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11 Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain, 12 Konrad Lorenz Institute of Ethology,

University of Veterinary Medicine Vienna, Vienna, Austria, 13 Amphibienwerkstatt, Innsbruck, Austria,

14 Vienna Zoo, Vienna, Austria, 15 Museum für Naturkunde–Leibniz Institute for Evolution and Biodiversity

Science, Berlin, Germany, 16 Forest Zoology, Technische Universität Dresden, Tharandt, Germany,

17 Berchtesgaden National Park, Berchtesgaden, Germany, 18 Ecosystem Dynamics and Forest

Management, Technical University of Munich, Freising, Germany, 19 Department of Neurology, TUM School

of Medicine, Technical University of Munich, Munich, Germany, 20 Büro für Faunistik und Umweltbildung,
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Abstract

Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused

by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans

(Bsal) and its disease – the ‘salamander plague’ – which is lethal to several caudate taxa.

Recently introduced into Western Europe, long distance dispersal of Bsal, likely through

human mediation, has been reported. Herein we study if Alpine salamanders (Salamandra

atra and S. lanzai) are yet affected by the salamander plague in the wild. Members of the

genus Salamandra are highly susceptible to Bsal leading to the lethal disease. Moreover,

ecological modelling has shown that the Alps and Dinarides, where Alpine salamanders

occur, are generally suitable for Bsal. We analysed skin swabs of 818 individuals of Alpine

salamanders and syntopic amphibians at 40 sites between 2017 to 2022. Further, we com-

piled those with published data from 319 individuals from 13 sites concluding that Bsal infec-

tions were not detected. Our results suggest that the salamander plague so far is absent

from the geographic ranges of Alpine salamanders. That means that there is still a chance

to timely implement surveillance strategies. Among others, we recommend prevention mea-

sures, citizen science approaches, and ex situ conservation breeding of endemic salaman-

drid lineages.
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Introduction

Globally, amphibian declines and extinctions occur due to multiple factors and on a broad tax-

onomic scale [1, 2]. One of the most important drivers is chytridiomycosis, an emerging infec-

tious disease (EID) induced by parasitic skin fungi that have caused massive amphibian

declines and extinctions globally [3]. Among them is Batrachochytrium salamandrivorans
(Bsal) which is a threat to caudate amphibians in the Western Palearctic [3, 4]. It is also

referred to as the agent of the ‘salamander plague’ and was detected in Europe at least two

decades ago, likely introduced from Asia [5]. So far, outbreaks in wild urodelans have been

reported from Belgium, Germany, the Netherlands, and Spain [6–11]. Most of the temperature

regimes in Europe appear suitable for Bsal and despite active dispersal ability being low, mas-

sive range expansions have been observed, which are likely human-mediated and presumably

attributed to rapid changes in the pathogen’s thermal optimum [8, 9, 12–14]. Moreover, of the

40 urodelan species in Europe, 30 are considered at high risk of at least local extinction due to

Bsal until year 2030 [15].

Alpine salamanders (Salamandra atra and S. lanzai) belong to the most imperilled herpeto-

fauna of Europe (Fig 1) [15–17]. They are restricted to the European Alps and the Dinarides

and well known for their biology with a viviparous reproductive mode. Salamandra atra com-

prises several intraspecific lineages of which some have been described as subspecies while oth-

ers remain unnamed [18]. For these subspecies (except S. a. atra) as well as the poorly studied

S. a. prenjensis data on distribution and conservation status are widely lacking, hampering a

thorough assessment. Salamandra atra aurorae, S. a. pasubiensis and S. lanzai have very small

geographic ranges (�100km2) [18, 19] (Fig 1) and are in high risk of total extinction due to

further spread of Bsal [15]. Bsal was recently detected in southern Germany at a straight-line

distance of approximately 50 km from known S. a. atra localities [20]. This species is known to

be highly susceptible to Bsal in captivity [21], which is of great concern for Alpine

salamanders.

