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In this paper, we investigate periodic sequences modulo a positive integer m, i.e., f =
[a0, a1, . . . , aπ−1] ∈ (Z/mZ)π extended by periodicity in (Z/mZ)N and their transforms 
when the difference operator Δ and the anti-difference operator Σ are applied to them. 
The operator Δ (i.e. Δ(f) = [a1 − a0, a2 − a1, . . . , a0 − aπ−1]) allows us to examine the 
differences between consecutive terms in a sequence, while the operator Σ (i.e. Σ(f) =
[0, a1, a1 +a2, a1 +a2 +a3, . . . ]) serves as a complementary tool, enabling us to study the 
cumulative sums of sequences and understand their overall behavior. The study of the 
period of sequences modulo a positive integer has been and continues to be of interest 
in combinatorics and its applications to computer science and cryptography [19,23].

It is well known that any periodic sequence can be uniquely decomposed into the 
sum of an idempotent sequence and a nilpotent sequence. A sequence is considered 
idempotent when applying the difference operator Δ multiple times results in the same 
sequence. Conversely, nilpotent sequences vanish after a certain number of applications 
of the difference operator Δ. By studying the idempotent and nilpotent parts separately, 
we gain a deeper understanding of the dynamics and behavior of the original sequence.

In the context of periodic sequences taking values in Z/mZ with m ∈ N, we focus on 
studying the evolution of their periods and the p-adic valuation of their elements when 
the sum operator Σ is applied. The first fundamental step has been the reduction of 
this study from periodic sequences to constant ones. Our first result is the proof that 
the study of the period of the anti-differences of any nilpotent or idempotent sequence, 
and hence of any periodic sequence, reduces to that of the anti-differences of a constant 
sequence (refer to Theorem 3.7, Theorem 3.11).

By Remark 3.1 the n-th entry of the s-anti-difference of a constant c is equal to c times 
the binomial coefficient 

(
n
s

)
in Z/mZ. Consequently, the study of binomial coefficients 

modulo a positive integer m becomes significant. Thanks to the Chinese Remainder The-
orem we reduce to m = p� where p is a prime number and � ≥ 1. Many mathematicians 
of the nineteenth century considered problems involving binomial coefficients modulo a 
prime power (for instance Kummer and Lucas). Several attempts of generalizing these 
classical results can be found in [1,4–6,8–10,12,18]. We try to give a new contribution in 
this research area.

One of our main result consists in providing new recurrence relations for certain 
binomial coefficients, enabling efficient computation of their p-adic valuation. This oc-
curs precisely when the lower index in the binomial coefficient exhibits patterns of the 
following types: p− 1, . . . , p− 1

�

, 0, . . . , 0
�

, and p− 1, 0, . . . , 0
�

(refer to Lemmas 4.7, 4.9

and 4.12).
As an application, we provide a comprehensive answer to three questions posed by 

the Romanian composer Anatol Vieru (1926-1998) [21, 3.1, 3.2, 3.3]. In the context of 
1960s musical serialism, Vieru in his Book of Modes [20] explores a composition tech-
nique based on periodic sequences with values in Z/12Z. If a sequence f in Z/12Z
represents the pitch classes of an initial musical theme, Vieru decodes a musical aspect 
(such as rhythm, harmony, tone color, or dynamics) from the anti-differences of f using 
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a suitable dictionary. Employing this technique, Vieru composes several pieces, including 
Symphony No. 2 and “Zone d’oublie”. Manipulating Messiaen’s second mode of limited 
transposition, he got the sequence V := (2, 1, 2, 4, 8, 1, 8, 4). He applied to this sequence 
the Vieru operator V which is equal to the anti-difference operator plus the constant 
sequence [8]. The questions were to provide a formula for the period of V sV [21, 3.1], 
to explain why never the numbers 3, 6, 9 appear in V sV [21, 3.2], and, additionally, 
to explain why the values 4 and 8 proliferate among the coefficients of V sV [21, 3.3]. 
These questions have been formalized in precise mathematical terms in the papers [2,3]. 
In [14,15] the authors studied the operators Δ and Σ from the point of view of automata 
proposing some applications to Vieru periodic sequences.

Our complete solutions to these questions have been announced without proofs in the 
paper [7] and are given in Vieru’s question I 5.1, Vieru’s question II 5.2, and Vieru’s 
question III 5.3.

We believe that the techniques and ideas we have developed in our application to 
address Vieru’s questions can be applicable in various other scenarios involving the study 
of anti-differences of periodic sequences.

In Section 1, we define periodic sequences with values on integers modulo m > 0. We 
introduce the difference operator Δ and the anti-difference operator Σ.

In Section 2, we present some results about decomposing the Z/mZ-module Pm of 
periodic sequences: the decomposition in nilpotent and idempotent part, and the decom-
position in primes through the Chinese Remainder Theorem.

In Section 3, we present our first new fundamental result, reducing the study of anti-
differences of generic sequences to anti-differences of constant ones (see Theorem 3.7 and 
Theorem 3.11).

In Section 4, we provide our main tool giving new recursive formulas for binomial 
coefficients modulo the power of a prime integer p (refer to Lemmas 4.7, 4.9 and 4.12). 
These formulas allow to reduce the complexity of the computation of the p-adic valuation 
of sequences of binomial coefficients.

In Section 5, as an example of effectiveness of our results, we apply the previous results 
to the peculiar periodic sequence V = [2, 1, 2, 4, 8, 1, 8, 4] with coefficients in Z/12Z that 
arises from the mathematical-musical problem posed by Vieru in [20].

1. Periodic sequences in Zm and the operators Δ and Σ

In this section we introduce the periodic sequences over Zm = Z/mZ with m ≥ 2, 
the difference operator Δ and the sum operator Σ.

Periodic sequences in Zm

Let m ≥ 2 be a natural number. We denote by Sm := ZN
m the Zm-module of all 

sequences with values in Zm.
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The shifting operator θ is the endomorphism of Sm acting on f ∈ Sm as:

θ(f)(n) := f(n + 1) ∀n ∈ N.

A sequence f ∈ Sm is said periodic if there exists j ≥ 1 such that θj(f) = f , i.e. 
f ∈ ker(θj − id). We denote by Pm the Zm-submodule of periodic sequences in Sm:

Pm :=
⋃
j≥1

ker(θj − id).

Given a periodic sequence f ∈ Pm, we say that it has period π(f) if π(f) is the minimum 
positive integer such that θπ(f)f = f . Furthermore θkf = f if and only if π(f) | k. Since 
π(f) = π(θ(f)), θ restricts to an endomorphism of Pm.

Let f be a sequence of period π. Since it is determined by its values f(0), . . . , f(π−1), 
we will write

f = (f(0), f(1), . . . , f(π), f(π + 1), . . . ) =: [f(0), f(1), . . . , f(π − 1)].

In particular, for any c ∈ Zm, [c] denotes a constant sequence.
We define the trace of f to be:

trf :=
π−1∑
i=0

f(i).

Definition 1.1 (The operator Δ). We define on Sm the difference operator:

Δ := θ − id.

It restricts to an operator of Pm since the period of Δf divides the period of f .

We say that a periodic sequence 0 �= f ∈ Pm is nilpotent (resp. idempotent) if there 
exists η ≥ 1 such that Δηf = 0 (resp. Δηf = f). The minimal η satisfying this con-
dition is said to be the nilpotency (resp. idempotency) index of f . We denote by IΔ

m

the submodule of Pm of idempotent sequences and by NΔ
m the submodule of nilpotent 

sequences.

Example 1.2. The sequence f = [0, 1, 2, 3] ∈ P4 is nilpotent of index 2, while the sequence 
g = [2, 1] ∈ P3 is idempotent of index 1.

Definition 1.3 (The operator Σ). We define on Sm the anti-difference operator Σ as 
follows: for every sequence f ∈ Sm,

(Σf)(n) :=
{

0 if n = 0
f(n− 1) + (Σf)(n− 1) if n ≥ 1.
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The operator Σ acts as right inverse for Δ, i.e. Δ ◦ Σ = id. More, for every c ∈ Zm

and f ∈ Sm, one has Δ(Σf + [c]) = f . Also it is a matter of explicit computation to find 
that

(Σ ◦ Δ)(f) + [f(0)] = f.

Notice that Σ defines an endomorphism both of Sm and of Pm. If f ∈ Pm has period π, 
then θπm(Σf) = Σf . Precisely we have

Lemma 1.4. For any f ∈ Pm, if h is the additive order of trf in Zm, then

π(Σf) = h · π(f).

Proof. We already observed that π(Δg) | π(g), so for g = Σf we have

π(f) = π(Δ(Σf)) | π(Σf).

Since by the Fundamental Theorem of finite calculus [17, Th. 6.27]

(Σf)(πm + i) − (Σf)(i) =
πm+i−1∑

j=i

f(j) = m

π+i−1∑
j=i

f(j) = m · trf,

we deduce that π(Σf) = h · π(f). �
Example 1.5. Given c ∈ Zm, for the constant sequence [c], one has:

(Σ[c])(0) = 0, (Σ[c])(1) = c, (Σ[c])(2) = 2c, . . . , (Σ[c])(n) = nc.

