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Abstract

Generalized linear models usually assume a common dispersion parameter, an assump-

tion that is seldom true in practice. Consequently, standard parametric methods may

suffer appreciable loss of type I error control. As an alternative, we present a semi-

parametric group-invariant method based on sign flipping of score contributions. Our

method requires only the correct specification of the mean model, but is robust against

any misspecification of the variance. We will further extend the methodology to multi-

variate responses. Indeed, the weaknesses of the standard approaches can dramatically

propagate in multivariate settings. We propose a resampling-based method to handle

multivariate generalized linear models which adapts to the unknown correlation struc-

ture, resulting in an appreciable gain of power compared to general alternatives when

such correlation is present. Finally, we will exploit the benefits of the proposed sign-

flipping test to semiparametric models by considering the Cox regression model, where

standard approaches rely on asymptotic arguments, while they have a slow convergence

to the nominal level of the test.





Sommario

I modelli lineari generalizzati assumono solitamente un unico comune parametro di di-

spersione, un assunzione che risulta spesso non essere verosimile. Conseguentemente,

i metodi parametrici standard possono soffrire una rilevante perdita del controllo del-

l’errore di I tipo. In alternativa noi presentiamo un metodo semiparametrico basato

sul cambio del segno dei contributi allo score. Il nostro metodo richiede solamente la

corretta specificazione della funzione della media, mentre risulta robusto rispetto a mis-

specificazioni della varianza. Successivamente estendiamo il metodo proposto al caso di

risposte multivariate. Infatti, le debolezze degli approcci parametrici possono propagarsi

in modo importante in problemi multivariati. Noi proponiamo un metodo basato sul ri-

campionamento per gestire i modelli lineari generalizzati multivariati, che si adatta alla

sconosciuta struttura di correlazione delle risposte, risultando in un rilevante guadagno

di potenza rispetto ai metodi parametrici specialmente quando questa correlazione è

presente. Per concludere estendiamo il test basato sul cambio del segno dei contribu-

ti allo score a modelli semiparametrici considerando il modello di regressione di Cox,

dove gli approcci standard sono giustificati sulla base di argomenti asintotici, mentre

mostrano una lenta convergenza al livello nominale del test.
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Introduction

Overview

Regression models are popular methods used to quantify the relationship between a set

of covariates and one (or more) outcome of interest. The inference procedure is carried

on by firstly adopting a statistical model, which is usually assumed to be known except

for a finite number of parameters, and the aim is to give statements about the param-

eters which represents the impact of each covariate on the target outcome. The most

common approach for the parameter estimation is the adoption of the maximum likeli-

hood principle which has some properties that makes the procedure attractive (Azzalini,

1996).

Once we have obtained a point estimate we might be interested in conducting a

more accurate analysis. In particular, the focus can be on investigating the relevance

of one (or more) target parameter. Call β a parameter of interest; we might focus on

a hypothesis of the kind H0 : β = 0, that is, if the target parameter is statistically

significant, or we might be interested in a more general conjecture given by a generic

H0 : β = β0. Note that H0 is generally defined as null hypothesis. Hypothesis testing

is a crucial step in a statistical analysis as it aims to quantify if the relevance of each

covariate is significant in the adopted regression model.

The standard parametric approach for hypothesis testing is based on three alterna-

tives which have similar behavior, especially for growing sample size, the Wald test, the

Score test and the Likelihood ratio tests. We will refer to them as parametric tests be-

cause they are derived under the chosen model and are therefore exposed to the whole

set of assumptions made. The choice of the model is probably the most important

step in any statistical analysis as the quality of the inference depends on this choice.

However, its appropriateness is often not correctly questioned, or it might be difficult

to check all the assumptions made. For example, when testing for equality of means

between two groups, statisticians often worry that there may be a difference in variance

between the two groups. The task of properly taking this variance into account, known
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4 Overview

as the Behrens-Fisher problem (Fisher, 1935, 1941), has generated a huge statistical

literature (Kim and Cohen, 1998; Chang and Pal, 2008). In the linear regression model,

which generalizes the two-group model, the assumption that all error terms have equal

variance is less often questioned. While goodness-of-fit tests and other diagnostics for

heteroskedasticity exist (Goldfeld and Quandt, 1965; Glejser, 1969; Breusch and Pagan,

1979; Jarque and Bera, 1980; Cook and Weisberg, 1983; Long and Ervin, 2000), there

is no simple and general way to follow up on obvious lack of fit (Rochon et al., 2012).

Still, the problems arising from misspecified variances in regression can be as severe in

regression as they are in the two-group model, especially when the variance depends on

the covariates in the model in an unknown way: standard errors are too large or too

small, and statistical tests can become severely conservative or anti-conservative.

The situation is worse if we broaden the perspective to generalized linear models

(GLMs). Overdispersed GLMs, that allow for additional variation between subjects,

have become important in many fields; e.g. negative binomial or quasi-Poisson models

in RNA sequencing (Love et al., 2014). GLMs and overdispersed GLMs generally use a

single dispersion parameter for all subjects. This assumption is similar to the common

variance assumption in the linear model, and violation of the assumption can lead to

loss of Type I error control in the same way. The diagnostics to detect a failure of

this variance model are more complex in GLMs than in the linear model, since the

variance of residuals differs between observations even in a correctly specified model.

A general approach that is asymptotically robust to variance misspecification is to use

the Sandwich estimator (Eicker, 1967; Huber, 1967; White, 1982). However this is not

always an optimal choice, since it often performs poorly for small sample sizes (Boos,

1992; Kauermann and Carroll, 2000; Maas and Hox, 2004; Freedman, 2006).

The issues of the univariate setting can dramatically propagate in multivariate set-

tings. Indeed, the modeling of high-dimensional data represents a stimulating challenge

nowadays in many ambit of applications, as neuroimaging and transcriptomics, where

it is common to fit several generalized linear regression models in parallel, each with a

small sample size (Schaarschmidt et al., 2022; Love et al., 2014; Winkler et al., 2014).

The goal of the analysis is to perform hypothesis testing to find relevant associations

and the multiplicity issue must be taken into account properly. Several challenges are

present: the availability of small sample sizes can make the classic tests unreliable, es-

pecially for nonlinear models where exact methods are not available and we always rely

on asymptotic arguments. Indeed, the classic normal approximation of the test statistic

can be quite unreliable (Schaarschmidt et al., 2022).

Further, the test statistics are often correlated, due to correlations in the underlying
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biological measurements, and taking correlations into account could increase the power

of the test procedure. Indeed, the classic multiple testing corrections (as Bonferroni-

Holm) are designed in order to protect against any correlation structure and can be

very conservative (Goeman and Solari, 2014). Taking correlations into account could

increase the power of the test procedure.

Main contributions of the thesis

In this work we will develop a novel method for inference in generalized linear models

(GLMs), Cox regression models and multivariate extension. The proposed methodology

is based on sign-flip tests, whose key idea consists in multiplying appropriate quantities

by a vector of 1 and −1, in order to obtain a conditional distribution of test statistics

(Hemerik and Goeman, 2018). Under some conditions, which must be properly checked,

the derived conditional distribution permits to perform valid hypothesis testing.

We will first focus on univariate testing, proposing a method for regression coefficients

in GLMs that is robust to misspecification of the variance. Our method is an extension

of the method of Hemerik et al. (2020), which compares the score to a semiparametric

reference distribution calculated by randomly sign-flipping each subject’s contribution to

the score. This method was known to have robustness to misspecification of the variance

by a common multiplicative constant only. We extend this method in two ways. First,

we derive an expression for the variance of the flipped score as depending on which of

the 2n possible transformations has been used. We use these expressions to standardize

the flipped scores, to obtain a test with faster convergence to the nominal Type I error

level. Second, we show that the new standardized test remains asymptotically valid

under any misspecification of the variances of the residuals. The resulting test gives

valid inference without concern for heteroscedasticity. We find that the convergence

to the nominal level is comparable, and sometimes even faster than a parametric test

when both methods are asympotically valid, and power is also comparable. Our results

actually imply that the same robustness holds for the original test of Hemerik et al.

(2020), but the new test achieves better error control than the original in small samples.

In the more limited context of linear models, other semiparametric approaches have

been proposed before. Winkler et al. (2014) provides a systematic comparison of such

methods for linear regression in a realistic setting. Our novel method has a connection

to the Wild Bootstrap (Davidson and Flachaire, 2008), which addresses the problem of

heteroskedasticity only in linear regression models without nuisance parameters.

Further, we start from this univariate test to build a multiple testing procedure
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based on the max-T method of (Westfall and Young, 1993), which guarantees strong

control of the family wise error rate (FWER), a key property which guarantees valid

p-values even for postponed choice of the model after seeing the data. Remarkably,

the proposed method adapts to the unknown correlation structure. It is especially

useful when strong correlation between the individual test statistics is present. In that

situation it guarantees a relevant gain in power over alternative methods, as we will

show in a simulation.

Finally, we will go beyond generalized linear models by extending the methodology

to Cox regression models. We will see that the standard parametric tests suffer of lack

of type I error control for small sample size, and we will apply the key idea of sign-flip

tests to improve the convergence. We will derive two alternative tests which both show

a significant improvement over the parametric tests. Further, from the previous section

is then straightforward to obtain a multivariate extension also for this class of models.



Chapter 1

Inference in generalized linear

models with robustness to

misspecified variances

1.1 Generalized linear models

Assume that we observe n independent observations Y = {Y1, . . . , Yn}
T from the

exponential dispersion family, i.e. a density of the form (Agresti, 2015)

f(yi; θi, ϕi) = exp

{

yiθi − b(θi)

a(ϕi)
+ c(yi, ϕi)

}

,

where θi and ϕi are respectively the canonical and the dispersion parameter. We will

assume throughout the chapter that the model chosen fulfills the usual regularity con-

ditions (Azzalini, 1996; Hall and Mathiason, 1990). We derive mean and variance of the

observed outcome, respectively, as

µi = E[Yi] = b′(θi); V[Yi] = b′′(θi)a(ϕi),

where primes denote derivatives. We will consider through the chapter, without loss of

generality, a(ϕi) = ϕi. We assume that the mean of Yi depends on observed covariates

(Xi, Zi) through the following relation, written in vector-matrix form as

g(µ) = η = Xβ + Zγ

where µ = (µ1, . . . , µn)
T denotes the mean vector, g(·) is the link function, taken to

operate elementwise on a vector, (X,Z) is the full rank design matrix with dim{X} =

7



8 Section 1.1 - Generalized linear models

n×1, dim{Z} = n×q, where q does not depend on n, and (β, γ) are unknown parameters.

We consider β the parameter of interest, and γ a nuisance parameter.

Let ℓ(β, γ) denote the log-likelihood function, from which we can derive the score

vector with elements

∂ℓ(β, γ)

∂β
= ℓβ = XTDV −1(Y − µ);

∂ℓ(β, γ)

∂γ
= ℓγ = ZTDV −1(Y − µ),

where, in a compact matrix form, we have

D = diag

{

∂µi
∂ηi

}

; V = diag {V[Yi]} .

Taking the derivatives of the score vector we obtain the Fisher information matrix

I =

(

Iβ,β Iβ,γ

Iγ,β Iγ,γ

)

=

(

XTWX XTWZ

ZTWX ZTWZ

)

where W = DV −1D. Denote by di, vi, and wi the i-th diagonal elements of D, V and

W , respectively. Note that all the matrices defined here and in the rest of the chapter

depend on n. We will suppress this dependence in the notation. The reader may assume

that all quantities depend on n, except when explicitly stated otherwise.

The model as defined above has separate dispersion parameters ϕi for i = 1, . . . , n.

These parameters cannot be consistently estimated unless they satisfy some restrictions

(Neyman and Scott, 1948). Thus, in practice, the analyst will use some putative model,

which imposes such restrictions. This leads to computable estimates ϕ̂1, . . . , ϕ̂n, which

will generally be inconsistent. Remarkably, the incorrect estimation of the dispersion

parameters does not affect the consistency of the estimates of the regression coefficients,

as long as the mean (and hence the link function) are well-specified (Agresti, 2015). The

corresponding standard errors, however, are no longer reliable.

As an example of the set-up, consider the situation that the data are generated

according to a negative binomial model with a log link function and a different and

unknown dispersion parameter for every observation. The analyst could estimate these

dispersion parameters under the additional constraint that ϕi = ϕ for all i, or even that

ϕi = 1 for all i. Alternatively, the dispersion parameters could be modeled as a function

of the covariates (McCullagh and Nelder, 1989, Chapter 10). Such strategies will lead

to inconsistent estimates of the dispersion parameters unless the true model happens to

fulfil the chosen constraints (White, 1982).

About the model and the estimation strategy we make the following assumptions.
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First, we demand that the regression parameters β and γ are consistently estimated, and

the true variances to be uniformly bounded. Secondly, we assume that the estimates of

ϕ1, ϕ2, . . ., though not consistent, will converge, as stated more formally below.

Assumption 1. For i = 1, 2, . . ., we have ϕ̂i − ϕ̃i → 0 in probability as n → ∞, where

K1 < ϕ̃i ≤ K2, and K1, K2 are strictly positive constants not depending on n.

