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Markus B. Fröb,a Camillo Imbimbob,c and Nicolò Rissod,e
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Abstract: We present a BRST analysis of supersymmetry anomalies of N = 1 super-

symmetric quantum field theories with anomalous R symmetry. To this end, we consider

the coupling of the matter theory to classical N = 1 new minimal supergravity. We point

out that a supersymmetry anomaly cocycle associated to the U(1)R field does exist for this

theory. It is non-trivial in the space of supergravity fields (and ghosts), but it becomes

BRST-exact in the functional space that includes antifields. Equivalently, the U(1)R su-

persymmetry anomaly cocycle vanishes “on-shell”. It is therefore removable. However, to

remove it — precisely because it is not trivial in the smaller space of fields — one needs

to deform the supergravity BRST operator. This deformation is triggered, at first order in

the anomaly coefficient, by a local operator S1 of ghost number 1. We give a cohomolog-

ical characterization of S1 and compute it in full detail. At higher orders in the anomaly

coefficient, we expect a priori that further deformations of the BRST rules are necessary.

Keywords: Anomalies in Field and String Theories, BRST Quantization, Supersymmet-

ric Gauge Theory, Supergravity Models
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1 Introduction and summary

Classical symmetries can be anomalous. The possibility that supersymmetry is affected by

quantum anomalies has been investigated, with different methods, for a long time [1–8].

More recently this question has attracted renewed interest, starting from some explicit

computations that described anomalous supersymmetric Ward identities for 4-dimensional

supersymmetric matter quantum field theories (SQFT’s) with anomalous R symmetry [9–

13]. The relevance of these computations for supersymmetry anomalies has been discussed

in [14–16].

In this work we reconsider this question in the BRST framework. In this setup one

couples a generic matter SQFT to a classical supergravity background, whose local super-

symmetry transformations close off-shell. Each supergravity field is the classical source of

some matter quantum current. For each symmetry of the theory, one then introduces a

ghost field with opposite statistics. The nilpotent BRST operator is given by the sum of all

symmetry transformations (with the ghost fields replacing the transformation parameters)

and acts on both background supergravity fields and ghosts. In this framework, anomalies

are elements of the non-trivial cohomology class of ghost number 1 of the BRST operator
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(i.e., cocyles of ghost number 1), and are local functionals of the supergravity fields and

ghosts. The matter SQFT enters the analysis only via its global symmetries which specify

the background supergravity BRST rules.

Since our goal is to analyze super-anomalies of SQFT’s with R symmetries, we will

pick N = 1 new minimal supergravity [17, 18] as the background supergravity theory. The

multiplet of N = 1 new minimal supergravity includes the abelian vector field gauging the

U(1)R symmetry. When the matter SQFT has other global (flavor) symmetries beyond R

symmetries, one can study the corresponding anomalies by coupling N = 1 new minimal

supergravity to background super-Yang–Mills (super-YM) multiplets whose fields source

the flavor currents and their superpartners. In this paper we are interested in the super-

symmetric anomalies associated to R symmetries, and thus most of our analysis will focus

on pure N = 1 new minimal supergravity. Nevertheless, the discussion in Sections 2 and 3

is general and applies to any supergravity theory.

The local BRST cohomology of N = 1 new minimal supergravity has been investigated

in the past. As far as we know, the most complete classification of its local cocycles is found

in [8]. In that work, a restricted number of anomaly BRST cocycles are listed, among

which there is the celebrated supersymmetrization of bosonic YM anomalies, previously

discovered in [3, 6]. We will refer to this BRST cocycle as the supersymmetric chiral

anomaly cocycle. The other cocycles listed in [8] do not seem to be relevant to the questions

raised by the works [9–12].

The analysis of [8] employs methods which are very general and powerful, but also

quite abstract. To make this paper self-contained, we present in Section 3 a (to the best

of our knowledge) novel derivation of the supersymmetric chiral anomaly cocycle which is

both very simple and geometric in character, and closely parallels the classic derivation

of the bosonic YM anomaly cocycles of [19, 20]. In addition, this derivation also makes

it very clear, in a completely model-independent way, that there exists a supersymmetric

chiral anomaly cocycle for each of the YM symmetries of the background supergravity. In

particular, this BRST cocycle exists also for the U(1) R symmetry whose gauge field sits

in the N = 1 new minimal supergravity multiplet.

There is, however, an important and crucial difference between the U(1)R super-cocycle

and those associated to global “flavor” symmetries of the matter SQFT — YM symmetries

whose gauge fields lie in external super-YM multiplets coupled to supergravity. Although

both kind of cocycles are non-trivial in the space of supergravity (and ghosts) fields, the

supersymmetric cocycle associated to the U(1) R symmetry becomes trivial after one ex-

tends the BRST operator to the larger space of functionals of both supergravity fields and

their antifields.1 This is not the case for the anomaly super-cocycle associated to a “flavor”

U(1) super-YM multiplet, which remains non-trivial and cannot be removed even after the

introduction of antifields.

It should be kept in mind that the transformation rules of N = 1 new minimal super-

gravity close off-shell, and therefore its BRST operator is already nilpotent on the space

1For this reason, the U(1)R super-cocycle is not listed among the non-trivial anomaly cocycles in [8]. In

this paper it was already observed that the cocycle in question is trivial in the full BV formalism.
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of fields (including the ghosts), without the need to introduce antifields. Since its coho-

mology problem is therefore perfectly well-defined on the space of fields and ghosts only,

the non-triviality of the U(1)R super-anomaly cocycle on this space is a mathematically

well-defined concept.

When one considers a dynamical theory one expects that radiative corrections may, in

general, renormalize not just the action but also the BRST transformations. For this reason,

the general consensus is that anomalies which trivialize when one introduces antifields are

not “true” anomalies (at least for a dynamical theory). Indeed, one can convince oneself

that this kind of anomaly cocycles can be removed by adding local counterterms not just to

the local action, but also to the BRST transformations. Nevertheless, to actually remove

such anomalies in practice, one needs to know how to explicitly write down the anomaly

cocycle as the BRST variation of a local functional of both fields and antifields: it is this

functional that contains the information about the renormalization of both the action and

the BRST rules. To our knowledge, the fully explicit trivialization of the U(1)R super-

cocycle of N = 1 new minimal supergravity has not been determined yet — neither in [8]2

nor in following works. What we do in the present article amounts to solving this problem.

Moreover, when one is dealing with a theory of classical sources whose local symmetries

close off-shell, as we are doing here, one might be skeptical about the actual necessity of

introducing antifields, which are sources for the BRST variations of the (classical) sources.

In other words, one may wonder if it is possible — and maybe more practical — to char-

acterize anomaly cocycles which are non-trivial in field space but become trivial in the

enlarged space of fields and antifields without resorting to the full power of the antifield

(Batalin–Vilkovisky, BV) formalism. In Section 6 we will do precisely that: We will de-

scribe these kind of anomalies and their removal in the standard BRST framework, without

introducing antifields.

The anomalies in question vanish “on-shell”, i.e., they are proportional to the “equa-

tions of motion” of some BRST-invariant functional of the fields — for example the classical

supergravity action. For lack of a better name, we will call these anomalies evanescent.

However, it is worth reiterating that we are considering here a theory of classical, non-

dynamical sources3: therefore the expression “equations of motion” does not refer to any

kind of dynamics, it is merely a shorthand for functional derivatives of local functionals.

We will explain that by writing down evanescent anomalies in terms of the equations

of motion, one can read off candidate deformations of the original BRST transformations,

up to certain ambiguities which one can try to resolve by imposing that the deformation

anticommutes with the original BRST transformations. If this can be achieved, the de-

formed BRST transformations leave a deformed effective action invariant (to first order in

the anomaly coefficient): the latter one equals the sum of the original — non-local and

anomalous — effective action and of the local invariant action which defines the equations

2In eq. (6.10) of [8] some parts of the trivialization of the anomaly super-coycle in the BV framework

are given.
3Being non-renormalizable, new minimal N = 1 supergravity is of course not believed to be a consistent

as a dynamical theory at the quantum level. The fact that its anomalies are removable leaves open the

possibility that it admits a consistent ultraviolet completion.
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of motion. This double deformation — both of the action and of the transformation laws

— removes the original anomaly super-cocycle, and the resulting theory has no anomalies

at all (to first order) — neither supersymmetry anomalies nor U(1)R gauge anomalies.

