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Abstract—Age of Information (AoI) is a critical metric for
several Internet of Things (IoT) applications, where sensors keep
track of the environment by sending updates that need to be as
fresh as possible. The development of edge computing solutions
has moved the monitoring process closer to the sensor, reducing
the communication delays, but the processing time of the edge
node needs to be taken into account. Furthermore, a reliable
system design in terms of freshness requires the knowledge of
the full distribution of the Peak AoI (PAoI), from which the
probability of occurrence of rare, but extremely damaging events
can be obtained. In this work, we model the communication and
computation delay of such a system as two First Come First
Serve (FCFS) queues in tandem, analytically deriving the full
distribution of the PAoI for the M/M/1 – M/D/1 and the
M/M/1 – M/M/1 tandems, which can represent a wide variety
of realistic scenarios.

Index Terms—Age of Information, Peak Age of Information,
edge computing, queuing networks

I. INTRODUCTION

Traditional communication networks consider packet delay
as the one and only performance metric to capture the latency
requirements of a transmission. However, numerous Internet
of Things (IoT) applications require the transmission of real-
time status updates of a process from a generating point to
a remote destination [1]. Sensor networks, vehicular networks
and other tracking systems, and industrial control are examples
of this kind of update process. For these cases, the Age of
Information (AoI) is a novel concept that better represents
timeliness requirements by quantifying the freshness of the
information at the receiver [2]. Basically, AoI computes the
time elapsed since the latest received update was generated
at any given moment in time, i.e., how old is the last packet
received by the destination. Another age-related metric is the
Peak AoI (PAoI), which is the maximum value of AoI for each
update, i.e., how old the last packet was when the next one is
received by the destination. As in other performance metrics of
communication systems, the PAoI is more informative than the
average age when the interest is in worst-case analysis, e.g.,
when the system requirement is on the tail of the distribution.
To illustrate, the PAoI can be useful to limit the latency of
networked control systems, ensuring that the receiver has a
recent picture of the state of the transmitter.

Edge computing is a technology that is gaining traction
in age-sensitive IoT applications, as the transmission of sen-
sor readings to a centralized cloud requires too much time
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and increases uncertainty, while processing the received data
closer to the sensor that generated them can reduce the
communication latency and the overall age of the information
available to the monitoring or control process [3]. Freshness
of information is going to be one of the critical parameters
in beyond 5G and 6G, enabling Communications, Comput-
ing, Control, Localization, and Sensing (3CLS) services [4]:
these applications require joint sensing, computation, and
communication resources. In particular, services in telehealth,
agriculture, manufacturing plants and robotics require strict
control performance guarantees, which can only be possible by
carefully designing the communication system. Furthermore,
AoI and PAoI are often the relevant timing metrics for control
systems, as they represent the time difference between the
system observed by the controller and the real one when
the control action takes place. As these services require high
reliability, analyzing the average age is not enough: the tail
of its distribution is also a very important parameter, as it
directly affects the risk of control system failures, which must
be constrained to very low levels for critical applications.
In these edge applications that combine communication and
computation, the contribution of both to the AoI needs to
be taken into account. Limiting the age of the processed
information is a critical requirement, which can influence
the choice between local and edge-based computation [5] for
IoT nodes. The problem becomes even more complex when
considering multiple sources and different packet generation
behaviors, along with limited communication capabilities [6].

Tandem queues (specifically the minimal 2-nodes case) are
then a natural modeling choice for this kind of scenarios, as
the first system represents the communication link, while the
second one represents the computing-enabled edge node and
its task queue. Fig. 1 shows an example: the communication
buffer at the sensor and the task queue on the edge computing-
enabled Base Station (BS) are the two queues in the tandem.

If the load on the computing-enabled edge node is time
constant, while communication is less predictable due to,
e.g., dynamic channel variations and random access, then the
M/M/1 – M/D/1 tandem queue is an appropriate model.
An M/M/1 queue is a proper model for the channel if
we assume an ALOHA system [7] with perfect Multi-Packet
Reception (MPR), in which [8] the packets are not lost due
to collisions and can only be lost due to channel errors. This
model is suitable for IoT systems based on Ultra-Narrowband
(UNB) transmissions, such as SigFox [9]. On the other hand,
computation time is often modeled as a linear function of the
data size in the literature [10], and updates of the same size
would have a constant and deterministic service time, therefore
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Fig. 1: An example of the IoT edge computing use case: the sensor
transmits data to a computing-enabled edge node, which needs to
maintain information freshness.

well-represented by an M/D/1 queue. Another option is to
consider the computing load as also variable over time, leading
to stochastic computing time, and represent the two systems
by M/M/1 queues with different service rates [11].

