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Abstract—The clinical heterogeneity that characterizes Amy-
otrophic Lateral Sclerosis (ALS) makes its diagnosis, prognosis,
and care difficult. In this context, characterizing patients based on
their clinical features or progression patterns is crucial, allowing
a deeper understanding of the disease and the planning of
more effective treatments. In this work, we employ Archetypal
Analysis for studying a real-world ALS population based on
their characteristics at diagnosis. First, we derive a set of
extreme clinical types (archetypes) whose combination describes
the study population, and analyze their differences in terms
of clinical characteristics. Then, we cluster patients according
to their similarity to the archetypes and we investigate how
the so-obtained groups differ in terms of time to life-support
interventions and survival.
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I. INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive and
degenerative disease that affects the nerve cells that control
voluntary muscle movement. ALS progression impairs motor
neurons in the brain and spinal cord, wasting the muscles and
leading to the inability to control movements; sometimes it
is also accompanied by cognitive and behavioural symptoms.
ALS aetiology is still unknown, with some genetic and envi-
ronmental factors possibly triggering the disease onset. The
mean life expectancy is 3-5 years from onset, with death
usually occurring from respiratory failure. Despite a relative
uniformity during the late stages of the disease, the symptoms
at the onset and the timing of the clinical manifestations are
highly variable among the patients [1].

Related to this heterogeneity, one of the major needs is the
identification of groups of patients with similar characteristics
(i.e., patient stratification), to be able to effectively predict the
course of the disease in terms of speed of worsening, symptom
occurrence, and the need for life-supporting interventions. For
a deep understanding of this rare and incurable disease, it
is also essential to investigate which are the main markers
that determine its different manifestations. Clinically, patients
can be stratified into phenotypes based on their characteristics
or by observing their clinical progression. Alternatively, it is
possible to automatically stratify patients using a data-driven

approach: recently, clustering algorithms such as k-means,
dimensionality reduction methods such as Uniform Manifold
Approximation and Projection (UMAP), and network-based
approaches were employed for this purpose [2], [3].

Archetypal Analysis (AA) is an alternative unsupervised
computational approach that allows to discern a specific num-
ber of extreme and not necessarily observed points called
archetypes (i.e. ideal, prototype patients), such that each
archetype is constrained to be a mixture of points in the
dataset and such that each point can be well represented as
convex mixtures of the archetypes [4]. AA can be used on
multivariate datasets as an exploratory tool since, analyzing
the characteristics of each archetype, allows for highlighting
the differences among groups of patients.

In this work, we aim at stratifying ALS patients by employ-
ing AA and considering the variables collected at the diagnosis
of a real-world ALS cohort. First, we derive the archetypes
and analyze their differences in terms of clinical features.
Then, we associate each patient with their closest archetype.
Finally, we investigate how the identified patients’ groups
differ in terms of clinical outcomes, considering: the need
for non-invasive ventilation (NIV), percutaneous endoscopic
gastrostomy (PEG), tracheostomy, and death.

II. MATERIALS AND METHODS

A. Dataset

The dataset used in this work was extracted from the
Piemonte and Valle d’Aosta ALS register (PARALS) [5]:
selecting the patients with the first visit from January 1st,
2007 to December 31st, 2015, we identified 924 ALS subjects.
For each patient, we collected features to characterize their
condition at the time of diagnosis, including:

• demographics and lifestyle: sex, marital status, educa-
tional level, smoke habits;

• dates of: birth, onset, diagnosis, PEG, NIV, tracheostomy,
death;

• ALS-related variables: onset site, phenotype, mutation in
ALS-linked genes (C9orf72, SOD1, TARDBP, FUS, OPT,
TUB);

1



GNB2023, June 21st-23rd 2023, Padova, Italy 2

• comorbidities: psoriasis, epilepsy, stroke, rheumatic dis-
eases, poliomyelitis, obstructive sleep apnea syndrome,
monoclonal gammopathy of undetermined significance;

• other health-related variables: frontotemporal dementia
(FTD), forced vital capacity (FVC), first/second tumour,
thyroid impairments, psychiatric diseases, hypertension,
diabetes, chronic obstructive pulmonary disease (COPD);

• a panel of 39 different blood exams, covering general
health analysis, heart problems, and organ function.