Hence the constant sequence [c] has period equal to the additive order of c in Zm.

2. Decomposition of Pm

In this section we introduce in cascade two decompositions for the Zm-module Pm. The 
first one decomposes Pm as the direct sum of IΔ

m and NΔ
m , the submodules of idempotent 

and nilpotent sequences respectively. The second one is the standard decomposition into 
primes, using the factorization of m.

Decomposition in idempotent and nilpotent part

Let f ∈ Pm be a sequence of period π and consider the set A = {Δif | i ∈ N}. A is 
a subset of the set of sequences having the period dividing π, hence A is finite. So take 
the minimal M ∈ N such that there exists u < M satisfying

ΔMf = Δuf
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If t := M − u then Δt+uf = Δuf and Δuf, Δu+1f, . . . , ΔM−1f are distinct sequences. 
Define k̄ to be the minimal k ∈ N such that kt ≥ u. It is u ≤ k̄t < M . Denote:

fI := Δk̄tf fN := f − fI .

Lemma 2.1. With the above notation, f = fI + fN is the unique decomposition of f
as a sum of an idempotent and a nilpotent sequence. The sequence fN (resp. fI) has 
nilpotency (resp. idempotency) index k̄t (resp. t). Moreover π(f) = lcm{π(fI), π(fN )}.

Proof. The sequence fI is idempotent since

ΔtfI = Δt(Δk̄tf) = Δk̄t−u(Δu+tf) = Δk̄t−u(Δuf) = Δk̄tf = fI .

The minimality of t comes from the fact that {Δk̄t+if | 0 ≤ i ≤ t − 1} has cardinality t. 
The sequence fN is nilpotent since

Δk̄tfN = Δk̄t(f − fI) = Δk̄tf − Δk̄tfI = fI − fI = 0.

The minimality of k̄t follows from the minimality of k̄.
This decomposition is unique: by contradiction take f = f ′

I + f ′
N . One has that 

fI − f ′
I = f ′

N − fN is both nilpotent and idempotent thus it is equal to 0.
Furthermore, one clearly has π(f) | lcm{π(fI), π(fN )}. Since Δ and θ commute, 

θπ(f)(fN ) (resp. θπ(f)(fI)) is nilpotent (resp. idempotent). From

f = θπ(f)(f) = θπ(f)(fN ) + θπ(f)(fI)

and the uniqueness of the decomposition, one gets θπ(f)(fN ) = fN and θπ(f)(fI) = fI , 
thus π(fN ), π(fI) | π(f). Hence π(f) = lcm{π(fI), π(fN )}. �

Decomposition with primes

Given the prime factorization m =
∏t

i=1 p
�i
i , the group isomorphism Zm →

⊕t
i=1 Zp

�i
i

gives rise to an isomorphism of Zm-modules

Pm −→
t⊕

i=1
P
p
�i
i

f 	−→(fpi
)1≤i≤t

where fpi
(n) ≡ f(n) mod p�ii . The sequence fpi

is the pi-part of f . The inverse of this 
morphism is given by the Chinese Remainder Theorem.

As a consequence, one can easily prove the following lemma.
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Lemma 2.2. [2, Prop. 13 and Prop. 16] A sequence f ∈ Pm is nilpotent (resp. idempotent) 
if and only if the pi-part fpi

is nilpotent (resp. idempotent) for every i. The nilpotency 
(resp. idempotency) index η coincides with the maximum (resp. least common multiple) 
of the nilpotency (resp. idempotency) indices ηi of fpi

for i = 1, . . . , t. Moreover, the 
period of f satisfies:

π(f) = lcm{π(fpi
)}1≤i≤t.

The primes decomposition, Lemmas 2.1 and 2.2 imply the following isomorphisms:

Pm = IΔ
m ⊕NΔ

m IΔ
m =

t⊕
i=1

IΔ
p
�i
i

NΔ
m =

t⊕
i=1

NΔ
p
�i
i

.

Thus we can always reduce to study sequences on Zp� .

Theorem 2.3. [2, Th. 7] Let f ∈ Pp� be a periodic sequence. Then f ∈ NΔ
p� if and only if 

π(f) = pt for t ∈ N.

Remark 2.4. The period of an idempotent sequence f ∈ IΔ
p� may or may not be divisible 

by p. Using a generic computer algebra system one can easily check that the sequence 
[1, 1, 1, 0, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 1, 0, 0, 0] ∈ P3 is idempotent (of index 9) and it has period 
18, and the sequence [0, 2, 0, 0, 1] ∈ P3 is idempotent (of index 80) and it has period 5.

Definition 2.5. Consider f ∈ Pp� of period π = qpt with p � q. The pt-periodised sequence
of f is the sequence:

q∑
j=1

θjp
t

f = θp
t

f + θ2pt

f + · · · + θπ−pt

f + f.

It is easy to verify that it has period dividing pt and hence it is nilpotent.

Proposition 2.6. [2, Th. 17] Given f ∈ Pp� of period π = qpt with p � q, the nilpotent 
part fN of f coincides with the pt-periodised sequence of f multiplied by q−1 mod p�.

Corollary 2.7. Let f ∈ Pp� be a periodic sequence.

1. If f is idempotent, then trf = 0.
2. If trf = 0 and p � π(f) then f is idempotent.

Proof. 1. If f is idempotent with idepotency index η, from Δηf = f one gets Δη−1f −
[(Δη−1f)(0)] = Σf . By the idempotency of f and Lemma 1.4 one has

π(f) = π
(
Δη−1f

)
= π

(
Δη−1f − [(Δη−1f)(0)]

)
= π (Σf) = h · π(f)
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where h is the additive order of trf . Then h = 1 and hence trf = 0.
2. If p � π, the pt-periodised of f coincides with the constant sequence [trf ] = [0]. By 
Proposition 2.6, f is idempotent. �
3. The period of the iterated anti-differences of nilpotent and idempotent periodic 
sequences

In this section we provide some new results reducing the study of anti-differences of 
any periodic sequence to that of anti-differences of constant sequences.

The first remark we are presenting in this section displays the connection between the 
iterated anti-differences of constant sequences and the binomial coefficients.

Remark 3.1. Since in ZN (and hence in Sm and Pm for each m ≥ 2)

(Σ0[1])(n) = [1](n) = 1, (Σs[1])(0) = 0 and

(Σs[1])(n + 1) = (Σs−1[1])(n) + (Σs[1])(n) ∀n ≥ 0, s ≥ 1,

by the Stifel recursive formula [16, Prop. 2.22] we have

(Σs[c])(n) = c(Σs[1])(n) = c

(
n

s

)
∀n, s ≥ 0.

Given a prime p and a natural number m, we denote by νp(m) (or simply by ν(m)
when the prime p is clear in the context) the p-adic valuation of m, i.e., the highest power 
of p dividing m. In particular the p-adic valuation of 0 is infinite. The elements in any 
non zero coset in Zp� have the same p-adic valuation: therefore setting νp(0 + p�Z) = ∞
the p-adic valuation can be defined also on Zp� . For each real number r, we denote by 
r� the greatest integer number less or equal than r.

In 1956 Śviatomir Za̧bek [22, Th. 3] proved the following result:

Theorem 3.2 (Za̧bek). For each natural number 2 ≤ m = pα1
1 · · · pαr

r the sequence Σs[1]
in Pm has period mp

�logp1 s�
1 · · · p�logpr

s�
r . In particular for m = p� we have

π(Σs[c]) = p�+�logp s�−νp(c).

Definition 3.3. Let f ∈ Sp� be a sequence with values in Zp� . Let us set

ef,i := (Δif)(0) ∀i ≥ 0.

We write simply ei when the sequence we refer to is clear from the context.

The numbers ef,i, i ≥ 0, determine uniquely the sequence f :
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Proposition 3.4. For any f ∈ Sp� and 0 ≤ j it is

f(j) =
j∑

i=0

(
j

i

)
ef,i.

Proof. For any sequence f in Sp� we have f(0) = (Δ0f)(0) = ef,0 =
(0
0
)
ef,0. Assume 

that the result is true for j ≥ 0 for any sequence in Sp� . Then

f(j + 1) = f(j) + (Δf)(j) =
j∑

i=0

(
j

i

)
ef,i +

j∑
i=0

(
j

i

)
eΔf,i

=
j∑

i=0

(
j

i

)
ef,i +

j∑
i=0

(
j

i

)
ef,i+1

=
(
j

0

)
ef,0 +

j∑
i=1

(
(
j

i

)
+

(
j

i− 1

)
)ef,i +

(
j

j

)
ef,j+1

=
j+1∑
i=0

(
j + 1
i

)
ef,i �

Definition 3.5. Let f ∈ IΔ
p� ∪NΔ

p� be a either nilpotent or idempotent periodic sequence 
with nilpotency or idempotency index η. We call generating vector of f the ordered 
η-tuple

vec(f) = (ef,0, ef,1, . . . , ef,η−1) ∈ Zη
p� ef,i = (Δif)(0), 0 ≤ i < η.

