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A B S T R A C T   

We present a detailed investigation of the impact of electron gate leakage on the threshold voltage stability of 
normally-off GaN HEMTs with p-GaN gate. The analysis is based on combined DC, pulsed and transient mea
surements, carried out on two test wafers with different gate processes, resulting in different levels of gate 
leakage current. The key results demonstrate: (a) the existence of four different charge-trapping processes, whose 
interplay determines the sign and amplitude of the threshold voltage variation; (b) a reasonable increase in gate 
leakage is beneficial for eliminating the negative threshold voltage instability under positive gate bias, and for 
substantially reducing the positive threshold shift under off-state stress. Furthermore, (c) we present a proper 
characterization methodology for device understanding.   

1. Introduction 

Gallium nitride power devices are nowadays recognized as a 
competitive solution for high-efficiency power conversion, being able to 
displace silicon devices thanks to the possibility to deliver higher power 
densities [1]. The potential of GaN is exploited through the use of 
AlGaN/GaN High-Electron-Mobility-Transistors (HEMTs), that offer an 
extremely low ON-resistance due to the spontaneous presence of the 2- 
Dimensional-Electron-Gas (2DEG). However, HEMTs are intrinsically 
normally-ON devices, that are not suitable for fail-safe power applica
tions, where normally-off power switches are required. Two effective 
solutions had been proposed to overcome the limitation of the normally- 
ON structures: i) the use of a cascode configuration [2], in which a fast 
silicon transistor is used to drive the normally-ON power HEMT; ii) the 
use of a p-GaN gate, where a p-doped GaN layer is placed between the 
gate contact and the AlGaN barrier [3]. The latter is nowadays more 
widely adopted, but the complexity of the structure complicates the 
analysis. Briefly, the p-GaN layer is used to lift-up the band diagram, 
obtaining the depletion of the 2DEG even when the gate voltage is zero. 
A gate Schottky contact is usually used to mitigate the gate current 
leakage, that otherwise would flow toward the p-i-n diode made of the p- 
GaN layer, the AlGaN barrier, and the channel [4]. However, this rises 

the problem of controlling the potential of the p-GaN region near the 
interface with AlGaN (mid-node), which directly controls the charge 
density in the 2DEG. Despite the recent developments, GaN power 
transistors are still far from the complete technology maturity, because 
different issues are affecting the performance of such devices. Among 
all, threshold voltage (VTH) instabilities are a key factor limiting the 
performance of p-GaN gate power devices [5]. 

The aim of this paper is to report a detailed investigation of the 
factors limiting the threshold voltage stability of p-GaN gate power 
HEMTs test structures with different gate leakage current, submitted to 
ON-state and OFF-state. The role of the gate leakage current in the VTH 
stability is assessed by means of combined DC, pulsed and transient 
measurements, thanks to which different mechanisms affecting the VTH 
stability are identified. Results indicate that a higher gate leakage cur
rent increases the overall VTH stability thanks to a better control of the 
floating p-GaN mid-node. Furthermore, this paper reports the descrip
tion of a proper characterization methodology and consequence phys
ical interpretation of the various behaviours/transients that are 
observed. 
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2. Devices under test and stress procedure 

The devices under test are p-GaN gate power HEMTs test structures 
(Fig. 1) used for gate module development and process understanding. 

The analysis is carried out on two test wafers with different gate 
processes, resulting in one wafer with higher gate leakage current 
(Wafer H) and one wafer with lower gate leakage current (Wafer L). By 
variation in gate contact processing conditions, a different Schottky 
barrier height is obtained at the p-GaN/metal interface. 

Significant DC characteristics are reported in Fig. 2. 
Wafer H results in a gate leakage current two orders of magnitude 

higher with respect to wafer L. The VTH extracted at 1 mA is VTH− H =

2.22 V and VTH− L = 1.92 V for wafer H and wafer L respectively. 
It is then worth highlighting that only for wafer H, in the IDVG 

characteristics, there is an increase in drain current in two steps, with a 
small plateau for a gate voltage of about 1.2 V. This is attributed to 
electron trapping during the measurement phase, according to the 
threshold voltage transient results in Section 4, Fig. 5. Briefly, wafer H 
exhibits electron trapping in the AlGaN barrier (fast process) for low 
gate voltages, resulting in a positive threshold voltage shift. This elec
tron trapping is faster if compared to the gate sweep during the DC 
measure (1 PLC per point – 20 ms), resulting in a shift of the IDVG 
characteristic. This highlights the necessity of performing faster mea
surements on both devices, to understand the different processes 
involved. 