It is known (Huber, 1967) that the use of maximum likelihood estimation in a mis-

specified model leads under minimal conditions to a well-defined limit of the estimator.

In this sense, it is possible to define a “true” density, even in a misspecified model,

which is intended to be the closest to the true density which generates the data in terms

of Kullback-Leibler distance (White, 1982). This implies that Assumption 1 generally

holds in situations where we estimate ϕ1, . . . , ϕn using a restricted model.

We place a tilde symbol on all the quantities obtained when plugging the limits

ϕ̃1, . . . , ϕ̃n into the model. In particular, let Ṽ , W̃ be the variance and weight matrices

obtained by fixing ϕi = ϕ̃i. Note that the putative model only misspecifies the variance,

but not the mean: the mean vector and the link function remain correctly specified and

can still be consistently estimated (Agresti, 2015).

We further assume the following assumption related to the Fisher information given

by the quantities ϕ̃1, . . . , ϕ̃n. This is a standard condition in regular models (Van der

Vaart, 1998).

Assumption 2. Let Ĩ be the Fisher information matrix forW = W̃ . The limn−→∞ n−1Ĩβ,β

converges to some positive constant.

Further, the following mild condition is needed to apply the multivariate central

limit theorem (Billingsley, 1986, Chapter 5) within the framework of Hemerik et al.

(2020), that we will apply. It is needed to avoid pathological cases, such as vanishing

or dominating observations.

Assumption 3. Let

ν̃i,β =
(Yi − µ̂i)xidi

ṽi
; ν̃i,γ =

(Yi − µ̂i)zidi
ṽi

;

define the element-wise score contribution and

ν̃∗i,β = ν̃i,β − Ĩβ,γĨ
−1
γ,γ ν̃i,γ.

We require, for all ϵ > 0,

lim
n−→∞

1

n

n
∑

i=1

E[(ν̃∗i,β)
21{|ν̃∗

i,β
|/√n>ϵ}] −→ 0
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where 1{... } is the indicator function, and n−1
∑n

i=1 V[ν̃
∗
i,β] to converge to some positive

constant.

When the model is correctly specified the last condition implies Assumption 2. In

case of misspecified models we do not have this relation, since the so called “information

identity” does not hold (Azzalini, 1996).

Throughout the chapter, we will make a distinction between two situations: the

situation that the model is correctly specified, i.e. W̃ = W , and the putative model is

true; or the general case that W̃ ̸= W .

1.2 Classic approach to hypothesis testing

In the model described in Section 1.1 we are interested in testing the following null

hypothesis

H0 : β = β0 | (γ, ϕ) ∈ Γ× Φ (1.1)

against a one or two-sided alternative, where we are considering dim{β} = 1, while

Γ ⊆ R
q and Φ ⊆ (0,∞). Indeed, the classic approach to GLM assumes ϕ to be known,

or unknown but equal among units. When q = 0 the observations are identically

distributed under the null hypothesis. A large number of tests exist in the literature,

as the well-known parametric t-test or some nonparametric alternatives as sign-flip or

rank tests (Lehmann and Romano, 2005). When q > 0 the observations are no more

exchangeable and nonparametric solutions are generally not available. In the literature

there are three different approaches to hypothesis testing which are fully parametric, in

the sense that they fully rely on the assumptions made in the model’s choice (see for

instance Azzalini (1996)). Even if they are dated, their use is widespread and they are

the default choices in the most popular statistical software. For two-sided alternative

they are defined as follows; the Wald test statistic (Wald, 1943) is defined as

We = (β − β0)
T
(

Iβ,β
)−1

(β − β0)

where Iβ,β is the corresponding element of the inverse of the Fisher information matrix;

the parametric Score test statistic (Rao, 1948) which is defined as

Wu = ℓTβ0
(

Iβ0,β0
)

ℓβ0
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where the symbol β0 means that the corresponding quantities are evaluated under the

null model; and the Likelihood ratio test statistic (Wilks, 1938) is

Wl = 2(ℓ(β)− ℓ(β0)).

The three test statistic tend to perform similarly and they share the asymptotic distri-

bution which is chi-squared with one degree of freedom. Moreover, when β is a scalar it

is possible to define an alternative version of these test statistics that have a standard

normal distribution, which are also suitable for testing one-sided alternatives, i.e.

re = (β − β0)(I
β,β)−1/2

ru = ℓβ0(I
β0,β0)1/2

rl = sign{β − β0}
√

2(ℓ(β)− ℓ(β0)).

However, these tests fully rely on the assumptions behind the model choice, and

they can perform poorly in presence of variance misspecification or, more in general,

for small sample sizes, as we will see in Section 1.7. It is important to note that there

are some more recent methods specific to some particular models. For instance, the

linear regression model has generate a huge literature (see Winkler et al. (2014) and

references therein), while the slow convergence of the maximum likelihood estimator -

particularly relevant for the logistic regression model (see also the Simulation in Section

1.7) - has been addressed by Firth (1993). However, in this chapter we will focus on

methods valid for the whole ambit of generalized linear models with attention to variance

misspecification.

A popular answer to protect against variance misspecification is based on the use

of the parametric tests adopting the sandwich estimator of the variance (Eicker, 1967;

Huber, 1967; White, 1982). This approach is based on the failure of Bartlett second

identity when the model is wrongly specified, and it estimates empirically the true

variance. Then the significance of the coefficients is tested by means of a Wald-type

test with plugged-in this robust estimator. However, we will see in the Simulation study

of Section 1.7 that it performs poorly for small sample sizes, even when the model is

correctly specified (Boos, 1992; Freedman, 2006; Maas and Hox, 2004; Kauermann and

Carroll, 2000). This negative aspect has two main causes; the presence of bias for finite

sample size, and the fact that it is often far more variable than the usual parametric

estimator.

More complex models tend to jointly model the mean and the variance of the obser-

vations. In particular we will analyze the behavior of the generalized additive models
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for location, scale and shape (Gamlss; Rigby and Stasinopoulos, 2005). They permit

to model the mean specifying the family of the response and the link function (as for

GLMs), but in addition they model also the variance as function of any potential co-

variate of interest. A Wald-type test is used to test the significance of the coefficients.

However, we will see in Section 1.7 that this class of models tend to show slow conver-

gence, due to the overparametrization, and moreover they are not always able to catch

the variance misspecification.

1.3 Sign-flipping effective score test

As introduced in section 1.2 we are interested in testing the following null hypothesis

H0 : β = β0 | (γ, ϕ1, . . . , ϕn) ∈ Γ× Φ× · · · × Φ (1.2)

against a one or two-sided alternative, where Γ ⊆ R
q and Φ ⊆ (0,∞). This formulation

of the null hypothesis above makes explicit that only the target parameter β is fixed

under H0, but the nuisance parameters are unconstrained.

Since ϕ1, . . . , ϕn, as remarked, are difficult to estimate, we require a test that is ro-

bust to misspecification of these parameters. Hemerik et al. (2020) proposed a general

semiparametric test that has robustness to misspecification of the variance by a con-

stant, and presented promising simulation results suggesting more general robustness

properties. We will start from this test.

Hemerik et al. (2020) uses the effective score for β as the test statistic. In the model

(1.1) the effective score is

S = ℓβ − Iβ,γI
−1
γ,γℓγ.

In the context of generalized linear models, the statistic can be written as

S = n−1/2XTW 1/2(I −H)V −1/2(Y − µ̂)

where

H = W 1/2Z(ZTWZ)−1ZTW 1/2, (1.3)

is the hat matrix, and µ̂ is the vector of fitted values of the model under the null

hypothesis. Note that, since S is an inner product of the two n-vectors n−1/2V −1/2(I −

H)W 1/2X and y − µ̂, it can be written as a sum of n terms, which we call the effective

score contributions.

To calculate the critical value, Hemerik et al. (2020) proposed to use sign-flips of
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the effective score contributions, randomly multiplying each score contribution by −1

or 1. In matrix notation these sign flips can be represented by a random diagonal

matrix F of dimension n, whose non-zero elements are independent random variables

that take values −1 and 1 with equal probability. Consequently, the effective sign-flip

score statistic for a given flip matrix F = F is defined as

S(F ) = n−1/2XTW 1/2(I −H)V −1/2F (Y − µ̂). (1.4)

where, with a little abuse of notation, we write S(F ) = S(F|F = F, Y ). Therefore we

fix F , but not Y hence S(F ) is still a random variable. Note that for F = I (the identity

matrix) we recover the observed effective score.

An asymptotic α level test is then derived as follows. First, Hemerik et al. (2020)

prove (asymptotic) invariance of the first two moments of the test statistic under the

action of F , i.e. that E[S(F)]−E[S(I)] = 0 and V[S(F)]−V[S(I)] → 0 as n→ ∞. Note

that S(F) depends on two random variables, Y and F , and we do not condition to any

of them unless it is explicitly stated. Next, they apply the Lindeberg-Feller multivariate

central limit theorem to show that, for independently drawn flip matrices F2, . . . ,Fg,

where g does not depend on n, the vector S(I), S(F2), . . . , S(Fg) converges to a vector

of independent and identically distributed random variables. By Lemma 1 of Hemerik

et al. (2020) is then possible to obtain an asymptotic α level test for the null hypothesis

(1.2) against a one or two-sided alternative. Assume we observe values S1, . . . , Sg, where

S1 = S(I) is the observed test statistic, while the sorted values are S(1) ≤ · · · ≤ S(g).

Without loss of generality, consider testing (1.2) against H1 : β > β0. The test that

they consider rejects the null hypothesis if

S1 > S(⌈(1−α)g⌉) (1.5)

where ⌈·⌉ represents the ceiling function. Analogous procedures can be defined for

H1 : β < β0 or β ̸= β0 (Hemerik et al., 2020).

The definition of the test involves W , which is unknown. In practice we only have

an estimate of W available, which converges to W̃ by Assumption 1. For the theoretical

results of the remainder of this chapter, we will treat W̃ , though not W , as known. To

motivate this, we note, in the first place, that in case of a correctly specified model any

error terms relating to estimation of W̃ are of lower asymptotic order (Barndorff-Nielsen

and Cox, 1994) with respect to the parameters estimation. Secondly, as we will show

below in Section 1.5, the validity of the test is invariant to misspecification of W̃ , so it

is not too relevant to estimate it correctly.
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1.4 Standardized sign-flips score test

The test based on the effective score is proven to be asymptotically exact by Hemerik

et al. (2020), but simulations in that paper show an anti-conservative behavior for small

sample sizes. This problem relates to a lack of null-invariance of the distribution of the

test statistic. In this section we revisit the concept of null-invariance in some detail.

This discussion will motivate our modification of the test of Hemerik et al. (2020).

Tests based on fixed data transformations such as sign-flips or permutations can

have exact control of the type I error rate if the observed test statistic S(I) and the

flipped S(F ) have the same distribution for every F . If this property holds, we say that

the transformations are null-invariant. Hemerik and Goeman (2018) showed how null-

invariance can be used to construct tests with exact control of the type I error, where

they highlight the importance of the group structure. Null-invariance can be achieved

in linear models (Solari et al., 2014; Huh and Jhun, 2001; Kherad-Pajouh and Renaud,

2010) or in GLMs with simple experimental designs. With more complex designs, ad

hoc solutions sometimes exist, e.g. when all covariates are discrete (Pesarin, 2001). For

general GLMs, null-invariant transformations do not exist.

When the equality in distribution holds only for a random flipping matrix S(F) the

property of null-invariance has still a major role, but it must be combined with some

extra conditions. A sufficient one is outlined in Lemma 1 of Hemerik et al. (2020),

which uses the equality in distribution for any random sign-flip in addition to a Linde-

berg condition required to apply an appropriate version of the central limit theorem.

The resulting test is not more an invariance test and the group structure becomes less

important.

In the case of the test of Hemerik et al. (2020), null-invariance is replaced by an

equality in distribution that holds only asymptotically. We restate the result concerning

the validity of that test below for the special case of GLMs. Our alternative proof

emphasizes the importance of asymptotic null-invariance.

We first introduce some Lemmas needed for the proofs of the Theorems; the projec-

tion matrix for GLMs introduced in (1.3) is a proper projection matrix for studentized

units as shown in the following Lemma, which is mentioned for instance in (Agresti,

2015, p. 136). We give a full proof for the sake of completeness, since that is omitted

in most textbooks.

Lemma 1. The fitted and observed values in a GLM are connected through the relation

V −1/2(µ̂− µ) = HV −1/2(Y − µ){1 + op(1)}



Chapter 1 - Inference in generalized linear models with robustness to misspecified
variances 15

Proof. The first-order approximation of the score function is

ℓβ̂ = ℓβ + Iβ,β(β̂ − β) + op(1)

0 = XTDV −1(Y − µ)−XTWX(β̂ − β) + op(1)

β̂ − β = (XTWX)−1XTDV −1(Y − µ) + op(1)

where (op(1)) is an error term asymptotically negligible. Then, by the Delta method we

have

µ̂ = µ+
dµ

dη

dη

dβ
(β̂ − β){1 + op(1)}

µ̂− µ = DXT (β̂ − β){1 + op(1)}

= DXT (XTWX)−1XTDV −1(Y − µ){1 + op(1)}

= DW−1/2HW 1/2D−1(Y − µ){1 + op(1)}

= V 1/2HV −1/2(Y − µ){1 + op(1)}

V −1/2(µ̂− µ) = HV −1/2(Y − µ){1 + op(1)}.

where the asymptotically negligible error term has two sources, one related to the second-

order approximation of the likelihood and the other related to possible non-linearity of

the link function.