The last entry of vec(f) with minimal p-adic valuation is called the leading component
of f .

Example 3.6. Consider the sequence V = [2, 1, 2, 4, 8, 1, 8, 4] ∈ P12. The 2- and the 3-parts 
of V are

V2 = [2, 1, 2, 0, 0, 1, 0, 0] ∈ P4 V3 = [2, 1] ∈ P3.

The sequence V2 has period 8 and hence by Theorem 2.3 it is nilpotent. Since Δ5V2 = 0
while Δ4V2 = [2], the sequence V2 has nilpotency index 5; then vec(V2) = (2, 3, 2, 3, 2). 
The sequence V3 has period 2 and tr(V3) = 0: hence it is idempotent by Corollary 2.7. 
Clearly it has idempotency index 1; then vec(V3) = (2). By the Chinese Remainder 
Theorem, the sequences V2 and V3 correspond respectively to the following sequences in 
P12:

Ṽ2 = [6, 9, 6, 0, 0, 9, 0, 0] Ṽ3 = [8, 4]

and V = Ṽ2 + Ṽ3.
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By Proposition 3.4, any nilpotent (resp. idempotent) sequence f ∈ IΔ
p� ∪NΔ

p� is deter-
mined uniquely by its generating vector vec(f).

The next results provide a rationale for the name leading component of the generating 
vectors of nilpotent and idempotent periodic sequences introduced in Definition 3.5. 
Indeed, given f ∈ IΔ

p� ∪ NΔ
p� , we will prove that for s sufficiently large (shortly s � 0) 

the period of Σsf will be driven by that of the iterated anti-difference of the leading 
component of the generating vector vec(f).

Theorem 3.7. Let f ∈ NΔ
p� be a nilpotent sequence of nilpotency index η with generating 

vector vec(f) = (e0, . . . , eη−1). Then

Σsf =
η−1∑
i=0

Σi+s[ei] ∀s ≥ 0.

If eγ is the leading component of the generating vector vec(f), then

π(Σsf) = π(Σs+γ [eγ ]) = p�+�logp(s+γ)�−νp(eγ) for s � 0.

Proof. Let us prove the first statement. By the linearity of Σ it is sufficient to prove the 
result for s = 0. We proceed by induction on η:

• η = 1 means Δf = 0, so f = [c] = [f(0)].
• Suppose that the statement holds for η = t. If f has nilpotency index η = t +1, then 

Δf has nilpotency index t and by inductive hypothesis:

Δf =
η−1∑
i=0

Σi[eΔf
i ] =

η−1∑
i=0

Σi[(Δi(Δf))(0)] =
η−1∑
i=0

Σi[Δi+1f(0)] =
η−1∑
i=0

Σi[ei+1].

Since f = [f(0)] + ΣΔf we obtain that

f = [f(0)] + Σ
(

η−1∑
i=0

Σi[ei+1]
)

= [e0] +
η∑

i=1
Σi[ei] =

η∑
i=0

Σi[ei].

If eγ is the leading component, then νp(eγ) ≤ νp(ei), 0 ≤ i < γ, and νp(eγ) < νp(ei), 
γ < i < η. Let us prove that π(Σsf) = π(Σs+γ [eγ ]) for s � 0. Let μ be the minimal 
natural number such that pμ − γ ≥ 0 and η − γ − 1 < pμ(p − 1). Notice that for any 
k ≥ μ both pk and pk + η − γ − 1 are strictly less than pk+1 and hence k = logp pk =
logp(pk + η − γ − 1)�. In order to conclude the proof, we show that for any k ≥ μ one 
has:

π(Σsf) = π(Σs+γ [eγ ]) ∀ pk − γ ≤ s < pk+1 − γ,
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hence the statement holds for any s ≥ pμ − γ.
For s = pk − γ we have:

Σpk−γf = Σpk−γ [e0] + Σ1+pk−γ [e1] + · · · + Σγ+pk−γ [eγ ] + · · · + Ση−1+pk−γ [eη−1].

By Theorem 3.2, Σpk [eγ ] has period p�+k−νp(eγ). The other summands have period 
strictly dividing p�+k−νp(eγ):

• For every γ < i < η, pk + i −γ < pk+1 by construction and so logp(pk + i −γ)� = k; 
hence the period of Σpk+i−γ [ei] is p�+k−νp(ei) | p�+k−νp(eγ)−1 (since νp(ei) > νp(eγ)).

• For every 0 ≤ i < γ, νp(eγ) ≤ νp(ei) and pk + i − γ < pk and so logp(pk + i − γ)� ≤
k − 1. Hence the period of Σpk+i−γ [ei] is a divisor of p�+k−1−νp(ei) and so it divides 
p�+k−1−νp(eγ).

Thus the period π(Σpk−γf) is equal to p�+k−νp(eγ).
For pk − γ < s < pk+1 − γ, the period of Σs+γ [eγ ] is p�+k−νp(eγ), and by Lemma 1.4

π(Σsf) | π(Σpk−γf) = p�+k−νp(eγ). Furthermore, since pk+1 + η − γ − 1 < pk+2 we have

pk − γ < s ≤ s + η − 1 < pk+1 − γ + η − 1 < pk+2.

Then π(Σs+i[ei]) | p�+k+1−(νp(eγ)+1) for γ < i ≤ η − 1, and π(Σs+i[ei]) | p�+k−νp(eγ) for 
0 ≤ i ≤ γ − 1. Thus π(Σsf) | p�+k−νp(eγ), and hence π(Σsf) = p�+k−νp(eγ). �
Corollary 3.8. Denoted by eγ the leading component of the generating vector of f ∈ NΔ

p� , 
one has that for t � 0

π
( t∑

s=0
Σsf

)
= π

(
Σt+γ [eγ ]

)
= p�+�logp(t+γ)�−νp(eγ).

Proof. Observe that if vec(f) = (e0, . . . , eη−1), then

t∑
s=0

Σsf =
t∑

s=0
(
η−1∑
i=0

Σi+s[ei]).

Hence, repeating the same reasoning of the proof of Theorem 3.7, we get that the period 
of 

∑t
s=0 Σsf is equal to π(Σt+γ [eγ ]). �

Remark 3.9. With the notation of Theorem 3.7, for each s ≥ 0

π(Σsf) | lcm{π(Σi+s[ef,i]) : 0 ≤ i < η)} = max{π(Σi+s[ef,i]) : 0 ≤ i < η}.

In general we have not the equality. For example f = [0, 2] ∈ NΔ
8 is a nilpotent sequence 

of nilpotency index η = 3. It has period 2 and vec(f) = (0, 2, 4). By Theorem 3.7 one 
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has f = Σ[2] + Σ2[4], and both Σ[2] and Σ2[4] have period 4. Hence π(f) = 2 divides 
properly lcm{π(Σ[2]), π(Σ2[4])} = 4.

Remark 3.10. Observe that Theorem 3.7 generalizes [11, Th. 8] to the case of sequences 
in Zp� , and hence, by the Chines Remainder Theorem, to that of sequences in Zm for 
each m ∈ N. Indeed for s = 0 we obtain that the nilpotent sequences in Zp� , i.e. those 
with period a power of p, are sums of anti-differences of constant sequences, i.e., linear 
combinations of binomials.

Theorem 3.11. Consider f ∈ IΔ
p� with idempotency index η and generating vector 

vec(f) = (e0, . . . , eη−1). For every s ≥ 1, one has:

Σsf = Δ−sf −
s−1∑
j=0

Σj [ej−s]

where j − s is the remainder in the division of j − s by η for j = 0, 1, . . . , s − 1. This 
provides the explicit decomposition in idempotent and nilpotent part of Σsf . Moreover if 
eγ is the leading component of vec(f), one has

π(Σsf) = lcm
(
π(f), π(Σs−η+γ [eγ ])

)
= lcm

(
π(f), p�+�logp(s−η+γ)�−νp(eγ)

)
∀s � 0.

Proof. We proceed by induction on s.

• For s = 1 one has Σf = Σ(Δηf) = Δη−1f − [eη−1] = Δ−1f − [e−1], and hence the 
thesis.

• Suppose that the statement is true for 1 ≤ s = tη + s̄, t ≥ 0, 0 ≤ s̄ < η; let us 
prove it for s + 1 = t′η + s + 1. Notice that (t′, s + 1) = (t + 1, 0) if s̄ = η − 1 and 
(t′, s + 1) = (t, ̄s + 1) otherwise. By inductive hypothesis we have:

Σs+1f = Σ(Σsf) =Σ(Δ−sf −
s−1∑
j=0

Σj [ej−s])

=Δ−s−1f − [e−s−1] −
s∑

j=1
Σj [ej−1−s]

=Δ−(s+1)f −
s∑

j=0
Σj [ej−(s+1)].