An example of the AoI dynamics is plotted in Fig. 2: the
AoI grows linearly over time, then decreases instantly when
a new update arrives. Naturally, the age at the destination
is never lower than the age at the intermediate node, as
each packet that reaches the destination has already passed
through the intermediate node, but the dynamics between the
two are not trivial and serve as a motivation for this work.
We analyze the distribution of the PAoI in a tandem queue
with two systems with independent service times and a single
source, where each infinite queue follows the First Come
First Serve (FCFS) policy. We consider both the M/M/1 –
M/D/1 tandem and the M/M/1 – M/M/1 case, covering
common communication relaying and communication and
computation scenarios. Our aim is to derive the complete
Probability Density Function (PDF) of the PAoI for systems
with arbitrary packet generation and service rates, allowing
system designers to define reliability requirements using PAoI
thresholds and derive the network specifications needed to
meet those requirements.

Although the motivation for our analysis is the IoT edge
computing, we notice there are other age-sensitive applications
that can use the same models and results of this paper. For
instance, a tandem queue can model a relay networking in
which a packet is transmitted through one or more buffer-
aided intermediate nodes between transmitter and receiver to,
e.g., overcome the physical distance between the two end-
points. A good example is a satellite relay that connects the
ground and a satellite (or vice versa) through another satellite.
In this case, the links are highly unpredictable and depend on
different factors such as positioning jitter [12] and conditions
in the upper atmosphere. A tandem queue in which the servers
represent the transmission over successive links can represent
this kind of system, provided that the service (transmission)
times of different links are independent. Blockchain is another
application where AoI is a critical metric to validate trans-
actions in real time, particularly when combining the use of
the distributed ledger with IoT applications [13]. As nodes
need to transmit information, which is then validated, the
tandem model is a useful abstraction for the communication
and computation time [14].

The contribution of this paper can be summarized by the
following points:
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Fig. 2: The time-evolution of the Age of Information in a 2-node
tandem queue. The age at the destination is plotted in black, the age
at the intermediate node is plotted in red. Departures from each node
are marked by a circle.

• The full PDF of the PAoI is derived for the tandem of
an M/M/1 and an M/D/1 queue, which is relevant for
IoT edge computing scenarios;

• The same derivation is performed for the tandem of two
M/M/1 queues, which can be relevant in relay-based
communications with two independent links;

• Design considerations are drawn for the two systems,
using the analytical formulas as a basis for system opti-
mization.

The structure of the paper is as follows. In Sec. III the
system model is detailed, as well as the procedure to calculate
the AoI. Sec. V presents the calculations based on the model
for the M/M/1 – M/M/1 tandem, while Sec. IV does the
same for the M/M/1 – M/D/1 tandem. Numerical results
are plotted in Sec. VI, and the paper is concluded in Sec. VII.1

II. RELATED WORK

An overview of edge computing in IoT can be found in
[3] and [15]. The initial research approach to latency in
the edge paradigm was, in the context of 5G systems, to
understand its potential to support Ultra Reliable Low Latency
Communication (URLLC) [16]–[18]. The relevance of the AoI
for edge computing applications was first identified in [5],
although only the average AoI is computed. The same authors
propose in [19] a joint transmission and computing scheduling
for a deadline. Another research area is the use of machine
learning, particularly deep learning techniques, to unleash the
full potential of IoT edge computing and enable a wider range
of application scenarios [20], [21].

AoI is a relatively new metric in networking, but it has
gained widespread recognition thanks to its relevance to sev-
eral applications. Most theoretical results refer to simple queu-
ing systems with a single node and FCFS policy. However,
a few recent works focus their attention in the study of the
age in tandem queues, even with different policies such as
Last Come First Serve (LCFS) [22]. Some IoT scenarios have