To extend this procedure to all orders in the coefficient of the anomaly, certain inte-

grability conditions have to be met, which we will spell out in detail in Section 6. In short,

the anomaly can be removed if there is no operator of ghost number higher than 1 which

(anti-)commutes with the original BRST operator and which is not an (anti-)commutator

of the original BRST operator with some functional derivative. In other words, a sufficient

condition for the removal of the anomaly is the vanishing of higher ghost number coho-

mologies of the original BRST operator on the space of (local) functional derivatives, on

which the BRST operator acts by (anti-)commutators. The deformation at first order in

the anomaly coefficient is instead a non-trivial element of the same cohomology at ghost

number 1.

These same conditions can be phrased in the language of antifields. In the BV for-

malism, deformations of the BRST operator which remove the anomaly are associated

to the cohomology at ghost number 0 of the original BRST operator, acting now on the

space of functionals of fields and antifields, and obstructions to integrate them are asso-

ciated to cohomologies at higher ghost number. However, there is an important caveat

that distinguishes the problem of anomaly removal, which we are describing here, from

the superficially similar one of finding the deformations of the BV master equation, as

described for example in [21]. In the latter context, the relevant concept is the one of local

cohomologies on the space of functionals of fields and antifields. In the supergravity case, it

was shown in [8] that the deformations that change the symmetry transformations always

involve other external supermultiplets in addition to the supergravity one. On the other

hand, deformations of the BRST operator which remove evanescent anomalies are associ-

ated to the effective action obtained by integrating out some SQFT. This effective action is

a non-local functional of the supergravity fields. Therefore the results in [8] regarding the

local cohomology at ghost number 0 of new minimal N = 1 supergravity do not contradict

the existence of a deformation of the BRST operator removing the U(1)R supersymmetric

anomaly.

We will compute explicitly such a deformation, at first order in the anomaly coefficient,

in Section 7: the deformation is given in Eqs. (7.15), and represents our most important

new result. It turns out that to remove the anomaly one needs to deform the BRST

transformations of both the gravitino and the auxiliary fields of N = 1 new minimal

supergravity, which are the two-index antisymmetric gauge field Bµν and the U(1)R gauge

field. Since supergravity is non-renormalizable, the deformation is described by operators

of higher dimension. For this reason we also expect that the deformation necessary to

remove the anomaly at all orders in the anomaly cofficient will include terms of all orders

in the derivative expansion. We leave to the future the problem of computing higher order

corrections (and possible obstructions) to the BRST transformations necessary to remove

the evanescent U(1)R superanomaly.

The rest of the article is organized as follows: In Section 2 we review the BRST

formulation of supergravity and the notion of equivariant BRST operator [22], which we
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employ instead of the full BRST operator to keep the computations manageable. This

BRST operator, equivariant with respect to diffeomorphisms and to the other bosonic gauge

symmetries of supergravity, involves only the commuting ghost of local supersymmetry

ζ. Nevertheless, the cohomology of the standard nilpotent BRST supergravity operator

on forms modulo the exterior differential d, i.e., the cohomology of the standard BRST

operator acting on integrated local functionals, is completely equivalent to the cohomology

of the equivariant BRST operator modulo both d and iγ . Here, iγ is the nilpotent operator

that contracts forms with the commuting vector field γµ, the universal bilinear of the

supersymmetry ghost ζ given in Eq. (2.3).

In Section 3 we present a derivation of the supersymmetric chiral anomaly cocycle

which involves the super-Chern classes built out of the super-connection, the sum of YM

gauge fields and their ghosts that was introduced in [20]. The crucial difference between

supergravity and bosonic gauge theories is that the supergravity super-Chern classes have

non-vanishing components of higher ghost number. For this reason, one cannot simply

identify the supergravity anomaly cocycle with the Chern-Simons super-form, as one does

in the bosonic case. We will explain that when the component of the super-Chern class of

higher ghost number is iγ-trivial — as it is the case for N = 1 new minimal supergravity

— it is nevertheless possible to complete the Chern-Simons superform to produce a BRST

cocycle, the supersymmetric chiral anomaly. We will show how the existence of this cocycle

can be neatly understood in terms of the cohomology of iγ .

In Section 4 we describe the (possibly not very familiar) equivariant BRST structure

of the antisymmetric gauge field Bµν sector of N = 1 new minimal supergravity.

In Section 5 we present the BRST rules of the model and the form of the U(1)R

supersymmetric anomaly cocycle.

Section 6 contains a general discussion of “evanescent” BRST anomaly cocycles in the

framework which does not involve antifields. We spell out the conditions for these cocycle

to be removable.

In Section 7 we finally evaluate the deformation of the BRST operator of N = 1 new

minimal supergravity which removes the supersymmetric U(1)R anomaly at first order in

the coefficient of the anomaly, using the FieldsX extension package [23] for the xAct

tensor algebra suite [24].

In Section 8 we discuss how the deformation affects the constraints connecting the

super-torsion to the super-Chern classes of the Lorentz and U(1)R local symmetries.

In the conclusions, Section 9, we summarize our findings and briefly discuss their

relation with the recent works [10, 14, 15] on the same topic.

Lastly, in Appendix A the integrability conditions for S1 that were described in Section

6 are reformulated in the BV language involving antifields, and in Appendix B we give some

details on the computation using FieldsX.

2 The equivariant BRST operator of supergravity

In the BRST framework one introduces ghost fields of ghost number +1 in correspondence

to each of the local symmetries. Among the bosonic local symmetries of supergravity there
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are diffeomorphisms and YM gauge symmetries. N = 1 new minimal supergravity is also

invariant under local vector-like gauge transformations whose gauge field is an antisym-

metric tensor Bµν . We will postpone dealing with those to Section 4: they will modify the

algebraic structures that we will describe in this Section in some relatively obvious way.

We will denote by ξµ the anticommuting vector ghost field associated to diffeomorphisms,

and by c the anticommuting ghost associated to the YM gauge symmetry which takes

values in the adjoint representation of the YM algebra. The YM gauge symmetries always

include local Lorentz transformations. Beyond local Lorentz gauge symmetry, we will also

allow for additional YM gauge symmetries: among those the one corresponding to the R

symmetries of the SQFT whose coupling to supergravity one is considering.

In correspondence with N local supersymmetries, one introduces commuting super-

gravity spinorial Majorana ghosts ζi with i = 1, . . . ,N , whose BRST transformation rules

have the form

s ζi = iγ(ψi) + diffeos + gauge transformations . (2.1)

In this equation s is the nilpotent BRST operator

s2 = 0 , (2.2)

ψi = ψiµ dxµ are the Majorana gravitinos, and γµ is the following vector bilinear of the

commuting ghosts4

γµ ≡
∑
i

ζ̄i Γa ζi ea
µ , (2.3)

where ea
µ are the inverse of the vierbein ea ≡ eaµ dxµ. The vector γµ has ghost number

+2. Both the Majorana ghosts ζi and gravitinos ψi carry a label i = 1, . . . ,N on which

the O(N ) subgroup of the R symmetry group acts. However, the full R symmetry group

can be as large as U(N ). In the following we will restrict ourselves to the N = 1 case, and

consequently omit the index i.

