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Abstract: Fragile X syndrome (FXS) is caused by pathologic expansions of the CGG repeat polymor-
phic region of the FMR1 gene. There are two main categories of FMR1 mutations, “premutation”
and “full mutation”, that are associated with different clinical phenotypes, and somatic mosaicism
can represent a strong FXS phenotype modulator. FXS is the leading cause of inherited intellectual
disability and autism, and it is characterized by musculoskeletal manifestations such as flexible flat
feet, joint laxity and hypotonia. The former have been associated with altered joint kinematics and
muscle activity during gait. The aim of this study was to use gait analysis parameters to classify
FXS children from healthy controls and, within FXS children with full mutation, to classify children
with mosaicism. Seven supervised machine learning algorithms were applied to a dataset of joint
kinematics and surface electromyographic signals collected on twenty FXS children and sixteen
controls. Results showed that the k-NN algorithm outperformed in terms of accuracy (100%) in
classifying FXS children from controls, while CN2 rule induction obtained the best accuracy (97%)
in classifying FXS children with mosaicism. The proposed pipeline might be used for developing
assisted decision-making systems aiming at identifying and treating the musculoskeletal alterations
associated with FXS.

Keywords: supervised learning; fragile X syndrome; gait analysis; surface electromyography; kinematics

1. Introduction

Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and
autism (frequency estimated at 1/4000–1/7000) [1] caused by pathologic expansions of the
CGG repeat polymorphic region of the FMR1 gene. The number of the CGG repeats deter-
mines two main mutational categories with different clinical phenotypes—“premutation”
and “full mutation”. In the premutation (55–200 CGGs) different phenotypes such as fragile
X-associated primary ovarian insufficiency, fragile X-associated tremor ataxia syndrome
and fragile X associated neuropsychiatric disorders [2,3] are caused by the cell toxicity
caused by an excessive production of the FMR1 gene. In the full mutation (>200 CGGs) FXS
phenotype with symptoms such as intellectual disability, behavioural deficits and global
development delays [4] is caused by gene silencing and the loss of protein function. In this
context, somatic mosaicism can be a strong FXS phenotype modulator [4]. There are two
types of mosaicism—“size mosaicism”, when both premutation cells and full mutation
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cells are present, leading to the occurrence of problems connected with both mutational cat-
egories; and “methylation mosaicism”, when full mutation expansions are not completely
methylated [5].

In FXS children, musculoskeletal manifestations such as flexible flat feet, joint laxity
and hypotonia [6] may lead to non-physiological gait patterns [6,7]. Gait analysis in FXS
children has documented significant alterations such as a characteristic pattern of exces-
sively flexed hip and ankle joints with reduced flexion at the knee, suggesting an overall
immature motor control [7,8]. In terms of surface electromyography, in one study an altered
muscle activity was detected, and an asymmetric activation pattern on gastrocnemius
lateralis and biceps femoris suggested the presence of compensatory mechanisms actuated
by these children to cope with the overall joint laxity and flexible flat feet [7].

In the recent literature, gait patterns associated with various pathologies (i.e., cerebral
palsy patients, Parkinsonians, post-stroke patients) have been investigated in the context
of gait classification to assist with clinical decision making [9,10]. Supervised machine
learning algorithms operate on a training set of input data (e.g., gait parameters) and
known labels of the data (e.g., clinical diagnosis) to train a predictive model to be able
to generate accurate predictions for new unlabelled data. Kamruzzaman et al. in 2007
applied the support vector machine algorithm to distinguish children with cerebral palsy
from healthy controls based on kinetic gait parameters, and achieved 97% accuracy [11].
Zhang et al. in 2019 used kinematic features as an input for seven different classifiers,
and reported the best accuracy for an artificial neural network [12]. Mannini et al. in
2016 applied the support vector machine algorithm with gait characteristics obtained from
inertial measurement units as an input to classify post-stroke patients, Huntington’s disease
patients and healthy elderly individuals with an accuracy of 90.5% [13]. Lee et al. in 2012
used gait characteristics and wavelet-based features as an input for support vector machine
to classify Parkinsonian patients and healthy controls with 77.3% accuracy. According to
the latest review by Figueiredo et al., the application of machine learning to the recognition
of gait patterns is likely to provide a potentially realistic diagnosis [9].