B. Data preprocessing

A preprocessing phase was necessary to solve some typical
issues that may arise with real-world data. First, we aggregated
the variables presenting low occurrences and belonging to the
same category, creating the binary variables: “genetics”, which
indicates if a mutation occurs in at least one tested gene;
“comorbidities”, indicating that at least one of the concurrent
conditions listed above occurs; “tumour”, which indicates that
the patient had at least one cancer. Other more frequent and
already binary conditions, such as hypertension or diabetes,
were not aggregated. Variables assuming multiple possible
values were either converted into binary features, if their
occurrence had low frequency in the data (such as psychiatric
diseases, that were transformed into new features indicating
the presence/absence of at least one psychiatric disease), or
coded as dummy features (such as FTD and smoke habits).

Then, we derived some variables coding the time passed
from the ALS onset to the other clinical events for
which a date was available, obtaining the following new
features: age at onset, diagnostic delay, and time to
PEG/NIV/tracheostomy/death. Next, we filtered out the blood
test variables presenting more than 30% of missing values. In
total, 16 of the 39 available tests were removed, 10 of which
had more than 50% missing values. We imputed the remaining
missing values in the preprocessed data using the mice R
package [6] with default parameters. To check the robustness
of the imputation process, we compared the distribution of
each variable before and after the imputation.

Tables I and II provide an overview of the data after these
preprocessing steps. Lastly, we scaled all variables in the range
[0,1] to balance the contribution of features to the analysis.

C. Method

The goal of the analysis is the unsupervised stratification
of the patients according to their clinical characteristics at
diagnosis and the comparison of the obtained groups in terms
of clinical outcomes, namely time to NIV, time to PEG, time
to tracheostomy, and time to death. The analysis consists of
three steps: (1) the identification of a number of archetypes
from the data, using all the available variables except those
corresponding to the outcomes; (2) the unsupervised classifi-
cation of the subjects into different clusters according to their
similarity to the archetypes; (3) the comparison of the clusters
in terms of the four outcomes of interest.
1) Archetypal Analysis. Given an n×m matrix X representing
a multivariate dataset, where n is the number of observations,

m is the number of variables, and k is the number of
archetypes chosen by the user, AA allows determining a k×m
matrix Z of archetypes such that:

a) the data are best approximated by convex combinations of
the archetypes Z, i.e., they minimize the residual sum of
squares (RSS):

RSS = ||X − αZT ||2, αi ≥ 0,
∑

i
αi = 1 (1)

b) the archetypes are convex combinations of the data points:

Z = XTβ, βi ≥ 0,
∑

i
βi = 1 (2)

where α are the coefficients of the archetypes and β are those
of the dataset, respectively.

Since the identification of the archetypes is based on an
iterative process that, starting from a set of k randomly chosen
points in the features’ space, minimizes the approximation
error between the original data points and those reconstructed
as a combination of the archetypes, it is recommended to
repeat the identification algorithm several times to avoid falling
into local minima [4]. Here, we tested a number of archetypes
k from 2 to 8, repeating the procedure 15 times for each k.
The optimal number of archetypes was chosen by detecting
the elbow in the scree plot reporting on the x-axis the value
of k and on the y-axis the RSS. To reinforce the choice of
the best k, we also analyzed the minimum, mean and standard
deviation of the RSS over the 15 repetitions for each k [7].

The archetypes, by construction, lie on the boundary of
the convex hull of the data and can be therefore easily influ-
enced by outliers. Thus, to avoid incorrect or skewed results,
we employed the identification method of robust archetypes,
which reduces the influence of outliers by using M-estimators
instead of least squares estimators when performing the op-
timization procedure [8]. All analyses were performed using
the archetypes R package [9].