Despite a Europe-wide call for action against the pathogen [14], no broad Bsal-screening

throughout the Alps and Dinarides has been carried out so far. Moreover, comprehensive host

species monitoring programs are lacking [24–27]. We therefore performed a study delineating

the status of the Bsal-infection in populations of Alpine salamanders and included data from

the Austrian Bsal monitoring project established in 2016. The goals were (1) to summarize

available data on Bsal infections in wild hosts in the Alpine region, (2) to provide a first com-

prehensive Bsal-screening on S. a. atra in the Northern Alps and the local endemics S. lanzai,
S. atra aurorae and S. a. pasubiensis from the Southern Alps and, (3) to review and enhance

pre- and post-exposure mitigation strategies and recommendations to combat the salamander

plague in Alpine salamanders.

Methods

We studied 40 populations between 2017 and 2022, including four populations of S. lanzai (90

individuals), 32 populations of S. a. atra (567 individuals), two of S. atra aurorae (28 individu-

als) and one of S. a. pasubiensis (30 individuals; Fig 1 and S1 Table). We selected sampling

localities opportunistically by including those which were previously well-known alpine sala-

mander populations or were part of previous and ongoing surveillance projects. We addition-

ally compiled available literature data from 13 Bsal-screenings that included Alpine

salamander populations. Opportunistic visual encounter surveys during night and days with

suitable weather conditions (i.e. rain) were conducted between May and October. Besides

Alpine salamanders, our sampling included syntopic caudates susceptible to Bsal (Alpine

newt, Ichthyosaura alpestris; European fire salamander, Salamandra salamandra; in total 103
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individuals, S1 Table). We excluded anurans from our sampling as they rarely carry Bsal in the

wild [7]. During sampling, we handled individuals with nitrile gloves and changed them

between individuals. Further, we physically examined each specimen for skin damages as

described for Bsal infections in members of the genus Salamandra [7, 28]. Except for speci-

mens sampled in Austria and the German site Mittenwald, we rinsed all individuals with a

sterile NaCl solution (9g/l; Fresenius Kabi1) before swabbing to reduce potential inhibitors

during DNA extraction. Per specimen, two skin swabs (except Austria, here it was one per

individual) were taken for verification. That means, in case of a potential Bsal-positive result

(see below for details), it was possible to validate the sample by an independent facility to avoid

false positives [cf. 29]. All applicable national guidelines for the care and use of animals were

followed. Handling of live specimens was granted under several protocols (Regione del

Veneto, Giunta regionale, Italy: 0247416; Ministero della transizione ecologica, Italy: 0055632.

05-05-2022; ISPRA, Italy: 0016482/ AAL/Rif. Int. 13633–16162; Vorarlberg, Austria:

Fig 1. Study sites, distributional ranges of Alpine salamanders and Bsal suitability (white polygon line = S. atra, range adapted from [18, 22]; dark grey polygon line

= S. lanzai adapted from [23], grey polygon = Bsal range in Allgovia, Germany); blue points correspond to localities sampled in this study, black points to sampling

sites from literature. The yellow highlighted areas refer to MTP estimation, the orange highlighted areas belongs to the MTS estimation and the red highlighted areas

belong to the 10thTP estimation (see Methods). The map was created by authors in ArcGIS with base maps provided by Eurostat (GISCO, https://ec.europa.eu/eurostat/

web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts) and Natural Earth (naturalearthdata.com).

https://doi.org/10.1371/journal.pone.0298591.g001
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BHBL-II960-18/2017-11, BHBR-I-7100.00-6/2017-5, II-6201-3/2017/4, BHFK-II6101-4/2017-

4; Tirol, Austria: U-NSCH-11/48/15-2018, NA-16-2020, NSCH/B-367/5-2020; Schwaben,

Bavaria: 55.1-8622-4/49/3; Oberbayern, Bavaria: ROB-55.1-8646.NAT_02-5-31-3; Baden-

Württemberg: 55-7/8852.15-3/Uni Trier).

In samples from Austria, DNA was extracted using the ExtractMe DNA Swab & Semen Kit

(Swift Analytical) following the manufacturer’s instructions. Presence of Bsal was tested using

a modification of the screening assay described by [30] on a BioRad QX200 droplet digital

PCR cycler. Primers and a probe targeting the 5.8S rRNA gene of Bsal were run in the FAM

channel and internal control primers and a probe targeting a portion of the mitochondrial

Cytochrome b gene were run in the HEX channel. The threshold for detection was set to three

positive droplets. The samples of S. lanzai from Italy and France in year 2018 were extracted

after [31] and processed on a BioRad CFX96 Real Time PCR Detection System following [30].