However, in the context of FXS, to the best of the authors’ knowledge, automatic gait
classification has not previously been performed. The aim of the present study was to
use gait analysis parameters to classify FXS children from healthy controls and, within
FXS children with full mutation, to classify children with mosaicism. Toward this aim,
seven supervised machine learning algorithms were applied to a dataset of joint kinematics
and surface electromyographic signals collected on twenty FXS children and sixteen con-
trols. Understanding the key gait analysis variables which discriminate FXS children from
controls with typical neurodevelopment and, within FXS, children carrying somatic mo-
saicism, has the potential to promote the identification and treatment of the musculoskeletal
conditions related to this specific genetic condition.

2. Materials and Methods
2.1. Participants

Appropriate informed consent was obtained for each subject enrolled in the study for
participation, scientific use of the data and publication (Local Ethics Committee, Università
Azienda Ospedaliera di Padova, trial n◦ 46039, registration date 29 July 2019).

Twenty male children with FXS phenotype (mean (±SD) age and BMI, respectively, of
10.00 (±3.74) years and 18.57 (±3.46) kg/m2) were evaluated in a routine clinical setting
at the Department of Women’s and Children’s Health, University of Padua; thirteen of
the FXS children carried a full mutation of the FMR1 gene (FXS-FM; age of 10.69 (±3.67)
years, BMI of 18.82 (±4.09) kg/m2), five of them carried a methylation mosaicism (FXS-
M; age of 9.00 (±3.35) years, BMI of 18.70 (±2.34) kg/m2), two carried a premutation
(FXS-P) and were affected with a phenotype compatible with FXS. Sixteen controls with
typical neurodevelopment (CS; mean (±SD) age of 10.22 (±3.19) years, BMI of 22.84 (±3.93)
kg/m2) were evaluated at the BioMovLab (University of Padua, Padova, Italy).
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Subjects’ numerosity was defined based on power analysis [14] carried out on a
previously published dataset [7] considering the value of the envelope peak as a variable; a
number of 11 subjects was found to be sufficient for our analysis, and our sample consisted
of 18 FXS children and 16 controls.

FXS subjects were enrolled according to the following inclusion criteria:

• Molecularly documented full mutation of the FMR1 gene with expansions of more than
200 CGG repeats and methylation of the promoter and repeated sequence; possible
size and/or methylation mosaicism.

• Ability to walk independently.
• Absence of documented orthopaedic comorbidities affecting the lower limbs within

12 months from the beginning of the study.
• Absence of documented neurological disorders.

BMI- and age-matched subjects with typical neurodevelopment were enrolled as
controls for the study according to the following inclusion criteria:

• Ability to walk independently.
• Absence of documented lower-limb injures within 12 months of the beginning of the

study.
• Absence of documented neurological disorders.

2.2. Molecular Analysis

Molecular analysis was performed as previously reported [7]. Genomic DNA (gDNA)
was extracted from peripheral blood leukocytes (PBLs) and saliva on an automated
Maxwell® 16 Blood DNA Purification System (Promega, Milan, Italy) and quantified
by spectrophotometer with NanoDropTM (ThermoFisher Scientific, Waltham, MA, USA).
To identify the full range of FMR1 CGG repeat expansions, genomic DNA (40–60 ng) was
amplified with an Amplidex FMR1 PCR kit (Asuragen, Austin, TX, USA) as previously
described [15] and according to the manufacturer’s recommended protocol. All amplicons
were analysed by capillary electrophoresis (CE) on a 3130xl Genetic Analyzer (Applied
Biosystems, ThermoFisher Scientific, Waltham, Massachusetts, USA). Fragment length was
derived from the size of the PCR products calibrated to a ROX 1000 Size Ladder (Asuragen,
Austin, TX, USA) with the use of the GeneMapper® Software v 4.0 (ThermoFisher Scientific,
Waltham, MA, USA). Methylation analysis was carried out with use of the AmplideX FMR1
mPCR kit (Asuragen, Austin, TX, USA), as described [16]. Methylation percentage was cal-
culated as a ratio of peak heights between digested (HEX) and undigested samples (FAM),
normalized to the CGG control amplicon peak height with the GeneMapper® Software v
4.0. Alleles are reported as unmethylated (<20%), partially methylated (20–80%) and fully
methylated (>80%).