1The code used in the simulations, with the implementation of all the
theoretical derivations in the paper, is available at https://github.com/AAU-
CNT/tandem_aoi.
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also been modeled as tandem M/M/1, M/D/1, or D/M/1
queues with multiple sources, as the read from the sensor is
first pre-processed, and then transmitted to the server [23].
In this case, each queue follows the FCFS discipline, but the
authors derive only the average PAoI. Another possibility is
queue replacement, in which only the freshest update for each
source is kept in the queue, reducing queue size significantly:
in this case, the replaced packet is not placed in the queue,
but dropped altogether, reducing channel usage with respect
to simple LCFS, with or without preemption. In this case, the
queue is modeled as an M/M/1/2, and if a new packet arrives
it takes the queued packet’s place. Some preliminary results
on such a system are given in [24], while the average AoI
and PAoI are computed in [25] for one source and in [26]
for multiple sources. An analysis of the effect of preemption
on this kind of models on the average AoI is presented
in [27], and [28] derives the average AoI for two queues
in tandem with preemption and different arrival processes.
Another work [29] derives the full distribution of the PAoI
for preemptive queues whose service time follows a phase-type
distribution, which can be used to represent multiple hops. The
PDF of the AoI in multi-hop networks with packet preemption
has been derived in [30]. Another work [31] deals with
multicast networks in which a single source updates multiple
receivers over several hops, deriving the average age in that
context. Another recent work considers a scenario in which
packets that are not received within a deadline are dropped,
deriving the average PAoI [32]. Some of these works deal with
multi-hop queuing networks, of which our tandem model is a
specific case, but they all assume some form of preemption.
The computation of AoI and PAoI in systems with preemption
is much simpler, particularly in systems of M/M/1 queues,
but it cannot represent all the relevant use cases: preemption
might not be possible or desirable, depending on the specific
requirements of the control or monitoring application. For
example, telehealth applications might benefit from receiving
even out of date samples. To the best of our knowledge, this
work is the first to derive the complete PDF of the age for
non-preemptive tandem networks, covering these applications.
Another example is the satellite relay scenario, where the
traffic entering the tandem system comes from an aggregation
of devices and therefore each individual update is relevant.

Other works concentrate on more realistic models, consid-
ering the effect of physical and medium access issues on the
AoI. A model considering a fading wireless channel with
retransmissions was used to compute the PAoI distribution
over a single-hop link in [33], and a recent live AoI measure-
ment study on a public networks generally confirmed that the
theoretical models are realistic [34]. Other works compute the
average AoI in Carrier Sense Multiple Access (CSMA) [35],
ALOHA [36] and slotted ALOHA [37] networks, considering
the impact of the different medium access policies on the age.
It is also possible to jointly optimize the sampling and updating
processes, i.e., both the reading instants from the sensor and
the transmission of updates, if both are controllable [38]: the
cost of both operations is a determinant of the overall AoI of
the system [39].

A generalization of our model, relevant for applications like

satellite relaying, is the multi-hop network with and arbitrary
number of M/M/1 systems, senders, and receivers: in this
case, the moment generating function of the AoI was derived
in [40] for preemptive servers. Other scheduling policies make
things more complicated: tight bounds for the average AoI
were derived in [41] for the FCFS discipline and other AoI-
oriented queue prioritization mechanisms.

Deriving the complete distribution of the age might be
critical for reliability-oriented applications, but it is still mostly
unexplored in the literature: while the work on deriving the
first moments of the AoI distribution is extensive, the analyt-
ical complexity of deriving the complete PDF is a daunting
obstacle. A recent work [42] uses the Chernoff bound to derive
an upper bound of the quantile function of the AoI for two
queues in tandem with deterministic arrivals, but to the best of
our knowledge, the complete PAoI distribution has only been
derived for simple queuing systems [33]. Another interesting
approach to achieve reliability is to consider the AoI process
directly: in [43], the authors use extreme value theory to
derive the complementary Cumulative Density Function (CDF)
of the PAoI in a realistic channel setting with scheduled
transmissions. [44] proposes the use of the risk of ruin, an
economic concept, as a metric of fresh and reliable information
in augmented reality. Specifically, the CDF of the PAoI is used
to find the probability of maximum severity of ruin PAoI in
single node systems. Yet another approach to reliability, which
does not derive the complete distribution of the AoI but uses
an average measure on its tail, is presented in [45]: the authors
pose the risk minimization problem as a Markov Decision
Process (MDP), optimizing the age with bounded risk. For
a more complete overview of the literature on AoI, we refer
the reader to [46].