Lemma 2. Let C be any n-dimensional matrix and G be a nonsingular n × n matrix,

then C and G−1CG have the same set of eigenvalues (with the same multiplicities).

Proof. See (Magnus and Neudecker, 2019, p. 15).

Lemma 3. Let C be any n-dimensional matrix and F be the set of all n-dimensional

flipping matrices, i.e. the set of all possible n-dimensional diagonal matrices F with

elements −1 or 1. Then
∑

F∈F
FCF = 2ndiag{C},

where diag{C} is a diagonal matrix with the same diagonal elements of C.

Proof. First we note that the absolute value of each element of C does not change

after the multiplication FCF . The sums for the off-diagonal elements contain an equal

number of terms with positive and negative sign, hence their sum over all possible flips

is zero, while the sign of each diagonal element is positive for each term. By noting that

the total number of flips is 2n we have the claim.
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The following result was adapted from Huber and Ronchetti (2009), extending their

theorem (Proposition 7.1, p. 156) for linear regression models to GLMs.

Lemma 4. Assume that the regression coefficients of a generalized linear model are

consistently estimated, in the sense that for every ε > 0, as n→ ∞,

max
1≤i≤n

P(|µ̂i − µi| > ε) → 0.

Then

max
1≤i≤n

hii −→ 0,

where hik is the ik-th element of the matrix H, as defined in (1.3).

Proof. Using Lemma 1 we have, for each i, µ̂i − µi =

hii(Yi − µi) +
∑

k ̸=i
v
1/2
i v

−1/2
k hik(Yk − µk) + op(1). (1.6)

Now we give a general probability result. Let V1 and V2 be two independent random

variables, for any ε > 0 we have that

P(|V1 + V2| ≥ ε) ≥ P(V1 ≥ ε)P(V2 ≥ 0) + P(V1 ≤ −ε)P(V2 ≤ 0)

≥ min {P(V1 ≥ ε),P(V1 ≤ −ε)} .

Noting that (yi − µi) is independent from (yk − µk) for each k ̸= i we can apply the

result to expression (1.6) to obtain

P (|µ̂i − µi ≥ ε|) ≥ min

[

P

{

(Yi − µi) ≥
ε

hii

}

,P

{

(Yi − µi) ≤ −
ε

hii

}]

= mn
i .

We have max1≤i≤n P(|µ̂i − µi| > ε) → 0, so max1≤i≤nmn
i −→ 0. Since ε was arbitrary,

this implies that max1≤i≤n hii −→ 0.

We can now turn our attention on the theorem which focuses on the test proposed

in Hemerik et al. (2020), showing its asymptotic null-invariance.

Theorem 1. Assume that the variances are correctly specified, that is, Ṽ = V , and

that Assumption 1-3 hold. For n −→ ∞, the test that rejects H0 if (1.5) holds is an

asymptotically α level test.

Proof. By the definition of the random sign-flipping transformations is trivial to observe

that the expected value of the test statistic S(F) is zero.
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By Lemma 1 we can rewrite the effective score statistic (1.4) as

S(F) = n−1/2XTW 1/2(I −H)F(I −H)V −1/2(Y − µ) + op(1).

Let

a = (I −H)W 1/2X. (1.7)

The variance conditional on F = F is

V [S(F )] = n−1aTF (I −H)V −1/2
E[(Y − µ)(Y − µ)T ]V −1/2(I −H)Fa+ o(1)

= n−1aTF (I −H)V −1/2V V −1/2(I −H)Fa+ o(1)

= n−1aTF (I −H)Fa+ o(1)

and for F = I we have

V [S(I)] = n−1aT Ia+ o(1).

Taking the difference

V [S(I)]− V [S(F )] = n−1aT {I − F (I −H)F} a+ o(1),

we note that the first term is a quadratic form and we look at the matrix

I − F (I −H)F = I − FF + FHF = FHF.

Since H is a projection matrix and F−1 = F , Lemma 2 implies that FHF is positive

semidefinite, so that asymptotically V [S(I)]− V [S(F )] ≥ 0.

Define

hsup = sup
1≤i≤n

{hii} .

Let us make the randomness of the flips explicit. Let F denote the set of all possible

flipping matrices, and note that |F| = 2n. By Lemma 3 we have

E [V {S(I)} − V {S(F) | F}] = (2n)−1
∑

F∈F
[V {S(I)} − V {S(F )}]

= n−1aTdiag{H}a+ o(1)

≤ n−1∥a∥2 · hsup + o(1),

where, by Assumption 2 and Lemma 4, the limiting behavior is

lim
n−→∞

n−1∥a∥2 · hsup = 0.
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According to the law of total variance we have

V[S(F)] = V [E {S(F) | F}] + E [V {S(F) | F}] .

We know that E{S(F) | F} does not depend on F , which means that V[E{S(F) | F}] =

0, so V{S(F)} = E[V{S(F) | F}]. It follows that, marginally over F ,

lim
n−→∞

V[S(I)]− V[S(F)] = 0.

Since the random sign-flipping transformations are all independent, the correspond-

ing test statistics are all uncorrelated, i.e, for all 1 ≤ w < v ≤ g we have C[S(Fw), S(Fv)] =

0 for two random flips Fw,Fv. By the previous results and Assumption 3, (S(I), . . . , S(Fg))
T

converges to a multivariate normal distribution by the multivariate Lindberg-Feller cen-

tral limit theorem (Van der Vaart, 1998), with mean vector 0 and covariance matrix

s2I, where s2 is the limiting variance of the flipped test statistic. Finally, we use Lemma

1 of Hemerik et al. (2020) to conclude that the test that rejects when (1.5) holds is an

asymptotic α level test.

If null-invariance holds only asymptotically, the distributions of S(I) and S(F) are

not identical, but both converge to the same distribution. It is natural to suppose that

the more aspects of the distributions of S(I) and S(F) are equal to each other in all

finite samples, the closer the resulting test is to an exact test. This intuition motivated

(Commenges, 2003; Solari et al., 2014) to formulate the concept of second-moment

null-invariance. A random transformation F is second-moment null-invariant if S(I)

and S(F) have identical first and second moment. For second-moment null-invariant

transformations, asymptotics is only needed for the convergence of the higher-order

moments.

The test of Hemerik et al. (2020) does not have the second-moment null-invariance

property: though the first moments of S(I) and S(F) are equal in finite samples, the

variances are not. In fact, we prove in Theorem 2 below that for finite samples S(I)

always has a larger variance than S(F), at least in the linear model. As a consequence,

the test shows a tendency to anti-conservativeness in finite samples. Since the variance

of the observed test statistic is always larger than its flipped counterpart, extreme values

in S(I) are more probable than in the reference distribution of S(F). Consequently, the

test tends to reject the null hypothesis too often.

Proposition 1. Consider a normal regression model with identity link. Assume that the

variances are correctly specified, that is, Ṽ = V , and that Assumption 1-3 hold. For
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finite sample size, the effective sign-flip score statistic defined as in (1.4) has V[S(I)] >

V[S(F)].

Proof. By Lemma 1 we can rewrite the effective score statistic (1.4) as

S(F) = n−1/2XTW 1/2(I −H)F(I −H)V −1/2(Y − µ) + op(1).

The variance conditional on F = F is

V [S(F )] = n−1aTF (I −H)V −1/2E{(Y − µ)(Y − µ)T}V −1/2(I −H)Fa

= n−1aTF (I −H)V −1/2V V −1/2(I −H)Fa

= n−1aTF (I −H)Fa

and for F = I we have

V [S(I)] = n−1aT Ia.

Taking the difference

V [S(I)]− V [S(F )] = n−1aT {I − F (I −H)F} a,

we note that it is a quadratic form and we consider the matrix

I − F (I −H)F = I − FF + FHF = FHF.

Since H is a projection matrix and F−1 = F , Lemma 2 implies that FHF is positive

semidefinite, and therefore V[S(I)]− V[S(F )] ≥ 0.

We then prove the strict inequality for at least one flipping matrix F . Taking any

model with an intercept, by construction

hinf = inf
1≤i≤n

{hii} > 0.

Note that |F| = 2n. Since V[S(I)] − V[S(F )] ≥ 0 as proven above, it suffices to show

that
∑

F∈F
n−1aTFHFa > 0,

which means that we have a strictly inequality for some F . Using Lemma 3 we have

∑

F∈F
FHF = 2n diag{H}.
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Therefore

∑

F∈F
n−1aTFHFa = 2nn−1aTdiag{H}a

≥ 2nn−1∥a∥2 · hinf > 0.

Proposition 1 is formulated for the linear model only. For the general case the same

positive difference between the variance of S(I) and S(F) is present, but it is not the

only term in the asymptotic expansion. However, we see a tendency to small sample

anti-conservativeness in all simulations, as was also observed by Hemerik et al. (2020).

The concept of second-moment null-invariance suggests that we can improve level

accuracy of the test if we can modify the flipped scores to have equal variances. The

following result allows for such a procedure. It provides an expression for the variance

of the flipped score, depending on the sign flip that has been applied.

Lemma 5. The variance of the sign-flipped score, as depending on F , is

V[S(F )] = n−1XTW 1/2(I −H)F (I −H)F (I −H)W 1/2X + o(1).

Proof. Let

a = (I −H)W 1/2X.

The variance for a given sign-flix matrix F is

V [S(F )] = n−1aTF (I −H)V −1/2
E[(Y − µ)(Y − µ)T ]V −1/2(I −H)Fa+ o(1)

= n−1aTF (I −H)V −1/2V V −1/2(I −H)Fa+ o(1)

= n−1aTF (I −H)Fa+ o(1)

These variances can be estimated by plugging in γ̂. By dividing the flipped scores

by their standard deviations, we obtain what we call the standardized sign-flip score

statistics,

S∗(F ) = S(F )/V[S(F )]1/2. (1.8)

We use the statistics S∗(F ) in the same way as the original test uses the statistics S(F ).

The estimate of V[S(F )] can be calculated for each F in linear time in n, as we show

in the following Lemma.
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Lemma 6. The computational cost of the standardization constant in (1.8) is linear in

n.

Proof. Define W 1/2Z = U∆LT , that is, the singular value decomposition of W 1/2Z,

where U is a semiorthogonal n × q matrix (q equal to the rank of Z), ∆ a diagonal q

matrix and L a q × q orthogonal matrix. Therefore (1.3) can be written as

H = W 1/2Z(ZTWZ)−1ZTW 1/2 = U∆LT (L∆UTU∆LT )−1L∆UT = UUT .

Now, let a = (I − H)W 1/2X and A = diag{a}. Further, let 1 be an n-dimensional

vector of ones. The denominator of the standardized test statistic becomes

XTW 1/2(I −H)F (I −H)F (I −H)W 1/2X =

= aTF (I − UUT )Fa =

= aTFIFa− aTFUUTFa

= aTa− 1TAFUUTFA1

= aTa− 1TFAUUTAF1

= aTa− fTCCTf,

where f = F1 and C = AU .

Therefore, given that aTa is a constant and the computational cost of fTCCTf is

linear with n since we can write fTCCTf =
∑q

j=1(
∑n

i=1 fiCij)
2, the result of the lemma

follows.

The proposed standardization has great impact and it substantially improves the

type I error control of the original score flipping test. Analogously with the test defined

in (1.5), consider without loss of generality testing (1.2) against H1 : β > β0. Take the

test that rejects the null hypothesis if

S∗
1 > S∗

(⌈(1−α)g⌉). (1.9)

The following Proposition concerns the validity of the test.

Proposition 2. Assume that the variances are correctly specified, that is, Ṽ = V , and

that Assumptions 1-3 hold. The standardized sign-flip score statistic is finite sample

second-moment null-invariant. The test that rejects H0 if (1.9) holds is i) an exact α

level test in case of normal response with identity link and ii) asymptotically exact in

all other cases.
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Proof. The proof is immediate. We simply observe that the expected value of the new

statistic (1.8) is left unchanged, while the standardization makes the variance of each

flipped new statistic equal to 1. The same argument given in the last part of the proof

of Theorem 1 applies to deduce the asymptotic exactness of the test.

In the special case of the normal model with the identity link, we have that V[S(F )]

does not depend on any unknown nuisance parameters. Moreover, in this model S(I)

and S(F) are normally distributed in finite samples, so the standardized sign-flip score

statistic achieves not just second-moment but full null-invariance, resulting in an exact

test by Theorem 2 of Hemerik and Goeman (2018).

1.5 Robustness of the test

Hemerik et al. (2020) showed promising simulation results suggesting robustness

against variance misspecification, but a formal proof was given only for the special case

that all variances were misspecified by the same multiplicative constant. In this section

we provide a formal proof of general robustness of the test to variance misspecification,

both for the novel test derived in the previous section and for the original effective score

test of Hemerik et al. (2020). This is the most important result of this chapter.

Wrong specification of the model variance means that

E
[

(Y − µ)(Y − µ)T
]

= V ̸= Ṽ .