The BRST transformations of the vierbein are universal, i.e., valid for any supergravity

theory:

s ea = −ζ̄ Γa ψ + diffeos + gauge transformations . (2.4)

We will denote the action of diffeomorphisms with Lξ, the Lie derivative associated with

the vector field ξµ. Let us also denote the YM gauge transformations with odd parameter

c by δYM
c . The BRST transformations of the diffeomorphism ghost are

s ξµ = −1

2
Lξξµ + γµ . (2.5)

The BRST transformations (2.1) and (2.4) imply [25] that the transformation rule for the

vector ghost bilinear γµ is also universal:

s γµ = −Lξγµ . (2.6)

It is then convenient to introduce the fermionic ghost number 1 operator

S ≡ s+ Lξ + δYM
c , (2.7)

4To avoid confusions, we will denote with γµ the ghost bilinear and with Γa the Dirac matrices.
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which we will call the equivariant BRST operator. S is not nilpotent: Nilpotency of the

full BRST operator s is equivalent to the relation [22]

S2 = Lγ + δiγ(A)+φ (2.8)

where γµ is defined in Eq. (2.3),

iγ(A) ≡ γµAµ (2.9)

is the contraction of the YM field 1-form with the vector γµ, and φ is a bilinear of ζ with

values in the YM gauge algebra which we will comment on in a moment.

It is important to note that the equivariant algebra (2.8) holds on all fields except the

anticommuting ghosts ξµ and c associated to the bosonic local symmetries. On the ghosts

ξµ and c, only the action of the nilpotent s — but not that of the equivariant S — is

meaningfully defined. The action of s on the diffeomorphism ghost ξµ has been written

above in Eq. (2.5); the BRST transformation of the gauge ghost c turns out to involve the

bilinear φ that appears in the equivariant algebra (2.8):

s c = −c2 + Lξc+ iγ(A) + φ . (2.10)

The relevance of the equivariant BRST operator S is as follows: the cohomology of the

nilpotent BRST operator s modulo the exterior differential d on local forms that depend

on both fields and ghosts ξ, c and ζ, i.e., on integrated local functions of fields and ghosts

— the object of interest in local quantum field theories — is isomorphic to the cohomology

of the equivariant S modulo both d and iγ on invariant forms which depend on the fields

and ζ. In other words, the benefit of introducing S is to work on the smaller space of fields

and ζ, forgetting about c and ξ, which greatly simplifies the analysis.

The universal BRST transformation rules (2.6) imply that γµ is S-invariant:

S γµ = 0 . (2.11)

The bilinear φ, however, is model-dependent: Different supergravity theories are charac-

terized by different φ’s. In general, we can only assert that φ must satisfy a consistency

condition which comes from the nilpotency of s:

S φ = iγ(λ) , (2.12)

where λ is the S-variation of the gauge field

S A ≡ λ , (2.13)

a one-form of ghost number 1 with values in the YM algebra, which will be referred to as

the topological gaugino. The equivariant relation (2.8) implies that A, λ and φ all sit in a

BRST multiplet with values in the adjoint of the gauge algebra:

S A = λ , (2.14a)

S λ = iγ(F )−Dφ = iγ(F )− dφ− [A, φ] , (2.14b)

S φ = iγ(λ) . (2.14c)

These relations are again universal, i.e., valid for generic supergravities, and only the

concrete form of φ depends on the specific theory. They are structurally identical to the

BRST rules for topological YM theory coupled to topological gravity [22, 26].
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3 The supersymmetry anomaly revisited

The equivariant BRST framework for generic N = 1 supergravity just reviewed in the

previous Section allows for a transparent and geometric description of the celebrated su-

persymmetric chiral anomaly BRST cocycle.

Anomalies are best described by introducing generalized forms (or “super-forms”) with

fixed total fermionic degree, which is the sum of form and ghost number degrees. For

example, the generalized connection defined as

A ≡ c+A (3.1)

is a generalized form of total fermionic degree 1. Let us also define a coboundary operator

which extends the BRST action to generalized forms: for supergravity theories this is

δ ≡ s+ d + Lξ − iγ = S − δYM
c + d− iγ . (3.2)

The equivariant BRST algebra (2.8) ensures that δ is nilpotent:

δ2 = 0 . (3.3)

On then defines the generalized curvature of the super-connection (3.1)

F ≡ δA + A2 = F + λ+ φ , (3.4)

which satisfies the generalized or super-Bianchi identity

δ F + [A,F] = 0 . (3.5)

It is important to remark that the same identical construction also works for the BRST

formulation of non-supersymmetric gauge theories. In this case however, the generalized

curvature and the ordinary curvature coincide, F = F , which follows from Eq. (3.4) by

putting the supersymmetry ghost ζ to zero such that λ = 0 = φ.

The super-Bianchi identity (3.5) implies that the super-Chern classes built with F are

δ cocycles, and in particular one has

δTrF3 = 0 . (3.6)

One shows also in the standard way that such classes are δ-exact:

TrF3 = δ Γ5(A,F) , (3.7)

where Γ5(A,F), the celebrated Chern–Simons functional, is a polynomial in A and F. It is

a generalized form of total fermionic degree 5:

Γ5(A,F) = Tr
[
F2A− 1

2
FA3 − 1

10
A5
]
. (3.8)
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The relevance of this construction to anomalies is as follows: The anomaly is the BRST

variation of the effective action, and consequently its BRST variation vanishes.5 In 4 di-

mensions, the anomaly can therefore be obtained from a generalized form of total fermionic

degree 5 which is a δ cocycle.

To show how one can obtain the anomaly from such a generalized form, let us first

consider non-supersymmetric bosonic YM gauge (and local Lorentz) symmetries. As men-

tioned above, in this case we have

F = F . (3.9)

Since F is an ordinary two-form, for bosonic gauge symmetries the super-Chern class of

degree 6 (3.6) is an ordinary 6-form and vanishes in 4 dimensions:

TrF3 = TrF 3 = 0 . (3.10)

It follows from Eq. (3.7) that the Chern–Simons super form Γ5(A,F) is δ-closed:

δ Γ5(A,F) = 0 , (3.11)

Hence the 4-form component of Γ5(A,F), which has ghost number 1, is s-closed modulo d:

it is the anomaly of YM gauge and local Lorentz symmetries. Its explicit form is readily

obtained from (3.8) by inserting the definition (3.1) for the generalized connection A.

In the supergravity case this story requires modifications. Indeed, as can be seen in

Eq. (3.4), the super-curvature F of supergravity has both 1-form and 0-form components

λ and φ which, in general, do not vanish. Therefore the Chern class TrF3 does not vanish

in 4 dimensions, and the super Chern–Simons functional is not δ-closed and thus not a

cocycle. However, not all is lost. To start with, let us remark that S and iγ anticommute

{S, iγ} = 0 (3.12)

thanks to Eq. (2.11). Moreover, the BRST variation of the 0-form component φ of the

super-curvature F is always iγ-exact (2.12). Now, in a certain class of supergravity theories,

φ itself is iγ-exact:

φ = −iγ(H) , (3.13)

where H is a 1-form of ghost number 0. For these theories one can define a new connection

A− ≡ A−H (3.14)

and rewrite the equivariant BRST algebra (2.8) with a vanishing φ:

S2 = Lγ + δiγ(A−) . (3.15)

Hence the super curvature F− associated to the super-connection

A− ≡ c+A− (3.16)

5This is the analog of the Wess–Zumino consistency condition in the BRST formalism.
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has vanishing 0-form component

F− = F− + λ− , (3.17)

where

F− ≡ dA− +A2
− , (3.18a)

λ− ≡ S A− . (3.18b)

Moreover, the equivariant BRST algebra (2.14) ensures that the topological gaugino asso-

ciated to the connection A− is iγ-closed:

iγ(λ−) = 0 . (3.19)

The super-Chern class built with F− still does not vanish in 4 dimension, but we have

TrF3
− = 3 TrF− λ

2
− + Trλ3

− . (3.20)

Its δ-closedness (3.6) implies that its component with lowest form degree is iγ-closed:

iγ
(
Trλ3

−) = 0 , (3.21)

which indeed follows directly from Eq. (3.19). As we have already said, iγ is nilpotent:

i2γ = 0 , (3.22)

and it is therefore sensible — and useful — to consider the cohomology of iγ on the space

of generalized gauge-invariant forms. The crucial question, to understand supersymmetric

anomalies, is to establish if the gauge-invariant, iγ-closed 3-form Trλ3
− of ghost number

3 is a trivial element of the iγ-cohomology on gauge-invariant forms. Suppose, for the

moment, that this is the case:

Trλ3
− = −iγ

(
Ω

(4)
1

)
, (3.23)

where Ω
(4)
1 is a gauge-invariant 4-form of ghost number 1. It then follows that the 4-form

component of the super Chern class is S-exact:

3 TrF− λ
2
− = S Ω

(4)
1 , (3.24)

and that the super-Chern class is δ-exact

TrF3
− = δΩ

(4)
1 . (3.25)

Plugging this back into Eq. (3.7), we obtain

δ
[
Γ5(A,F)− Ω

(4)
1

]
= 0 . (3.26)

Hence the candidate supersymmetry anomaly is

A5 = Γ5(A,F)− Ω
(4)
1 , (3.27)
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which is indeed the “supersymmetrization” of the bosonic gauge anomaly.

