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Introduction 

The development of cardiovascular-renal remodeling in 

chronic kidney disease (CKD) is a progressive, long-term 

process leading to increased morbidity and mortality [1]. 

According to a recent analysis of the global burden of CKD, 

the prevalence of cardiovascular disease (CVD) accounted 

for an additional 1.4 million deaths among patients with 

CKD, which represented 7.6% of deaths due to CVD. CVD 

is therefore the leading cause of death among end-stage re-

nal disease (ESRD) patients undergoing dialysis [2,3]. The 

interplay between kidney dysfunction and CVD is associat-

ed with both traditional atherosclerotic and nontraditional 
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cardiovascular risk factors, including prothrombotic and 

proinflammatory states, endothelial dysfunction, and oxi-

dative stress [4]. Therefore, to shed light on the pathological 

mechanisms underlying CVD and renal remodeling, this 

review will specifically address alterations in the vascula-

ture during progressive kidney dysfunction. 

The vicious cycle 

It is well established that the traditional risk factors for CVD 

in CKD patients are hypertension, diabetes, dyslipidemia, 

and smoking [5–8]. However, compelling evidence also in-

dicates pivotal roles for additional nontraditional risk fac-
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tors, including inflammation, oxidative stress, and endo-

thelial dysfunction, in the development of CVD [4,9]. When 

acting together, these processes encompass more than 

the simple concepts of traditional and nontraditional risk 

factors and create a vicious cycle that exacerbates hyper-

tension, vasomotion, and vascular remodeling, leading to 

increased peripheral resistance, arterial stiffness, endothe-

lial dysfunction, and atherosclerosis [4,9]. As an example, 

the very close relationship between oxidative stress and 

inflammation determines the risk of progressive athero-

sclerotic CVD in CKD and dialysis patients. In this context, 

the endothelial damage caused by free radicals creates a 

positive feedback loop to induce further formation of those 

species. During endothelial lipid peroxidation, the release 

of a cytotoxic end product (malondialdehyde) is pivotal to 

the onset of atherosclerosis and in the endothelium-de-

pendent vasodilation and nitric oxide (NO) pathway [10]. 

Further, the endothelium itself plays an important role in 

the vasomotion of smooth muscle cells involving a com-

plex signaling, which includes calcium oscillation, potas-

sium efflux, NO, and cyclic guanosine monophosphate in 

order to induce vasoconstriction and peripheral resistance 

[11]. Variations in the perfusion pressure in the kidneys are 

detected by intrarenal baroreceptors, which modulate the 

renin-angiotensin-aldosterone system (RAAS). There is 

evidence that injured kidneys have aberrant sympathetic 

nerve activity which overrides the negative feedback loop 

on efferent renal sympathetic nerve activity thereby result-

ing in chronically increased systemic blood pressure [12]. 

In addition, hypertension causes tubulointerstitial fibrosis, 

which is associated with reduced secretory solute clear-

ance, while reduced estimated glomerular filtration rate 

(eGFR) is linked to greater left ventricular wall thickness 

that predisposes patients to CVD [13]. 

Although an association between hypertension and 

inflammation is established, it is still unclear whether in-

flammation is predominately a cause or an effect of hyper-

tension. Hypertensive patients are reported to have high 

plasma C-reactive protein (CRP) concentrations, and ele-

vated plasma CRP concentrations in prehypertensive sub-

jects are associated with a greater risk of developing overt 

hypertension [14]. Systemic low-grade inflammation, as as-

sessed by CRP and other inflammatory markers such as tu-

mor necrosis factor (TNF)-α and interleukin (IL)-1β, is also 

able to upregulate the angiotensin type 1 receptor (AT1R), 

the angiotensin II (Ang II) receptor mainly involved in the 

production of oxidative stress species and in augmenting 

AngII signaling [15]. 

All the molecular mechanisms that link oxidative stress, 

inflammation, and hypertension have also been shown to 

be involved in the pathogenesis of atherosclerosis and sub-

sequent renal remodeling. 

Atherosclerotic injury 

The early stages of atherosclerosis are thought to begin 

with endothelial injury and inflammatory processes where 

cytokines and adhesion molecules are recruited not only 

as components of the acute phase response but also of a 

more chronic response that further stimulates innate and 

adaptive immune responses [16]. The very early stages of 

atherosclerosis entail accumulation of low-density lipo-

proteins (LDLs) within the arterial walls of vessels prone 

to oxidation or modification that are particularly prevalent 

in subjects with CKD. The oxidation of LDL (oxLDL) itself 

is a crucial event in the atherogenesis that is particularly 

evident in patients with ESRD and undergoing dialysis [17]. 