2.3. Instrumental Assessment

Kinematics and sEMG data were simultaneously acquired through four synchronized
cameras (GoPro Hero3, 30 fps) and an sEMG system (FreeEmg, BTS, 1000 Hz) that collected
the activity of tibialis anterior (TA), gastrocnemius lateralis (GL), rectus femoris (RF) and
biceps femoris (BF). sEMG sensors were positioned according to [17,18] after appropriately
cleaning and preparing the skin. Sensors were 24 mm in diameter and positioned 1 cm
apart. Each subject performed several gait trials at a self-selected speed; at least three trials
per subject were processed.

The kinematic data were acquired as described in [7] without applying any mark-
ers on subjects’ skin. Video sequences were processed to extract the three-dimensional
anatomical landmark coordinates using the software “Track on Field” (BBSoF s.r.l.), which
implements the optical flow popular Kanade–Lucas–Tomasi tracking algorithm [19] in
the version proposed by Sawacha et al. (2014) [20,21]. The algorithm was modified and
validated as described in [7] to enable tracking with the markers automatically added in
anatomical landmarks identified by the user (Figure 1). Data were processed in Matlab
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(MathWorks v.2019a) and sagittal plane kinematics as well as spatiotemporal parameters
were extracted according to a simplified version of [19] as in [20]. Minimal and maximal
values of joint angles (hip, knee and ankle) and joints’ range of motion were calculated
using self-developed Matlab codes.

Figure 1. The definition of lower limb embedded frames and sagittal plane angles. The pelvis
reference system is represented in blue: the origin is the midpoint between LASIS and RASIS
(MASIS), the z axis is the normalized vector oriented as the line passing through the LASIS and
RASIS with its positive direction from left to right; the x axis lies in the plane defined by the RASIS,
LASIS and the midpoint between the RPSIS and LPSIS (MPSIS) with its positive direction forwards;
the y axis is orthogonal to the xz plane and its positive direction is proximal. The hip flexion angle is
defined as the angle between pelvis and femur (femur is the line connecting the hip joint centre (HJC)
and the lateral epicondyle (LE)); the knee flexion angle is defined as the angle between femur and
shank (shank is the line connecting the LE and the calcaneus (CA)); the ankle flexion angle is defined
as the angle between shank and foot (foot is the line connecting the CA and the fifth metatarsal head).
Abbreviations: right and left posterior superior iliac spines (RPSIS, LPSIS); right and left anterior
superior iliac spines (RASIS, LASIS); right lateral epicondyle (RLE); right head of fibula (RHF); right
calcaneus (RCA); right fifth metatarsal head (RVMH); right HJC (RHJC).

In terms of sEMG analysis the following parameters were computed: duration of
contraction, onset and offset activation timing, peak of the envelope and occurrence in the
gait cycle, muscle co-contractions number and occurrence in the gait cycle [21–25].

The envelope was computed by low-pass filtering the signals with a fourth-order But-
terworth filter and a cut-off frequency of 5 Hz. The peak of each muscle sEMG activity was
determined as a percentage of medium value in the cycle (PoE%) as well as its occurrence
with respect to the gait cycle (PPoE%) [21,23].

To obtain the activation timing, signals were filtered by filter removing heartbeat,
notch filter for 50 Hz, band-pass filtered with a double fifth-order Butterworth filter and full
wave rectified. The cut-off frequencies varied from 5 to 15 Hz for the high-pass filter, and
from 450 to 495 Hz for the low-pass filter. A double-threshold statistical detector proposed
by Bonato [22] was applied. Background noise was estimated for each signal based on the
interval of the subject’s static standing. Only activation intervals longer than 30 ms were
accepted [22]. The values of duration of muscle activity and the onset and offset of muscle
activity intervals were detected for each gait cycle.