Summarizing, if the invariant Trλ3
− is iγ-exact, then the supersymmetric extension

(3.27) of the Chern–Simons functional is an anomaly supergravity cocycle. Let us therefore

discuss briefly the structure of the iγ-cohomology.

The topological gaugino λ− has ghost number 1, and thus it is certainly not iγ-exact on

the space of fields, which does not include negative ghost numbers. It is however iγ-closed

thanks to the Fierz identity involving 3 supersymmetry Majorana ghosts:(
ζ̄ Γµζ

)
ζ̄ Γµ = 0 , (3.28)

where we recall that we denote the (4-dimensional) Dirac matrices by Γµ. The general

solution of the consistency condition (3.19) has thus the form

λ− = ζ̄ Γµχdxµ , (3.29)

where χ is a Majorana spinor field of ghost number 0 with values in the YM gauge Lie

algebra. We will call χ the “spinorial gaugino”, and generally it might or might not be

an elementary field. If A belongs to a super-Yang–Mills multiplet, χ is precisely the usual

“physical” gaugino. However, if A belongs to the supergravity multiplet, then χ is a com-

posite field. For example, N = 1 new minimal supergravity contains both a U(1)R axial

gauge field A− which gauges the R symmetry and a SO(1, 3)-valued spin connection ω−:

their BRST transformations define spinorial gauginos χ which are composites of the grav-

itino, its derivatives and other bosonic fields. In all cases, whenever φ is iγ-trivial, the

topological gaugino must have the form (3.29) in order to satisfy the consistency condi-

tion (3.19).

Invariant traces Trλn− are all iγ-closed. For n = 2 they might be non-trivial, since the

Fierz identity (3.28) and the analogous one involving Γµν ensure the existence of non-trivial

iγ-classes at ghost number 2:

k(1) ≡ −1

2

(
ζ̄ Γµζ

)
dxµ , (3.30a)

k(2) ≡ 1

2

(
ζ̄ Γµνζ

)
dxµ dxν . (3.30b)

However there is no invariant iγ-cohomology at ghost number +3, and thus Trλ3
− is nec-

essarily iγ-exact: it turns out that

Trλ3
− = iγ Tr

[
i

4

(
ζ̄ Γµχ

)(
χ̄ΓµΓ5χ

)√
−g d4x

]
. (3.31)

Hence

Ω
(1)
4 =

i

4
Tr
[(
ζ̄ Γµχ

)(
χ̄ΓµΓ5χ

)√
−g d4x

]
, (3.32)

and the supersymmetric anomaly cocycle is

A5 = Γ5(A,F)− i

4
Tr
[(
ζ̄ Γµχ

)(
χ̄ΓµΓ5χ

)√
−g d4x

]
. (3.33)
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Let us summarize this discussion. A supergravity theory is characterized by a bilinear

φ of ghost number 2. Its S variation is always iγ-exact, but φ itself might or might not be

iγ-exact. In all the examples we worked out explicitly, in any dimensions φ is iγ-exact for

simple N = 1 supergravities and non-trivial for extended supergravities — although we do

not know of an a priori argument for this to be so. In any case, for 4-dimensional N = 1

new minimal supergravity φ is iγ-exact, and it can therefore be absorbed in a redefined YM

connection (3.14). From the S variation of the redefined connection, one then obtains a

topological gaugino λ− (3.18b) which is iγ-closed. iγ-triviality of Trλ3
− in turn ensures that

there exists a supersymmetrization of the familiar Chern–Simons anomaly functional (3.33)

which is a BRST anomaly cocycle.

The supersymmetry anomaly cocycle is expressed in terms of the “spinorial” compo-

nent χ (3.29) of the topological gaugino. When the YM field A is the connection component

of a super-YM multiplet coupled to supergravity, the spinorial gaugino is the usual gaugino,

and the anomaly (3.33) is the well-known supersymmetric chiral anomaly. It describes the

anomalies of matter supersymmetric theories whose flavor symmetries are gauged by the

classical external super-YM multiplet. In contrast, when the YM connection A belongs

to different supergravity multiplets, the “spinorial gaugino” is a composite field. In this

case the BRST cocycle (3.33) is, apparently, something different than the standard chiral

supersymmetric anomaly.

In the following Sections we will focus on N = 1 new minimal supergravity [18].

It turns out that the spinorial gaugino χ for this model is proportional to the classical

equations of motions for the gravitino. One might therefore suspect that for this theory the

BRST cocycle (3.33) trivializes if one enlarges the space of fields of supergravity to include

antifields, and that the anomaly is thus removable. We will verify that this is indeed the

case: however this means that in order to remove such an anomaly, suitable deformations

of the supersymmetry variations of the supergravity fields are required. Describing these

deformations will be our goal.

4 The BRST algebra in the B-field sector

The local bosonic symmetries of N = 1 new minimal supergravity include — beyond

diffeomorphisms and YM symmetries — also a vectorial gauge symmetry. This requires a

slight generalization of the BRST equivariant formulation of supergravity that we outlined

in Section 2. Let

V = Vµ dxµ (4.1)

be the anticommuting ghost field of ghost number 1 associated to the vector gauge sym-

metry, and

B =
1

2
Bµν dxµ dxν (4.2)

the corresponding commuting gauge field of ghost number 0. Since the vectorial gauge

symmetry is reducible, the BRST formulation requires also a scalar ghost-for-ghost field q
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of ghost number 2. The BRST rules of the B sector are

sB = −LξB − dV − ζ̄ Γψ , (4.3a)

s V = −LξV − dq + iγ(B)− 1

2
ζ̄ Γζ , (4.3b)

s q = −Lξq + iγ(V ) , (4.3c)

where we introduced the gravitino 1-form ψ ≡ ψµ dxµ and defined the matrix-valued 1-form

Γ ≡ Γµ dxµ.

We have therefore two alternatives to extend the action of the equivariant BRST op-

erator S to the B field. We could define S equivariant with respect to all local bosonic

symmetries: diffeomorphisms, YM gauge transformations and vector gauge transforma-

tions with ghosts V µ, resulting in

S B = −ζ̄ Γψ . (4.4)

If we denote by δ′V the vector gauge transformation with parameter V , the equivariant

BRST algebra relation

S2 = Lγ + δYM

iγ(A)+φ + δ′
iγ(B)+k(1)

(4.5)

holds with this choice on all fields, except the ghosts associated to bosonic gauge symme-

tries, i.e. ξ, c, V and q. Beyond the conditions (2.11) and (2.12), consistency of (4.5)

requires also

S
(
iγ(B) + k(1)

)
= 0 . (4.6)

Alternatively, we could as well define a BRST operator S̃ equivariant only with respect to

diffeomorphisms and YM symmetries:

S̃ B = −dV − ζ̄ Γψ , (4.7a)

S̃ V = −dq + iγ(B)− 1

2
ζ̄ Γζ , (4.7b)

in which case the BRST algebra would be

S̃2 = Lγ + δYM

iγ(A)+φ , (4.8)

which would hold on all fields — including B and V — with the exception of the ghosts ξ

and c. In the following, we will find more convenient to use the fully equivariant S.