For the sole purpose of visualizing the data and archetypes
in two dimensions, principal component analysis (PCA) was
used. The two-dimensional representation allows to easily
check the position of the archetypes with respect to the data
and to verify that they are actually on the convex hull. Radar
plots were used to investigate the characteristics of each
archetype individually; for a more effective rendering, we
computed for each variable its standard deviation (sd) across
the k archetypes and then only included in the radar plots those
with sd>0.13 (sdmin=0.00004679, sdmax=0.4158768), i.e. those
variables that differentiate the most among archetypes.
2) Subject clustering based on archetypes. As mentioned,
AA allows representing the data as a linear combination of
archetypes, each multiplied by a non-negative coefficient αi.
We decided to assign each subject to the archetype with higher
αi, following the rationale of the nearest prototype classifier
[7], to inspect how patients cluster based on their extreme
behaviours, obtaining k distinct clusters.
3) Comparison of the cluster in terms of clinical outcomes.
Finally, we compared the different clusters using the Wilcoxon
test to assess any statistically significant differences in terms of
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TABLE I: Preprocessed categorical variables.

Feature Levels % of
subjects

sex 0: male 52 %
1: female 48 %

marital status 0: combined 77 %
1: living alone 23 %

education 0: illiterate 3 %
1: primary school 35 %
2: 8th grade 32 %
3: short diploma 7 %
4: high school 16 %
5: graduated 7 %

smoke habits * 0: never 48 %
1: ex 35 %
2: current 17 %

genetics 0: no gene mutations 89 %
1: gene mutation 11 %

onset site 0: bulbar 33 %
1: not bulbar 67 %

FTD * 0: ftd 18 %
1: cognitive 20 %
2: behavioral 16 %
3: non-executive 3 %
4: healthy 49 %

tumour 0: never 95 %
1: at least one 5 %

comorbidities 0: none 88 %
1: at least one 12 %

thyroid 0: healthy 88 %
1: impairment 12 %

psychiatric dis. 0: healthy 95 %
1: impairment 5 %

hypertension 0: healthy 49 %
1: impairment 51 %

diabetes 0: healthy 89 %
1: impairment 11 %

COPD 0: healthy 93 %
1: impairment 7 %

TABLE II: Preprocessed continuous variables.

Feature 25th-50th-75th

percentile

age at onset [years] 60 - 67 - 74
diagnostic delay [months] 5 - 9 - 14
time to PEG⋄ [months] 16 - 24 - 33
time to NIV⋄ [months] 14 - 23 - 34
time to tracheo⋄ [months] 21 - 27 - 43
time to death⋄ [months] 19 - 30 - 47
FVC at diagnosis [L] 70 - 87 - 104
white blood cells [109/L] 5.2 - 6.2 - 7.5
neutrophils [109/L] 2.8 - 3.6 - 4.6
lymphocytes [109/L] 1.4 - 1.7 - 2.2
monocytes [109/L] 0.4 - 0.5 - 0.6
ESR 1 [mm/h] 4 - 9 - 19
creatinine [mg/dL] 0.6 - 0.7 - 0.9
uric acid [mg/dL] 3.8 - 4.7 - 5.6
albumin [g/dl] 4 - 4.3 - 4.6
glucose [mg/dL] 81 - 88 - 99
triglycerides [mg/dL] 73 - 94 - 128
cholesteroltot [mg/dL] 174 - 199 - 230
cholesterolhdl [mg/dL] 49 - 58 - 70
cholesterolldl [mg/dL] 96 - 117 - 144
cholesterolldl/hdl 1.5 - 2 - 2.7
bilirubintot [mg/dL] 0.5 - 0.7 - 0.9
bilirubindir [mg/dL] 0.2 - 0.2 - 0.3
bilirubinindir [mg/dL] 0.3 - 0.5 - 0.6
alkaline phosphatase [U/L] 56 - 68 - 86
creatine phosphokinase [U/L] 90 - 153 - 251
sodium [mEq/L] 140 - 142 - 143
potassium [mmol/L] 3.9 - 4.2 - 4.4
chlorine [mmol/L] 101 - 103 - 105
TSH 2 [mU/L] 0.9 - 1.6 - 2.5

* categorical variables coded as dummy
⋄ outcome variables
1 erythrocyte sedimentation rate
2 thyroid stimulating hormone

the time of occurrence of the clinical outcomes, by performing
a multiple pairwise comparison between groups.

III. RESULTS

Fig. 1 shows the scree plot for the tested k, while Tab. III
shows the minimum, average and standard deviation value of
the RSS calculated over the 15 repetitions for each k. These
methods identify k = 7 as the optimal number of archetypes.