In addition, during atherosclerotic injury, the endotheli-

um modifies its functionality by increasing the expression 

of cell adhesion molecules, such as selectin, intercellular 

adhesion molecule 1 (ICAM-1), and the vascular cell ad-

hesion molecule 1 (VCAM-1), which allows subsequent 

monocytes rolling and infiltration [16]. Through the action 

of specific proteins such as monocyte chemoattractant 

protein-1 (MCP1), IL-8, and fractalkine, monocytes can 

migrate through the endothelium and into the intima, 

where they differentiate into macrophages that take up ox-

LDL (Fig. 1). This ineffective clearance of cholesterol-rich 

lipids within the arterial wall leads to accumulation of 

macrophage-oxLDL complexes and the ensuing formation 

of proinflammatory foam cells. Excessive numbers of foam 

cells are present in CKD patients, whose macrophages also 

display activated nuclear factor kappa B (NF-κB) and re-

duced expression of the ATP-binding cassette transporter 

A1, which is responsible for energy-dependent efflux of 

cholesterol [18]. The NF-κB transcription factor mediates 

multiple aspects of innate and adaptive immune function 

and plays a crucial role in CVD by inducing the transcrip-

tion of proinflammatory genes, by causing glomerular inju-

ry and by activating acute stress responses. 
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The presence of oxLDL can also lead to recruitment of 

toll-like receptors, which aggravate plaque inflammation. 

In the phase of atherosclerotic injury, macrophages are 

also recruited through specific signals transduced by the 

release of granules containing α-defensins, cathepsin G, 

and azurocidin from neutrophils [19]. Those proteins are 

an additional signal to activate macrophages and to ini-

tiate foam cell differentiation. Once formed, foam cells 

lose their motility and become trapped within the ath-

erosclerotic plaque. The intracellular mechanisms that 

reduce migration capacity of macrophages may be related 

to the RhoA/Rho kinase (ROCK) pathway, which is also a 

key signaling pathway in the progression of cardiovascu-

lar remodeling. In addition, RhoA signaling regulates the 

stabilization of vessels during vascular development and 

cardiac development during embryogenesis, and modu-

lates vascular smooth muscle cell (VSMC) contractility [20]. 

Cholesterol-laden macrophages appear to display reduced 

RhoA function, with consequently reduced ROCK activity 

that lowers myosin light chain phosphorylation and im-

pairs motility of foam cells, thus promoting atherosclerotic 

plaque formation [21]. Conversely, inhibiting RhoA/ROCK 

activity regresses atherosclerotic plaques, although the 

mechanism of this effect is not clearly understood. 

In addition, other cells are involved in the formation of 

atherosclerotic plaques, including T lymphocytes (subtypes 

Th1 and Th2) that release proinflammatory cytokines and 

are associated with progression of atherosclerosis for their 

role in the polarization of macrophages [22]. 

Vascular injury 

The progression and development of atherosclerosis are 

determined by the degree of endothelial damage, which 

is in turn influenced by the detrimental action of reac-

tive oxygen species (ROS) when they are not effectively 

scavenged by antioxidant defenses. The redox imbalance 

that induces oxidative stress (excess ROS and/or reduced 

antioxidant defensive capacity) contributes to the inflam-

matory state and vascular remodeling [4]. One of the most 

common events in kidney failure is the accumulation of 

uremic toxins, such as advanced glycation end products 

(AGEs), asymmetric dimethylarginine (ADMA), indoxyl 

sulfate, p-cresyl sulfate, and trimethylamine N-oxide [1]. 

Figure 1. The atherosclerotic injury process. (A) A representative image of an atherosclerotic artery. (B) High-magnification image of 
the initial stages of the atherosclerotic process. Monocytes infiltrate through the endothelium following increased expression of the ad-
hesion molecules vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. In parallel, intracellular signaling promoted 
by hormonal stimuli such as AngII triggers increased oxidative stress, vasoconstriction, and profibrotic responses. Image modified from 
smart.servier.com.
AngII, angiotensin II; AT1R, angiotensin receptor type 1; RhoA/ROCK, RhoA-Rho kinase; ERK 1/2, extracellular-signal-regulated kinase 
1/2; ICAM-1, intercellular adhesion molecule 1; MEF2, myocyte-enhancer factor 2; MLCP, myosin light chain phosphatase; MYPT-1, 
myosin phosphatase target protein 1; NF-κB, nuclear factor kappa B; NO, nitric oxide; ONOO–, peroxynitrite; oxLDL, oxidation of low-den-
sity lipoprotein; VCAM-1, vascular cell adhesion molecule 1.
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The presence of these substances influences the synthesis 