We first revisit the simple case considered by Hemerik et al. (2020), in which the variance

is misspecified by a multiplicative constant. This is the case when the true model has

a common dispersion parameter ϕ. It turns out that the properties of the standardized

sign-flip score test are not affected by this misspecification. In particular, we have

second-moment null-invariance.

Proposition 3. Assume that Assumptions 1-3 hold. If the variances are misspecified by

any finite constant c > 0, that is, V = cṼ , the standardized sign-flip score statistic is

second-moment null-invariant. The test that rejects H0 if (1.9) holds is i) an exact α

level test in case of normal response with identity link and ii) asymptotically exact in

all other cases.

Proof. We observe that

V Ṽ −1 = ϕϕ̃−1I = cI

and therefore

V[S∗(F )] = c ∀F ∈ F.
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The result then follows from the proof of Proposition 2.

The proposition uses the property that the test is invariant to multiplication by

a constant. This result is relevant, for instance, in models with a common unknown

dispersion parameter, such as normal regression model. In such cases the test can be

performed, and retains second-moment null-invariance, without the need to estimate the

common dispersion parameter. We can save ourselves the effort of estimating it, taking

simply ϕ̂ = 1. This special situation coincides with the standard parametric framework

based on the quasi-likelihood approach.

The main result of this chapter concerns the case of general variance misspecification.

The following theorem, which is a strong improvement over the properties shown by

Hemerik et al. (2020), shows that we can still get an asymptotic exact test.

Theorem 2. Assume that the variances are misspecified, that is, V ̸= Ṽ and that As-

sumptions 1-3 hold. For n −→ ∞, the standardized sign-flip score statistic is asymp-

totically second-moment null-invariant. The test that rejects H0 if (1.9) holds is an

asymptotically α level test.

Proof. It is trivial to see that the expected value of the test statistic is not affected by

this misspecification.

Let

B = V Ṽ −1,

note that it is a diagonal matrix and all its elements are finite and greater than zero

by Assumption 1. We compute again the variance of (1.4), but now we consider the

misspecification.

Let H̃ and ã be the quantities defined in (1.3) and (1.7) for W = W̃ . The variance

can be written as

V [S(F )] = n−1ãTF (I − H̃)Ṽ −1/2E
{

(Y − µ)(Y − µ)T
}

Ṽ −1/2(I − H̃)F ã+ o(1)

= n−1ãTF (I − H̃)B(I − H̃)F ã+ o(1).

Take the difference

V [S(I)]− V [S(F )] = n−1ãT
{

B − F (I − H̃)B(I − H̃)F
}

ã+ o(1)

= n−1ãT
[

F{H̃B + (I − H̃)BH̃}F
]

ã+ o(1).
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We notice that by Lemma 3

∑

F∈F
F (H̃B +BH̃ − H̃BH̃)F = 2n diag{H̃B +BH̃ − H̃BH̃}

where the i-th element of that diagonal matrix is

2h̃iibi −
n
∑

k=1

h̃2ikbk.

Then we have

E [V {S(I)} − V {S(F) | F}] = (2n)−1
∑

F∈F
[V {S(I)} − V {S(F )}]

= n−1ãTdiag{H̃B +BH̃ − H̃BH̃}ã+ o(1)

≤ n−1ãTdiag{H̃B +BH̃}ã+ o(1).

By Assumption 1, note that there exists two finite positive constants c1, c2 such that for

each i-th element

2h̃iibi ≤ c1bsuph̃ii ≤ c2 sup
1≤i≤n

h̃ii = c2h̃sup

where

h̃sup = sup
1≤i≤n

{h̃ii} bsup = sup
1≤i≤n

{bi}.

Therefore we can derive the upper bound

E [V {S(I)} − V {S(F) | F}] ≤ n−1∥ã∥2c2 · h̃sup.

Using Assumption 2 and Lemma 4, the limiting behavior is

lim
n−→∞

n−1∥ã∥2c2 · h̃sup = 0.

Meanwhile, for two positive constants c3, c4 we have for each i-th element

−

n
∑

k=1

h̃2ikbk ≥ −

n
∑

k=1

h̃2ikc3bsup = −c3bsuph̃ii ≥ −c4h̃sup.

Then using again Lemma 3 we can derive the lower bound

E [V {S(I)} − V {S(F) | F}] ≥ n−1ãTdiag(−H̃BH̃)ã+ o(1)

≥ −n−1∥ã∥2c4 · h̃sup + o(1)
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where, using Assumption 2 and Lemma 4, the limiting behavior is

lim
n−→∞

−n−1∥ã∥2c4 · h̃sup = 0.

According to the law of total variance we have

V[S(F)] = V [E{S(F) | F}] + E [V{S(F) | F}] .

We know that E[S(F) | F ] does not depend on F , which means that V[E{S(F) | F}] =

0, so V[S(F)] = E[V{S(F) | F}]. It follows that, marginally over F ,

lim
n−→∞

var [S(I)]− var [S(F)] = 0.

The same argument given in the last part of the proof of theorem 1 applies to deduce

the asymptotic exactness of the test considered.

The following corollary enlarges the robustness property to the effective sign-flip score

test, as an immediate consequence from the proof of the preceding theorem.

Corollary 1. Assume that the variances are misspecified, that is, V ̸= Ṽ , and that As-

sumptions 1-3 hold. For n −→ ∞, the effective sign-flip score statistic is asymptotically

second-moment null-invariant. The test that rejects H0 if (1.5) holds is an asymptoti-

cally α level test.

1.6 Testing for multiple regressors

Until now we have considered hypotheses about a single parameter β ∈ R. We now

generalize the test of the previous section to β ∈ R
d, d < n− q. We consider a standard

asymptotic setting where d is fixed while n increases. The null hypothesis of interest is

now given by:

H0 : β = β0 ∈ R
d| (γ, ϕ1, . . . , ϕn) ∈ Γ× Φ× · · · × Φ,

where Γ ⊆ R
q and Φ ⊆ (0,∞), which reduces to the null hypothesis (1.2) if d = 1.

For this multivariate setting, we have to generalize the assumptions of Section 1.1.

Assumption 1 remains unchanged while Assumptions 2 and 3 are replaced by their

multivariate counterparts, respectively,

Assumption 4. The limn−→∞ n−1Ĩβ,β converges to a positive definite matrix.
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Assumption 5. We require, for all ϵ > 0,

lim
n−→∞

1

n

n
∑

i=1

E

[

||ν̃∗i,β||
21{||ν̃∗

i,β
||/√n>ϵ}

]

−→ 0,

and n−1
∑n

i=1 V[ν̃
∗
i,β] to converge to a positive definite matrix, where || · || denotes the

ℓ2 norm and 0 is a d-dimensional zero vector.

Hemerik et al. (2020, Section 4) derived a generalization of the sign-flipped effective

score test statistic, as follows. Noting that the effective score is now a d-dimensional

vector S(F ) = (S1(F ), . . . , Sd(F ))T , an asymptotically exact α-level test can be con-

structed by using the idea of the nonparametric combination methodology (Pesarin,

2001). The test statistic takes the form

T (F ) = {S(F )}T M {S(F )}

whereM is any non-zero matrix. UsuallyM is chosen to be a symmetric matrix, and in

general this choice influences the distribution of the power between the alternatives (see

Hemerik et al. (2020) for details). A common choice for M is the inverse of an estimate

of the effective Fisher information of β, if available.

As in Section 1.4, we can improve control of type I error by standardizing the score

vector. Indeed, the same reasoning of Theorem 2 applies, showing that the sign-flip

standardized score vector is finite sample second-moment null-invariant. The definition

of the test is analogous by noting that now

V[S(F )] = n−1XTW 1/2(I −H)F (I −H)F (I −H)W 1/2X + o(1)

is a d× d matrix and hence the standardized score

S∗(F ) = S(F )/V[S(F )]1/2

is a d-dimensional vector. We can therefore define the test statistic as

T ∗(F ) = {S∗(F )}T M {S∗(F )} .

Assume we observe values T ∗
1 , . . . , T

∗
g , where T

∗
1 = T ∗(I) is the observed test statistic,

while the sorted values are T ∗
(1) ≤ · · · ≤ T ∗

(g). Consider the test that rejects the null

hypothesis if

T ∗
1 > T ∗

(⌈(1−α)g⌉). (1.10)
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The following Proposition states that the test is second-moment null-invariant and

asymptotically exact.

Proposition 4. Assume that the variances are correctly specified, that is, Ṽ = V , and

that Assumptions 1, 4 and 5 hold. The d-dimensional standardized sign-flip score vector

is finite sample second-moment null-invariant. The test that rejects H0 if (1.10) holds

is an asymptotically α level test.

Proof. The proof is analogous to Theorem 3 of Hemerik et al. (2020). The asymptotic

exactness in all the cases is a consequence of the use of the continuous mapping theorem.

Finally, the following theorem shows that the robustness properties of Theorem 2 are

inherited by this multivariate extension.

Theorem 3. Assume that the variances are misspecified, that is, V ̸= Ṽ and that As-

sumptions 1,4,5 hold. For n −→ ∞, the d-dimensional standardized sign-flip score vector

is asymptotically second-moment null-invariant. The test that rejects H0 if (1.10) holds

is an asymptotically α level test.

Proof. It is trivial to observe that the expected value is a d-dimensional zero vector. We

focus on the variance, which now is a d×d matrix. We prove the robustness elementwise.

The proof for the diagonal elements follows from Theorem 2. Then, we focus on

one covariance term of the covariance matrix of the flipped effective score vector. Let

X = (X1, . . . , Xd)
T and

ã1 = (I − H̃)W̃ 1/2X1

ã2 = (I − H̃)W̃ 1/2X2.

When the variances are misspecified

C[S1(F ), S2(F )] =

= n−1ãT1 F (I − H̃)Ṽ −1/2E
{

(Y − µ)(Y − µ)T
}

Ṽ −1/2(I − H̃)F ã2 + o(1)

= n−1ãT1 F (I − H̃)B(I − H̃)F ã2 + o(1).
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Take the difference

C[S1(I), S2(I)]− C[S1(F ), S2(F )] =

= n−1ãT1

{

B − F (I − H̃)B(I − H̃)F
}

ã2 + o(1)

= n−1ãT1

{

F (H̃B +BH̃ − H̃BH̃)F
}

ã2 + o(1).

From this point the asymptotic second-moment null-invariance can be derived di-

rectly from the proof of the Theorem 2, by applying the same reasoning to each covari-

ance term, replacing Assumptions 2-3 with Assumptions 4-5. The asymptotic exactness

of the test follows from the proof of Proposition 4.

1.7 Simulation study

We explore six different settings to compare empirically the type I error control of the

usual parametric approach (by considering the Wald test), the effective and standardized

Flipscores tests, which are based on 5 000 random sign-flips (we refer to Hemerik and

Goeman (2018) for a discussion about the use of a limited number of random flips),

the Wald test based on the use of the sandwich estimator of the variance to correct for

variance misspecification, and the Gamlss, modeling the variance as a function of the

full model. A total of 5 000 simulations have been carried out for each setting. The

covariates have been drawn from a multivariate normal distribution, with X ∈ R and

Z ∈ R
3. The three nuisance covariates have correlation with the target variable equal to

(0.5, 0.1, 0.1), while the true parameter is set to β = 0. The null hypothesis considered

is H0 : β = 0 against a two-sided alternative, with a nominal significance level α = 0.05.

Different sample sizes are considered (25, 50, 100, 200, 500, 1 000).

The two plots of Figure 1.1 are settings with correctly specified models, respectively a

Poisson and a Logistic regression models. We observe that, in case of correctly specified

models, the standardized test is close to the nominal level, even with n = 25, improving

the asymptotic convergence of the effective test. The parametric test shows few rejec-

tions with small sample size for the logistic model, due to a poor approximation of the

likelihood. The sandwich shows slow convergence in both cases, which is unsatisfac-

tory since we are dealing with a well-specified model. Finally, the Gamlss shows a low

convergence, explained by the greater number of parameters involved.

The plots of Figure 1.2 represent normal models with neglected heteroscedasticity,

which depends either on a nuisance covariate or on the tested variable, i.e. respectively

var(yi) = 4z2i and var(yi) = 4x2i . In the left plot the parametric test behaves correctly,
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Figure 1.1: Type I error control comparison. Left: correct Poisson model. Right:

correct Logistic model.
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Figure 1.2: Type I error control comparison. Left: Normal with nuisance het-
eroscedasticity. Right: Normal with target heteroscedasticity.

while we observe its failure in the right plot, even for increasing sample size. The

standardized test is always close to the nominal level, confirming its improvement over

the effective test. Finally, we observe that the sandwich estimator slowly converges to

the nominal level, while the Gamlss has also convergence problems.