The BRST action in the B sector becomes more transparent if we collect the various

fields q, V and B in a single generalized form of total fermionic number 2:

B = B + V + q . (4.9)

Then the BRST variations (4.3) are equivalent to

δ B +
1

2
Ψ̄ Γ Ψ = H , (4.10)

where

H ≡ dB +
1

2
ψ̄Γψ , (4.11)
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and we have introduced, in a way analogous to Eq. (3.1), the generalized commuting super-

gravitino form of ghost number 1

Ψ ≡ ζ + ψ . (4.12)

The 3-form H transforms nicely under supersymmetry. To see this, it is instructive to

start from the BRST properties of the vierbein. Let us introduce the gauge covariant

coboundary operator

δ̂ ≡ s+ Lξ +D − iγ , (4.13)

whereD = d+[A, ·] is the exterior derivative covariant with respect to local YM symmetries.

We have

δ̂ea = −Ψ̄ Γa Ψ . (4.14)

The covariant coboundary operator squares to a YM gauge transformation:

δ̂2 = δYM
F . (4.15)

Hence

δ̂2ea = Rab eb , (4.16)

where Rab is the Lorentz component of the super-curvature F. Therefore we obtain

Rab ea eb = −ea δ̂ Ψ̄ Γa Ψ = δ
(
ea Ψ̄ Γa Ψ

)
−
(
Ψ̄ Γa Ψ

)(
Ψ̄ Γa Ψ

)
= δ

(
ea Ψ̄ Γa Ψ

)
,

(4.17)

where we made use of the super-Fierz identity which generalizes (3.28):(
Ψ̄ Γa Ψ

)(
Ψ̄ Γa Ψ

)
= 0 . (4.18)

Eq. (4.17) can be considered as the analog of the first Bianchi identity for the generalized

curvature: the ghost number 0 component of this equation it is just the familiar relation

connecting the derivative of the torsion to the cyclic sum of the curvature tensor compo-

nents. In this sense

T ≡ 1

2
Ψ̄ Γ Ψ (4.19)

is the generalized torsion, and the first super-Bianchi identity reads

1

2
Rab ea eb = δ T . (4.20)

The BRST rules for B (4.10) imply that the generalized torsion is cohomologous to a 3-form

of ghost number 0:

δ T = δH , (4.21)

so that the first super-Bianchi identity takes the final form

δH =
1

2
Rab ea eb . (4.22)
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5 The supersymmetry BRST anomaly cocycle for

new minimal N = 1 supergravity

Let us now summarize the equivariant BRST rules of the new minimal N = 1 supergravity

multiplet [18]:

S ζ = iγ(ψ) , (5.1a)

S ea = −2ζ̄ Γaψ , (5.1b)

S ψ = −D+ζ , (5.1c)

S B = −ζ̄ Γψ , (5.1d)

S A− = i ζ̄ Γ5 Γ Γµνψ̃µν , (5.1e)

S ωab− = 2ζ̄ Γ ψ̃ab , (5.1f)

S H = ζ̄ Γ ψ̃ , (5.1g)

where the Lorentz-covariant derivative D acts on spinors according to

D ζ ≡ dζ − 1

4
ωab Γab ζ −

i

2
AΓ5 ζ , (5.2)

and the following combinations are useful:

H ≡ dB − 1

2
ψ̄Γψ , Hλ =

1

6
ελµνρHµνρ , (5.3a)

A−µ ≡ Aµ − 3Hµ , A+
µ ≡ Aµ −Hµ , (5.3b)

ω±µ
ab = ωµ

ab ±Hµ
ab , (5.3c)

ψ̃ ≡ D+ψ , ψ̃ab ≡ eaµebνψ̃µν . (5.3d)

The Lorentz-covariant derivatives D± are defined in analogy to (5.2), but using the spin

connection ω±µ
ab and the gauge field A±µ .

Comparing Eqs. (5.1) with Eq. (3.29), we conclude that the components of the “spino-

rial” composite gaugino associated to the U(1)R and the Lorentz gauge algebras are, re-

spectively

χU(1)R = 2 Γµνψ̃µν and χab = 2ψ̃ab . (5.4)

The Lorentz components of the spinorial composite gaugino do not contribute to the

supersymmetric anomaly cocycle (3.33) for group theoretical reasons: the completely sym-

metric primitive invariant (symmetric 3-index symbol) dabc vanishes for SO(1, 3). How-

ever, the axial U(1)R component gives a non-vanishing contribution to the supersymmetric

anomaly cocycle:

A = c (F−)2 + 2A−λ−F− +
i

24
λ−(χ̄Γν Γ5 χ)ενρσλ

√
−g dxρ dxσ dxλ (5.5)

where we have identified χ and λ− with their U(1)R components in order to simplify the

notation.

The BRST operator (5.1) of new minimal N = 1 supergravity is nilpotent on the space

of fields, without the need to introduce antifields, and therefore the BRST cohomology
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problem on the space of fields is well defined. The anomaly cocycle associated to the

U(1)R axial gauge field is a non-trivial element of this cohomology modulo the exterior

differential:

sA = −d
[
iξ A+ 2 c F−λ− +A−(λ−)2

]
. (5.6)

However, as we will explain in the following Sections, it becomes trivial when we enlarge

the field space to include antifields.

6 “Evanescent” Anomalies

Consider a supersymmetric “matter” quantum field theory whose currents are coupled to

the (classical) fields of supergravity. Let φi denote the collections of supergravity fields,

and let Γeff[φ] be the effective action of the matter theory, i.e., the generating functional of

correlation functions of the currents that are coupled to the φi. In this Section, we denote

by s0 the full BRST operator of N = 1 new minimal supergravity, which in the previous

Sections was denoted by s. s0 is nilpotent on the space of supergravity and ghost fields. We

will call this space the “small” field space, to distinguish it from the “big” space involving

both fields and antifields. We assume that Γeff[φ] is anomalous:

s0 Γeff[φ] = t

∫
A[φ] , (6.1)

where A[φ] is a non-trivial element of the s0 cohomology (modulo the exterior differential)

on the “small” field space. We introduced a formal parameter t, which in the case at hand

is O(~) since the matter SQFT is assumed to be classically supersymmetric. It should be

kept in mind that we also take Γeff[φ] to be of order O(t).

Let us also assume that A[φ] vanishes on the subspace of the equations of motion

associated to some local, s0-invariant action Γ0[φ] of the supergravity fields φi. In this

situation we will say that the anomaly A[φ] is “evanescent”. We further assume that Γ0[φ]

does not depend on the ghost fields, or in other words that Γ0[φ] can be identified with

(any) classical supergravity action. Being both s0-invariant and ghost-independent, Γ0[φ]

is also invariant under the bosonic gauge symmetries encoded in s0 — in the context of

N = 1 new minimal supergravity this means that Γ0[φ] is invariant under diffeomorphisms,

local YM symmetries and vectorial symmetries associated to B. We can therefore write∫
A[φ] = −t S1 Γ0[φ] , s0 Γ0[φ] = 0 , (6.2)

where S1 is an odd ghost number 1 operator acting locally on φi, and Γ0[φ] is O(t0). Since

Γ0[φ] is gauge invariant, S1 is gauge covariant:

{S1,Lξ} = LS1ξ , {S1, δ
YM
c } = δYM

S1 c , {S1, δ
′
V } = δ′S1V . (6.3)

Let us observe that since Γ0[φ] is ghost independent, the action of S1 on the ghost is

not determined by Eq. (6.2): it will have to be fixed by consistency. Putting Eqs. (6.2)

and (6.1) together, we obtain

s0 Γeff[φ] = −t S1 Γ0[φ] . (6.4)
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Because of the nilpotency of s0 and s0-invariance of Γ0[φ], we also have

{s0, S1}Γ0[φ] = 0 . (6.5)

Hence s0 and S1 must anticommute — up to bosonic gauge symmetries of the action Γ0[φ].