By the uniqueness of the decomposition of a periodic sequence in its idempotent and 
nilpotent parts, Δ−sf and − 

∑s−1
j=0 Σj [ej−s] are the idempotent and nilpotent parts of 

Σsf , respectively. Let us now compute the period of Σsf for s sufficiently large. Firstly 
we have π

(
Δjf

)
= π(f) for any j ∈ N (since f ∈ IΔ

�). Now let us denote by g the 
p
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nilpotent sequence 
∑η−1

j=0 Σj [ej ]. The nilpotency index of g is ηg := max{j : ej �= 0} + 1; 
clearly ηg ≤ η, but the leading component of vec(g) and vec(f) is the same: [eγ ]. Notice 
that for any s ≥ η:

s−1∑
j=0

Σj [ej−s] =
∑

0≤j<s

Σj [ej−s] +
s−1∑
j=s̄

Σj [ej−s] =
∑

0≤j<s

Σj [ej−s] +
t−1∑
i=0

Σiη+s̄g.

By Corollary 3.8, for s � 0 one has:

π

⎛
⎝s−1∑

j=0
Σj [ej−s]

⎞
⎠ = π

(
t−1∑
i=0

Σiη+s̄g

)
= π

(
Σ(t−1)η+s̄+γ [eγ ]

)
= π

(
Σs−η+γ [eγ ]

)
.

We conclude by Theorem 3.2. �
Remark 3.12. With the notation of the previous theorem, for each s ≥ 0

π(Σsf) | lcm{π(Δ−sf), π(Σj [ef,j−s]) : 0 ≤ i < η}.

In general we have not the equality. For example f = [6, 0, 2] ∈ IΔ
8 is an idempotent 

sequence of idempotency index η = 6. It has period 3 and vec(f) = (6, 2, 0, 2, 2, 4). By 
Theorem 3.7 one has Σ3f = Δ3f −

(
[2] + Σ[2] + Σ2[4]

)
. Now Σ3f has period 6, Δ3f has 

period 3, [2] has period 1, Σ[2] has period 4 and Σ2[4] has period 4. Hence π(Σ3f) = 6
divides properly lcm{π(Δ3f), π([2]), π(Σ[2]), π(Σ2[4])} = 12.

Remark 3.13. In the proofs of Theorems 3.7, Corollary 3.8 and 3.11, we computed 
explicitly how big s has to be for the statements to hold. It is easy to check that s ≥
η−γ−1 and s ≥ η are sufficient in the nilpotent and in the idempotent cases respectively 
to satisfy the required conditions.

Example 3.14. Consider the sequences

V2 = [2, 1, 2, 0, 0, 1, 0, 0] ∈ P4, V3 = [2, 1] ∈ P3.

As we observed in Example 3.6, V2 is nilpotent of nilpotency index 5 and V3 is idempo-
tent of idempotency index 1. Their generating vectors are vec(V2) = (2, 3, 2, 3, 2), and 
vec(V3) = (2). The leading component of vec(V2) is e3 = 3, that of vec(V3) is e0 = 2. By 
Theorem 3.7 we have

ΣsV2 = Σs[2] + Σs+1[3] + Σs+2[2] + Σs+3[3] + Σs+4[2].

By Remark 3.13 and Theorem 3.2, for s ≥ 1 we have

π(ΣsV2) = π(Σs+3[3]) = 22+�log2(s+3)�.
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By Theorem 3.11 we have

ΣsV3 = f −
s−1∑
j=0

Σj [2].

By Remark 3.13, for s ≥ 1 we have

π(ΣsV3) = lcm
(
2, π(Σs−1[2])

)
= 2 × 31+�log3(s−1)�.

4. Recursive formula for binomials coefficients in Zp�

In this section we will prove some new recursive formulas describing the p-adic valua-
tion of the coefficients of the periodic sequence of binomial coefficients 

(
n
s

)
n≥0 mod p�, 

pk ≤ s < pk+1, in terms the p-adic valuation of the coefficients of the periodic sequence 
of binomial coefficients 

(
n
s′

)
n≥0 mod p�, pk−1 ≤ s′ < pk.

One of the main tools to study binomial coefficients modulo p� is Kummer’s Theorem
[13]. This result says that, given a prime p, for given integers n ≥ m ≥ 0 with p-adic 
representation

n = 〈asas−1 . . . a1a0〉p, s = 〈bsbs−1 . . . b1b0〉p,

the p-adic valuation νp
((

n
s

))
of the binomial coefficient n over s is equal to the number 

of borrows in the subtraction 〈asas−1 . . . a1a0〉p − 〈bsbs−1 . . . b1b0〉p.

Example 4.1. Consider the numbers

798 = 〈1002120〉3, 454 = 〈121211〉3.

Let us compute the 3-adic valuation of 
(798
454

)
:

1̌ 0̌ 0 2̌ 1 2̌ 0 -
1 2 1 2 1 1 =

1 1 0 2 0 2

=⇒ ν3

((
798
454

))
= 4.

In this section, we focus on the s-th binomial function:

bs : N −→ Zp�

n 	−→
(
n

s

)
.

As observed in Remark 3.1, this function coincides with the s-th anti-difference Σs[1] of 
the constant sequence [1] ∈ Pp� . If the expression of s in base p is one of the following:
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〈bk · · · bk−m (p− 1) · · · (p− 1)
�

bk−m−�−1 · · · b0〉p

〈bk · · · bk−m 0 · · · 0
�

bk−m−�−1 · · · b0〉p

〈bk · · · bk−m (p− 1) 0 · · · 0
�

bk−m−�−1 · · · b0〉p

where k > � and 0 ≤ m ≤ k− � − 1, we prove that it is possible to link the s-th binomial 
function bs to bs′ where s′ is obtained from s by removing one of the explicit coefficients 
in its p-base expression. Of course, such patterns do not always occur in the expression 
of s in base p, a part the case p = 2 and � = 2.

Firstly we need some definitions.

Definition 4.2. Given a sequence f ∈ Sm := ZN
m, a prime q and an integer t ≥ 1, we call 

j-th qt-subsequence of f the element hj ∈ Zqt

m defined as

hj = (f(jqt), f(jqt + 1), . . . , f((j + 1)qt − 1)) j ∈ N.

We denote by R(f, qt) ∈ Sm the sequence obtained repeating q times the j-th qt-
subsequences of f for j = 0, 1, 2, . . . :

R(f, qt) = (h0, . . . , h0
q

, h1, . . . , h1
q

, . . . ).

We denote by A(f, qt) ∈ Sm the sequence obtained alternating (q − 1)qt zeros and the
j-th qt-subsequences of f for j = 0, 1, 2, . . . :

A(f, qt) = (0, . . . , 0
(q−1)qt

, h0, 0, . . . , 0
(q−1)qt

, h1, . . . ).

Proposition 4.3. For any f ∈ Sm, t ≥ 1, and n′ = 〈ar . . . atat−1 . . . a0〉q one has

R(f, qt)(n) = f(n′) if n = 〈ar . . . at αat−1 . . . a0〉q, ∀ 0 ≤ α < q.

A(f, qt)(n) =
{
f(n′) if n = 〈ar . . . at(q − 1)at−1 . . . a0〉q
0 otherwise.

Proof. By Definition 4.2, given ξ ∈ N, 0 ≤ α < q, 0 ≤ i < qt, one has

R(f, qt)(ξqt+1 + αqt + i) = f(ξqt + i)

A(f, qt)(ξqt+1 + αqt + i) =
{
f(ξqt + i) if α = q − 1,
0 otherwise.

Translating in the q-adic representation, we get the claim. �
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Example 4.4.

• The set of 2-subsequences of f = [0, 1, 2, 3, 4, 5] ∈ P7 is

{[0, 1], [2, 3], [4, 5]}.

• If h = [1, 2, 3, 4, 5, 6, 7, 8] ∈ P11, then:

R(h, 22) =[1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8]

A(h, 22) =[0, 0, 0, 0, 1, 2, 3, 4, 0, 0, 0, 0, 5, 6, 7, 8].

Moreover

R(h, 22)(23 + 22 + 3) = 8 = h(22 + 3) R(h, 22)(23 + 2) = 7 = h(22 + 2)

A(h, 22)(23 + 22 + 3) = 8 = h(22 + 3) A(h, 22)(23 + 2) = 0.

Remark 4.5. Observe the following facts:

• For any qt both R and A are linear operators: for any c1, c2 ∈ Zm and f1, f2 ∈ Sm, 
it is

R(c1f1 + c2f2, q
t) =c1 R(f1, q

t) + c2 R(f2, q
t)

A(c1f1 + c2f2, q
t) =c1 A(f1, q

t) + c2 A(f2, q
t).

• If f ∈ Pm has period π and qt | π, then both R(f, qt) and A(f, qt) have period qπ.