In the left plot of Figure 1.3 a Poisson model was fitted when the true distribution was

negative binomial with dispersion parameter ϕ = 1, that is, additional heteroscedasticity

relative to the Poisson model that depends on the mean. The right plot displays the

results of a two-sample test fitting a negative binomial regression model. A common
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Figure 1.3: Type I error control comparison. Left: false Poisson model. Right:

two groups Negative-binomial.

dispersion parameter was assumed for the fitted negative binomial model, but the two

groups are unbalanced (proportion equal to 2/3 and 1/3), and generated from two

distributions with different dispersion parameter (0.4 and 1). The two plots show the

failure of the parametric test in presence of some forms of variance misspecification,

where the rejection fraction converges to a level far from the nominal for increasing

sample size. The standardized test outperforms its competitors in all cases, being the

closest to the nominal level. In particular, the improvement over the effective test and

further over the sandwich test is clear. Further, the Gamlss surprisingly shows a failure

in the left plot, where the reason is due to the impossibility of modeling the variance

adopting a Poisson model. In the right plot it shows a slower convergence compared to

the sign-flip tests. Moreover, it is remarkable to see that the standardized test seems to

converge to the effective test faster than going to the nominal level, leading to an initial

worsening of the true level, with a recovery for larger sample size.

Finally, Figure 1.4 contains an evaluation of the power of the tests with two well-

specified models, respectively a Poisson and a Normal model, with true parameter equal

respectively to 0.3 and 1. The results for the sandwich estimator are given for complete-

ness, although they are not comparable for small sample size, since that method has no

control of the type I error. We see that the improvement of type I error control of the

standardized test with respect to the effective naturally costs some power. Analogously,

we see some power loss also with respect to the parametric model and the Gamlss as

expected, but this difference is remarkably small.
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Figure 1.4: Power comparison. Left: correct Poisson model. Right: correct Nor-
mal model.





Chapter 2

Permutation-based multiple testing

when fitting many generalized linear

models

2.1 Multivariate generalized linear models

Suppose to observe n independent observations. For each unit i assume that are

observed m ≥ 2 dependent variables Y 1, . . . , Y m. Therefore, for each response Y l we

have n independent observations Y l
1 , . . . , Y

l
n, which we assume to follow some model in

the exponential dispersion family. We further observe for each i-th observation some

covariates (Xi, Zi). For each l-th response we have a univariate generalized linear model

g(µl) = ηl = Xβl + Zγl. (2.1)

where µl = (µl1, . . . , µ
l
n)
T denotes the mean vector, g(·) is the link function, taken to

operate elementwise on a vector, (X,Z) is the full rank design matrix with dim{X} =

n × 1, dim{Z} = n × q, where q does not depend on n, and (βl, γl) are unknown

parameters. We consider βl the parameter of interest, and γl a nuisance parameter.

Throughout the chapter we will consider dim{βl} = 1 for simplicity, but the extension

to a multivariate parameter is straightforward using the test of Section 1.6. Note that,

for each response l, we will use the same notation of Chapter 1. Further, for each model

we do the same assumptions of Chapter 1, and we assume the covariances between

responses to be uniformly bounded.

Our interest is in testing m null hypotheses H1, . . . , Hm, where Hl is the hypothesis

that βl = βl0. This Chapter introduces the multiple testing procedure, which involves

33
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computing the effective score for each of the dependent variable Y 1, . . . , Y m. The effec-

tive score for the l-th response is then

Sl = n−1/2XT (W l)1/2(I −H l)(V l)−1/2(Y l − µ̂l) = n−1/2

n
∑

i=1

ν∗,lβ,i.

Analogously to Chapter 1, we define the sign-flipped effective score test statistic for a

generic flip matrix F as

Sl(F ) = n−1/2XT (W l)1/2(I −H l)(V l)−1/2F (Y l − µ̂l).

Further, we have

V
[

Sl(F )
]

= n−1XT (W l)1/2(I −H l)F (I −H l)F (I −H l)(W l)1/2X.

while the standardized score is

S∗,l(F ) = Sl(F )/V
[

Sl(F )
]1/2

.

2.2 Local test for multivariate responses and the

multiple testing problem

When testing multivariate hypotheses, the multiple testing problem is well-known

and has generate a huge literature (see Goeman and Solari (2014) for a review of the

most known methods). Indeed, it can be easily proven that using individual valid α-level

test does not imply the control over the overall tests when performing many hypotheses.

Further, defining a valid local test for intersection hypotheses in multivariate generalized

linear models is challenging. Assuming normality, in absence of covariates the hypothe-

sis about mean vectors can be performed by the Hotelling one-sample T 2 test (Hotelling,

1931). When covariates are present we can still find a test statistic with known distri-

bution, the Wilks lambda distribution (Wilks, 1962). For general multivariate GLMs

we do not have solutions unless we specify a particular correlation structure of the re-

sponses, built on a limited number of parameters. This solution might be undesired if

the data do not have a particular structure, and it can be unfeasible especially for large

value of m.

Several measures have been proposed in the literature (Tukey, 1953; Benjamini and

Hochberg, 1995; Goeman and Solari, 2011; Lehmann and Romano, 2012) in order to
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properly address the multiple testing problem and the related issues, but we will only

introduce those of interest for this chapter.

The familywise error rate (FWER) (Tukey, 1953) is defined as the probability of

making any type I error. There are formally two types of FWER control; weak FWER

means that we control the error for a global null hypothesis, while strong FWER con-

trol is obtained when the correction holds for any combination of true and false null

hypotheses. In practice, only procedures with strong control of FWER are of interest,

while methods with weak control of type I error should be avoided (Goeman and Solari,

2014).

Parametric methods for generalized linear models can be built as follows. We start

from univariate valid test as, for instance, the Wald test, assuming that the model is

correctly specified. Then some corrections are possible.

The Bonferroni correction (Holm, 1979) is widely popular, thanks to its simplicity,

and its control of FWER is exact for any correlation structure between the underlying

p-values. Let q1, . . . , qm be the observed p-values. The method rejects all the hypotheses

for which qi ≤ α/m. However, the method can be quite conservative in the presence of

many false null hypotheses and also when the p-values are positively correlated.

A sequential variant of the Bonferroni’s procedure is the Holm’s method (Holm,

1979). It guarantees strong FWER control under the same assumptions of the Bonfer-

roni’s method, and it always rejects at least as much as Bonferroni’s method, and often

a bit more. The procedure is a multi-step extension as follows. In the first step it rejects

all null hypothesis such that qi ≤ α/m, just like the Bonferroni’s method. Suppose this

leaves to h1 hypotheses unrejected. In the next step we reject all hypotheses such that

qi ≤ α/h1. This leaves h2 hypotheses unrejected. The procedure is thus iterated until

there are no more rejections. Again, the procedure can be quite conservative when the

p-values are positively correlated.

More procedures are available if we want to make additional assumptions about the

underlying dependence of the p-values, with the advantage of a gain in power. We do

not want to make stricter assumptions, and we refer to Goeman and Solari (2014) for

an overview.

Finally, a different approach consists in using permutations to estimate the underlying

dependence instead of making assumptions about the correlation structure. Permuta-

tions are not directly usable for GLMs as the outcomes are not exchangeable, as well as

the usual test statistics, but they will be the basis of the new proposal of this chapter.

We refer to Section 2.3 for further details.

The main critic to FWER-control methods is related to the fact that they might be
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too stringent, resulting in low power. While being adequate for confirmatory analysis,

other measures might be appealing for an exploratory analysis. A measure which answer

this question is the true discovery proportion (TDP) Goeman and Solari (2011). This

measure quantify a lower bound for the proportion of true discoveries - that is, non-

null coefficients - over any set of hypotheses. In order to be helpful, the procedure to

estimate a lower bound for the TDP must be simultaneously valid for any subset chosen

post-hoc. This is especially useful when the responses are related to different spatial

locations and we are interested in inference over a cluster of close responses. Moreover,

in some cases reporting the estimated TDP bounds may be more useful than individual

adjusted p-values, in the sense that it usually gives an higher number of findings, and

it also answers a slightly different research question.

The closed testing procedure (Marcus et al., 1976) is proven to be the optimal way

to estimate this lower bound for any subset (Goeman et al., 2021). In detail, the closed

testing procedure requires to compute valid α-level tests for any intersection hypothesis.

Let C be the set with all possible combination of all possible indices corresponding to

the elementary null hypotheses. Further, let U be the set containing the raw rejections

uncorrected for multiple testing. The procedure rejects every I ∈ C for which J ∈ U

for every J ⊇ I. We can then estimate a lower bound for the TDP for any set R of

elementary null hypothesis with tα(R) = 1 − tα(R)/|R|, where tα(R) is the size of the

largest subset of R for which the corresponding intersection hypothesis is not rejected

by the closed testing procedure, while |R| is the cardinality of R. The α-level of the

lower bound is proven in Goeman and Solari (2011).

The main issue of the closed testing procedure is the computational unfeasibility for

large number of hypotheses, approximately around 20-30 (Goeman and Solari, 2011),

since it is required to perform 2m− 1 local tests. In such case we must rely on shortcuts

in order to reduce the computational burden.

A parametric shortcut is based on adjusted p-values compute through the Hommel

procedure (Rosenblatt et al., 2018). Note that with the term parametric we mean

that the procedure starts from any valid α-level local test. The Hommel procedure is

not assumption-free about the joint dependence of the p-values, but it is valid when the

Simes inequality holds (Simes, 1986). It says that, with probability 1−α, simultaneously

q(i) >
iα

m0

where m0 is the total of true hypotheses. Note that this condition is shown to be rather

flexible (Goeman and Solari, 2011). For any procedure based on the Simes inequality

we can apply the shortcut of Goeman et al. (2019), to which we refer for the details.
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This can have low power in some scenarios, especially if correlated data are analyzed.

When we have exchangeable test statistics we can use permutation-based methods to

increase power. In this chapter we will apply two methods based on permutations. The

shortcut of Vesely et al. (2023), which can either use any function of the original test

statistics or the corresponding ranks, with the requirement of using the corresponding

sum as combining function for intersection hypotheses. It is based on an iterative

algorithm which is shown to converge to the optimal estimates, that is, the estimate

potentially obtained from the closed testing procedure. The procedure of Andreella

et al. (2023) is based on finding a critical vector for ordered p-values. The method aims

to find the maximum distance between the sorted p-values and the critical vector. We

refer to Andreella et al. (2023) for how to compute this critical vector.

2.3 Sign-flip tests for multivariate generalized linear

models

We can build a multivariate test statistic which takes into account the standardization

of the joint variance-covariance matrix as follows. Let

H0 =
⋂

l∈L
Hl : β

l = βl0 (2.2)

where L is a set containing any combination of the m hypotheses. Note that H0 can be

either a global or a partial null hypothesis for a subset of parameters.

A first idea to perform the test might be given by a full standardization. We can

indeed build a global test statistic based on the form of a Mahalanobis distance as

follows. Let SL(F ) be the vector with element Sl(F ), l ∈ L. Call L∗ = |L|, i.e. the

cardinality of L. Note that by definition SL(F ) is an L∗-dimensional vector. Call

V[SL(F )] the corresponding variance-covariance matrix, which has dimension L∗ × L∗

and is assumed (for the moment) known. Let the joint test statistic be

TL(F ) =
(

SL(F )
)T

V
[

SL(F )
]−1 (

SL(F )
)

(2.3)

If we assume the normality of the response we have the following theorem;

Theorem 2.1. Assume to fit the regression model (2.1) where the responses are nor-

mally distributed with identity link for Yl, l ∈ L. Let TL,j be the flipped test statistic for

Fj, 1 ≤ j ≤ g as defined in (2.3). Let T n(1) ≤ ... ≤ T n(g) be the sorted statistics. Consider

the test that rejects if T n1 > T n⌈(1−α)g⌉. Under H0, the level of the test is ⌊αg⌋/g ≤ α.
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Proof. Trivially, note that SL(F ) has a multivariate normal distribution with zero mean

and that the test statistic is a quadratic form. The expected value of each test statistic

is equal to L∗ for every flip, while the variance is equal to 2L∗ for every flip. This

follows from standard properties of random vectors, since the random quadratic form

has a generalized chi-squared distribution. It implies that all the test statistics share

the first two moments. Thus we can directly apply Theorem 1 of Hemerik and Goeman

(2018) to show that the test derived is an α-level test for finite sample size.

The procedure outlined has some issues. First of all, the test is exact only for normal

responses with known variance. For non-linear models we have to follow asymptotic

arguments related to the asymptotic normal distribution of the effective score statistic

(Marohn, 2002), while when we plug-in an estimate of the variance we rely on asymp-

totic results of basic probability theorems for the estimation of the variance. Another

weakness is the fact that for each flip it is required to invert an m ×m matrix, which

might be unfeasible for large values of m. Further, we have to estimate the correlation

between responses, which must be assumed to be known except for a limited number of

parameters; for instance, we might choose to assume the correlation of the responses to

be equal between different units. Moreover, in order to perform an overall analysis with

post-hoc validity, we might choose a closed testing approach (Marcus et al., 1976), which

requires to perform all the 2m possible tests, which might be easily large for growing m.

A fast alternative, which is more appealing for large values of m, consists of doing

marginal standardization of the test statistic. We will start from the effective scores,

showing that we are able to derive a valid procedure for both the sign-flip approaches.

Finally, we will see that we still have a remarkable result for the normal linear model.

For each flip j, let Sj,l = Sl(Fj). Further, we now explicit the difference between the

effective score based on the estimated nuisance parameter Sj,l
γ̂

and those based on the

true parameter Sj,l
γ0
. The corresponding contributions are denoted as ν∗

γ̂
and ν∗

γ0
. Let

Mn be the g-by-m matrix with (j, l)-th entry equal to Sj,l
γ̂
. The following lemma will be

fundamental in proving that the proposed multiple testing methods are asymptotically

exact.