If we introduce the equivariant S0 by

s0 = −Lξ − δYM
c − δ′V + S0 , (6.6)

then the consistency equation (6.5) reads

{S0, S1} = Lγ1 + δYM
φ1 + δ′k1 , (6.7)

where γ1, φ1 and k1 are, respectively, a ghost number 2 vector, a YM Lie algebra-valued

scalar, and a one-form. Let us now introduce the deformed equivariant BRST operator,

depending on the formal parameter t:

St ≡ S0 + tS1 + t2S2 + . . . . (6.8)

The consistency equation (6.7) reads, up to O(t2)

S2
t = Lγt + δYM

iγt (A)+φt
+ δ′iγt (B)+kt

, (6.9)

where

γt ≡ γ + tγ1 +O(t2) , (6.10a)

φt ≡ φ+ tφ1 +O(t2) , (6.10b)

kt ≡ k + tk1 +O(t2) . (6.10c)

Moreover, the total effective action

Γ[φ] = Γ0[φ] + Γeff[φ] +O(t2) (6.11)

differs from the original one by a local term Γ0[φ] and is St invariant up to this order:

St Γ[φ] = O(t2) . (6.12)

If we can continue this procedure to all orders in t, by adding terms Sn to St of higher

order in t, and local terms of higher order in t to the effective action

Γ[φ] = Γ0[φ] + Γeff[φ] + t2Γ2[φ] + . . . , (6.13)

we have then removed the original — “evanescent” — anomaly. We end up with an effective

action Γ[φ], which differs from the original one only by the addition of local terms and which

is invariant, that is non-anomalous, under the new deformed supergravity BRST operator

St.
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Let us discuss what kind of restrictions nilpotency and other physical requirements

put on the deformed algebra (6.9). As we discussed in Section 2, nilpotency of the BRST

operator requires that

St γt = 0 , St [φt + iγt(A)] = 0 , St [kt + iγt(B)] = 0 . (6.14)

We also established that the BRST rules for the supersymmetry ghost and the vierbein are

universal, i.e., they should be valid for any supergravity theory. Hence we should require

that the BRST rules for ζ and ea be unchanged by the deformation:

St ζ = S0 ζ = iγ(ψ) , St e
a = S0 e

a = −2ζ̄ Γaψ . (6.15)

Consequently the ghost number 2 vector bilinear that appears in the algebra of the deformed

supergravity BRST operator St should also be unaffected by the deformation:

γµt = γµ . (6.16)

The other 2 bilinears, φt and kt, are instead not universal: therefore they might be de-

formed, subject to the constraints (6.15). In conclusion, the deformed algebra of the

equivariant BRST operator will read

S2
t = Lγ + δYM

iγ(A)+φt
+ δ′iγ(B)+kt

. (6.17)

At first order in t, we have seen that this is equivalent to the existence of an operator S1

of ghost number 1, which anticommutes with S0 up to gauge transformations:

{S1, S0} = δYM
φ1 + δ′k1 . (6.18)

On the other hand, if S1 were given by a S0-commutator

S1 = {S0, L1} (6.19)

for some local operator L1 of ghost number 0, then we would obtain

0 = S0 Γeff[φ] + tS1 Γ0[φ] = S0

(
Γeff[φ] + tL1 Γ0[φ]

)
. (6.20)

In other words, S1 operators which are given by S0-commutators trigger trivial deforma-

tions of the original S0: they correspond to anomalies which are trivial in the “small”

field space and to S0-invariant effective actions differing from the original one only by local

terms. Hence, if the anomaly is a non-trivial element of the S0 cohomology in the “small’

field space, then S1 is certainly not a S0-commutator.

It is therefore useful to introduce the notion of S0-cohomology on the space of operators

acting as local derivatives on field space. The action of S0 on local functional derivatives

is given by the commutator (respectively, anticommutator) for even (respectively, odd)

derivatives. Closed operators are operators which (anti-)commute with S0 up to gauge

transformations, and trivial ones are those which are S0-(anti-)commutators up to gauge

transformations. We will refer to this cohomology as the S0-operatorial cohomology. We
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have just seen that consistent, non-trivial deformations St require the existence of a S1

which is a non-trivial element of ghost number +1 of this operatorial S0-cohomology.

At higher order in t, the consistency condition (6.17) imposes restrictions on the op-

erators Sn with n > 1. For example, at order 2 in t, Eq. (6.17) gives

S2
1 + {S0, S2} = δYM

φ2 + δ′k2 . (6.21)

This equation says that the ghost number 2 operator S2
1 is a trivial element of the S0 oper-

atorial cohomology at ghost number 2. On the other hand, the first-order condition (6.7)

ensures that the commutator [S0, S
2
1 ] vanishes up to gauge transformations:[

S0, S
2
1

]
= −δYM

S1 φ1 − δ
′
S1 k1 . (6.22)

In other words, if S1 exists, then its square S2
1 is S0-closed. A consistent deformation St

at the next order requires that S2
1 be a trivial element of the S0 operatorial cohomology

at ghost number +2. One can check that all the higher-order conditions are analogous

statements on S0 operatorial cohomologies at higher ghost numbers. For example, the

consistency condition at third order in t amounts to the requirement that the S0-closed

operator {S1, S2} of ghost number 3 be S0-trivial.

Summing up, a sufficient condition for the existence of a consistent deformation St
that removes the original “evanescent” anomaly is the validity of the following two facts:

a) the existence of a non-trivial element of the S0-operatorial cohomology at ghost num-

ber 1, and

b) the emptiness of the same cohomology at all higher ghost numbers.

7 The deformation

We are now finally in the position to determine the first-order deformation of the equivariant

BRST operator of N = 1 new minimal supergravity that removes the original “evanescent”

anomaly. The supergravity Lagrangian density invariant under S0 is [18]

L = |e|
[
R(ω)− 4ψ̄µΓµνρDν(ω)ψρ − 6HµHµ + 4AµH

µ
]
, (7.1)

where we recall that

D(ω) = dxνDν(ω) = dxν
(
∂ν +

1

4
ων

abΓab

)
(7.2)

is the Lorentz-covariant derivative and

Hµ =
1

2|e|
εµνρσ

(
∂νBρσ + ψ̄νΓρ ψσ

)
(7.3)

is the vector dual of the 3-form H. The spin connection ωµ
ab = ωµ

ab(e, ψ) is determined

by its equation of motion that follows from the Lagrangian (7.1), and given by

D(ω)ea +
1

2
ψ̄ Γaψ = 0 , (7.4)
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which is the 2-form component of the super-torsion constraint (4.14).

Taking Aµ, Bµν , eaµ and ψµ as independent fields, the equations of motion other than

the Einstein equations are

1

|e|
δL
δAµ

= 4Hµ , (7.5a)

1

|e|
δL
δBµν

= εµνρσF−ρσ , (7.5b)

1

|e|
δL
δψ̄µ

= −8
[
ΓµνρD+

ν ψρ +
1

2
Hν ε

µνρσΓσψρ + iHµ Γρ Γ5ψρ − iHρ Γµ Γ5ψρ
]
, (7.5c)

where we recall that the Lorentz-covariant derivative D+ is defined in analogy to (5.2), but

using the spin connection ω±µ
ab and the gauge field A±µ defined in Eqs. (5.3).

The generalized form

A5 = Γ5(A,F) +
i

24
λ−(χ̄Γν Γ5 χ)ενρσλ

√
−g dxρ dxσ dxλ (7.6)

describes the U(1)R component of the anomaly (3.33) of N = 1 new minimal supergravity.

In this formula, λ− = λ−µ dxµ is the U(1)R component of the topological gaugino6

λ−µ = ζ̄ Γµχ , (7.7)

and χ is the spinorial gaugino

χ = −2i Γ5 ΓρσD+
ρ ψσ =

i

8
Γ5 Γρ

δL
δψ̄ρ

+ 3Hρ ψρ

=
i

8
Γ5 Γρ

δL
δψ̄ρ

+
3

4

δL
δAµ

ψµ ,

(7.8)

which is proportional to the equations of motion for ψµ and Aµ.