Definition 4.6. If f, g ∈ Pp� , we write:

• f ≡ν g if for any n ≥ 0, f(n) = 0 if and only if g(n) = 0, and otherwise νp(f(n)) =
νp(g(n)) ∈ {0, · · · , � − 1}.

• Πi(f) := #{f(x) | 0 ≤ x < π(f), νp(f(x)) = i} the number of coefficients with 
p-adic valuation i, for every 0 ≤ i < �.

• Z(f) := #{f(x) | 0 ≤ x < π(f), f(x) = 0} the number of zeros.

Let us consider now the s-th anti-difference Σs[1] = bs of the constant sequence [1]
in Pp� . Suppose that pk ≤ s < pk+1. The next results allow to link in certain cases the 
quantities Πi(bs), Z(bs) to the quantities Πi(bs′), Z(bs′) for some s′ with pk−1 ≤ s′ <

pk.

Lemma 4.7. With the notation above, suppose that k > �, −1 ≤ m ≤ k − � − 1, and that 
the expression of s in base p is:
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s = 〈bk · · · bk−m (p− 1) · · · (p− 1)
�

bk−m−�−1 · · · b0〉p.

Denote by

s′ : = s−
(
bkp

k + (bk−1 − bk)pk−1 + · · · + (p− 1 − bk−m)pk−m−1)
= 〈bk · · · bk−m (p− 1) · · · (p− 1)

�−1

bk−m−�−1 · · · b0〉p.

Then bs ≡ν A(bs′ , pk−m−�). In particular Πi(bs) = Πi(bs′) and Z(bs) = Z(bs′) + (p −
1)pk+�−1.

Proof. The case m = −1 corresponds to s = 〈(p− 1) · · · (p− 1)
�

bk−� · · · b0〉p. The se-

quence bs has period p�+k by Theorem 3.2. For any 0 ≤ n < p�+k, let n = 〈ak+�−1 . . . a0〉p
be its expression in base p. The n-th coefficient of bs is:

(
ak+�−1 · · · ak+1 ak · · · ak−m ak−m−1 · · · ak−m−� ak−m−�−1 · · · a0

bk · · · bk−m (p− 1) · · · (p− 1)
�

bk−m−�−1 · · · b0

)
.

Let n′ be obtained from n by removing the coefficient ak−m−�. The n′-th coefficient of 
bs′ is:

⎛
⎝ak+�−1 · · · ak+1 ak · · · ak−m ak−m−1 · · · ak−m−�+1 ak−m−�−1 · · · a0

bk · · · bk−m (p− 1) · · · (p− 1)
�−1

bk−m−�−1 · · · b0

⎞
⎠ .

By Proposition 4.3, to conclude that bs ≡ν A(bs′ , pk−m−�), it is enough to show that 
νp(bs(n)) = νp(bs′(n′)) if ak−m−� = p − 1 and bs(n) = 0 otherwise. To prove this, we 
use Kummer’s Theorem studying the number of borrows in the subtractions n − s and 
n′ − s′ in base p:

• If ak−m−� = p − 1:
– If ak−m−� lends, the number of borrows in n − s is at least � + 1 and one more 

than the number of borrows in n′ − s′. However in both binomials there are at 
least � borrows (given by the remaining (� − 1) coefficients equal to p − 1), hence 
both binomials are zero modulo p�.

– If ak−m−� does not lend, the number of borrows is the same for n − s and n′ − s′.
• If ak−m−� < p − 1: the binomial bs(n) = 0 since again there are at least � borrows.

From the considerations above, we conclude that bs ≡ν A(bs′ , pk−m−�). Then immedi-
ately follows
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Πi(bs) = Πi(bs′),

Z(bs) = Z(bs′) + (p− 1)π(bs′) = Z(bs′) + (p− 1)pk+�−1. �
Example 4.8. Let p = 3, � = 2 and s = 51 = 〈1220〉. Then s′ = 〈120〉 = 15. The sequence 
b51 has period 32+3 = 243, while the sequence b15 has period 32+2 = 81. We have

b15 = [01517166633325206333064146663335850666606747666333828],

where 0i denotes a sequence of i zeros. By Lemma 4.7 the elements of the sequence b51
have the same 3-adic valuation of the elements of A(b15, 3), which is obtained alternating 
6 zeros to the 3-subsequences of b15:

b51 ≡ν [0603 . . . 0603︸ ︷︷ ︸
45

06 171 06 666 . . . 06 828︸ ︷︷ ︸
198

.]

In particular Π0(b51) = Π0(b15) = 18, Π1(b51) = Π1(b15) = 24, Z(b51) = Z(b15) +(3 −
1)π(b15) = 39 + 2 × 32+3−1 = 201.

Lemma 4.9. With the notation above, suppose that k > �, 0 ≤ m ≤ k − � − 1 and that 
the expression of s in base p is:

s = 〈bk · · · bk−m 0 · · · 0
�

bk−m−�−1 · · · b0〉p.

Denote by

s′ : = s−
(
bkp

k + (bk−1 − bk)pk−1 + · · · + (bk−m − bk−m+1)pk−m − bk−mpk−m−1)
= 〈bk · · · bk−m 0 · · · 0

�−1
bk−m−�−1 · · · b0〉p.

Then bs ≡ν R(bs′ , pk−m−1). In particular, Πi(bs) = p ·Πi(bs′) and Z(bs) = p · Z(bs′).

Proof. The sequence bs has period p�+k by Theorem 3.2. Similarly to the previous 
lemma, for 0 ≤ n < p�+k with n = 〈ak+�−1 . . . a0〉p, the coefficient bs(n) =

(
n
s

)
is:

(
ak+�−1 · · · ak+1 ak · · · ak−m ak−m−1 · · · ak−m−� ak−m−�−1 · · · a0

bk · · · bk−m 0 · · · 0
�

bk−m−�−1 · · · b0

)
.

Let n′ be obtained from n by removing the coefficient ak−m−1, hence the n′-th coefficient 
of bs′ is:
(
ak+�−1 · · · ak+1 ak · · · ak−m ak−m−2 · · · ak−m−� ak−m−�−1 · · · a0

bk · · · bk−m 0 · · · 0 bk−m−�−1 · · · b0

)
.

�−1
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By Proposition 4.3, to conclude that bs ≡ν R(bs′ , pk−m−1), it is enough to show that, for 
any value of ak−m−1, bs′(n′) = 0 whenever bs(n) = 0, otherwise νp(bs(n)) = νp(bs′(n′)). 
To prove this, we use Kummer’s Theorem studying the number of borrows in the sub-
tractions n − s and n′ − s′ in base p:

• If ak−m−1 lends, then ak−m−2 = · · · = ak−m−� = 0 and they all lend. So in this case 
in both s and s′ there are at least � borrows (notice that ak−m lends in s′); so the 
binomials are both equal to zero.

• If ak−m−1 does not lend, then the number of borrows remains the same in both the 
binomials.

Henceforth we can conclude that bs ≡ν R(bs′ , pk−m−1), thus:

Πi(bs) = p · Πi(bs′) Z(bs) = p · Z(bs′). �
Example 4.10. Let p = 3, � = 2 and s = 55 = 〈2001〉. Then s′ = 〈201〉 = 19. The 
sequence b55 has period 32+3 = 243, while the sequence b19 has period 32+2 = 81. We 
have

b19 = [018012318678036036036063063063012318678063063063036036036012318678];

by Lemma 4.9 the elements of the sequence b55 have the same 3-adic valuation of the 
elements of R(b19, 32), which is obtained repeating 3 times the 9-subsequences of b19:

b55 ≡ν [090909 090909 012318678 012318678 012318678 036036036

036036036 036036036 . . . 012318678 012318678 012318678.]

In particular Π0(b55) = 3 × Π0(b19) = 54, Π1(b55) = 3 × Π1(b19) = 90, Z(b55) =
3 × Z(b19) = 99.

In order to present the last result of this section, we need some preliminary definitions.

Definition 4.11. Given s = 〈bk · · · bk−m (p− 1) 0 · · · 0
�

bk−m−�−1 · · · b0〉p ∈ N with k > �

and −1 ≤ m ≤ k − � − 1, we denote by Es the following subset of {0, . . . , pk+� − 1}:

Es :=
{
n ∈ N : 0 ≤ n < pk+�, n = 〈ak+�−1 . . . a0〉p such that:

ak−m−1 = p− 1 ak−m−2 �= 0

ak−m−i = 0 ∀ 3 ≤ i ≤ � ak−m−�−1 < bk−m−�−1

aj ≥ bj ∀ 0 ≤ j ≤k −m− �− 2 and k −m ≤ j ≤ k
}
.
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The case m = −1 corresponds to s = 〈(p− 1) 0 · · · 0
�

bk−� · · · b0〉p. We denote by χEs
∈ Pp�

the sequence:

χEs
= [e0, . . . , epk+�−1] where ei =

{
1 if i ∈ Es

0 otherwise.