Lemma 2.2. Let Mn as defined above. Then, for n→ ∞, Mn converges in distribution

to M , where all rows of M have the same multivariate normal distribution.

Proof. Let Mn
0 be the g-by-m matrix with (j, l)-th entry equal to Sj,l

γ0
. Note that Mn

0

is based on knowledge of the true nuisance parameters γ0. The consequence is that

each entry of the matrix Mn
0 is the sum of n independent (flipped) score contributions.

Further, note that each row of Mn
0 is uncorrelated with the other rows, due to the
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independence of the flips. Finally, the correlation structure within each row coincides

with the correlation structure of the contributions ν∗1
γ0
, . . . , ν∗m

γ0
. Consequently, the mul-

tivariate central limit theorem (Van der Vaart, 1998) implies that Mn
0 converges in

distribution to some matrix M0, which has identically distributed multivariate normal

rows.

Now it is left to show that M , i.e., the matrix based on estimated nuisance parame-

ters, also has identically distributed multivariate normal rows. As shown in the proof of

Theorem 2 in Hemerik et al. (2020) (using the result from Hall and Mathiason (1990)),

we have Sj,l
γ̂

= Sj,l
γ0
+ op(1), 1 ≤ j ≤ g, 1 ≤ l ≤ m. This means that M is asymptotically

equivalent to M0. Hence the result holds.

If instead of effective scores we used standardized effective scores to fill the matrix

Mn, then Lemma 2.2 will still hold, since the standardized effective scores are asymp-

totically equivalent to the unstandardized effective scores. This is detailed in Chapter

1.

A special case of interest relates to homoscedastic linear regression models. The

matrix of weights becomes an identity matrix, which causes some simplifications in the

formulas; in particular

Sl(F ) = X ′(I −H)F (Y l − µ̂l)

and

V
[

Sl(F )
]

= X ′(I −H)F (I −H)F (I −H)X.

while the standardized score is still

S∗,l = Sl(F )/V
[

Sl(F )
]1/2

.

For the linear regression model, using the standardized scores, we are able to get fi-

nite sample results, as stated in the following Lemma. This reflects that we still get

the second-moment null-invariance property for linear regression models with normal

response.

Lemma 2.3. Assume to fit the regression model (2.1) where the responses are normally

distributed with identity link for Yl, l ∈ L. where the covariance between responses is

equal among different units, that is,

E[(Y p − µp)(Y r − µr)T ] = σprIn
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where In is the n-dimensional identity matrix. Let MS be the g-by-m matrix with (j, l)-

entry equal to S∗,j,l
γ̂

. Then MS has independent rows with the same multivariate normal

distribution.

Proof. The rows of the matrix MS are uncorrelated, due to the independence of the

flips. Within the row the covariance structure is

C [S∗,p(F ), S∗,r(F )] = V [Sp(F )]−1/2
E

[

Sp(F ) (Sr(F ))T
]

V [Sr(F )]−1/2

Using the result

E[(Y p − µp)(Y r − µr)′] = σprIn

we get, after simple computations,

C

[

S∗,j,p
γ̂

, S∗,j,r
γ̂

]

= σpr/(σpσr),

which is independent of the flip, where σp is the variance of the p-th response. It follows

that the matrix MS has independent and identically distributed multivariate normal

rows for finite sample size.

From Lemma 2.2 (or 2.3) we can build a valid local α-level test for any composite

hypothesis as follows. Let H0 as defined in (2.2). Define ψ : RL∗

→ R as a function non

decreasing in its argument. We can derive a global flipped test statistic, for each flip

Fj, as

Tψj = ψ
(

S∗,1(Fj), . . . , S
∗,L(Fj)

)

. (2.4)

The following theorem shows that from this test statistic we can get an asymptotic

α-level test for the general class of generalized linear models.

Theorem 2.4. For every 1 ≤ j ≤ w, consider the statistic Tψj as defined in (2.4) and let

Tψ(1) ≤ ... ≤ Tψ(g) be the sorted statistics. Consider the test that rejects if Tψ1 > Tψ⌈(1−α)g⌉.

As n→ ∞, under H0 the rejection probability converges to ⌊αg⌋/g ≤ α.

Proof. Lemma 2.2 implies that the test statistics Tψ1 , . . . , T
ψ
g are asymptotically inde-

pendent and identically distributed. Note that, by the definition of ψ, high values of

T1 shows evidence against the null hypothesis H0. Hence, Lemma 1 of Hemerik et al.

(2020) directly applies and we derive that we get an asymptotically α-level test.

Theorem 2.4 implies that we can build an asymptotic valid local test for the hy-

pothesis (2.2), which therefore guarantees weak control of the FWER. Note that for the

linear model we can obtain finite sample results, because we can directly apply Lemma

2.3 and it follows that the test has finite sample size properties.
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Theorem 2.5. Assume to fit the regression model (2.1) where the responses are nor-

mally distributed with identity link for Yl, l ∈ L. For every 1 ≤ j ≤ g, consider the

statistic Tψj as defined in (2.4) and let Tψ(1) ≤ ... ≤ Tψ(g) be the sorted statistics. Consider

the test that rejects if Tψ1 > Tψ⌈(1−α)g⌉. Under H0 the rejection probability is ⌊αg⌋/g ≤ α.

Proof. Lemma 2.3 implies that the test statistics Tψ1 , . . . , T
ψ
g are independent and iden-

tically distributed. Note that, by the definition of ψ, high values of T1 shows evidence

against the null hypothesis H0. Hence, Theorem 1 of Hemerik and Goeman (2018)

directly applies and the test derived is an α-level test for finite sample size.

Multiple choices of the function ψ are available (Pesarin, 2001) and the choice will

influence the power properties in different settings. We can subsequently apply the

closed testing approach (Marcus et al., 1976) to build a procedure which guarantees

strong control of the FWER by computing the 2n intersection tests, and this procedure

is admissible in the sense that every multiple testing procedure is equal or can be

improved by applying the closed testing principle (Goeman et al., 2021) .

However, the number of tests might be unfeasible for large values of m. A dramatic

shortcut is given by selecting the maximum of the test statistics as combining function

in the following way. This is called the max-T approach. For sake of completeness, we

will give a direct proof of its validity.

There are roughly two versions of the max-T method by Westfall and Young (Westfall

and Young, 1993; Westfall and Troendle, 2008; Meinshausen et al., 2011): the single-step

method and the sequential method. The single-step method is simpler and faster, while

the sequential method is uniformly more powerful. The single-step max-T method, based

on the matrix Mn of test statistics, is defined as follows. Here we formulate a version

that employs two-sided tests. For every 1 ≤ j ≤ g, let mj be the maximum of the test

statistics Mn
j,l, 1 ≤ l ≤ m. Let m(1), . . . ,m(g) be the sorted values m1, . . . ,mg. Then the

multiple testing method rejects all hypotheses with index l for which Mn
1,l > m(⌈(1−α)g⌉).

The sequential max-T method is defined as follows; after the first step defined above is

completed, the procedure is continued in a step-down way. We remove from the matrix

Mn all rows corresponding to the hypotheses rejected in the first step, then we apply

again the same procedure described above. The procedure can be continued until we

have no more rejections. Note that the test with standardized test statistic is defined

in the same way.

The following theorem states that the single-step and sequential max-T methods pro-

vide strong asymptotic FWER control. Write FWERn to indicate potential dependence

of the FWER on n.
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Theorem 2.6. For both the single-step and sequential max-T method,

lim sup
n→∞

(FWERn) ≤ α.

Proof. For both the single-step and the sequential max-T method, the argument is as

follows. Recall that Mn converges in distribution to M . Let MN be the submatrix of

M that only contains the rows corresponding to the true hypotheses. If the matrix M

is used as input for the multiple testing procedure, then strong FWER control follows

directly from the fact that the rows of MN are exchangeable, i.e. swapping rows does

not change the distribution of the matrix. If instead Mn is used as input, then FWER

control follows from the continuous mapping theorem, since Mn converges to M in

distribution. This finishes the proof.

Finally, note that for the procedure that uses standardized scores for linear regression

model the control of the familywise error rate is obtained for finite sample size, as the

matrix MS has an exact multivariate normal distribution.

Until now we were focused on some kind of null hypotheses with the aim of controlling

the FWER. The sign-flip test statistics can be also used as basis for any permutation-

based method which aims to estimate the TDP (Vesely et al., 2023; Andreella et al.,

2023). Indeed, the key property is that any random data transformation must preserve

the distribution of the test statistics under the null hypothesis, that is, what the sign-

flips asymptotically do.

2.4 Simulation Study

2.4.1 Univariate

As a setup for a simulation study we choose a multivariate logistic model. The

motivation is given by the ambit of neuroimaging data, in particular by data about the

lesions of the voxels which compose the brain. The analysis is generally carried on by

fitting several logistic models in parallel, where the presence/absence of the lesion is

modelled as a function of some observed covariates. Note that it is generally expected

that the responses related to close spatial locations are positively correlated.

We first show a simulation study for univariate tests in a logistic regression model

in Figure 2.1 and 2.2, where the respective sample size is equal to 50 and 100. We

test H0 : β = 0 setting the regression parameter of interest β = 0 while the nuisance

regression parameter γ is equal to 0 (left plots) or 1 (right plots). The correlation
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Figure 2.1: Logit model, univariate. Sample size of 50. On abscissa the Bonferroni-
adjusted alpha for the control of FWER at level 5%, i.e. .05/number of tests
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Figure 2.2: Logit model, univariate. Sample size of 100. On abscissa the Bonferroni-
adjusted alpha for the control of FWER at level 5%, i.e. .05/number of tests

between covariates is equal to 0 (top plots) or 0.5 (bottom plots) while a total of 100 000

simulations have been run. We compare the Flipscores approach (using the standardized

version) with the three standard parametric competitors, namely the Wald, parametric

Score and Likelihood ratio (LRT) tests. The Flipscores test is based on 2 000 random
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flips. The x axis represents the multiple testing burden, that is, the Bonferroni factor

given by 0.05/the number of tests. The y axis represents the ratio between the Empirical

type I error and the nominal level α.

We can observe that the Flipscores is always inside the 95% simulation confidence

bands. For a sample size of 50 the Score test is slightly conservative while the two other

parametric methods are less satisfactory for the opposite reason, being too conservative.

This negative behavior is more evident for small level of alpha, where the confidence

bands are larger. The situation improves for the Score test and LRT for a sample size

of 100.

2.4.2 Multivariate
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Figure 2.3: Logit model, multivariate. Sample size equal to 50, FWER control

Figures 2.3-2.6 represent a multivariate simulation. We set a total of 1 000 dependent

variables. The model assumed is a logistic regression model with one target covariate X

and one nuisance covariate Z, whose corresponding regression parameters are β and γ.

We test the null hypothesis H0 : β = 0 for each dependent variable, with a significance

level of α = 0.05. For 20% they have β = 1, that is, they are under the alternative
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Figure 2.4: Logit model, multivariate. Sample size equal to 50, Power comparison

hypothesis, and the remaining 80 % have β = 0, that is, they are underH0. We set γ = 0

(left plots) or −1 (right plots), and the correlation between covariates equal to 0 (top

plots) or 0.5 (bottom plots). We use a total of 2 000 random flips, and we run a total

of 1 000 simulations. The dotted lines represent the 95% simulation confidence bands.

The outcomes are 0-1 variables generated as follows, where the algorithm is built in

order to generate correlated 0-1 variables. We first generate the probabilities with given

covariates and coefficients through the inverse of the logistic link. Then we generate

multivariate normal random variables with pre-specified correlation structure. Finally,

the outcome gets the value of 1 if the normal quantile of the generated probability is

above the corresponding value generated from the normal distribution, and 0 otherwise.

For controlling the FWER the proposed method is used for the Flipscores approach,

while the other parametric competitors are corrected with the Bonferroni-Holm proce-

dure. Figure 2.3 and 2.5 are related to the FWER control, respectively for a sample

size of 50 and 100. The x axis of the figures represents the average observed correlation

between the dependent variables, while the y represents the observed FWER of the true

null hypotheses. In both plots we observe similar behavior. The Flipscores is close to

the nominal level, the LRT is anticonservative for low correlation, while the other two
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Figure 2.5: Logit model, multivariate. Sample size equal to 100, FWER control

methods are highly conservative.

Figure 2.4 and 2.6 represents the empirical power for the true non-null coefficients,

respectively for a sample size of 50 and 100. Again, in both plots we observe similar

behavior. The Flipscores has greater power, especially for higher correlation, while

the other methods do not take advantage of the correlation structure. All the settings

give similar results, where we observe that the proposed method seems to be more

satisfactory, especially when high correlation between the responses is present.

2.5 Real-data application

In RNA sequencing data (Love et al., 2014) a common aim is to find genes that are

differentially expressed across a group of units. The usual analysis adopts a negative

binomial regression model, since the observed target variables are counts, and overdis-

persion relative to the Poisson distribution is standard. However, the variance model

generally assumes a fixed mean-variance structure with a common dispersion parameter

among the groups of interest, which can be problematic, as we will show.
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Figure 2.6: Logit model, multivariate. Sample size equal to 100, Power comparison

From the Cancer Genome Atlas (TCGA) (Tomczak et al., 2015), we have taken the

TCGA-LIHC dataset of Liver Hepatocellular Carcinoma (HCC) (Erickson et al., 2016).