In samples from Germany and Italy (year 2022), DNA was extracted using the DNeasy Blood

and Tissue kit (QIAGEN) with the following deviations from the manufacturers kit. We

include a bead-beating step of 45 sec with 0,035–0,04g of silica zirconium beads (0,5mm diam-

eter) after the addition of ATL buffer prior to enzymatic lysis. Enzymatic lysis was performed

for two hours. Extracted DNA was eluted in 70μl of AE buffer. We subsequently amplified a

fragment of the internal transcribed spacer region [30] in duplicate via quantitative PCR on a

StepOnePlus (ThermoFisher Scientific) following the protocols of [29, 32]. We set the limit of

detection (LOD) to 100 DNA copies [14]. Samples that yielded a positive signal below the

LOD were verified via end-point PCR using an additional primer pair amplifying a fragment

of the 28S rRNA region following the protocol of [33] on a Biometra TAdvanced (Analytik

Jena) in duplicate. To avoid pseudo-replication per population, we visited all sites only once

and we released all specimens at their exact capture sites after finishing sample collection. In

all sampling sites, we thoroughly disinfected equipment and boots before and after entering a

locality, following commonly applied biosecurity protocols [14]. We estimated prevalence fol-

lowing [34] under the assumption of a pathogen prevalence of 10% [35]. Further, to validate

our results as well for those sites with a sample size below 30 individuals tested, we used the

Bayesian hierarchical model with the same assumptions described in [36] for the entire dataset

(S1 and S2 Tables). For sample sites with multiple sample years, we included only the data of

the latest sample year. We calculated posterior means and 95% highest posterior densities

(HPD) for our dataset. The calculated values give information on posterior probabilities of

Bsal presence for each site. Further, they precise with 95% confidence the true value of possible

Bsal-sites in our dataset [36]. We used R v.4.3.2 [37] for the described prevalence and Bayesian

hierarchical model estimation.

For a risk estimation of Bsal invasion within the geographic ranges of Alpine salamanders,

we built a correlative Species Distribution Model (SDM) with Maxent 3.4.1 [38, 39] in the

manner described by [8] with the following modifications. We added new records from the

pathogen’s invasive range adopted from [10] and used the CHELSA TraCE21k climate data

[40]. For final modelling, we used an approach employing linear, quadratic and product fea-

ture classes with the bioclimatic predictors Bio2, Bio4, Bio7, Bio9, Bio10 [cf. 41]. We resampled

the selected bioclimatic variables from 1x1km to 100x100m to increase the resolution for the

elevational gradient using binominal interpolation in ArcGIS Pro [42, 43]. For SDM mapping,

ArcGIS Pro and ArcMap (ESRI) were used. With this, we constructed a binary presence/

absence distribution map of Bsal. For this purpose, we examined various thresholds (S3 Table)

and chose three commonly used: the minimum training presence cloglog threshold (MTP,

0.0114), defining the lowest predicted suitability value for an occurrence point falling within

the area of the binary model; the maximum training sensitivity plus specifity Cloglog threshold

(MTS, 0,0237) which maximises the correct classification of positive and pseudo absence

PLOS ONE Bsal in Alpine salamanders

PLOS ONE | https://doi.org/10.1371/journal.pone.0298591 May 17, 2024 4 / 13

https://doi.org/10.1371/journal.pone.0298591


points and the 10th percentile training presence Cloglog threshold (10thTP, 0,478) as a more

conservative measure (by excluding outliers below 10%) [44–46]. All Maxent values above

these three thresholds suggest suitability for Bsal.

