.3 � Source detection

The yellow region in Fig.  1 shows a portion of the Southern sky of size 
(l, b) ∈ [95◦, 135◦] × [−40◦,−10◦] with 3849 simulated photon counts for a 5-year 
period of observation. Of these, about 26% were emitted by the 44 sources present in 
the area, while the remaining 74% originated from the diffuse �-ray background. The 
left panel of Fig. 4 plots the estimated kernel density (3) using a von Mises–Fisher ker-
nel. Here, the bandwidth parameter h was set according to scientific input, as described 
in Sect. 3.2. In all, the mean-shift algorithm identified 876 modes. To further refine the 
list of candidate sources we proceeded in two steps as outlined in Sect. 4.2.

On one side, we used the tree-based classifier trained in Sect. 5.2 to discriminate 
between source and background emission. This reduced the original 876 modes to 39 
candidate sources, which are shown as blue circles in the left panel of Fig. 5. The table 

Fig. 4   Left: Feature importance plot for the tree-based photon classifier used to discriminate between 
source and diffuse �-ray background emission. Right: Kernel density estimate using a von Mises–Fisher 
kernel for the 3849 �-ray photon counts simulated for the LAT in a 5-year period in the region of the 
Southern sky identified by (l, b) ∈ [95◦, 135◦] × [−40◦,−10◦] and shown in yellow in Fig. 1. About 26% 
of the photons were emitted by the 44 sources present in the area (color figure online)
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on the right reports the performance of our classifier in terms of ARI and median angu-
lar distance d̄(s, ŝ) . The true positive rate for single photon classification is 98.5% rate, 
while the percentage of false positives is 22.9%. Indeed, the five missed sources are the 
less photon emitting ones. In parallel, we tested all the 555 clusters which contain two 
or more photons at a significance level of 5% as outlined in Sect. 4.2.1 and applying 
Bonferroni’s correction. This skimmed off 448 modes, for a total of 107 remaining can-
didate sources, shown in the left panel of Fig. 5 as red crosses. Here, the true positive 
rate for single photon classification is 85.0% and the false positive rate is 11.2%.

By super-imposing these two findings, we obtain in all 27 sources which are both, 
statistically significant and qualified as such by the non-parametric classifier. The 
global true positive rate for single photon classification is 94.6% while the false positive 
rate is 14.1%, while the ARI exceeds 0.96.

For the sake of comparison, Costantin et  al. (2020), Table 2)—which is the only 
contribution we can to a certain extent compare to—achieved remarkably lower ARIs 
and median distances on similar cuts, and this on photon emission counts which didn’t 
consider the background.

6 � Concluding remarks

The recent literature on density estimation has boasted novel approaches for 
general complex domains; see, for example, Arnone et  al. (2022) and Baldi 
et al. (2009) and references therein. But, it has also refueled the interest in well-
established techniques by generalizing their usability as, for instance, done by 

Fig. 5   Left: Simulated Fermi-LAT �-ray photon count map for the analysed 5-year observation period 
with superimposed the true sources (black crosses) and our candidate sources. A red cross pinpoints a 
candidate source which is statistically significant at the 5% level, while a blue circle identifies a candidate 
source on the basis of its features. Right: Performance measures of the tree-based classifier (color figure 
online)
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Di Marzio et al. (2019). Our contribution intends to follow the latter route by tak-
ing advantage of the natural link between kernel density estimation and the mean-
shift algorithm for mode identification. Our proposal represents a step forward 
towards the implementation of a fast and scalable computational tool to efficiently 
and effectively extract knowledge from today’s large astronomical databases. 
Here, the widely used model-based approach to multivariate classification, which 
involves maximizing the likelihood of the mixture model using, for instance, the 
expectation maximization (EM) algorithm or Markov chain Monte Carlo (MCMC) 
simulation, is computationally impractical. Nonparametric methods, on the other 
hand, allow us to maintain the high flexibility required by the complex structure 
of astronomical data characterized by a sometimes low signal-to-noise ratio, while 
relying on sound theoretical basis.

We aimed at providing a highly performing tool for the identification of astro-
nomical sources in terms of both, detection performance and computational speed. 
But, the focus was also on enriching the statistical toolbox of astrophysicists by con-
sidering a modeling approach which substantially differs to what done so far. In par-
ticular, using scientific input proved to be a winning choice for the selection of the 
optimal bandwidth. Furthermore, a set of features linked to the mean-shift algorithm 
turned out to useful to discrimante background photon emission from true source 
emission. Our final goal is to analyze the whole sky maps in one go. We are cur-
rently fine-tuning our algorithm by including a consensus clustering step. This will 
allow us to aggregate results from multiple runs, while guaranteeing more stable and 
robust results (Monti et al. 2003; Vega-Pons and Ruiz-Shulcloper 2011). More pre-
cisely, borrowing from Nordhaug Myhre et al. (2018), we form a clustering ensem-
ble consisting of separate and bootstrapped runs of the mean-shift algorithm on a 
given number of overlapping regions of the sky, as shown in Fig. 6. The size and 
location of these regions varies on a random basis. The final modes are identified 
by selecting the cluster configuration which was observed most of the times. This 
way of proceeding guarantees robustness with respect to the choice of the smoothing 

Fig. 6   Selection of overlapping regions for consensus clustering
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parameter h, while at the same time allowing us to work with tremendous amount of 
data.
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