The TCGA-LIHC consists of 20 119 genes for 344 patients with a primary tumor. We

performed a very limited pre-filtering, deleting only the genes with zero total count. The

target covariate is the pathological stage of the tumor. We treat it as a binary variable,

splitting it between first pathological stage versus all higher stages. We further included

two covariates in the fitted model: gender and age.

The state-of-the-art method for the analysis of these data uses a negative binomial

model, which assumes common dispersion parameter between the two tested groups, i.e.

the pathological stage. We tested this assumption for each gene using a Gamlss. The

null hypothesis that dispersion did not depend on tumor stage was rejected for 5 967

out of 20 119 genes at the unadjusted 5% level. Since we would expect approximately

1 000 rejections if the DESeq2 model fits well, this gives clear indication of lack of fit of

that model, at least in some of the genes. Based on the simulations in Section 1.7 we

would, therefore, expect the parametric tests to be anti-conservative in this data.

Table 2.1 represents the number of rejections with the FWER at level of 10%. Given

the moderate sample size of the dataset, we compare the multivariate extension of the
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Method No. of rejections
Flipscores 312
Sandwich 491
Gamlss 1 342

Table 2.1: FWER-controlled number of rejections

univariate tests which in Figure 1.3 show appreciable behavior against the hypothesis

of equality of the dispersion parameter. In particular, we compare the max-T method

based on sign-flips with the sandwich and Gamlss methods corrected with the Holm

procedure. The Flipscores rejects a smaller number of genes compared to the other

methods.

Method True discoveries
Flipscores Sum test 6 633
Flipscores pARI 4 470
Sandwich ARI 2 342
Gamlss ARI 4 378

Table 2.2: Number of true discoveries

Table 2.2 shows the number of true discoveries for the two permutation-based method

of Vesely et al. (2023) (Flipscores Sum test) and Andreella et al. (2023) (Flipscores

pARI), where we choose the default parameters, and the parametric method based on

the p-values computed by the sandwich (Sandwich ARI) and the Gamlss (Gamlss ARI),

for a significance level of α = 0.05. In this case we observe that the two permutation-

based methods are able to obtain a greater lower bound for the proportion of true

discoveries.



Chapter 3

Sign-flip tests for the Cox regression

model

3.1 Cox regression model

Time to event data are particular type of data which arise in many applied fields,

such as medicine, biology and demography, and they have generated a huge literature

because of their peculiar structure. Let T indicate the time, assumed to be continuous,

at which the random variable associated to an event of interest, for example the death,

is observed. Researchers are often not interested on the underlying distribution f(t),

but instead they focus on the hazard rate λ(t) which is defined as

λ(t) = lim
∆t−→0

P(t ≤ T ≤ t+∆t|T ≥ t)

∆t
,

while a related quantity is the cumulative hazard function, defined as

Λ(t) =

∫ t

0

λ(u)du.

The quantity λ(t)∆t can be seen as the approximate probability of an individual of

age t experiencing the event in the next instant, given that it has not experienced the

event yet. This function is useful as it uniquely determine the density function f(t),

the survival function, which is defined as S(t) = 1− F (t), and can describe the way in

which the chance of experiencing the event changes with time. Note that λ(t) can have

any shape, the only requirement being λ(t) ≥ 0.

In many practical situation the individuals are observed for a limited amount of time.

The observations are denoted as censored, and in particular two censoring scheme can be

49
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considered: right censoring, where we only know that the subject has not experienced

the event at a given time, and left censoring, where we only know that the subject

has experienced the event before the start of the study. In this chapter we will only

consider right-censoring and we will assume that it is non-informative meaning that

the event and the censoring times for each i-th unit are independent. In particular, we

assume to have a sample of n observation, and for each unit i we observe (Yi, δi), where

Yi = min{Ti, Ci} is the observed time, which might be Ti - the event is observed - or Ci

- the individual left the study, while δi = 1{Ti ≤ Ci} is the event indicator, taking the

value of 1 if the event is observed.

When some explanatory variables are observed we might be interested in studying

the influence of them on the survival times. A widely used and popular model is the

Cox regression model (Cox, 1972), which models the impact of the covariates on the

hazard ratio and is defined as

λ(yi|xi, zi) = λ0(yi) exp{β
Txi + γT zi}.

The model is called semiparametric in the sense that the baseline hazard λ0(yi) is

left unspecified, while (Xi, Zi) represents observed covariates and (β, γ) are regression

parameters which have to be estimated. Hereafter, we assume that dim{β} = 1 and

dim{γ} = q which is treated as fixed. We will consider β as the parameter of interest,

while γ is treated as a nuisance parameter.

The model is generally fitted through a partial likelihood approach, defined as

Lp =
∏

i∈D

{

exp{βTxi + γT zi}
∑

j∈Ri
exp{βTxj + γT zj}

}

where D represents the set of uncensored observations, while Ri represents the risk

set at time i, which is the set of individuals who are still under study at a time just

prior to yi. Note that this likelihood is a product over only the elements which are

uncensored, equal to the cardinality of D. The use of the partial likelihood as a valid

tool for inference was first justified by (Cox, 1975). However, note that it can be seen

also as a profile likelihood from the full-censored likelihood (Johansen, 1983).

The maximum likelihood estimates of the parameters are obtained by maximizing

the partial likelihood, which is therefore treated as a usual likelihood. In particular, the

marginal scores are

ℓβ =
∑

i∈D

{

xi −

∑

j∈Ri
xj exp{β

Txj + γT zj}
∑

j∈Ri
exp{βTxj + γT zj}

}
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ℓγ =
∑

i∈D

{

zi −

∑

j∈Ri
zj exp{β

Txj + γT zj}
∑

j∈Ri
exp{βTxj + γT zj}

}

The Fisher information is minus the second derivative of ℓ. The blocks are

ℓβ,β =
∑

i∈D

{

∑

j∈Ri
xjx

T
j exp{β

Txj + γT zj}
∑

j∈Ri
exp{βTxj + γT zj}

−

[

∑

j∈Ri
xj exp{β

Txj + γT zj}
∑

j∈Ri
exp{βTxj + γT zj}

][

∑

j∈Ri
xj exp{β

Txj + γT zj}
∑

j∈Ri
exp{βTxj + γT zj}

]T}

ℓβ,γ =
∑

i∈D

{

∑

j∈Ri
xjz

T
j exp{βTxj + γT zj}

∑

j∈Ri
exp{βTxj + γT zj}

−

[

∑

j∈Ri
xj exp{β

Txj + γT zj}
∑

j∈Ri
exp{βTxj + γT zj}

][

∑

j∈Ri
zj exp{β

Txj + γT zj}
∑

j∈Ri
θj

]T}

ℓγ,γ =
∑

i∈D

{

∑

j∈Ri
zjz

T
j exp{βTxj + γT zj}

∑

j∈Ri
exp{βTxj + γT zj}

−

[

∑

j∈Ri
zj exp{β

Txj + γT zj}
∑

j∈Ri
exp{βTxj + γT zj}

][

∑

j∈Ri
zj exp{β

Txj + γT zj}
∑

j∈Ri
exp{βTxj + γT zj}

]T }

The maximum partial likelihood estimator has some fundamental properties. In par-

ticular, the consistency and asymptotic normality of the estimators are derived elegantly

by Andersen and Gill (1982) through an approach based on counting processes theory.

Classic hypothesis tests and confidence intervals are built on the same principle of gener-

alized linear models, using the asymptotic normality of the maximum partial likelihood

estimator and of the score function. We will turn back to this argument in Section 3.3.

A key assumption of the Cox regression model is the proportionality of the hazard

function; it means that, given two individuals i, j, the ratio of their hazards is

λ(yi|xi, zi)

λ(yj|xj, zj)
= exp{βT (xi − xj) + γT (zi − zj)},

which is independent from the time y. This fact means that the ratio of hazards of

two subjects is a constant, that is, the hazards are proportional. Model misspecifica-

tion in the Cox model related to the non-proportionality of the hazard ratio can have

several causes and can be sometimes accomodate in more complex models. The main
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extensions regard the introduction of causal effects for clustered data - which are known

as frailty models (Balan and Putter, 2020) - or the introduction of time varying coef-

ficients (Klein et al., 2003), which are beyond the scope of this chapter. Here, and in

the simulation study of Section 3.4, we will consider the following issues. Unlike the

generalized linear models, the omission of independent covariates will cause the bias of

the maximum partial likelihood estimator, which is shrunk towards zero (Bretagnolle

and Huber-Carol, 1988; Struthers and Kalbfleisch, 1986). However, if we are interested

in testing the nullity of the coefficients the asymptotic distribution of the maximum like-

lihood estimator is preserved (Struthers and Kalbfleisch, 1986). Another issue comes

when we assume a Cox regression model while the true model is an accelerate failure

time model (Kalbfleisch and Prentice, 2011), which assumes the following relationship

between the observed times and the covariates,

log Ti = βTxi + γT zi + σε,

where σ is a scale parameter while ε is an error term with a pre-specified distribution.

Right-censoring can be easily accomplished in the estimation procedure. In such cases

the relative importance of the explanatory variables is preserved, as long as the random

censoring is independent from the observed covariates, but the quality of the variance

estimator depends on the true distribution of the error term (Solomon, 1984; Struthers

and Kalbfleisch, 1986). In Section 3.4 we will consider a standard normal distribution

for ε, which implies a lognormal ditribution for Ti.

3.2 Connection with Poisson model

There is a close relationship between the Cox regression model just introduced and a

particular Poisson regression model, as was first investigated by Holford (1980) and Laird

and Olivier (1981). This connection was originally exploited to build faster algorithms

for the parameter estimation. We will further use this connection in order to directly

apply the results of Chapter 1 to perform hypothesis testing in the Cox regression model.

We first note that the full likelihood of the Cox model is

Lf =
∏

i∈n
λ(yi|xi, zi)

δi exp{−Λ(yi|xi, zi)}. (3.1)

The same likelihood is obtained by treating the δi as outcome which are Poisson dis-

tributed in the following way. Denote τm, 1 ≤ m ≤ |D| the observed time events. For
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subject i, consider all the time events τ1 ≤ · · · ≤ τj ≤ yi; rearrange the data for each

singleton i in the j lines of Table 3.1.

id interval event covariates
i 1 0 xi, zi

i
...

... xi, zi
i j − 1 0 xi, zi
i j δi xi, zi

Table 3.1: Restructured data for subject i

In the Poisson model that will be formulated in each line the event δij corresponds

to a 0-1 Poisson variable with mean µij = λj exp{β
Txi+ γT zi}. The contribution to the

likelihood of the first j − 1 lines is equal to

e−µik = e−λk exp{βT xi+γ
T zi},

since δik = 0. For the final line, if δij = 0 the contribution is equal to

e−µij = e−λj exp{β
T xi+γ

T zi},

while if δij = 1 - that is, the event is observed - the contribution is

e−µijµij = e−λj exp{β
T xi+γ

T zi}λj exp{β
Txi + γT zi}.

If we consider the j lines as independent, the total likelihood contribution for subject

i is equal to

[λj exp{β
Txi + γT zi}]

δie−
∑j

k=1
λk exp{βT xi+γ

T zi}. (3.2)

The likelihood (3.2) is equal to the full likelihood of the Cox model (3.1) and, in fact,

they give the same maximum likelihood estimates. In detail, the Poisson model is fitted

by first decomposing the original data as described, and then fitting a Poisson regression,

which has the original regression parameters (β, γ) plus one nuisance parameter per each

time episode, which corresponds to the column interval in Table 3.1, and all of them are

modelled as factors.

To be more precise, Holford (1980) and Laird and Olivier (1981) point out that the

Poisson model is equivalent to the Cox model with a piecewise constant baseline haz-

ard within time events. However, the maximum likelihood estimates perfectly coincide

between the Poisson model and the Cox model without further assumptions. In par-

ticular, not only the regression parameters and their corresponding standard errors are
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equal, but also the parameters λj permits to recover exactly the Breslow estimate of the

baseline hazard λ0 (Breslow, 1972).

We will further illustrate this relationship through a toy example. Assume to observe

a sample of 5 observations. Table 3.2 represents the original dataset while Table 3.3

represents the reconstructed dataset for the Poisson model. For each observation we

observe the time event, the censoring indicator and a covariate X. For the original

id time status x
1 1.0 1 -0.86
2 2.2 1 -0.16
3 3.0 0 1.69
4 4.6 0 0.01
5 6.0 1 -1.91

Table 3.2: Toy example: original dataset

id episode event x
1 1 1 -0.86
2 1 0 -0.16
2 2 1 -0.16
3 1 0 1.69
3 2 0 1.69
4 1 0 0.01
4 2 0 0.01
5 1 0 -1.91
5 2 0 -1.91
5 3 1 -1.91

Table 3.3: Toy example: reconstructed dataset

dataset we fit a usual Cox regression model, where we explicit the time (yi), the status

(δi) and the covariate (xi). For the reconstructed dataset we fit a Poisson model with

canonical link, where we explicit the dependent variable, which is the column event, and

the covariates, which are the columns x and episode; the latter is modelled as a factor.