or degradation of other substances produced by physio-

logical processes worsening the already precarious state 

of the vasculature in CKD. For example, the accumulation 

of AGEs that bind to collagen and elastin induces arterial 

and myocardial stiffening [23]. Given that collagen and 

elastin are the main components of vascular walls, vascu-

lar strength and elasticity are influenced by their oxidative 

state and susceptibility to cross-linking. As such, AGE-

linked collagen is resistant to hydrolytic turnover that 

reduces the strength and elasticity of vascular walls. In 

addition, the activation of receptors for AGE in endothelial 

cells, macrophages and lymphocytes reduces vasodilation, 

vascular permeability, mononuclear cell migration and 

platelet adhesion, and uptake of macrophages induced by 

LDL cross-linking. 

Another factor also associated with vascular aging is the 

α-klotho enzyme that favors increment of serum phospho-

rus, reduced expression of which is linked to increased 

oxidative stress and decreased NO availability that togeth-

er exacerbate endothelial dysfunction and, contribute to 

cardiovascular risk. In a study of 77 Chinese adult CKD 

patients, α-klotho expression decreased over time concur-

rently with reductions of kidney function, while ADMA 

levels increased steadily [24]. A reduction in α-klotho fa-

vors the progression of vascular calcification (in particular 

of arterial walls) following calcification of atherosclerotic 

plaques due to hyperphosphatemia. Evidence for the role 

of α-klotho in vascular remodeling comes from a defective 

α-klotho mutant animal models that showed extensive 

calcification in the medial layer of the aorta, medium-sized 

arteries, and small arteries [25]. The α-klotho protein func-

tions as a co-receptor or scaffold protein for the fibroblast 

growth factor (FGF) receptor (FGFR). Binding of FGF23 

produced in bone to the renal FGFR regulates phosphate 

reabsorption and calcitriol production in the kidney; there-

fore impaired FGF23 activity due to reduced α-klotho ex-

pression leads to dysregulation of phosphate and vitamin D 

homeostasis thereby contributing to vascular calcification 

[26]. Phosphatemia is also associated with increased ROS 

and free radicals, which can inhibit endothelial NO synthase 

(NOS) activity to reduce NO productionand and increase 

peroxynitrite (ONOO–) generation [27]. Inhibition of NOS by 

endogenous ADMA may further contribute to endothelial 

dysfunction and vascular remodeling (Fig. 1). The interac-

tions between ROS and other proteins are responsible for 

altered intracellular signaling resulting in impairment of 

contractility and elasticity of vessels.  

Tubules of damaged kidneys display only residual activ-

ity of transport systems resulting in the concentration of 

toxins [28]. 

A critical event in renal remodeling and fibrosis is the loss 

of polarity of renal tubule endothelial cells and the subse-

quent transition to a mesenchymal phenotype, termed the 

epithelial-to-mesenchymal transition (EMT) [29]. During 

this process, epithelial cells lose epithelial markers such 

as E-cadherin (one of the main components of adherent 

junctions) in favor of mesenchymal markers such as al-

pha-smooth muscle actin (α-SMA). This transition leads to 

progressive loss of cell junctions and migration of mutant 

cells towards the interstitial space, which, after complete 

transition, become myofibroblasts synthesizing α-SMA and 

matrix proteins and collagen that contribute to tubuloint-

erstitial fibrosis [29]. 

Renal remodeling 

The international guidelines of the Kidney Disease Im-

proving Global Outcomes (KDIGO) group identify CKD 

as the presence of a glomerular filtration rate (GFR) < 60 

mL/min/1.73 m2 for at least 3 months [30]. The KDIGO 

guidelines also recognize a prognostic role for albumin-

uria associated with CVD independently of eGFR [31–33]. 