Results

Our molecular analysis from skin swabs revealed the absence of Bsal in all 758 specimens

examined throughout this study. Hence, we increase the Bsal sampling dataset within the

Alpine salamanders’ ranges to 1,137 (S1 Table). No Bsal-typic macroscopic skin damages were

observed throughout our surveys. For several localities, sample size was too small (< 30 indi-

viduals) to draw robust conclusions that Bsal occurs with a prevalence of 10% (S1 Table) [23,

35]. The hierarchical Bayesian model, however, shows that up to 7,1% of sampling sites could

be positive for Bsal in the worst case (i.e. HPD for lowest sensitivity of diagnostic test, Table 1

and S1 and S2 Figs). A single sample of S. lanzai yielded a positive signal below the LOD,

which could be further rejected via non-amplification of a second primer pair. All three

thresholds of the SDM suggest that the entire geographic space encompassed by Alpine sala-

manders is suitable to Bsal (Fig 1).

Discussion

Absence of Bsal and infection risk

Our findings suggest that Alpine salamander populations in the Alps are free from Bsal and go

in line with earlier studies in the Alps inside (S1 Table) as well as outside the S. atra or S. lanzai
ranges [23]. However, it is difficult to preclude overlooked Bsal outbreaks in the Alpine region

with our sampling (Table 1) [36]. To stress this, for S. a. cf. prenjensis in Slovenia, latest sam-

pling dates to 2015–2019. Moreover, in the Dinarides, also inhabited by S. a. prenjensis, the lat-

est available sampling was in 2013 in Bosnia, showing a present and perilous knowledge gap

for Bsal data in this region [17]. Given the recent discovery of the pathogen in Allgovia, south-

ern Germany [20], Alpine salamander habitats are best classified as being in the “pre-invasion

phase” defined by [15]. That is, prevention of pathogen introduction and spread is of high pri-

ority making urgent action needed. Moreover, Bsal suitability, as shown by three thresholds of

our SDM, underlines our call for pre-invasion measures as it overlaps with our sampling sites,

the distribution of Alpine salamanders and other syntopic Bsal hosts (Fig 1). However, our

predictions are slightly different to those from [47] which show solely suitability along the

edges of the alpine region but not in the centre. This may be due to methodological differences

as we used an extended dataset of Bsal-records and a finer resolution [10, 47]. Still our model

likely underestimates the habitat suitability for the pathogen, as Bsal is continuously spreading

and is not in equilibrium with the environment in its invasive range [cf. 8]. Moreover, Bsal

Table 1. Estimation of posterior means and 95% HPD intervals for the proportion of Bsal-positive sites at differ-

ent Bsal detection sensitivities.

Sensitivity Mean HPD (lower and upper)

0.5 0.024 8.6e-07–0.071

0.6 0.023 1.9e-6–0.069

0.7 0.022 1.6e-6–0.067

0.8 0.022 8.5e-6–0.067

0.9 0.022 2.0e-6–0.065

1 0.021 1.7e-8–0.063

https://doi.org/10.1371/journal.pone.0298591.t001
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shows capacities to rapidly evolve, implying shifts in its ecological limits within its invasive

range [12, 48].

Above all, human activity such as the amphibian pet trade (e.g. interchange of infected indi-

viduals) on a local to global or the recreational activities on a local to regional scale (e.g. unin-

tended transport of water or soil through equipment), are likely a major long-distance vector

for the salamander plague. This was demonstrated for the closely related chytrid fungus Batra-
chochytrium dendrobatidis [49] and expected for Bsal [e.g. 6, 8, 50]. The Alps are among

Europe’s top destinations for tourists, and hence it cannot be ruled out that during outdoor

activities (such as mountaineering, hiking, mountain-biking) tourists unintentionally carry

Bsal spores into Alpine salamander habitats. Bsal spores can survive in soil over prolonged

periods and some spores even persist in dry conditions [7]. To stress this, in [51], tourism was

defined as a serious risk for amphibian pathogen introduction into naïve regions. In this

regard, we consider the locally restricted S. lanzai in the Monviso Transboundary Biosphere

Region, Piemont Province of Italy (Fig 1), is of particular concern, because this area is a popu-

lar travel destination for recreational (eco-)tourism [52–54], while the local endemics S. atra
aurorae and especially S. a. pasubiensis occur in less accessible areas. However, their localities

are well known among herpetological amateurs and professionals as well as nature photogra-

phers, and due to their uniqueness and rarity their sites are still frequently visited.