It is easy to check that

|Es| = p�−1

⎛
⎝ k∏

j=k−m

(p− bj)

⎞
⎠ (p− 1) bk−m−�−1

(
k−�−m−2∏

i=0
(p− bi)

)

and hence Es = ∅ if bk−m−�−1 = 0.

Lemma 4.12. With the notation above, suppose that k > �, −1 ≤ m ≤ k − � − 1 and that 
the expression of s in base p is:

s = 〈bk · · · bk−m (p− 1) 0 · · · 0
�

bk−m−�−1 · · · b0〉p.

Denote by

s′ : = s−
(
bkp

k + (bk−1 − bk)pk−1 + · · · + (p− 1 − bk−m)pk−m−1 − (p− 1)pk−m−2)
= 〈bk · · · bk−m (p− 1) 0 · · · 0

�−1

bk−m−�−1 · · · b0〉p.

Then bs ≡ν R(bs′ , pk−m−2) + p�−1χEs
and thus

Πi(bs) = p · Πi(bs′) 0 ≤ i ≤ �− 2

Π�−1(bs) = p · Π�−1(bs′) + |Es|
Z(bs) = p · Z(bs′) − |Es|.

Proof. The case m = −1 corresponds to s = 〈(p− 1) · · · (p− 1)
�

bk−� · · · b0〉p. The se-

quence bs has period p�+k by Theorem 3.2. Similarly to the previous lemmas, for 
0 ≤ n < p�+k with n = 〈ak+�−1 . . . a0〉p, the coefficient bs(n) =

(
n
s

)
is:

(
ak+�−1 · · · ak+1 ak · · · ak−m ak−m−1 ak−m−2 · · · ak−m−� ak−m−�−1 · · · a0

bk · · · bk−m p− 1 0 · · · 0
�−1

bk−m−�−1 · · · b0

)
.

Let n′ be obtained from n by removing the coefficient ak−m−2, hence the n′-th coefficient 
of bs′ is:
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(
ak+�−1 · · · ak+1 ak · · · ak−m ak−m−1 ak−m−3 · · · ak−m−� ak−m−�−1 · · · a0

bk · · · bk−m p− 1 0 · · · 0
�−2

bk−m−�−1 · · · b0

)
.

Let us use Kummer’s Theorem to study the number of borrows in the subtractions n −s

and n′ − s′ in base p:

• if ak−m−�−1 does not lend, the two binomials have the same number of borrows.
• if ak−m−�−1 lends, we have the following cases:

– if ak−m−2 = ak−m−3 = · · · = ak−m−� = 0, then both binomials have at least �
borrows and hence they are zero.

– If ak−m−3 = · · · = ak−m−� = 0 but ak−m−2 �= 0, there are at least � borrows in s′. 
In this situation there are at least � − 1 borrows in s and they are precisely � − 1
when n ∈ Es.

– In the remaining cases, there exists an index k−m − � ≤ i ≤ k −m− 3 such that 
ai �= 0, thus ak−m−2 does not lend, so the borrows in s and s′ are the same.

This proves the statement. �
Remark 4.13. Observe that Lemma 4.12 with m ≥ 0 generalizes Lemma 4.9 if p = 2: 
indeed the hypotheses of Lemma 4.9 imply bk−m−�−1 = 0 in Lemma 4.12 and hence 
Es = ∅.

Remark 4.14. Let s = 〈bk · · · b0〉. The construction of s′ in Lemmas 4.7, 4.9 and 4.12
does not depend on the (k −m − �)-tail bk−m−�−1 . . . b0. Therefore if s and s + i differ 
only on their (k −m − �)-tails, then (s + i)′ = s′ + i.

Example 4.15. Let p = 3, � = 2 and s = 47 = 〈1202〉. Then s′ = 〈122〉 = 17. The 
sequence b47 has period 32+3 = 243, while the sequence b17 has period 32+2 = 81. We 
have

b17 = [0171006003002083084006003005086087006003008];

by Lemma 4.12 the elements of the sequence b47 have the same 3-adic valuation of the 
elements of R(b17, 3) + 3χE47 , which is obtained adding 3 times the sequence χE47 to 
that obtained repeating 3 times the 3-subsequences of b17: the effect is the substitution 
of the zeros appearing in R(b17, 3) in the positions belonging to E47 with 3, which has 
3-adic valuation equal to 1. It is

E47 = {48, 49, 51, 52, 75, 76, 78, 79, 129, 130, 132, 133, 156, 157, 159, 160,

210, 211, 213, 214, 237, 238, 240, 241}

and hence |E47| = 24. Therefore Π0(b47) = 3 × Π0(b17) = 18, Π1(b47) = 3 × Π1(b17) +
|E47| = 48, Z(b47) = 3 × Z(b17) − |E47| = 177.
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5. The case of Z4 and Vieru’s sequence

In this section we apply the previous results to answer two questions posed by Anatol 
Vieru [21, 3.1, 3.2, 3.3]. The questions regarded the period of, and the proliferation 
of 4 and 8 in, the sequences obtained iterating the Vieru operator V on the sequence 
V = [2, 1, 2, 4, 8, 1, 8, 4] in P12 where

V V := ΣV + [8].

As observed in Example 3.6

V = Ṽ2 + Ṽ3 = [6, 9, 6, 0, 0, 9, 0, 0] + [8, 4];

hence

V V = ΣV + [8] = Σ[6, 9, 6, 0, 0, 9, 0, 0] + Σ[8, 4] + [8] = Σ[6, 9, 6, 0, 0, 9, 0, 0] + [8, 4].

Therefore iterating s times the Vieru operator we get

V sV = Σs[6, 9, 6, 0, 0, 9, 0, 0] + [8, 4].

The period of V sV is equal to the period of Σs[6, 9, 6, 0, 0, 9, 0, 0]. Reducing modulo 4, 
the latter is equal to the period of the iterated anti-differences of V2 = [2, 1, 2, 0, 0, 1, 0, 0]
in P4.

Vieru’s question I 5.1. The first Vieru’s question [21, 3.1] was about calculating the 
period of the sequences V sV . Using what was observed in Example 3.14 for s ≥ 1 we 
have that the period of V sV is

π(V sV ) = π(ΣsV ) = π(ΣsV2) = 22+�log2(s+3)�.

Vieru’s question II 5.2. The second Vieru’s question [21, 3.2] was about the possible val-
ues appearing in V sV , s ≥ 0. Since in the iterated anti-differences of [6, 9, 6, 0, 0, 9, 0, 0]
appear only the numbers 0, 3, 6, 9, in V sV appear only the numbers 8 + {0, 3, 6, 9} =
{8, 11, 2, 5} and 4 + {0, 3, 6, 9} = {4, 7, 10, 1}.

Vieru’s question III 5.3. The third Vieru’s question [21, 3.3] was about the proliferation 
of 8 and 4 in V sV . This corresponds to the proliferation of zeros in ΣsṼ2. The study of 
the iterated anti-differences ΣsṼ2 in P12 is equivalent to the study of the iterated anti-
differences ΣsV2 = Σs[2, 1, 2, 0, 0, 1, 0, 0] in P4. Let us therefore focus on Z4: with the 
notation of the previous section, we are considering p = 2 and � = 2. Notice that in 
this case Lemmas 4.7 and 4.12 allow to reduce each binomial coefficient to a smaller 
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one, permitting to link the s-th anti-difference Σs[1] with 2k ≤ s < 2k+1 to a s′-th 
anti-difference Σs′ [1] with 2k−1 ≤ s′ < 2k.

We provide now a recursive formula for the zeros Z(s) := Z(ΣsV2) of the s-th anti-
difference of the sequence

V2 = [2, 1, 2, 0, 0, 1, 0, 0] ∈ P4,

when 2k ≤ s < 2k+1 for k ≥ 5. The sequence Z(s) is clearly a sequence of natural 
numbers.

To state our formula, we need some technical results. Firstly observe that since 2 ·2 = 0
in Z4, if 2k ≤ s, t < 2k+1, then

2χEs�Et
:= 2(χEs

+ χEt
)(n) =

{
2 if n ∈ Es�Et,

0 otherwise.

Furthermore if s = 〈10bk−2 . . . b0〉2, the quantity |Es| is linked with the number z(s)
of 0’s in the binary expansion of s in the following way:

|Es| = 2 · bk−2 · 2z(〈bk−3···b0〉2)

= bk−2 · 2z(s) =
{

2z(s) if bk−2 = 1,
0 otherwise.

The quantities Π0(f), Π1(f), Z(f), f ∈ P4, introduced in Definition 4.6 represent the 
number of 1 or 3, the number of 2, and the number of 0 in f , respectively.

If s = 〈1bk−1 · · · b0〉2 and t = 〈1b′k−1 · · · b′0〉2, denote by (s | t) the bitwise OR of s and 
t, i.e., the number whose 2-adic representation has 1 in each bit position for which the 
corresponding bit of either s or t is 1.