Using any statistical software it can be verified that the estimates of the regression

parameter for x coincides, equal to −0.2321 with a standard error of 0.5953. Further,

it can be easily verified that also the score contributions and the Fisher information

coincide, and that we can recover the estimate of the baseline hazard by taking the

exponential of the coefficients related to the factor episode of the Poisson formulation.
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3.3 Hypothesis testing for the Cox model

Our interest is now turning on the regression parameters, considering the null hy-

pothesis

H0 : β = β0,

against a one or two-sided alternative, while the other parameters are nuisance parame-

ters, both the regression parameters γ and the episode parameters λ, which corresponds

to the baseline hazard λ0(y) of the Cox model.

In absence of nuisance regression parameters, a large number of proposals have been

done about two-sample or general k-sample problems, when the hypothesis is on the

equality of the survival curves, considering different censoring schemes. These methods

are either based on ranks, sign-flips or permutations, and reflect the nonparametric

nature of the estimation of the survival function. A general overview is given by Klein

et al. (2003) and Arboretti et al. (2018). When testing for the effect of a continuous

variable in the Cox model, without nuisance covariates, a permutation-based solution is

given by Sun and Sherman (1996).

In presence of nuisance regression parameters γ general nonparametric solutions are

not available. Concerning the null hypothesis about the target parameter β, as for

generalized linear models the parametric approach for this kind of test consists of three

alternatives which have similar behavior, especially for growing sample size, respectively

the Wald test, the Likelihood ratio test and the parametric Score test. These tests are

analogous to the procedure described in Section 1.2. However, we will see in Section 3.4

that these tests show an anti-conservative behavior for small sample sizes; it means that

they do not meet the first requirement of any statistical test, that is, the control of the

type I error. It should also be remarked that a sandwich-type version of the Wald test

exist, which is built following the same idea of the GLM version (Lin and Wei, 1989).

This test is implemented to handle correlated observations, which we do not consider in

this chapter.

Following the GLM formulation of Section 3.2 we can directly apply the standardized

test of Section 1.4 which is shown to be second-moment exact, whose simulation in

Section 1.7 shows appreciable behavior for small sample size. The main weakness of this

approach is given by the computational burden required. Indeed, a moderate original

sample size can easily turn on a massive sample size in the Poisson formulation.

To answer this issue we can build a second test, based on the partial likelihood.

Indeed the use of the full likelihood of the Cox model is denied by the presence of the
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infinite-dimensional nuisance parameter. First of all, remember that the partial likeli-

hood is a profile likelihood with respect to the baseline hazard. That is, it “profiles” out

the infinite-dimensional parameter and hence it depends only on nuisance parameters

with fixed dimension. Moreover, the effective score can be deduced from the profile

likelihood (Murphy and Van der Vaart, 2000). It follows that the effective score contri-

butions of the partial likelihood can be recovered directly from the Poisson contributions

by aggregating them per episode event. We can thus think of flipping these contribu-

tions, whose cardinality is significantly smaller. Further, we can standardize this flipped

test statistic to potentially improve the convergence to the nominal level of the test. We

will see in Section 3.4 how the use of the partial likelihood contributions will affect the

behavior of the test through a simulation study.

Some words must be spent on the asymptotics. Indeed, one of the main assumption

of Chapter 1 is not met. In the Poisson model the dimension of the nuisance parameter λ

grows with n. Call n′ the sample size in the Poisson formulation. It can be easily shown

that the dimension of the nuisance parameters is O(n′1/2). Under minimal regularity

assumptions, Fahrmeir and Kaufmann (1985) prove the consistency of the parameters

when their dimension is o(log n′) and state that logarithmic or superlogarithmic growth

is not admissible. This rate is not satisfied by the Cox model that we have built.

Further, Burr (1994) states that the Breslow estimator (Breslow, 1972) of the hazard

ratio is inconsistent, confirming the potential issues in applying our sign-flip test.

On the other hand, the use of a profile likelihood as a valid tool for statistical infer-

ence in the Cox model - and more generally for semiparametric models - is proven by

Murphy and Van der Vaart (2000). The authors prove the consistency and asymptotic

normality of the profile likelihood estimator by applying an approximate least favorable

submodel which was proposed in their paper. Indeed, it is important to note that all

the classic tests and the inference procedure are performed on the basis of the partial

likelihood. Murphy and Van der Vaart (2000) states that the profile likelihood behaves

like an ordinary likelihood, where the score function and the Fisher information are

replaced by the effective score function and effective Fisher information with respect to

the nonparametric component. Hemerik et al. (2020) derived the sign-flip effective score

test for general parametric models. This justify the use of this test for the Cox regres-

sion model, where we only ask the nuisance regression parameters γ to be consistently

estimated. It is worth noting that, over all the semiparametric models, the Cox model

is somehow special, in the sense that it is possible to obtain a close form of the profile

likelihood with respect to the nonparametric component.
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Further, as we pointed out in Section 3.2 this likelihood and all the estimated quan-

tities perfectly coincides with a particular aggregation of the quantities derived by the

Cox model. In this sense we are able to derive the standardized sign-flip score test

for both the general Poisson formulation and the partial likelihood formulation. We

will further evaluate the empirical performance of the two tests based on the sign-flip

approach in the next section. The extension to multivariate parameters β ∈ R
d and

multivariate responses is straightforward following Section 1.6 and Chapter 2.

3.4 Simulation study

We perform a simulation study in order to evaluate the capability of controlling

the type I error. We compare the three parametric methods - Wald test, LRT and

parametric Score test - with the two Flipscores test, the one based on the full GLM

formulation - Flip GLM - and the one based on the partial likelihood - Flip Partial

lik. Note that for the GLM formulation we have used the standardized test - the most

computational intensive procedure - while for the partial likelihood formulation we have

used the effective test, that is, a less computational demanding procedure. A total of

5 000 simulations have been run. The data are generated through the inverse probability

method (Bender et al., 2005). The baseline hazard is a Weibull distribution with shape

and scale parameters (under the complete null hypothesis) equal to 1. The censoring

time are generated through an independent exponential distribution, whose parameter

is chosen in order to control the average proportion of censored observations. The

model contains two covariates (X,Z). In the Figures 3.1-3.4 the left panel considers a

correlation of 0 between X and Z, while such correlation is 0.3 in the right panel.

Figure 3.1 shows the type I error control when testing a continuous variable. The

true β is set equal to 0 and we test H0 : β = 0 with significance level α = 0.05. The

parameter γ is set equal to 0.5. The x axis represents the sample size, while the y

axis represents the empirical type I error. The dotted lines represent a 95% simulation

confidence bands. We see that, even for a sample size of 60, the parametric tests are

anti-conservative, beyond the confidence bands. On the other hand, the two Flipscores

tests show a similar and more appreciable behavior.

Figure 3.2 shows the type I error control when testing a factor variable, with two

levels. The factor has been generated by firstly generated a continuous covariate - with

mean 0 - whose correlation with Z is pre-decided, and then we cut off the continuous

variable X in 0 to create a 0-1 factor. The true β is set equal to 0 and we test H0 : β = 0

with significance level α = 0.05. The parameter γ is set equal to 0.5. Among the
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Figure 3.1: Type I error control for continuous covariate. Average censoring equal
to 25%.
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Figure 3.2: Type I error control for a factor covariate. Average censoring equal to
25%.

parametric tests, the Wald test is satisfying for a sample size of 40 and more, while the

other two methods have slower convergence. The Flipscores tests are more satisfying,

being only slightly conservative.

Figure 3.3 shows the type I error control when testing a continuous variable, when

the average proportion of censored observations is 50%. The true β is set equal to

0 and we test H0 : β = 0 with significance level α = 0.05. The parameter γ is set

equal to 0.5. Despite the fact that the effective number of observations is lower, we

observe a similar behavior as in Figure 3.1. The type I error control is perfect for the
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Figure 3.3: Type I error control for continuous covariate. Average censoring equal
to 50%.

Flipscores approach, even for small sample sizes, while the parametric tests show an

anti-conservative behavior, the Wald test being better than the alternatives.
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Figure 3.4: Power comparison for continuous covariate. Average censoring equal to
25%.

Figure 3.4 shows a power comparison. The true β is set equal to 0.5 while we test

H0 : β = 0, whose corresponding variable X is assumed continuous. The parameter γ

is set equal to 0.5. The parametric tests are slightly more powerful - which is somehow

expected from the anti-conservative behavior on the type I error control - but the loss

of power for the Flipscores approach is appreciably small, being almost equal for the

two methods.
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Figure 3.5: Type I error with omitted covariate. Average censoring equal to 25%.

Figure 3.5 represents a simulation where an omitted covariate is present, whose co-

efficients is equal to 0.5, and it is independent from the target covariate. The target

parameter is β = 0 and we test H0 : β = 0. Further, the model includes an extra

independent nuisance variable which is considered, whose coefficient is equal to 0.5. As

expected from the theory in Section 3.1, the results are close to the previous simulations.

The parametric tests are anti-conservative, especially for a low sample size, while the

sign-flip tests are close to the nominal level and perform similarly.
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Figure 3.6: Type I error when the true model is AFT. Average censoring equal to
25%.

Figure 3.6 shows the result where the true model is an accelerated failure time (AFT)

model, while we fit a Cox regression model. The event times are generated from a
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log-normal distribution, while the censoring time is generated from an independent

exponential model. The target parameter is β = 0 while the nuisance parameter is set

equal to 0.5. The two covariates are independent in the left plot, while the correlation

is 0.3 in the right plot. We test the null hypothesis H0 : β = 0. The parametric tests

show a strong anti-conservative behavior. The sign-flip tests perform better in all cases.

They are close to the nominal level for smaller sample sizes, while they are slightly

anti-conservative for a sample size of 60 and also for 80 in the left plot.





Conclusions

Discussion

In this manuscript we have derived a novel approach to perform hypothesis test-

ing in regression models, which is based on the use of sign-flips in order to obtain

null-invariant transformations of the original test statistic. In this sense our approach is

semiparametric, since we do a subset of assumptions compared to the standard paramet-

ric alternatives. We started from generalized linear models, where we develop a method

which shows an appreciable type I error control when the model is correctly specified,

while being appreciably robust when the variance is misspecified without any specific

pattern. Further, we extended the method to models with multivariate response; the

resampling-based solution that we propose is able to capture the unknown correlation

structure of the responses, resulting in an appreciable gain of power over the parametric

alternatives especially when a strong correlation is present. Finally, we broaden our

approach to semiparametric models, focusing on the well-known Cox regression model.

Our approach shows a good type I error even for small sample sizes, outperforming the

parametric alternatives which are anti-conservative for small sample sizes.

Future directions of research

Given its duality with statistical tests, a natural question that arises is related to

confidence intervals. Following the permutation principle, a natural interval is given by

taking all the values for which the corresponding test is not rejected. Two issues are

present; the computational burden required by this approach, since we would perform

the tests over a grid of values, and the fact that, for generalized linear models, this

interval is generally non-monotonic. This two open questions require further work.

Another natural extension relates to generalized linear mixed models and frailty mod-

els, where the observations are correlated, for instance where they are split in clusters.

A naive approach is not possible, as the sign-flips would alter the correlation between

the units, resulting in a different distribution of the flipped test statistic.

63
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Further, the Cox regression model requires future theoretical work. Indeed, the

behavior of the test based on the effective score of the partial likelihood is surprising,

compared to the version for standard generalized linear models. We derived the validity

of the test through an implicit argument, i.e. the use of the profile likelihood as a valid

tool in semiparametric models, but a future work would go deeper into deriving more

explicitly the properties.
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(SIS) 2022, Caserta, Italia, 22-24 June 2022.



Teaching experience

October 2023 – December 2023
Modelli statistici 2
Degree In Statistical Sciences
Lab, 16 hours
University of Padova
Instructor: Prof. Alessandra Salvan

References

Prof. Livio Finos
University of Padova
Address
e-mail: livio.finos@unipd.it

Prof. Jelle J. Goeman
Leiden University Medical Center
Address
e-mail: j.j.goeman@lumc.nl




	List of Figures
	List of Tables
	Introduction
	Overview
	Main contributions of the thesis

	1 Inference in generalized linear models with robustness to misspecified variances
	1.1 Generalized linear models
	1.2 Classic approach to hypothesis testing
	1.3 Sign-flipping effective score test
	1.4 Standardized sign-flips score test
	1.5 Robustness of the test
	1.6 Testing for multiple regressors
	1.7 Simulation study

	2 Permutation-based multiple testing when fitting many generalized linear models
	2.1 Multivariate generalized linear models
	2.2 Local test for multivariate responses and the multiple testing problem
	2.3 Sign-flip tests for multivariate generalized linear models
	2.4 Simulation Study
	2.4.1 Univariate
	2.4.2 Multivariate

	2.5 Real-data application

	3 Sign-flip tests for the Cox regression model
	3.1 Cox regression model
	3.2 Connection with Poisson model
	3.3 Hypothesis testing for the Cox model
	3.4 Simulation study

	Conclusions
	Bibliography