The reduction of the filtration rate implies that several 

uremic toxins are not fully excreted by the kidneys. Those 

substances can be categorized based on their molecular 

weight and are all associated with the progression of CKD 

and increased risk of CVD. Among them, the smallest (<500 

Da), such as urea, uric acid, and ADMA, are particularly 

associated with inflammation; those of medium sizes (>500 

Da), such as β-2 microglobulin and endothelin, have a role 

in increased blood pressure, oxidative stress, inflamma-

tion, endothelial dysfunction, and arterial stiffness, The 

the largest are solutes, such as indoxyl sulfate and AGEs 

and other solutes of intestinal origin, bound to plasma 

proteins (chiefly albumin) that are associated with the 

onset of cardiovascular events [34,35]. In ESRD patients 

undergoing renal replacement therapy (hemodialysis or 

hemofiltration procedures), the efficiency of uremic tox-

in removal depends on the type of filtration membranes 
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used, which will be discussed further below. However, in 

addition to involvement in the progression of kidney dis-

ease, the endothelium is subjected to inflammation and 

oxidative-stress-mediated damage that affect endothelial 

function and the generated inflammation and oxidative 

stress signaling spread to the surrounding structures am-

plifying the damage. The cross-talk between endothelial 

cells of the innermost side of the vessel wall and VSMCs 

mediates acute and chronic changes in tissue perfusion 

resulting from vasodilation or vasoconstriction, activation 

of platelet aggregation or its inhibition, and other effects. 

[36]. The mediators involved are mainly cytokines and 

growth factors that regulate changes in the proliferative 

and migratory status of VSMCs, endothelial function, and 

extracellular matrix composition. Specifically, NO, endo-

thelin-1, FGF, and transforming growth factor beta (TGF-β) 

act on endothelial cells, while VSMCs are stimulated also 

by hormones such as AngII and epinephrine and by IL-1 

and interferon-gamma. In CKD, increased circulating ROS, 

cytokines and the concomitantly reduced bioavailability of 

NO (diverted to production of peroxynitrite in the presence 

of ROS) promote dysfunctional VSMCs to migrate toward 

the intima to cause intimal hyperplasia and deposition of 

abnormal extracellular matrix and hyaline material, vas-

cular calcification with stiffening of arteries and high pulse 

pressure [37,38]. Calcification of central vessels contributes 

to increased pulse wave velocity, earlier reflection of the 

pulse wave, and increased cardiac afterload, all of which 

contribute to heart failure. 

Patients with CKD seem also to exhibit much greater 

susceptibility to the adverse renal effects of even moderate 

hypertension. Any increase in blood pressure within the 

intrarenal vasculature is of sufficient magnitude to result 

in barotrauma of the local vasculature. Chronic uncon-

trolled blood pressure leads to progressive hypertensive 

tubulointerstitial and glomerular nephropathy, in which 

the major outcome of hypertension-induced renal damage 

is hyperfiltration and hypertrophy of nephrons [39]. The 

initial damage to small vessels, where VSMCs are replaced 

by hyaline material, results in more expansible arteries and 

hemodynamic changes in the aorta. This damage later ex-

tends to the glomeruli with partial ischemia, reduced filtra-

tion, and increased oxidative stress and inflammation that 

further induce podocyte loss, tubule-interstitial fibrosis, 

and EMT [39].  

Arterial remodeling and stiffness progress rapidly in CKD 

and hemodialysis patients, causing not only chronically 

elevated blood pressure but also increased blood pressure 

variability [4]. There is some debate as to the role of blood 

pressure variability in the progression of renal dysfunction; 

however, there is evidence that patients with CKD have a 

greater prevalence of sleep disorders, such as obstructive 

sleep apnea and restless leg syndrome, that are associated 

with increased blood pressure variability in CKD patients, 

progression of CKD, and enhanced mortality in ESRD pa-

tients [40]. 

Left ventricular hypertrophy and cardiac fibrosis 

Cardiovascular complications are commonly fatal in pa-

tients with CKD. The main manifestation of CVD is heart 

failure with preserved ejection fraction, characterized by 

left ventricular hypertrophy (LVH) and diastolic dysfunc-

tion [41]. In the progression of kidney injury, LVH might 

also influence the development of heart failure with re-

duced ejection fractions, arrhythmias, ischemic heart dis-

ease, and sudden cardiac death. The function and regula-

tion of the kidneys and heart are strongly intertwined such 

that dysfunction in one organ may induce dysfunction in 

the other (Fig. 2). 