Despite the suggested Bsal susceptibility by anecdotical reports and inferred from phylog-

eny [4, 15, 21], it remains untested whether Alpine salamander populations respond to the

pathogen and its disease in a similar way as their relative, the European fire salamander (S. sal-
amandra). Often accompanied by mass mortality, Bsal-positive populations of this species dra-

matically decline within weeks [6–8]. Bsal apparently does not evenly diffuse in the landscape.

Rather, European fire salamander populations neighbouring outbreaks can stay Bsal-free for

many years [13]. Landscape heterogeneity and physical barriers to vectors (i.e. high mountain

ridges and deep valleys) may play a role [55]. Hence, for the relatively wide-spread S. a. atra,

one may perhaps assume that a salamander plague spill-over between populations is hampered

or at least slowed-down in alpine environments. Moreover, populations are often naturally iso-

lated [e.g. 18, 56]. However, if the pathogen enters a population, a rapid population collapse is

likely, as Alpine salamanders locally often occur in high densities. Due to their viviparous

reproductive style, compensatory recruitment is slow, as e.g. a single female in S. atra usually

produces only one or two descendants every two years [56].

Surveillance strategies

Several strategies have been identified to monitor and prevent further Bsal spread in the Amer-

icas and Europe, while measures to successfully eradicate the pathogen once it has established

are not yet available [14, 15, 56–58, F. Pasmans & A. Martel pers. comm.]. This means, that

combating Bsal so far is only possible in the “pre-invasion phase”, which calls for urgent action

in Alpine salamanders. Only some of the strategies suggested by [14, 15, 59], which we here

review (Table 2), can be applied to them. The approaches proposed for other caudates (i.e. sur-

veillance, such as swabbing of focal and syntopic amphibians, eDNA and citizen science-based

approaches; prevention such as biosecurity and captive assurance colonies; population moni-

toring), even those in the genus Salamandra, are partially not applicable or are demanding in

time and effort. To overcome these limitations, citizen science approaches may help as partici-

pants might be available to register sightings (Fig 2) over the entire activity period of the focal

species. Therefore, it is more likely to notice Alpine salamander activity or mortality events

than during temporally and spatially limited active surveillance. Citizen science has already

proven effective for detecting other invasive species at an early stage [60, 61]. However,
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encouraging citizen science can only aid salamander conservation when the risk of human-

mediated pathogen introduction is avoided by following strict biosecurity recommendations

[14, 62]. Disinfection of materials could be implemented before entering and after leaving a

recreational site (e.g. hiking equipment at parking areas). We encourage public Bsal informa-

tion campaigns [cf. 63] including an App-based online reporting system for suspicious mortal-

ity events of Alpine salamanders in the wild. On a European scale, this may be implemented

via online platforms commonly used across countries (e.g. BsalEurope, observation.org, iNa-

turalist, ornitho; Fig 2). In addition, regional or species-specific platforms may be installed.

These need to be connected for rapid information exchange, which is crucial for surveillance

of Emerging Infectious Diseases [64]. However, citizen science can generally only complement

pathogen screening with standardized molecular tools by professionals, which should espe-

cially target syntopic, Bsal-tolerant hosts where pathogen presence goes unnoticed from the

public. This underlines that EID surveillance and prevention generally needs stronger support

by national and international decision-makers (e.g. fast-tracked permission process) to con-

nect these different surveillance strategies in a legal framework [64].

Table 2. Suggested actions for the Bsal pre-invasion phase adapted from [14, 15, 59] for Alpine salamanders.

Strategy Advantages Disadvantages

Active surveillance

Swabbing target

species

Standard method of Bsal-detection; Updated

overview of target populations possible

Time consuming; costly; fast analysis via

qPCR required

Swabbing syntopic

species

Standard method of Bsal-detection; Updated

overview of disease status in the target

habitat; may foster fast detection of EIDs

because of different life history of syntopic

species; fast achievement of minimum sample

size of 30 individuals per population

No pathogen status on target species; Time

consuming; costly; fast analysis via qPCR

required

eDNA (water

bodies and detritus/

soil)