The analysis on the two test wafers is then carried out by means of a 
custom pulsed setup, to perform pulsed IV with measurement pulses 
down to 1 μs, and by means of a fast custom VTH transient setup, to 
analyse the VTH kinetics starting from the microseconds range. 

3. Pulsed characterization 

A widely adopted technique to analyse the dynamic performance of 
power devices is the so-called Pulsed-IV characterization, thanks to 
which it is possible to monitor the different electrical characteristics of 
the device (in general threshold voltage and on-resistance for a power 
device) when submitted to different operating quiescent biases. Within 
this paper, only the threshold voltage of the device will be analysed. The 
reported pulsed-IVs are performed with the following procedure: i) first, 
a 1 s pre-filling time at the given quiescent bias is applied, to fill all the 
traps involved in that particular operating condition; ii) second, the 
pulsed characterization is performed, with the device that is kept at the 
given quiescent bias and with 3 μs and 10 μs measurement pulses for ON- 
state stress (gate stress) and OFF-state stress (drain stress) respectively. 

First, a comparison between DC and pulsed IDVGS measurements 
(with VG = 0 V and VD = 0 V as quiescent bias) is carried out. Significant 
results are summarized in Fig. 3. 

Results show a noticeable difference between DC and pulsed IDVGS 
characterizations. The threshold voltages extracted at 1 mA are reported 

in Table 1. 
With a pulsed IDVGS, Wafer H shows a lower VTH (0.57 V lower than 

the DC one) while Wafer L shows a higher VTH (0.13 V higher than the 
DC one). This indicates the presence of charge trapping processes (both 
of positive and negative charge [5]) during the DC characterizations, 
that will be investigated in the following with the pulsed setup. It is 
important here to highlight the importance of pulsed characterizations 
on the understanding of the devices under test; without them it is 
impossible to have a full interpretation of the phenomena taking place in 
the device. To get further insight in the phenomena leading the 
threshold voltage instabilities, pulsed IDVGS with different quiescent 
biases were performed in both ON-state (increasing gate bias with drain 
fixed at 0 V) and OFF-state (increasing drain bias with gate fixed to 0 V) 
(Fig. 4). Different behaviours are highlighted in the two test wafers. 

For ON-state stress (Fig. 4(a)): i) Wafer H shows a positive VTH shift 
(ΔVTH = 0.48 V) for VG-QB = 2 V and a zero shift for VG-QB = 6 V; ii) 
Wafer L shows a zero VTH shift for VG-QB = 2 V and a negative shift 
(ΔVTH = − 0.83 V) for VG-QB = 6 V. As already observed in the com
parison between DC and pulsed IDVGS measurements, both negative and 
positive charges are trapped in the gate stack. 

For OFF-state stress (Fig. 4(b)), the two wafers show only positive 
VTH shift (trapping of electrons), with Wafer H showing an overall lower 

Fig. 1. Schematic cross-section of the p-GaN gate power HEMTs test structures 
under test. 
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Fig. 2. Gate leakage current (black lines) and transfer characteristics (IDVGS) at 
a drain voltage of 0.5 V (red lines) and of 4 V (blue lines) for the two different 
wafers. Wafer H in solid lines, wafer L in dashed lines. 
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Fig. 3. IDVGS comparison between pulsed measurements, with VG = 0 V and VD 
= 0 V as quiescent bias (solid lines) and DC measurements (dashed lines) for the 
two wafers. Wafer H in black, wafer L in red. 

Table 1 
Extracted threshold voltages for pulsed and DC characterizations.   

DC VTH Pulsed VTH ΔVTH 

Wafer H 2.22 V 1.65 V 0.57 V 
Wafer L 1.92 V 2.05 V − 0.13 V  
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ΔVTH if compared to Wafer L (maximum VTH shift of 0.55 V and 2.66 V 
respectively). 

Results highlights that Wafer L suffers from negative VTH shift under 
positive gate bias (that may lead to undesired turn-on), and to relevant 
positive VTH shift in off-state bias, that may lead to a premature turn-off 
of the device and to an on-resistance increase. Such effects are mitigated 
in Wafer H. 

The positive and negative shifts will be further investigated by means 
of transient measurements for both ON-state (gate) and OFF-state 
(drain) stress. 