Lemma 5.4. Let k ≥ 5 and 2k +2k−2 ≤ s < 2k +2k−1 −4. Set dk equal to the (2k−2 −4)-
sequence dk(s) := Π1(2(χEs+1�Es+3)). Then

dk(s) = 2z(s+1) + 2z(s+3) − 2 × 2z((s+1|s+3))

and

d5 = (4, 8, 4, 4) and dk+1 = (2 × dk, 4, 2k−1, 2k−2, 2k−2, dk) ∀k ≥ 5.

Proof. Observe that, by Remark 4.13

dk(s) = |Es+1| + |Es+3| − 2 × |Es+1 ∩ Es+3| = 2z(s+1) + 2z(s+3) − 2 × 2z((s+1|s+3))

since |Es+1 ∩ Es+3| = 2z((s+1|s+3)) (see Definition 4.11 with � = 2 and m = −1).
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If k = 5, then s ∈ {40, 41, 42, 43}. It is easy to verify that

d5 = (2z(41) + 2z(43) − 2z(41|43)+1, . . . , 2z(44) + 2z(46) − 2z(44|46)+1) = (4, 8, 4, 4).

Fixed k, the binary representation of the numbers s between 2k +2k−2 and 2k +2k−1−4
are of the following three types

• Ik: 2k + 2k−2 ≤ s < 2k + 2k−2 + 2k−3 − 4,
• IIk: 2k + 2k−2 + 2k−3 − 4 ≤ s < 2k + 2k−2 + 2k−3,
• IIIk: 2k + 2k−2 + 2k−3 ≤ s < 2k + 2k−1 − 4.

Given s′ ∈ IIIk+1, hence s′ = 2k+1 + 2k−1 + 2k−2 + t with 0 ≤ t < 2k−2 − 4. Set 
s = 2k + 2k−2 + t, we get

(z(s′ + 1), z(s′ + 3), z(s′ + 1 | s′ + 3)) = (z(s + 1), z(s + 3), z(s + 1 | s + 3)).

Given s′ ∈ Ik+1, hence s′ = 2k+1+2k−1+t with 0 ≤ t < 2k−2−4. Set s = 2k+2k−2+t, 
we get

(z(s′ + 1), z(s′ + 3), z(s′ + 1 | s′ + 3)) = (1 + z(s+ 1), 1 + z(s+ 3), 1 + z(s+ 1 | s + 3)).

Finally the binary representation of s′ in the group IIk+1 is the following:

s′ : 〈10101k+1−500〉2, 〈10101k+1−501〉2, 〈10101k+1−510〉2, 〈10101k+1−511〉2.

Therefore (z(s′ + 1), z(s′ + 3), z(s′ + 1 | s′ + 3)) are

1. (3, 2, 2) for s′ = 〈10101k+1−500〉2,
2. (3, k − 1, 2) for s′ = 〈10101k+1−501〉2,
3. (2, k − 2, 1) for s′ = 〈10101k+1−510〉2,
4. (k − 1, k − 2, k − 2) for s′ = 〈10101k+1−511〉2.

Thus we get the wanted claim. �
Remark 5.5. We can link the sequence dk to two well known integer sequences. Fixed 
k ≥ 5 the sequence dk coincides with

(2k−a(4), 2k−a(5) . . . , 2k−a(2k−2−1))

where a(2t) = t + 1 and a(2t + i) = 1 + a(i) for t ≥ 0 and 0 < i < 2t (see A063787 in the 
OEIS, the online encyclopedia of integer sequences). Noticed that a(2t1+· · ·+2th) = h +th
for t1 > · · · > th ≥ 0, one can directly prove that dk(2k+2k−2+2t1+· · · 2th−4) = 2k−h−th .
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Denoted by wt(n) the Hamming weight of n, i.e., the number of 1’s in the binary 
expansion of n, we have, for 2k + 2k−2 ≤ s < 2k + 2k−1 − 4

dk(s) = 2wt(2k+2k−1−4−s)+1.

The recurrence relation for dk(s) permits to compute a recurrence relation for the Ham-
ming weight. Denoted by wh the Hamming weight of the numbers 〈1〉2, . . . , 〈2h+1 − 4〉2, 
we have

w2 = (1, 1, 2, 1), wh+1 = (wh, h, h, h + 1, 1, wh + 1) ∀h ≥ 2

where wh + 1 is the sequence obtained by wh increasing by one each entrance.

Main Recursive Formula 5.6. For k ≥ 5 and 2k ≤ s < 2k+1, denote:

(c1, c2, c3, c4) := (48, 32, 40, 44)

(c′1, c′2, c′3, c′4) := (48, 40, 44, 48)

(c′′1 , c′′2 , c′′3 , c′′4) := (32, 32, 48, 64)

Zk :=
(
Z(s)

)
2k≤s<2k+1 .

The initial condition is

Z5 = (88, 64, 80,88, 92, 64, 80, 88, 104, 92, 104, 108, 94, 78, 88, 96,

108, 96, 104, 108, 110, 102, 108, 112, 118, 114, 118, 120, 64, 64, 96, 128).

For k ≥ 6, the 2k-tuple Zk coincides with

Z(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Z(s− 2k−1) if 2k ≤ s ≤ 2k + 2k−2 − 5 (A)
Z(s− 2k−1 − 2k−3) + 2k−5ci if s = 2k + 2k−2 − 5 + i, i = 1, 2, 3, 4 (B)
2Z(s− 2k−1) − dk(s) if 2k + 2k−2 ≤ s ≤ 2k + 2k−1 − 5 (C)
Z(s− 2k−1 − 2k−2) + 2k−5c′i if s = 2k + 2k−1 − 5 + i, i = 1, 2, 3, 4 (D)
Z(s− 2k) + 2k+1 if 2k + 2k−1 ≤ s ≤ 2k+1 − 5 (E)
Z(s− 2k) + 2k−5c′′i if s = 2k+1 − 5 + i, i = 1, 2, 3, 4 (F).

Proof. We give year a sketch of the proof. W invite the interested reader to see the 
detailed proof in the following Appendix. The s-th anti-difference of the sequence V2 =
[2, 1, 2, 0, 0, 1, 0, 0] in P4 is equal to

ΣsV2 = 2bs+4 +3bs+3 +2bs+2 +3bs+1 +2bs ∀s ≥ 0. (1)

In base 2 we have
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2k = 〈10k〉2 := 〈1 0 · · · 0
k times

〉2,

therefore 〈10k〉2 ≤ [s]2 ≤ 〈11k〉2. Set h = k − 5, we will consider in order the following 
cases:

A : 〈1000h000〉2 ≤ s ≤ 〈1001h011〉2;

C : 〈1010h000〉2 ≤ s ≤ 〈1011h011〉2;

E : 〈1100h000〉2 ≤ s ≤ 〈1111h011〉2;

B : 〈1001h100〉2 ≤ s ≤ 〈1001h111〉2;

D : 〈1011h100〉2 ≤ s ≤ 〈1011h111〉2;

F : 〈1111h100〉2 ≤ s ≤ 〈1111h111〉2.

In the cases A, C and E, the 2-adic notation of s + 4, s + 3, s + 2, s + 1, and s (see the 
summands in Equation (1)) have the same prefix: 10 in the first two cases, and 11 in the 
last. This allows to apply in parallel the recursive lemmas of Section 4. The remaining 
twelve cases require ad hoc analysis. �

The Main Recursive Formula 5.6 describes precisely how the number of zeros vary in 
ΣsV2 passing from s ∈ [2k−2, 2k[, to s ∈ [2k, 2k+1[. As we observed before, the number 
of zeros in ΣsV2 corresponds to the number of 4 and 8 in V sV . In such a way we are 
able to measure the proliferation of 4 and 8 perceived by Vieru: more, we can compute 
recursively the exact number of 4 and 8 in the iterated applications V sV , s ≥ 0, of the 
Vieru operator to the sequence V . E.g., if s satisfy 2k+1 − 16 ≤ s ≤ 2k+1 − 5, looking at 
the recursive formula (E), one has

Z(s) = Z(s− 2k) + 2k+1 ∀k ≥ 6;

by induction we get

Z(s) = Z(s− 2k) + 2k+1 =
k+1∑
i=7

2i + Z(s−
k∑

j=6
2j) = 2k+2 − 128 + Z(s− 2k+1 + 64)),

where 48 ≤ s − 2k+1 +64 ≤ 59. Since π(ΣsV2) = 2k+2, the percentage of zeros inside the 
period for k → ∞ tends to 100%.

Appendix A. Proof Main Recursive Formula 5.6

Proof of Main Recursive Formula 5.6. Using a generic computer algebra system one can 
easily compute the sequence Z5, the initial condition for the recursive formula.
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Cases A and C. In both the cases s, s + 1, s + 2, s + 3, and s + 4 have a binary 
representation 〈10bk−2 . . . b0〉 with the two most representative figures equal to 10. If 
f ∈ P4, we denote shortly

R fs := R(Σsf, 2k−1), A fs := A(Σsf, 2k−1).