In order to calculate the co-contraction ratio (CCR) for knee and ankle joints, Equation (1)
was implemented [25]. Antagonist muscles for the knee joint were BF and GL, while RF
was the agonist. For the ankle joint the agonist muscle was TA, while GL was the antagonist.
An index of −1 indicates a sole contribution of the agonist excitations, 1 indicates a con-
tribution derived just from antagonist excitations and 0 indicates a balanced contribution
of both agonist and antagonist excitations (i.e., the maximum value of co-contraction).
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EMG(t)antagonist and EMG(t)agonist were respectively representative of the average of all the
agonist and antagonist muscle excitations in the same instant of time.

CCR(t) =
EMG(t)antagonist

EMG(t)agonist
− 1, i f EMG(t)antagonist < EMG(t)agonist

CCR(t) = 1 −
EMG(t)antagonist

EMG(t)agonist
, i f EMG(t)antagonist > EMG(t)agonist

(1)

To extract a value that could be representative for the co-contractions (CCs) in our
cluster analysis, we defined a CC to occur at CCR(t) equal to 0. We then computed the
number of CCs and extracted their occurrence within the gait cycle.

The extracted parameters are listed in the following.
sEMG parameters:

• Duration of muscle contraction;
• Muscle activation onset and offset;
• Value of envelope peak;
• Envelope peak occurrence within the gait cycle.

Co-contraction parameters:

• Number of co-contractions within the gait cycle;
• Co-contraction occurrence within the gait cycle.

Kinematic parameters:

• Minimal values of joints’ articular angles (hip, knee and ankle);
• Maximal values of joints’ articular angles (hip, knee and ankle);
• Range of motion of joints’ articular angles (hip, knee and ankle).

2.4. Classification Procedure

The overview of the procedure for the gait pattern classification is presented in Figure 2.
The input data vectors for classification algorithms were formed from the elaborated
parameters as follows:

• S1: sEMG parameters and co-contraction parameters;
• S2: kinematic parameters;
• S3: sEMG parameters, co-contraction parameters and kinematic parameters.

Seven supervised learning algorithms [26] were applied as a gait classification system:
decision tree, random forest, CN2 rule induction, support vector machine (SVM), k-nearest
neighbours (k-NN), neural network and naïve Bayes. All the algorithms were implemented
in Orange Mining Toolbox.

Two types of analysis were performed: first the classification between FXS subjects
and controls was carried out using three different sets of vectors (S1, S2 and S3); then, the
classification between different mutation categories of the FMR1 gene (FXS-FM vs. FXS-M)
using two different sets of input vectors (S1 and S2) was performed.

For each analysis the training set consisted of a randomly selected set representing
66% of the gait trials and the test set consisted of the remaining 33% of gait trials. For the
training set a 10-fold cross-validation was performed.

The extracted parameters were statistically analysed by means of Kruskal–Wallis
non-parametric test (p < 0.05) in SPSS (v24, IBM Statistical Toolbox) due to the non-normal
distribution of the data according to the Shapiro–Wilk test.
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Figure 2. Diagram with the overview of the gait classification using seven supervised learning
algorithms.

3. Results
3.1. FXS vs. CS

The classification accuracy for classification between FXS and CS in all the analysed
supervised algorithms is summarized in Table 1.
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Table 1. Accuracy of the seven supervised learning algorithms for the classification between FXS
and CS.

Classification Accuracy

Input Vector/
Classification Algorithm

S1 S2 S3

Training a Test b Training a Test b Training a Test b

Random Forest 98.3% 98.3% 99.1% 98.3% 99.2% 96.7%
CN2 Rule Induction 96.2% 94.2% 97.4% 98.3% 95.8% 92.7%

Neural Network 95.7% 94.2% 99.1% 96.6% 97.9% 95.9%
SVM 97.9% 95.0% 100.0% 98.3% 97.9% 98.4%

Decision Tree 94.9% 97.5% 96.5% 98.3% 93.8% 90.2%
k-NN 95.3% 95.0% 100.0% 100.0% 96.3% 95.9%

Naïve Bayes 88.9% 90.8% 99.1% 96.6% 77.5% 76.4%
S1: sEMG parameters and co-contraction parameters. S2: kinematic parameters. S3: sEMG parameters, co-
contraction parameters and kinematic parameters. a Classification accuracy on the training dataset. b Classification
accuracy on the test dataset.