III. SYSTEM MODEL

We consider a tandem system composed by two consecutive
queues, where the first one is M/M/1. Packets are generated
at the first system by a Poisson process with rate λ and enter
the first queue, whose service time is exponentially distributed
with rate µ1. When a packet exits the first system, it enters
the second one, whose service time is a constant D or an
exponential random variable with rate µ2. A simple diagram
of the tandem is shown in Fig. 1. Both queues are of infinite
size and are oblivious to the content of the packets: there
is no preemption of the updates, i.e. an older packet is not
removed from the queue when a new update comes from the
same source. As explained in the introduction, we assume
that the service times in the two systems are independent.
The assumption is realistic for edge computing systems, as
the communication and processing are usually independent,
but not always verified in relay networks; it therefore needs a
careful examination. Even if the service times are independent,
however, the waiting times are not, as the queue at the second
system depends on the output of the first one. In the following,
we use the compact notation pX|Y (x|y) for the conditioned
probability p[X = x|Y = y]. PDFs are denoted by a lower-
case p, and CDFs by an upper-case P .

In a tandem queue, the packet generation times correspond
to the arrival times at the first queue, whereas the receiving
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Fig. 3: Schematic of the four steps a packet goes through in a tandem queue, highlighting the components of the PAoI.

instants are the departure times in the second queue. We define
the total system time for packet i as Ti: when a packet is
received, the AoI is equal to Ti, i.e., the difference between the
time ri when it is received by the destination and the time gi
when it was generated. The PAoI (see Fig. 2) is the maximum
value of the AoI, i.e., the age at the instant immediately before
the arrival of a new update. If we denote the interarrival time
Yi = gi − gi−1, then PAoI is given by

∆i = ri − gi−1 = ri − gi + gi − gi−1 = Ti + Yi. (1)

If packet i arrives right after packet i− 1, it will probably
have to wait in the queue for it to depart the system: the system
time Ti depends on the interarrival time Yi. The PDF of the
PAoI with value τi, denoted as p∆i

(τi), can then be computed
by using the conditional system time probability pTi|Yi(ti|yi):

p∆i
(τi) =

∫ τi

0

pYi(yi)pTi|Yi(τi − yi|yi)dyi. (2)

We then need to compute pTi|Yi(ti|yi). For each system j =
1, 2 in the tandem, the system time Ti,j is defined as the sum
of the waiting time Wi,j and the service time Si,j . We also
define Yi,j , the interarrival time at system j. For j = 1, we
have Yi,1 = Yi, while for j = 2 :

Yi,2 = gi + Ti,1 − (gi−1 + Ti−1,1) = Yi + Ti,1 − Ti−1,1. (3)

Since the first queue is M/M/1, the system times for the
two queues are independent, as proven by Reich [47] using
Burke’s theorem [48] and considering each system in steady
state for packet i− 1. If we consider system j in steady state,
i.e., we do not condition on Yi−1,j , the system time Ti−1,j

is exponentially distributed with rate αj = µj − λ. However,
the values of Yi and Ti are correlated, and the computation
of the PAoI needs to account for this fact. In the following,
we give the conditional PDF of the components of the PAoI,
which will then be joined in the derivation. 6 First, we define
the extended waiting time Ωi,j as the difference between the
previous packet’s system time and the interarrival time at the
system, i.e., Ωi,j = Ti−1,j − Yi,j . The reason we named Ωi,j
the extended waiting time is that Wi,j = [Ωi,j ]

+, where [x]+

is equal to x if it is positive and 0 if x is negative. From the
definition of Ωi,j , we have:

Yi,2 = Yi + (Wi,1 + Si,1)− Ti−1,1

= Si,1 +Wi,1 − Ωi,1

= Si,1 + [−Ωi,1]+.

(4)

since Wi,1 − Ωi,1 = [Ωi,1]+ − Ωi,1 = [−Ωi,1]+. In the
following paragraphs, we derive the PDF of the extended
waiting time for the two system types that we are analyzing.
Fig. 3 shows a possible realization of a packet’s path through
the tandem queue, highlighting the meaning of the extended
waiting time: in the first system, in which packet i is queued, it
corresponds to the waiting time, while in the second, in which
the packet is not queued and enters service immediately, its
negative value corresponds to the time between the departure
of packet i − 1 from the second system and the arrival of
packet i at the same system. When W = 0, we have a negative
extended waiting time, as packet i arrives after packet i − 1
leaves the system. In general, we have Ωi,2 = Ti−1,2 − Yi,2,
and the system time for packet i− 1 is Ti−1,2 = Wi−1,2 +D,
while we know the interarrival time Yi,2 = Si,1 + [−Ωi,1]+.