Fig. 1: Scree plot for a number of archetypes k from 2 to 8. The
RSS value displayed for each k is the minimum RSS obtained over
the 15 repetitions of the algorithm.

TABLE III: Minimum, mean, and sd of the RSS computed over 15
repetitions, for a number of archetypes k from 2 to 8.

Archetypes k=2 k=3 k=4 k=5 k=6 k=7 k=8

min 0.0531 0.0504 0.0495 0.0475 0.0470 0.0461 0.0470
mean 0.0531 0.0511 0.0502 0.0482 0.0479 0.0474 0.0476
sd <0.0001 0.000642 0.00045 0.001264 0.000715 0.00064 0.000426

Fig. 2 shows how the archetypes (in red) are positioned
amongst the subjects (in green): as expected, they position

Fig. 2: Two-dimensional representation of the subjects (green dots)
and archetypes (red diamonds) using PCA.

on the borders of the dataset, identifying types who are not
necessarily observed in the data but who are extreme in their
characteristics.

The 7 mined archetypes are reported in Fig. 3 as radar
plots. The variables were filtered according to their standard
deviation, ultimately retaining 24 features out of a total of 44.

By analyzing the resulting archetypes Zi, we can describe
the extreme behaviors characterizing the data. Z1 represents a
male subject with non-bulbar onset and medial age at onset,
as well as Z2, which is a female subject almost free of other
diseases. Z3 delineates an individual who is living alone, with
mainly no FTD issues and high bilirubin values. Z4 represents
a subject with rather advanced age at onset and FTD at
diagnosis. Z5 outlines an ex-smoker subject, with older age at
onset and affected by hypertension; this is, in general, also the
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archetype placing greater emphasis on the presence of other
comorbidities, such as diabetes. Z6 is mainly similar to Z1,
presenting in addition relatively high values of triglycerides
and cholesterol. Finally, Z7 describes a female subject, ex-
smoker, with pronounced cognitive FTD impairment and with
high ESR and albumin values; this is also the only archetype
with a low chlorine value.

Fig. 3: Radar plots representing the archetypes, including the 24
variables with sd>0.13 only. For each variable, the innermost circle
represents a standardised value equal to 0, the outermost circle equal
to 1. The levels of the categorical variables correspond to those of
Tab. I, then normalized in the range [0,1].

We then assigned each subject to their most representative
archetype, getting seven clusters Ci with 60 subjects in C1,
286 in C2, 59 in C3, 79 in C4, 259 in C5, 180 in C6, and
only 1 subject in C7. Based on this, we decided to perform
the following analysis only considering clusters C1-C6.

Fig. 4 reports the comparison of the time of occurrence of
the four considered outcomes in the different clusters. The
clusters differ in terms of mean time as well as in the order of
occurrence of the outcomes. Clusters C1 and C3 have time-
to-event values comparable with those of the other clusters,
for all outcomes but tracheostomy, where C3 has the shortest
time of occurrence among all clusters. Statistically significant
differences are observed in C2 vs C4, C2 vs C5, and C4 vs C6

for PEG, NIV and death (all p-values<0.015). This confirms
that archetypes-based clustering can be a useful tool to identify
groups of patients with different characteristics both in terms
of covariates at diagnosis and clinical outcomes.

IV. CONCLUSION

In this work, we applied AA to a multivariate dataset
of ALS patients to study disease heterogeneity and outline
extreme behaviors at diagnosis. We identified 7 archetypes
that were first compared in terms of clinical characteristics,
and then used to define 7 clusters of patients. By analyzing
their distributions in terms of time to PEG, NIV, tracheostomy,

Fig. 4: Box plots comparing the times of occurrence of the outcomes
(PEG, NIV, tracheostomy, and death) among the clusters. For each
outcome, the number of subjects who experienced the event and
statistically different p-values (Wilcoxon test, threshold = 0.01) are
reported.

and death, we assessed how stratifying patients based on their
similarity to the mined archetypes can be a valid criterion to
identify groups characterized by different progression timing
and patterns. In future works, we aim to further characterize
the identified clusters to explore intra-cluster variability (e.g.
by comparing the characteristics of the subjects belonging
to the same cluster) and inter-cluster variability (e.g. consid-
ering the differences in progression patterns and comparing
the archetypes with the clinical phenotypes described in the
literature).
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