Using Lemma 4.12, we lead back the study of bs, . . . , bs+4 to the study of bs′ , . . . , 
bs′+4 where s′ = s − (2k − 2k−1) = s − 2k−1. It is

ΣsV2 = 2bs+4 +3bs+3 +2bs+2 +3bs+1 +2bs

≡ν 2
(
R bs′+4 +2χEs+4

)
+ 3

(
R bs′+3 +2χEs+3

)
+ 2

(
R bs′+2 +2χEs+2

)
+

+ 3
(
R bs′+1 +2χEs+1

)
+ 2 (R bs′ +2χEs

)

≡ν R V s′

2 + 3 · 2χEs+1 + 3 · 2χEs+3

≡ν R V s′

2 + 2χEs+1�Es+3 .

In case A it is Es+1 = ∅ = Es+3: indeed the condition ak+1−2−1 < bk+1−2−1 = 0
is impossible (see Definition 4.11 with � = 2 and m = −1). Hence ΣsV2 ≡ν R V s′

2 . 
Therefore

Z(ΣsV2) = Z
(
R V s′

2

)
= 2 × Z(V s′

2 ).

In case C, if n ∈ Es+1�Es+3, then R V s′
2 (n) is equal to zero. Indeed it is easy to check 

that n = 〈ak+1 . . . a0〉2 ∈ Es+1�Es+3 implies ak = 1, ak−1 = 1 and ak−2 = 0. Since 
the binary representation of t ∈ {s, s + 1, s + 2, s + 3, s + 4} is 〈101bk−3 . . . b0〉2, using 
Kummer’s Theorem one has for t′ = t − 2k−1:

R bt′(n) = bt′(n′) =
(
〈ak+110ak−3 . . . a0〉2

〈11bk−3 . . . b0〉2

)
= 0,

hence R V s′
2 (n) = 0. Therefore, we have

Z(ΣsV2) = Z
(
R V s′

2

)
− Π1(2χEs+1�Es+3) = 2 × Z(Σs′V2) − dk(s).

Case E. The numbers s, s + 1, s + 2, s + 3, and s + 4 have a binary representation 
〈11bk−2 . . . b0〉 with the two most representative figures equal to 11. If f ∈ P4, we denote 
shortly A fs := A(Σsf, 2k−1). Using Lemma 4.7, we lead back the study of bs, . . . , bs+4
to the study of bs′ , . . . , bs′+4 where s′ = s − 2k. Thanks to the linearity of A we have:

ΣsV2 = 2bs+4 +3bs+3 +2bs+2 +3bs+1 +2bs

≡ν 2 Abs′+4 +3 Abs′+3 +2 Abs′+2 +3 Abs′+1 +2 Abs′
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≡ν A (2bs′+4 +3bs′+3 +2bs′+2 +3bs′+1 +2bs′)

≡ν AV s′

2 .

Therefore

Z(ΣsV2) = Z
(
AV s′

2

)
= Z(Σs′V2) + 2k+1.

Case B and D. The number s has a binary representation 〈10bk−21h1b1b0〉 with 
b0, b1, bk−2 ∈ {0, 1}. If f ∈ P4, we denote shortly

R fs := R(Σsf, 2k−4), A fs := A(Σsf, 2k−4).

B. Using Lemma 4.7 with m = 2 and Lemma 4.9 with m = 3, we lead back the study of 
bs, . . . , bs+4 to the study of bs′ , . . . , bs′+4 where s′ = s − 2k−1 − 2k−3 in case B, and 
s′ = s − 2k−1 − 2k−2 in case D.

• If (b1b0) = (00), then we have

s + 1 = 〈10bk−21h101〉2, s + 2 = 〈10bk−21h110〉2, s + 3 = 〈10bk−21h111〉2,

and s + 4 = 〈1b′k−1b
′
k−20h000〉2 with b′k−1b

′
k−2 = 01 in case B and b′k−1b

′
k−2 = 10 in case

D. By Lemma 4.7 with m = 2 for s + i, i = 0, 1, 2, 3 and Lemma 4.9 with m = 3 for s +4
we have

bs+i ≡ν Abs′+i, i = 0, 1, 2, 3, and bs+4 ≡ν R bs′+4 .

Then

ΣsV2 ≡ν 2 R bs′+4 +3 Abs′+3 +2 Abs′+2 +3 Abs′+1 +2 Abs′ .

Analysing the previous equation in blocks of length 2k−4, one obtains:

Z(ΣsV2) = Z(Σs′V2) + Z (2bs′+4) .

Since s′ + 4 = 〈1b′k−1b
′
k−20h−1000〉2, applying h-times Lemma 4.9, we get

Z (2bs′+4) = Z (bs′+4) + Π1 (bs′+4)

=

⎧⎨
⎩2h

(
Z (b20) + Π1 (b20)

)
= 48 · 2k−5 in case B ,

2h−1
(
Z (b24) + Π1 (b24)

)
= 48 · 2k−5 in case D

Therefore in both the cases B and D we have Z(ΣsV2) = Z(Σs′V2) + 2k−5 × 48.
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• If (b1b0) = (01), then we have Z(vs) =
{
Z(vs′) + 2k−5 × 32 in case B,

Z(vs′) + 2k−5 × 40 in case D.

• If (b1b0) = (10), then we have Z(ΣsV2s) =
{
Z(Σs′V2) + 2k−5 × 40 in case B,

Z(Σs′V2) + 2k−5 × 44 in case D.

• If (b1b0) = (11), then we have Z(ΣsV2) =
{
Z(Σs′V2) + 2k−5 × 44 in case B,

Z(Σs′V2) + 2k−5 × 48 in case D.

Case F. The number s has a binary representation 〈1111h1b1b0〉 with b0, b1 ∈ {0, 1}. 
If f ∈ P4, and 2k ≤ t < 2k+1 we denote shortly

R f t := R(Σtf, 2k−2), A f t := A(Σtf, 2k−1).

We lead back the study of bs, . . . , bs+4 to the study of bs′ , . . . , bs′+4 where s′ = s − 2k

• If (b1b0) = (00), then we have

s + 1 = 〈1111h101〉2, s + 2 = 〈1111h110〉2, s + 3 = 〈1111h111〉2, s + 4 = 〈10000h000〉2.

For 0 ≤ i ≤ 3 the sequence bs+i has period 2k+2, while bs+4 has period 2k+3. Neverthe-
less, the period of

ΣsV2 = 2bs+4 +3bs+3 +2bs+2 +3bs+1 +2bs

is 2k+2: indeed the sequence 2 bs+4 has period 2k+2 by Theorem 3.2. By Lemma 4.7 with 
m = −1, Lemma 4.9 with m = 1, and Remark 4.14 we have

ΣsV2 = 2 R bs′+4 +3 Abs′+3 +2 Abs′+2 +3 Abs′+1 +2 Abs′

where s′ = s − 2k. Then one gets

Z(ΣsV2) = Z(Σs′V2) + Z(2bs′+4).

Notice that Z(2 bs′+4) = 1
2
(
Z (bs′+4) + Π1 (bs′+4)

)
. Indeed 2 bs′+4 has period equal to 

one half of the period of bs′+4 and the zeros of 2 bs′+4 correspond to the 0’s and 2’s of 
bs′+4. Applying h-times Lemma 4.9 with m = 1, we get

Z (bs′+4) + Π1 (bs′+4) = 2h
(
Z(b32) + Π1(b32)

)
= 2k−5 · 64.

Hence Z(ΣsV2) = Z(Σs′V2) + 2k−5 · 32.
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• If (b1b0) = (01), we have

s + 1 = 〈1111h110〉2, s + 2〈1111h111〉2, s + 3 = 〈10000h000〉2, s + 4 = 〈10000h001〉2.

By Lemma 4.7 with m = −1, Lemma 4.9 with m = 1, and Remark 4.14 we have

ΣsV2 = 2 R bs′+4 +3 R bs′+3 +2 Abs′+2 +3 Abs′+1 +2 Abs′ .

Observe that 3 R bs′+3 has period 2k+3, while 2 R bs′+4, Abs′+i, i = 0, 1, 2, have period 
2k+2. We have that

Z(ΣsV2) = Z(Σs′V2) + Z(2bs′+4 +3bs′+3).

Applying h times Lemma 4.9 with m = 1, we get

Z(2bs′+4 +3bs′+3) = Z(2Rh b33 +3Rh b32) = 2hZ(2b33 +3b32) = 2k−5 · 32.

Therefore Z(ΣsV2) = Z(Σs′V2) + 2k−5 · 32.

• If (b1b0) = (10), then we have Z(ΣsV2) = Z(Σs′V2) + 2k−5 · 48.
• If (b1b0) = (11), then we have Z(ΣsV2) = Z(Σs′V2) + 2k−5 · 64. �
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