4. Transient analysis 

Transient analysis was carried out on both test wafers for different 
conditions (ON-state and OFF-state) to extract the time evolution of the 
VTH shift. Briefly, the test consists on applying, for 100 s, a constant 
voltage stress level at the device. The stress is briefly interrupted 
(exponentially spaced in time) to perform a fast (3 μs for ON-state, 10 μs 
for OFF-state) IDVGS characterization (at a fixed drain voltage of 4 V) for 
VTH extraction (extracted at a current of 1 mA). 

Significant VTH transients for gate stress (ON-state) are reported in 
Fig. 5. 

Results highlight the presence of different mechanisms involved in 
the threshold voltage instabilities (Fig. 6): i) With no stress applied (VG 
= 0 V, green curves) it is possible to observe a tiny (<0.1 V) VTH shift in 
Wafer H, that is only due to the charge trapping induced by the mea
surement itself. ii) With a gate stress voltage of 2 V, a fast increase in 
threshold voltage is observed in Wafer H. Through a literature com
parison, this is ascribed to the trapping of electrons in pre-existing traps 
in the AlGaN/GaN interface and/or in the AlGaN barrier [6–9] (mech
anism “b” in Fig. 6). 

This mechanism does not occur in wafer L, because, due to the lower 
gate leakage, less holes are accumulated in the p-GaN/AlGaN interface 
resulting in a higher electric field across the AlGaN that prevents elec
trons injection from the 2DEG. 

The fast electron trapping is responsible for the small VTH shift 
observed during the measurements in Wafer H. Then, in both wafers, a 
slow (t > 100 ms) increase in VTH is present. This is due to the emission 
of holes from the 2DHG across the AlGaN barrier (mechanism “a” in 
Fig. 6), that leave a net negative charge in the p-GaN region, leading to 
the positive VTH shift [9,10]; iii) With a gate stress voltage of 6 V, the 
accumulation of holes in the 2DHG and the subsequent trapping in 
AlGaN traps (mechanisms “c” in Fig. 6) take place [5,9]. Its impact is 
moderate in Wafer H (due to the interplay with electron trapping and 
due to the electron-hole recombination that takes place between elec
trons, mechanism “b1” in Fig. 6, and trapped holes in the AlGaN); iv) 
Finally, only in Wafer L, an additional decreasing trend is observed for 
long stress time. This is attributed to hole trapping in the GaN buffer 
and/or in the Strain Relief Layers (SRL) interface [5,10] (mechanism “d” 
in Fig. 6). 

Results show the better stability of the devices with higher gate 
leakage current, that exhibit also faster detrapping processes (not 
shown). 

Finally, the VTH shift due to drain stress (off-state) is analysed. 
Remarkably, Wafer H shows a lower overall VTH shift (Fig. 7(a)), that is 
only positive, while wafer L exhibits a signal VTH shift with both positive 
and negative transients (Fig. 7(b)). It is worth to highlight that the 
transients are consistent with previous studies in p-GaN gate HEMTs 
[11–13] and are interestingly different from the ones observed in GaN 
MOS channel HEMTs [14]. 

The positive shift is ascribed to hole deficiency [13]. When a positive 
drain bias is applied, holes are pushed toward the gate contact, where 
they can be emitted, leaving a net negative charge in the p-GaN and thus 
leading to the positive VTH shift. The negative transient is possibly 
ascribed to the generation of positive charges during the drain stress, as 
previously shown in [15], that are then accumulated under the gate 
stack because of the band bending [16] In wafer H, this phenomenon is 
suppressed by the higher leakage of electrons injected from the gate 
stack during the OFF-state stress (not shown). 
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Fig. 4. Pulsed IDVGS at different quiescent biases for both a) ON-state stress 
(gate stress) and b) OFF-state stress (drain stress). Solid lines for Wafer H, 
dashed lines for Wafer L. 
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Remarkably, as during ON-state stress, test structures with higher 
gate leakage current show better VTH stability and faster detrapping 
processes (not shown). 

5. Conclusions 

We reported a detailed investigation of the impact of electron gate 

leakage on the VTH stability of normally-off p-GaN gate power HEMTs 
test structures. Based on DC, pulsed and transient measurements we 
demonstrated: a) the existence of 4 different charge-trapping processes, 
whose interplay determines the sign and amplitude of the threshold 
voltage variation during ON-state stress; b) a reasonable increase in gate 
leakage is beneficial for eliminating the negative VTH shift under positive 
gate bias, and for minimizing the positive VTH shift under off-state stress. 
The results are of relevance for the development and optimization of 
normally-off GaN HEMTs with p-GaN gate. 
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