There are common patterns detectable in the vascula-

ture, glomerulus, and myocardium due to the presence of 

various metabolically active cell types that control the ac-

tivity of peripheral structures and are susceptible to oxida-

tive stress. For example, endothelial cells regulate vascular 

tone through the signaling of AngII, calcium, NO, RhoA/

ROCK pathway, mitogen-activated protein kinases, TGF-β, 

and other pathways. Upon specific stimuli, VSMCs can 

alter their phenotype, developing characteristics reminis-

cent of osteoblasts, fibroblasts, and even macrophage-like 

cells with phagocytic properties [42]. Cardiomyocytes are 

force-producing and pacemaker cells. Therefore, cell-to-

cell connections are crucial in the development of fibrosis 

and arrhythmogenesis, in fact, remodeling of atrial myo-

cytes structure and electrical activity contribute greatly to 

its pathogenesis [43]. 

One of the major contributors to renal and cardiovas-

cular fibrosis is the RAAS through the action of its major 

hormonal effector AngII. Further, overactivation of oxida-

tive stress in CKD and AT1R-mediated ROS are respon-
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sible for the induction of the RhoA/ROCK pathway that 

drives, vasocontraction and profibrotic responses [20]. 

The downstream effector of ROCK, the myosin phospha-

tase target protein 1 (MYPT)-1, is the regulatory subunit 

of myosin light chain phosphatase. Inhibition of MYPT-

1 phosphorylation mediated by ROCK increases myosin 

light-chain kinase activity with ensuing contraction of the 

VSMCs. Moreover, ROCK induces activation of additional 

genes involved in inflammation and proliferation (such as 

extracellular-signal-regulated kinases [ERK] 1/2) and in cy-

toskeletal rearrangement (through its targets ezrin, radixin, 

and moesin) [20]. We found that patients with stage 3 to 4 

CKD displaying LVH have remarkably increased phosphor-

ylation of MYPT-1 compared to stage 3 to 4 CKD patients 

without LVH. In addition, in patients with LVH, MYPT-1 

phosphorylation correlated positively with left ventricular 

mass [44]. Blocking ROCK activity with the Rho-kinase in-

hibitor fasudil reduces activity in the downstream MYPT-1 

pathway in a dose-dependent manner, similar to exper-

imental animal models of AngII-induced hypertension 

where ROCK inhibition prevented AngII-induced LVH 

and myocardial fibrosis [44–46]. Upstream inhibition of 

ROCK using angiotensin receptor blockers reduces both 

p63rhoGEF (activator of RhoA) and MYPT-1 phosphoryla-

tion, providing further evidence for a pivotal role of ROCK 

as a switch in the progression of cardiovascular and renal 

remodeling [47]. As kidney injury progresses, cardiac re-

modeling progresses in parallel so that in patients under-

going hemodialysis treatment LVH is particularly evident. 

In CKD patients, LVH is correlated with markers of oxida-

tive stress including p22phox, the subunit of nicotinamide 

adenine dinucleotide phosphate oxidase (NOX) essential 

for electron transport from heme moieties to molecular 

oxygen to produce superoxide, and with oxLDL [44,48]. Pa-

tients who undergo peritoneal dialysis are also subjected to 

progressive oxidative stress, which can become very critical 

to address in order to control the progression of CVD in 

these patients. 

In studies of patients undergoing chronic dialysis, an 

interesting link between ROCK activity and cardiac electri-

cal disturbances, as assessed by the relationship between 

MYPT-1 phosphorylation and connexin 40 (Cx40) expres-

Figure 2. The feedback loop between kidney dysfunction, vascular injury, and heart disease. All of the pathways involved in the pro-
gression of kidney dysfunction (e.g., reduced filtration rate and cellular migration), vascular injury (represented by the curved lines be-
tween the kidneys and the heart; e.g., endothelial dysfunction, inflammation, and plaque formation), and of heart disease (represented 
by the typical waves at electrocardiogram tracing; e.g., atrial fibrillation and fibrosis) are intertwined in the development of cardiovascu-
lar disease and during renal remodeling in CKD. Among these, the most common trigger factor is oxidative stress.
EMT, epithelial-to-mesenchymal transition; LVH, left ventricular hypertrophy.
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sion, has been reported [44,49]. As an integral membrane 

protein of heart cell gap junctions, Cx40 is fundamental for 

rapid cell-cell transfer of action potentials, and increased 

expression of Cx40 enhances the vulnerability of the atrial 

myocardium to atrial fibrillation [50]. We reported that pa-

tients undergoing dialysis with permanent atrial fibrillation 

display increased Cx40 expression compared to dialysis pa-

tients without atrial fibrillation as well as increased MYPT-

1 phosphorylation. This latter in atrial fibrillation patients 

also correlated with Cx40, with left atrial systolic volume, 

and with cardiac mass [49]. 