Theorem 1. The CDF of the waiting time for an M/D/1
queue with arrival rate λ and service time D is:

PW (w) = (1− λD)

bwD c∑
k=0

(−λ(w − kD))keλ(w−kD)

k!
. (5)

Proof. See the derivation by Erlang [49]. �

Corollary 1.1. We can find the queuing time PDF by deriving
the CDF from (5):

pW (w) = (1− λD)

(
λeλw +

bwD c∑
k=1

(−λ)k(w − kD)k−1

k!

×eλ(w−kD)(k + λ(w − kD))

)
∀w > 0;

pW (0) = 1− λD.

(6)

The CDF of the waiting time has a discontinuity, as the
waiting time is exactly 0 with probability 1 − λD, which
corresponds to the probability of the packet finding an empty
system and entering service immediately.
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Corollary 1.2. As service time in an M/D/1 system is
constant, we have the CDF of the total time in the system:

PT (t) = PW (t−D)u(t−D). (7)

Corollary 1.3. The PDF of Ωi,2 conditioned on Si,1 and Ωi,1
is given by:

pΩi,2|Si,1,Ωi,1(ωi,2|si,1, ωi,1) =

= p(Wi−1,2 = ωi,2 − si,1 − [−ωi,1]+ −D)

= pW (ωi,2 + si,1 + [−ωi,1]+ −D).

(8)

Fig. 4 shows this clearly: when Ωi,1 is negative, the ex-
tended queuing time Ωi,2 corresponds to Si,1 + Wi−1,2 +
D − Ωi,1, while when Ωi,1 is positive, packet i starts service
immediately after packet i− 1 leaves the first system, and we
have Ωi,2 = Si,1 +Wi−1,2 +D. The waiting time in M/D/1
system is analytically derived, although it can give numeric
problems for very large waiting times and high load [50]. If
the application requires the computation of very large waiting
times with λD ' 1, we suggest the use of more numerically
stable methods from the relevant literature.

Theorem 2. The PDF of the extended waiting time in a
M/M/1 - M/M/1 tandem queue is given by:

pΩi,j |Yi,j (ωi,j |yi,j) = αje
−αj(ωi,j+yi,j)u(ωi,j + yi,j), (9)

where u(·) is the step function.

Proof. Knowing the PDF of the system time Ti−1,j from well-
known results on M/M/1 queues, the interarrival time at the
first relay Yi,1 is exponentially distributed with rate λ, while in
subsequent systems it is given by Yi,2 = Si,1 + [−Ωi,1]

+. �

Corollary 2.1. We can combine (9) with the definition of Yi,2
to get:

pΩi,2|Si,1,Ωi,1(ωi,2|si,1, ωi,1) = α1e
−α1(ωi,2+si,1[−ωi,1]+)

×u(ωi,2 + si,1 + [−ωi,1]+).
(10)

To compute the exact PDF of PAoI in the 2-system case (j ∈
1, 2), we distinguish between free and busy systems at each
node, i.e., we condition the PDF on the state of each system
when packet i arrives to it and calculate it separately for the
four possible combinations. Case A is defined as Ωi,1 > 0 ∧
Ωi,2 > 0, while in case B we have Ωi,1 > 0 ∧ Ωi,2 ≤ 0.
Similarly, in case C we have Ωi,1 ≤ 0 ∧Ωi,2 > 0 and in case
D we get Ωi,1 ≤ 0 ∧ Ωi,2 ≤ 0. An example of the relevant
values in the four cases are shown in Fig. 4: in case A, packet
i is queued in both systems, as the previous packet is still in
the system when i arrives in each. The two extended queuing
times (shown in red) are positive. In case B, packet i − 1
has already left the second system when packet i leaves the
first: the extended queuing time (shown in blue with a dashed
outline) is negative, and packet i enters service in the second
system as soon as it arrives. In case C, it is the first system that
is empty when packet i arrives, and in case D, both systems
are empty, and the packet enters service directly at both.

We can then exploit Corollaries 1.1-1.3 to compute the
conditioned PDF of the total time at the second system.