The 4-form component of the anomaly polyform A5 gives the anomaly density (5.5)

A =
|e|
4

[(
c F−µν − 2A−[µ λ

−
ν]

)
F−ρσ ε

µνρσ − 2A−µ λ
−
ν F
−
ρσ ε

µνρσ + 3i (χ̄Γµ Γ5χ)λ−µ

]
. (7.9)

Comparing with Eq. (7.5c), it is clear that this anomaly is “evanescent”: it vanishes when

the equations of motion of ψµ, Bµν and Aµ are satisfied. We can schematically write7

A = ai1[φ]
δΓ0[φ]

δφi
+ aij2 [φ]

δΓ0[φ]

δφi
δΓ0[φ]

δφj
+ aijk3 [φ]

δΓ0[φ]

δφi
δΓ0[φ]

δφj
δΓ0[φ]

δφk
, (7.10)

where no terms of higher order than cubic appear. There is a certain degree of ambiguity

in reading off from this formula the action of the deformation S1 φ
i: let us briefly pause to

discuss it.

6In this section A−, λ−, F− and φ refer to the U(1)R components of the YM topological multiplet. The

corresponding Lorentz components will be denoted by ωab− , λab− , Rab− and φab. Of course at zeroth order in

t we have φ = φab = 0.
7To avoid cluttering, we drop all the space-time indices, including the integration.
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Let us first observe that we can define the functionals aij2 [φ] and aijk3 [φ] in Eq. (7.10)

to be either symmetric or antisymmetric with respect to the exchange of any pair (i, j) of

two indices: antisymmetric if i and j both correspond to fermionic fields, symmetric in the

other cases. We could therefore take S1 to be

− S1 φ
i = ai1[φ] + aij2 [φ]

δΓ0[φ]

δφj
+ aijk3 [φ]

δΓ0[φ]

δφj
δΓ0[φ]

δφk
(7.11)

with aij2 [φ] and aijk3 [φ] completely (anti-)symmetric under exchange of field indices. Such

a S1 would certainly satisfy the defining equation (6.4).

However, S1 is only defined up to invariances of Γ0[φ]. These include of course local

symmetries of Γ0: diffeomorphisms and YM gauge symmetries. But if we allow in S1 for

terms bi- and trilinear in the equations of motion as in Eq. (7.10), then we can add to S1

“trivial” symmetries of Γ0 of the form:8

Strivial
1 φi = bij2 [φ]

δΓ0[φ]

δφj
+ bijk3 [φ]

δΓ0[φ]

δφj
δΓ0[φ]

δφk
, (7.12)

where bij2 [φ] and bijk3 [φ] are functionals with the wrong kind of symmetry under the exchange

of any pair of two indices i and j, i.e., with bij2 [φ] and bijk3 [φ] symmetric under the exchange

of any two indices i and j corresponding to fermionic fields, and antisymmetric in all other

cases. For example, any bij2 satisfying

bij2 [φ] = −(−1)ninj bji2 [φ] (7.13)

where ni = 0 (ni = 1) for bosonic (fermionic) fields, corresponds to a “trivial” symmetry,

and analogously for bijk3 [φ].

The anticommutator of S0 with any such “trivial” contribution to S1 is also a “trivial”

symmetry of Γ0. We have seen that the removal of the anomaly requires that the anti-

commutator of S0 with S1 only contains genuine symmetries of the action Γ0 — that is,

gauge symmetries and diffeomorphisms. One can therefore expect that, for this to be the

case, S1 should not contain any “trivial” terms of the type (7.12). This is indeed the case:

we have verified explicitly that the ambiguity in the definition of S1 is completely fixed by

requiring the anticommutator of S0 and S1 to satisfy Eq. (6.7), and the resulting S1 has

the form (7.11) with aij2 and aijk3 completely (anti-)symmetric.

In conclusion, we can write∫
A = −

∫
(S1Bµν)

δΓ0

δBµν
+ (S1 ψµ)

δΓ0

δψµ
+ (S1Aµ)

δΓ0

δAµ
(7.14)

with

S1Bµν = −1

4

[
c F−µν − 2A−[µλ

−
ν]

]
, (7.15a)

S1 ψµ = − i

2
ΘαΓµ Γα Γ5 ζ +

1

16
(χ̄χ)Γµ ζ −

1

16
(χ̄Γ5χ)Γµ Γ5 ζ , (7.15b)

S1Aµ = 3Θαζ̄ Γαψµ +
3

8
i
[
(χ̄χ)ζ̄ Γ5ψµ − (χ̄Γ5χ)ζ̄ ψµ

]
, (7.15c)

8“Trivial” symmetries of this kind are sometimes called zilch symmetries. Of course this kind of triviality

has nothing to do with cohomological BRST triviality.
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where

Θ ≡ Θα dxα = −1

8

[
A−ν F

−
ρσ εα

νρσ + i (χ̄Γα Γ5χ)
]

dxα . (7.16)

This deformation S1 satisfies the integrability condition (6.17) resp. (6.18): the first-order

deformation of the YM bilinear φ1 is non-trivial along the U(1)R and the Lorentz directions,

and the corresponding deformations φ
(R)
1 and φab1 read

φ
(R)
1 = 3iγ(Θ) , (7.17a)

φab1 = iγ

(
εabµν Θν dxµ

)
− 1

8
(χ̄χ)ζ̄ Γabζ +

1

8
(χ̄Γ5χ)ζ̄ Γab Γ5ζ . (7.17b)

The deformation of the bilinear associated to the gauge transformations of the antisym-

metric B field is instead

k1 = −1

4
c λ− . (7.18)

8 The torsion constraint

The generalized first Bianchi identity (4.17), (4.20)

Rab ea eb = δ
(
Ψ̄ Γ Ψ

)
= δ T (8.1)

relies on the “universal” BRST rules, those for ζ and ea. Therefore this equation must

hold also for the deformed St.

At zeroth order in t, we also have the equation

1

2
Ψ̄ Γ Ψ = H − δ0 B , (8.2)

which implies the undeformed BRST rule for H (4.22)

1

2
Rab ea eb = δ0H . (8.3)

When we deform S, we have at first order in t

δ0 → δ = δ0 + tS1 +O(t2) (8.4)

with

S1 B = −1

4
(c F− +A− λ− + c λ−) = −1

4
(A− F− −A− F−) . (8.5)

Hence we obtain

δ B + T +
t

4
A− F− = H +

t

4
A− F− +O(t2) (8.6)

and
1

2
Rab ea eb +

t

4
F2
− = δ

(
H +

t

4
A− F−

)
+O(t2) . (8.7)

Eq. (8.6) states that, after we have deformed δ, the supertorsion T ceases to be cohomol-

ogous to a 3-form of ghost number 0. However the “improved” torsion, which is obtained

by adding the super-Chern–Simons invariant AF to the torsion, is still BRST-equivalent

to a 3-form of ghost number 0. Consequently, there exists a super-invariant — a linear

combination of the curvature and YM super-invariants — which is the δ variation of a

3-form of ghost number 0, as shown in Eq. (8.7).
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9 Conclusions

We adopted the BRST framework to discuss supersymmetry anomalies of 4-dimensional

N = 1 SQFT’s whose U(1)R symmetry is anomalous. We considered therefore the coupling

of SQFT’s to N = 1 new minimal supergravity. We pointed out that a supersymmetry

BRST cocycle associated to the U(1)R field exists for this supergravity. This cocycle has

a form identical to the chiral supersymmetry anomaly associated to flavor symmetries

(different from the R symmetries), once we replace the elementary gaugino with a certain

composite of the gravitino which we explicitely computed.

The supersymmetric U(1)R BRST cocycle is non-trivial in the space of supergravity

fields (and ghosts). However, it becomes BRST-exact in the functional space which in-

cludes antifields. Equivalently, this cocycle vanishes “on-shell”. It is therefore removable.

However, to remove it — precisely because it is not BRST-trivial in the smaller space

of fields — one needs to deform the supergravity BRST operator S0. This deformation is

triggered, at first order in the anomaly coefficient, by a local operator S1 of ghost number 1

which we computed in full detail and which — to our knowledge — was not known earlier.

We also gave a cohomological, hence intrinsic, characterization of the deformation S1: S1

is the only ghost number 1 local functional derivative that anticommutes with S0, but is

not itself an S0-commutator.