In addition, ROCK activation mediates Ca2+ sensitization 

that in turn regulates myocyte-enhancer factor 2-dependent 

expression of myocardin, which is a specific transcriptional 

coactivator of the serum response factor (SRF) for cardiac 

and smooth muscle [51]. Fibroblast differentiation into my-

ofibroblasts is also influenced by ROCK-induced alterations 

in the gene expression profile of myofibroblasts and dis-

ruption of stress fiber formation and induction of myocar-

din-related transcription factor (MRTF) [52]. The MRTF acts 

in a similar manner to myocardin as a coactivator of SRF to 

regulate actin polymerization and the expression of α-SMA 

and extracellular matrix proteins, including fibronectin and 

collagen [20]. Taken together these mechanisms provide 

evidence for the critical role of ROCK in endothelial perme-

ability, cytoskeletal rearrangement, and fibrosis. 

All of the molecular mechanisms and the inter/intracel-

lular signaling that promote fibrosis in patients with CKD 

also involve collagen deposition and maladaptive ventric-

ular hypertrophy with cardiac dilation. In addition, arterial 

stiffness, increased systemic resistance, and systolic hyper-

tension initially cause concentric LVH that later becomes 

eccentric hypertrophy, with subsequent left ventricular 

dilation and reduced ejection fraction due to continuous 

left ventricular overload. Preload-related factors also con-

tribute to LVH and comprise the expansion of intravascular 

volume resulting in volume overload, extension of myocar-

dial cell length, and eccentric or asymmetrical remodeling 

of the left ventricle [9]. 

In summary, several processes arising from excessive 

oxidative stress (ROS, free radical formation, reduced an-

tioxidant defenses) and inflammation are simultaneously 

activated in the kidney, vasculature and heart in CKD, and 

act in a feedback loop to produce detrimental effects on the 

progression of CVD (Table 1). 

Therapeutic strategies for chronic kidney disease 
aimed at reducing oxidative stress 

Due to the complex molecular and vascular mechanisms 

Table 1. Processes activated during progressive chronic kidney disease with their respective main pathways and mediators involved
Processes Pathways Principal mediators
Inflammation, oxidative stress, endothelial 

dysfunction
Inflammation signaling Cytokines

Oxidative stress signaling Rho kinase
Rho kinase pathway ROS, MDA, reduced NO

Atherosclerosis Inflammation Cytokines, T lymphocytes
Cellular migration Macrophages, MCP1, interleukin 8
Plaque formation oxLDL, TLR, foam cells

Vascular injury Endothelial damage Uremic toxins, ROS, TGF-β
EMT Endothelial cells, matrix proteins, collagen
Calcification FGF23, hyperphosphatemia

Renal remodeling Reduced filtration rate Uremic toxins
Vessels remodeling Endothelial cells, VSMCs, endothelin 1, TGF-β, AngII, ROS
Hypertension RAAS, EMT, calcium, NO

Left ventricular hypertrophy Fibrosis RhoA/ROCK, ERK 1/2, p22phox, oxLDL, MRTF, α-SMA, ROS, TGF-β
Atrial fibrillation ROCK, Cx40

AngII, angiotensin II; Cx40, connexin 40; EMT, epithelial-to-mesenchymal transition; ERK, extracellular-signal-regulated kinase; FGF23, fibroblast growth 
factor 23; MCP1, monocyte chemoattractant protein-1; MDA, malondialdehyde; MRTF, myocardin-related transcription factor; NO, nitric oxide; oxLDL, 
oxidation of low-density lipoprotein; RAAS, renin-angiotensin-aldosterone system; ROCK, Rho kinase; ROS, reactive oxygen species; TGF-β, transforming 
growth factor beta; TLR, toll-like receptor; VSMC, vascular smooth muscle cell; α-SMA, alpha-smooth muscle actin.
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underlying CKD, early recognition and intervention are 

crucial to control disease progression and to reduce mor-

bidity and mortality in patients. Oxidative stress is one of 

the most important factors contributing to the develop-

ment and progression of kidney disease, hypertension, and 

CVD, hence targeting oxidative stress might be a useful 

therapeutic strategy in CKD and dialysis patients. 