Non-invasive method, established for Bsal in

water bodies; fast large scale EID detection

Water bodies: suitable only for standing

water; applicable for syntopic species and

adjacent habitats

Soil/detritus: not yet established; Suitability

unknown

Passive surveillance

Suspicious cases Including the public into conservation

actions

Possible lack of interest

Raising Awareness Includes regional and local stakeholders

Preventive measures

Captive assurance

colonies (ex situ)

Buys time to develop in situ mitigation

strategies against EIDs

Time and money intensive to organize and

establish breeding facilities and network;

identify genetic diversity of target species/

subspecies at first; very low fecundity; needs a

minimum number of founders

Biosecurity reduces chances of spread of Bsal and other

amphibian pathogens, Protocols are available

Depends on willingness of all stakeholders to

implement properly;

Use of chemicals may have adverse effects on

humans and environment;

Costs associated with communication and

implementation;

Cannot control for all potential routes of

transmission (e.g. wildlife)

Other

Population

Monitoring

Detection of declines; increases detection

probability of mortality events

only appropriate on a long term; time

intensive

https://doi.org/10.1371/journal.pone.0298591.t002
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To conserve the local endemic lineages (at least S. a. aurorae, S. a. pasubiensis, S. a. prenjen-
sis, S. lanzai), these actions might not be sufficient as an unnoticed introduction could lead to

their rapid entire extinction [15]. Therefore, we additionally, in line with previous suggestions

using ex situ strategies to reduce extirpation risk [59], we recommend evaluating the feasibility

of establishing biosecure captive breeding colonies to safeguard these taxa. For some lineages

(e.g. S. a. pasubiensis), no syntopic caudates - which may act as reservoirs - are known, increas-

ing the chance for a successful reintroduction after extinction of both, the local salamander

population and Bsal. However, little is known about captive requirements of abovementioned

taxa and hence capacities need to be established early so that husbandry protocols are devel-

oped before Bsal might arrive.

Above all, implementing biosecurity standards in the Alpine salamanders’ range is neces-

sary to prevent novel introductions of wildlife EIDs and their agents such as Bsal [14, 15].

Conclusions

Our screening triples the existing data about non-detection of Bsal in Alpine salamanders and

presents first information on the disease status of several endemic lineages. However, it needs

to be seen as a snapshot, and can only be a first step towards a continuous survey in the future,

which is urgently required. While not yet affected by the salamander plague, the SDM shows

high habitat suitability over the entire range of Alpine salamanders for Bsal. Conclusively, the

modelled suitability shows the importance for rapid preparation in these Bsal-naïve regions.

We therefore recommend (in line with [65, 66]) to build a strong and solid cross-country net-

work to ensure a transparent interchange, and to jointly establish an agreement how to

Fig 2. Suggested report system of suspicious cases of disease in a citizen science framework for Alpine salamanders.

https://doi.org/10.1371/journal.pone.0298591.g002
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effectively respond once suspicious cases are detected. Besides, such a network also fosters

additional risk assessments, such as applied by [67–70], which need to be adapted for the

alpine region. Moreover, consideration of susceptibility to pathogens that cause EIDs, like

Bsal, in conservation assessments (e.g., red lists) is essential to prioritize conservation action.
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S1 Fig. Estimated posterior distributions for mean prevalence of positive Bsal-sites within
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S2 Fig. Estimated posterior probability of Bsal presence for each site. Facets refer to the sen-

sitivity of the diagnostic test.

(TIF)

Acknowledgments

We are grateful to Karin Fischer, Sabine Naber and Vanessa Schulz for assistance in the lab.

For field assistance, we thank Maria Aschauer, Lydia Bongartz, Monika Dönz-Breuss, Jonas

Glaser, Raphael Glaser, Christopher Heine, Thomas Huber, Maria von Rochow, Janik Schnabl,

Daniel Schwarz, Hannah Steiner, Marc Sztatecsny and Christine Tschisner. The Wildnisgebiet

Dürrenstein and Chris Walzer generously supported the Austrian workers. We further thank

the Austrian (Amt der Vorarlberger Landesregierung; Amt der Tiroler Landesregierung), Ital-

ian (Ministero della Transizione Ecologica, Regione del Veneto) and German (Regierungsprä-
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