Ωi−1,1 Si−1,1 Ωi−1,2 Si−1,2

Yi Ωi,1 Si,1 Ωi,2 Si,2

i− 1 arrives i− 1 leaves sys. 1 i− 1 leaves sys. 2

i arrives i leaves sys. 1 i leaves sys. 2

∆i (case A)

Ωi−1,1 i−1, 1 Ωi−1,2 Si−1,2 −Ωi,2

Yi Ωi,1 Si,1 Si,2

i− 1 arrives i− 1 leaves sys. 1 i− 1 leaves sys. 2

i arrives i leaves sys. 1 i leaves sys. 2

∆i (case B)

Ωi−1,1 Si−1,1 Ωi−1,2 Si−1,2

Yi −Ωi,1 Si,1 Ωi,2 Si,2

i− 1 arrives i− 1 leaves sys. 1 i− 1 leaves sys. 2

i arrives i leaves sys. 1 i leaves sys. 2

∆i (case C)

Ωi−1,1 Si−1,1 Ωi−1,2 Si−1,2 −Ωi,2

Yi −Ωi,1 Si,1 Si,2

i− 1 arrives i− 1 leaves sys. 1 i− 1 leaves sys. 2

i arrives i leaves sys. 1 i leaves sys. 2

∆i (case D)

Fig. 4: Schematic of the components of the PAoI. (case A): packet i
has to wait in both queues. (case B): packet i waits only in the first
queue. (case C): packet i waits only in the second queue. (case D):
packet i is immediately served in both systems. Observe the negative
expected waiting time Ωi,j in the cases with empty queue(s).

The PAoI can then simply be computed by unconditioning
over the values of Si,1, Ωi,1, and Yi, simply applying the
law of total probability until the PDF for the given case is
derived. The division in 4 cases is not strictly necessary, but
it reduces the number of terms in the equations considerably
with respect to deriving the PDF for the general case directly.
The computation for the M/M/1 – M/M/1 tandem follows
the same reasoning, using the results in Theorem 2 and its
Corollary 2.1.

Definition 1. The PDF of the PAoI is:

p∆(τ) = p∆|A (τ) p(A) + p∆|B (τ) p(B)

+p∆|C (τ) p(C) + p∆|D (τ) p(D).
(11)

where p∆|X is the PDF of the PAoI in case X and p(X )
is the probability of case X happening. The definition comes
from the application of the total law of probability.

In case A, packet i is queued at both systems, and the packet
will have the highest queuing delay and system time. The case
with the lowest system time is case D, in which the packet
experiences no queuing. However, these intuitive relations do
not necessarily hold for the PAoI, as the interarrival time
between update packets can play a major role. In the analysis
of the four cases, we will omit the packet index i wherever
possible for the sake of readability. For a quick overview of
the notation used in the rest of this paper, we refer the reader
to Table I.
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TABLE I: Main notation used in the paper.

Symbol Description

λ Packet generation rate
µj Service rate of M/M/1 system j
D Service time of the M/D/1 system

αj = µj − λ Response rate of system j
Si,j Service time in system j for packet i
Yi,j Interarrival time in system j for packet i

Ωi,j = Ti−1,j − Yi,j Extended waiting time in j for packet i
Wi,j = [Ωi,j ]+ Waiting time in system j for packet i

Ti,j = Si,j +Wi,j Total time in system j for packet i
∆i = Yi + Ti PAoI for packet i

IV. PAOI DISTRIBUTION FOR THE M/M/1 – M/D/1
TANDEM

First, we analyze the tandem of an M/M/1 and an M/D/1
system, using the PDF of the waiting time from (6).

Definition 2. The auxiliary function θ(M,β), which we will
use in the later derivations to make the notation more compact,
is defined as:

θ(M,β) =

∫ M

0

pW (w)eβwdw ∀β 6= 0, β 6= −λ

= (1− λD)

[ bMD c∑
k=1

M∫
kD

(−λ)k(w − kD))k−1

k!

×eλ(w−kD)+βw(k + λ(w − kD))dw +

M∫
0

λe(λ+β)wdw

]

=
λ(1− λD)

λ+ β

( bMD c∑
k=1

[
βλk−1eβkD

(λ+ β)k
− λkeλ(M−kD)+βM

×
(

(kD −M)k

k!
+

k−1∑
j=0

β(kD −M)j

λ(λ+ β)k−jj!

)]
+ e(λ+β)M − 1

)
.