Oxidative stress in arterial hypertension 

Hypertension is closely linked with renal disease, with a 

prevalence that ranges from 60% to 90%, depending on 

the CKD stage [53]. Mechanisms such as volume overload, 

sympathetic overactivity, endothelial dysfunction, salt re-

tention, hormonal alterations and increased activity of the 

RAAS act jointly to induce arterial hypertension; in addi-

tion, increased oxidative stress significantly and negatively 

influence all of these. Angiotensin-converting enzyme 

inhibitors (ACEi) and AngII receptor blockers (ARBs) are 

the first-line treatment for primary hypertension in CKD 

and their beneficial effects rely not only on hemodynamic/

antihypertensive effects but also on anti-inflammatory/

antioxidant and antifibrotic properties [54]. In this regard, 

we documented the efficacy of olmesartan medoxomil 

(ARB) treatment in hypertensive patients in the reduction 

of oxidative stress (as assessed by reduced p22phox, ERK 1/2, 

p63RhoGEF, and MYPT-1 phosphorylation and induction 

of antioxidant defenses such as heme-oxygenase 1 [HO-1]), 

calcitonin-gene-related peptide, and increased circulating 

endothelial progenitor cells [47].  

Oxidative stress in posttransplant hypertension and elec-
trolyte imbalances  

Regulation of blood pressure is also particularly crucial 

for kidney transplant recipients, since hypertension is a 

common occurrence during treatment with calcineurin 

inhibitors that increase sodium retention through the 

increased activity of thiazide-sensitive sodium chloride 

cotransporter (NCC). Calcineurin blocking prevents the 

inhibitory effects of calcineurin on ‘with-no-lysine’ kinases 

(WNK), glucocorticoid-regulated kinase 1, STE20/SPS1-re-

lated proline alanine-rich kinases (SPAK), and oxidative 

stress-responsive protein type 1 kinase (OSR1) that are 

instead a switch for NCC activation [55]. Notably, it has 

been reported that AngII has a direct effect on sodium re-

tention through NCC activation, further demonstrating its 

involvement in the induction of hypertension associated 

with oxidative stress [56]. If first-line antihypertensive ther-

apy with ACEi or ARBs is not sufficient, additional therapy 

with diuretics, β-blockers, and calcium channel blockers 

can be considered [57]. Of note, in the recent update of the 

KDIGO guidelines for the management of blood pressure 

in CKD patients not receiving dialysis, particular attention 

has been paid to lifestyle interventions, including dietary 

salt restriction, physical activity, weight loss, and reduction 

of alcohol consumption [30]. 

Along with hypertension, patients with CKD and ESRD 

are also prone to develop metabolic disorders, especially 

acid-base and electrolyte imbalances [58]. Two common 

adverse occurrences in CKD and ESRD are hyperkalemia 

and hyperphosphatemia. Recurring symptoms and signs of 

hyperkalemia span from muscle weakness to paresthesia, 

paralysis, cardiac arrhythmias, and cardiac arrest [59]. The 

most common first-line treatment for hyperkalemia in-

cludes cellular membrane stabilization by administration 

of intravenous salts, and second-line treatment includes 

shifting potassium from the extracellular to the intracellu-

lar compartment through the administration of insulin and 

β-adrenergic agonists [60]. However, to clear excess potas-

sium adequately, potassium-binding agents, dialysis, and 

loop diuretics are the most effective methods [60]. 

Another complication arising in CKD and involved in 

the onset and progression of CVD is hyperphosphatemia 

(mediated by parathyroid hormone and vitamin D), which 

is closely linked to bone mineral metabolism and vascular 

calcification as already described [58]. Management of hy-

perphosphatemia requires reduction of dietary phosphate 

intake (<1,000 mg/ day) and the use of phosphate binders, 

which are classified into calcium- and non-calcium-based 

binders. However, treatment of CKD with the associated 

mineral bone disorder is demanding, because of the im-

portance of managing several aspects not only related with 

supplementation of vitamin D but also with potential sec-

ondary hyperparathyroidism [61]. 

Oxidative stress in dialysis 

Other targets of intervention should be taken into account 

especially in stage 3 to 4 CKD and dialysis patients to re-
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duce the progression of CVD. These targets should include 

the oxidative stress and inflammation that are well-known 

features of CKD and kidney failure both with and without 

replacement therapy [4]. 