Overall, all the algorithms were generally able to classify gait characteristics from
different input vectors. The average predictive accuracy for new data was 95.0% for S1,
98.1% for S2 and 92.3% for S3. The best accuracy for S1 was achieved using random forest
(98.3%); for S2 using k-NN (100%) and for S3 using SVM (98.4%). The worst accuracy for
all analysed vector sets was obtained using naïve Bayes.

In terms of input parameters, the best classification was obtained using S2 (kinematic
parameters). This subset of parameters was then further investigated in order to verify
the presence of statistically significant differences between the FXS and CS populations
of subjects, and statistically significant differences (p < 0.05) were found in maximum hip,
knee and ankle angles; minimum hip and knee angles; and hip and knee range of motion
(see Figure 3).

Figure 3. Kinematic parameters used as input for the classification algorithms (S2) in FXS and CS
subjects. * Statistically significant (p < 0.05).

3.2. FXS-FM vs. FXS-M

The accuracy for the classification of FXS-M within the FXS-FM group is summarized
in Table 2.
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Table 2. Accuracy of the seven supervised learning algorithms for the classification of FXS-M within
the FXS-FM group.

Classification Accuracy

Input Vector/
Classification Algorithm

S1 S2

Training a Test b Training a Test b

Random Forest 96.9% 90.9% 78.5% 78.8%
CN2 Rule Induction 96.9% 97.0% 63.1% 72.7%

Neural Network 98.5% 90.9% 83.1% 84.8%
SVM 95.4% 87.9% 72.3% 69.7%

Decision Tree 96.9% 93.9% 78.5% 63.6%
k-NN 94.6% 93.9% 80.0% 84.8%

Naïve Bayes 73.8% 80.3% 61.5% 69.7%
S1: sEMG parameters and co-contraction parameters. S2: kinematic parameters. a Classification accuracy on the
training dataset. b Classification accuracy on the test dataset.

Overall, all the algorithms were generally able to classify gait characteristics from
different input vectors. The average predictive accuracy for new data was 90.7% for S1
and 74.9% for S2. The best accuracy for S1 was achieved using CN2 rule induction (97.0%)
while for S2 it was obtained using k-NN and neural network (84.8% for both algorithms).
The worst accuracy for both vector sets was obtained using naïve Bayes.

In terms of input parameters, the best classification was obtained using S1 (sEMG
and co-contraction parameters). This subset of parameters was then further investigated
in order to verify the presence of statistically significant differences between FXS-M and
FXS-FM. Statistically significant differences were observed in the position of the envelope
peak in the left TA, GL, Bf and both the right TA and RF; the value of the envelope peak
in the left TA and the right TA, GL and BF; the muscle duration in GL; the muscle activity
onset and offset in both the left RF and BF; and the number of co-contractions in the left
ankle joint and the right knee joint (see Figure 4).

Figure 4. sEMG and co-contraction parameters in which statistically significant difference (p < 0.05)
was found between FXS-FM and FXS-M.

4. Discussion

The current state of the art is focusing on the development of automatic techniques
to discriminate pathological gait patterns from healthy ones, in order to track disease
progression and prescribe target therapies [4]. In this context, machine learning algorithms
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have shown the ability on one side to identify atypical gait patterns and on the other to
manage multidimensional data with the possibility of increasing dataset size without the
need to change the methodological approach [9,27]. In the present contribution the standard
machine learning algorithms were applied to an under-investigated pathology (FXS) from
a gait-analysis perspective. In the majority of the state-of-the-art works spatiotemporal gait
features have been used for gait pattern classification, accompanied by 3D gait joint angles
and kinetics features [9]. Previous studies applied supervised learning algorithms driven
by kinematic data acquired during gait to differentiate subjects with chronic neck pain and
healthy ones [28], predict the severity of Parkinson’s disease [29], categorize gait patterns
in CP subjects [12,30] and link toe-walking gait patterns to their clinical cause [31]. In the
present contribution, in contrast to previous works adopting only kinematic or only sEMG
features, both types of features were combined in different ways in order to fully explore
their classification potential. Furthermore, to the best of our knowledge, co-contraction
indexes were included for the first time in the attempt to classify gait patterns.