For the supersymmetry anomaly to be removable at higher orders in the anomaly

coefficient, the deformation triggered by S1 must meet further integrability conditions,

which we wrote down. These also can be expressed cohomologically: the cohomology of S0

acting by (anti)-commutators on the space of local functional derivatives must be empty at

ghost numbers greater than 1. We did not verify this explicitely, although we expect it to

be the case. In any case, since supergravity is not renormalizable, we also expect — barring

some unexpected “miracle” — that deformations of the BRST rules receive non-vanishing

contributions at all orders in the anomaly coefficient.

Finally, let us conclude by commenting on the relationship between our results and

other recent works on the same topic.

In Ref. [10], where anomalous supersymmetric Ward identities associated to the U(1)R

anomaly were presented, the question was asked — in a footnote — if and how super-

symmetry transformations could consistently be deformed by adding to the transformation

of the 2-form field Bµν a term proportional to cFµν . In the same footnote, the author

also wonders about the effect of this modification on quantum anomalies. Our Eq. (7.15)

describes precisely such a consistent deformation: as we have shown this removes all the

anomalies of the theory, the supersymmetry anomaly together with the bosonic U(1)R

anomaly.

Refs. [14, 15] study the issue of the supersymmetry anomaly and of its removal in

the language of currents and Wess–Zumino consistency conditions. These works deal both

with the supersymmetry anomalies associated to external “flavor” symmetries of SQFT’s,

which we did not discuss here, and with those associated with the R symmetries, the focus

of the present paper. The authors of [14, 15] analyze the super-algebra of supersymmetry

and gauge transformations to derive Wess–Zumino consistency conditions for the various
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currents. They emphasize the importance that this superalgebra close off-shell. To this

end, they introduce compensator fields belonging to relevant superfields, and for external

“flavor” symmetries, these compensators belong to vector superfields. On the other hand,

the compensators relevant to anomalies related to R symmetries come from superconformal

multiplets, as supergravity is obtained in these works by gauge-fixing conformal supergrav-

ity. The conclusion of this line of work is that by introducing suitable compensators the

anomaly can be “moved away” from the supersymmetry sector to the gauge sector.

In the BRST framework, one does not separate “gauge” and “supersymmetry” anoma-

lies: they are all captured by a single BRST cocycle, which depends on all ghosts — both

commuting and anticommuting. Of course, different representatives of the same cocycle

are possible: “moving” the anomaly from one symmetry to another would mean finding

a representative of the anomaly cocycle depending on some, but not all, (super-)ghosts, if

such a representative exists.

Regarding the anomaly associated to R symmetry — the focus of the present paper —

it should be kept in mind that a perfectly nilpotent BRST operator acting on the fields of

new minimal N = 1 supergravity does exist. Thus, analyzing this theory requires neither

superfields nor compensators. We have shown that in this case one can, by deforming the

BRST rules, completely remove the anomaly, not just “move” it from one symmetry to

another. Moreover, this can be done with the fields of the supergravity multiplet alone,

without introducing any compensator fields.

It is also worth pointing out that our results hold at all orders in the number of

gravitinos. In other words, from our deformed BRST rules one can derive one-loop Ward

identities involving any number of supercurrents. This is unlike the results of [10, 14, 15],

which seem to be restricted to a fixed number of gravitinos or supercurrents, at least with

the explicitly given expressions. Of course, at higher loop orders one needs to determine

higher-order deformations of the BRST operator as we have explained.

In this paper, we have not specifically discussed supersymmetry anomalies associated

to external “flavor” symmetries. We leave a BRST analysis of the issue raised by [9–13]

in this context to the future. Nonetheless, let us briefly comment on this case as well. A

BRST formulation of super-Yang–Mills theory coupled to new minimal supergravity does

exist, and this formulation includes only the fields of the super-Yang–Mills multiplet in

the Wess–Zumino gauge. The equivariant BRST algebra closes without the need for any

compensators or antifields, see for example [8].9 The crucial step to obtain this closure

is to include a supersymmetry transformation in the BRST transformation rules for the

gauge ghost, see our Eq. (2.10). In this formulation, the chiral superanomaly cocycle

relative to the external super-Yang–Mills multiplet is not removable even if one includes

antifields. The results of [14, 15] suggest that, by adding compensating multiplets, it

might be possible to construct a representative for this cocycle that does not involve the

supersymmetry ghost. It is not clear to us if this remains true in the more economical

equivariant BRST formulation that does not include compensators.

9To explain this fact in our language, we note that the equivariant S squares to gauge transformations:

this is the basic reason why there is no need for compensating gauge transformations in this framework.
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A Relation with the BV formalism

One could rephrase the discussion of Section 6 in the BV language. Our starting equa-

tions (6.4)

S0 Γeff[φ] + tS1 Γ0[φ] = 0 , (A.1a)

S0 Γ0[φ] = 0 (A.1b)

can be written as

S0 ΓBV
0 [φ, φ∗] = 0 , (A.2a)

S0 ΓBV
1 [φ, φ∗] = 0 (A.2b)

for the antifield-dependent BV actions

ΓBV
0 [φ, φ∗] = Γ0[φ] +

∑
i

φ∗i S0 φ
i , (A.3a)

ΓBV
1 [φ, φ∗] = Γ1[φ] +

∑
i

φ∗i S1 φ
i . (A.3b)

Therefore, ΓBV
1 [φ, φ∗] is a ghost number 0 element of the cohomology of S0 acting on the

“big” space of both fields and antifields. It is well known [21] that local elements of this

cohomology as associated to deformations of the original classical action Γ0. For new

minimal N = 1 supergravity, it has been shown [8] that the deformations that change

the symmetry transformations always involve other external supermultiplets in addition

to the supergravity one. However, the BV cohomology problem which is relevant for the

removal of anomalies, and which is equivalent to the problem that we solved in the BRST

framework, is different from the one considered in [8]: in our context Γ1[φ] is a non-local

functional of the fields. Hence the BV local cohomology of ghost number 0 computed in [8]

is not related to deformations of the BRST operator St which remove the “evanescent”

anomaly, and which we computed in this paper.

B Details on the computation with FieldsX

We include with the paper a Mathematica notebook containing the computations that

we did using FieldsX. The notebook is heavily commented and should be mostly self-

explanatory: in section 1 of the notebook, the FieldsX package and other xAct packages
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are loaded. In section 2, we define the manifold, the fields ofN = 1 new minimal supergrav-

ity, and the Lorentz-covariant derivatives D (5.2) and D± that are needed, as well as some

helper functions to convert between different covariant derivatives and combinations of

fields (5.3). In section 3, we give the equivariant BRST transformations (5.1), the Bianchi

identities for the Riemann tensor of the spin connection ωµ
ab with the torsion expressed us-

ing the gravitino (the ghost number 0 component of Eq. (4.19)), and the vector constraint

obtained by acting with the exterior differential on Eq. (4.11). In section 4, we verify the

equivariant BRST algebra (4.5) on the basic fields ζ, eµ
a, ψµ, Bµν and A−ν , and in section

5 we verify the BRST transformations of the combinations ω−µ
ab and Hµ. Section 6 verfies

the BRST invariance of the action (7.1) and that the spin connection satisfies its equation

of motion (7.4), and in section 7 we verify the invariance of the transformation parameters

γµ (2.11), the Lorentz and U(1) components of φ and the B field gauge parameter (4.6).

The anomaly density (7.9) is shown to fulfill the relation (5.6) in section 8, where we

also define the spinorial and topological gaugino and their BRST transformations, as well

as some helper functions to ensure that dF− = d2A− = 0. Note that compared to the

normalization that we use in the paper, the anomaly density in the Mathematica notebook

has an extra factor of (−4), which also rescales the first-order deformation S1 (7.15) by

the same factor, to ensure that the anomaly is cancelled (7.14). In the last section 9, we

then define the deformation S1 as well as the U(1) gauge transformation part of δYM
c , and

verify the deformed BRST algebra (6.18) on all the basic fields ζ, eµ
a, ψµ, Bµν and A−ν .

Note that also the normalization of the vector Θµ (7.16) differs by a factor (−4) between

the paper and the Mathematica notebook.
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