The progressive decline in kidney function (GFR of <15 

mL/min/1.73 m2) associated with uremic patients entails 

accumulation of uremic toxic compounds in the blood-

stream and ESRD patients require renal replacement 

therapy, which is primarily hemodialysis or hemofiltration 

[62]. These methods require a dialytic filter and a dialysis 

solution that act to clear toxic molecules from blood and 

provide concurrent intake of essential solutes. Unfortu-

nately, dialytic procedures cause physical and chemical 

stress to the vasculature and blood cells: after leaving the 

vessels to pass toward the membrane in the dialysis circuit, 

blood loses the protective effect of the endothelium, and 

both contact with the synthetic surfaces and the change 

of flow path geometry induce activation of leukocytes and 

oxidative stress through the release of O2
−• and H2O2 [63]. 

Several types of membranes are available for extracorpo-

real dialysis, including functionalized membranes with the 

aim to improve biocompatibility and vascular protection. 

Dialyzers coated with vitamin E have been shown to pro-

vide antioxidant protection to circulating blood cells and 

lipoproteins [64]. Confirmation of this finding comes from 

studies in our cohort of patients with kidney failure under-

going dialysis with a vitamin E-coated dialyzer, where we 

observed a significant reduction of biomarkers related to 

oxidative stress and inflammation [65]. In particular, p22phox 

was significantly reduced after 6 months of treatment and 

declined further after 12 months, along with LDL, plasmin-

ogen activator inhibitor-1 (PAI-1), and phosphorylation of 

ERK 1/2; in contrast, the antioxidant HO-1 was increased 

[65]. In order to reduce oxidative stress in dialysis patients, 

a different approach might include supplementation with 

an oral antioxidant. In this regard, previous studies from 

our group showed that additional antioxidant supplemen-

tation with green tea in patients undergoing bicarbonate 

dialysis significantly reduced the oxidative imbalance and 

related cell signaling activity [48]. In particular, green tea 

led to a reduction in p22phox protein expression and ERK 

1/2 phosphorylation after 6 months of treatment and also 

induced an HO-1 expression together with a reduction in 

left ventricular mass. In addition, in that study, we found 

that additional treatment reduced left ventricular mass in 

patients with LVH and that the reduction was positively 

correlated with reduction of oxLDL [48]. 

Hemodiafiltration with online regeneration of ultra-

filtrate (HFR) for renal replacement is also effective in 

reducing oxidative stress. The HFR procedure consists of 

a double-chambered hemodialysis filter that allows the 

reinfusion of the ultrafiltrate regenerated through a char-

coal-resin cartridge that specifically absorbs proinflamma-

tory cytokines such as IL-6, TNF-α, and CRP. We found that 

in patients undergoing HFR, compared to patients under-

going standard bicarbonate dialysis, levels of the oxidative 

stress-related proteins p22phox, PAI-1, and oxLDL were all 

reduced. In addition, HFR promotes activation of antioxi-

dant defenses such as HO-1 [66]. 

While in hemodialysis the dialytic filter consists of a syn-

thetic membrane, in peritoneal dialysis the peritoneum 

itself serves as a natural semipermeable membrane. 

Nonetheless, peritoneal dialysis likewise induces in-

creased oxidative stress, as demonstrated by increased 

AGEs and other prooxidant glucose by-products [67]. In 

a recent study, we found significantly increased levels of 

p22phox, ROCK activity (MYPT-1 phosphorylation), and fer-

ritin after 6 months of peritoneal dialysis procedure [68]. 

These finding call attention to the need for more biocom-

patible dialysis solutions with different glucose polymers 

to prevent and/or treat oxidative stress and inflammation. 

Very preliminary data (not shown) from our laboratory 

seems to indicate icodextrin reduces oxidative stress in pa-

tients undergoing peritoneal dialysis, providing a rationale 

to follow this path. 

Conclusions 

The term cardiovascular-renal remodeling describes the 

complex relationship between the kidney and heart in 

CKD. It is clear that there is significant interplay between 

the processes involved in the progression of kidney injury 

and of CVD that acts to worsen the prognosis of patients. 

Among these factors, oxidative stress (in terms of excessive 

ROS, reduced antioxidant defenses, and inflammation) is 

omnipresent. The few prospective trials and retrospective 

analyses published to date have provided no conclusive 

data regarding their treatment, although there is plenty of 

evidence that these mechanisms are accountable for the 

onset and progression of CVD in CKD. These pathways 
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should be regarded as important therapeutic targets for the 

treatment of CKD. 
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