With respect to the study aim, our results support the use of gait analysis parameters to
classify FXS children and, within FXS children with full mutation, to classify children with
mosaicism. In this context, the overall highest accuracy for the classification between FXS
and CS subjects was found using the k-NN algorithm (100%), while for the classification
between FXS-M and FXS-FM, CN2 rule induction yielded the best result (Table 2).

The classification accuracy for the other algorithms (76.4–98.3% for FXS vs. CS and
69.7–93.9% for FXS-FM vs. FXS-M) was in the same range reported by previous literature
in the domain of gait classification [26,32]. The differences in terms of performance among
the different algorithms were generally small (up to 6.5% for all the analysed algorithms
except for naïve Bayes and up to 1.7% for random forest, k-NN, SVM and decision tree in
FXS vs. CS classification).

The obtained results suggest that random forest, k-NN, SVM and decision tree are good
candidates for future use in the development of a classification system for discriminating
FXS children from CS based on their gait patterns. Meanwhile, when considering FXS-M,
the CN2 rule induction was the best candidate for developing a classification system aiming
to distinguish FXS-M within a group of FXS-FM individuals.

The present contribution not only revealed the most useful supervised classification
algorithm but also identified the most suitable set of parameters between sagittal plane
kinematics and sEMG. Our data also make it possible to identify the best set of variables
extracted from the sEMG signal. For discriminating between FXS and CS individuals,
all the proposed vectors allowed a high prediction accuracy (over 98.3%), but S2, using
kinematic parameters, outperformed the other variables. For the classification of FXS-M
within FXS-FM individuals the best prediction accuracy was achieved for S1 using all the
sEMG parameters and the co-contraction as input features (97.0%).

The overall results of the present study suggest that by using sEMG standard parame-
ters coupled with co-contraction indexes (S1), it is possible to classify subjects: FXS and CS
as well as FXS-M and FXS-FM.

There is a paucity of information regarding specific physical therapy interventions that
could impact the characteristic musculoskeletal alterations affecting FXS children. However,
rehabilitation therapies for these children are mainly focused on the neurodevelopmental
aspects and motor delay, and less attention is paid to actual musculoskeletal alterations [33].
Studies aiming at classifying the different gait motor control impairments associated with
FXS could therefore help in overcoming this limitation. The results of our study showed the
key role of joint kinematics and muscle activity in characterization and discrimination of
the gait pattern of FXS children with respect to controls with a typical neurodevelopment.
Furthermore, characteristic gait features were highlighted within FXS children carrying
a full mutation versus those with a somatic mosaicism. This information could be used
to stratify children according to the gait motor control impairments and associate this
classification to specific physical therapy interventions.

The study has some limitations that should be acknowledged:
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• The accuracy of several classifiers was higher for the test dataset than for the training
one. There are many reasons for this result: the use of the regularization methods such
as dropout, the fact that the validation set may include data that is easier to classify
than the training one, the fact that the splitting between training and test sets may not
be optimal [34];

• The low differences in the accuracy that might be caused by the small number of
subjects forming the testing set (even though the ratio of correctly classified subjects
might be the same, the percentage may differ due to the difference in the sets’ sizes).
Future works should consider increasing the studied population to strengthen the
present results;

• The sample size within the study design, as previously mentioned;
• The lack of application of pre-processing procedures for dimensional data reduc-

tion (i.e., feature selection methods, PCA, methods for cross-validation and feature
normalization) [9]. Future work should explore the possibility of reducing the set
of parameters extracted from both kinematics and sEMG with the aim of enabling
real-time application.

5. Conclusions

In summary, we can conclude that:

• An automatic recognition pipeline for gait disorders in FXS was proposed based on
machine learning algorithms;

• Even though experimented in a limited cohort, this approach could offer a prompt
assessment of gait motor control impairments in FXS subjects that could assist both in
the diagnosis and treatment of this condition;

• The high accuracy revealed by kinematics, sEMG and co-contraction parameters
support exploring their use for the development of assistive decision-making systems
for the prescription of specific physical therapy programs for FXS individuals;

• This work has a translational impact since it provides objective and measurable
parameters to evaluate important clinical aspects of the FXS phenotype that can lead
to better outcomes for future clinical trials.
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