(12)
If β = 0, the result of the integral is simply the waiting time
CDF, i.e., θ(M, 0) = PW (M). If β = −λ, we have:

θ(M,−λ) =

∫ M

0

pW (w)eβwdw

= (1− λD)

( bMD c∑
k=1

M∫
kD

(−λ)k(w − kD))k−1e−λkD

k!

×(k + λ(w − kD))dw + λM

)

= (1− λD)

(
λM + eβkD(−λ)k

×
(

(M − kD)k

k!
+
λ(M − kD)k+1

(k + 1)!

))
.

(13)

If we consider a simple M/D/1 queue (i.e., not in tandem),
it is easy to derive the distribution of the PAoI, as we have

∆i = D + max(Yi, Ti−1). (14)

Therefore, the PAoI is lower than τ when both Yi and Ti−1

are smaller than τ −D, and we can write the CDF as:

P∆(τ) =

∫ τ−D

0

PW (τ − 2D)λe−λydy

= (1− eλ(T−τ))PW (τ − 2D)u(τ − 2D).

(15)

Things are more complex in the tandem system, in which an
M/M/1 queue feeds the M/D/1 queue. Thanks to Burke’s
theorem [48], we can consider both systems to be in steady
state for packet i−1, distinguishing the same four cases A-D
described in Section III and Figure 4.

A. The packet is queued at both systems
We start by considering the conditional CDF of the PAoI

in case A, in which the i-th packet is queued at both systems
(i.e., Ωi,1 > 0∧Ωi,2 > 0). The probability of a packet being in
case A is given by two concurrent events: first, packet i must
find the first system busy, which is equivalent to stating that
Ti−1,1 > Yi. Then, the second system must also be busy when
the packet arrives to it, so we have Ti−1,1 +Wi−1,2 +Si−1,2 >
Yi + Si,1:

p(A) = p(Ω1 > 0)p(Ω2 > 0|Ω1 > 0)

= p(Yi < Ti−1,1, Si,1 < Ti−1,1 − Yi +Wi−1,2 +D)

=

∞∫
0

t1∫
0

py1(y1)pT1
(t1)dy1dt1

∞∫
0

PS1
(w +D)pW (w)dw

= ρ1

(
1− (1− λD)e−µ1D − e−µ1D lim

M→∞
θ(M,−µ1)

)
= ρ1

(
1− (1− λD)e−µ1D

(
1 +

λ(eµ1D − 1)

α1eµ1D + λ)

))
.

(16)
The conditioned distribution of the PAoI in case A is:

p∆i|Ti−1,1,A(τ |t1) =
pW (τ − t1 − 2D)

p(A)

×PSi(τ −D − t1)PYi(t1)

=
(1− e−λt1)(1− e−µ1(τ−t1−D))

p(A)

×pW (τ − t1 − 2D)u(τ − t1 − 2D).

(17)

We need to consider the case for w = 0 separately, as there
is a discontinuity in the CDF. We can now uncondition the
distribution by substituting pW (w) and applying the law of
total probability:

p∆|A(τ) =

τ−2D∫
0

p∆i|Ti−1,1,A(τ |t1)α1e
−α1t1dt1

+α1(1− λD)e−α1(τ−2D)(1− e−λ(τ−2D) − e−µ1D)

=

τ−2D∫
0

α1

p(A)

(
eα1(w−τ+2D) − eµ1(w−τ+2D)

−e−µ1D−α1(τ−2D)−λw + e−µ1(τ−D)

)
pW (w)dw

+
α1(1− λD)

p(A)
(1− e−λt)(1− e−µ1(τ−t−D))e−α1(τ−2D).

(18)
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We can then substitute the auxiliary function defined in
Lemma 2 in (18), getting the PDF of the PAoI in case A:

p∆|A(τ) =
α1

p(A)

(
e−α1(τ+2D)θ(τ − 2D,α1) + e−µ1D

(
−e−µ1(τ−3D)θ(τ − 2D,µ1)− e−α1(τ−2D)θ(τ − 2D,−λ)

+e−µ1(τ−2D)(PW (τ − 2D)− (1− λD)
))
.

(19)

B. The packet is only queued at the first system

We now consider case B, in which there is queuing at the
first system, but not at the second. This is equivalent to stating
that Ti−1,1 > Yi,1 ∧Ωi−1,2 +D ≤ Si,1. Consequently, we get
the following probability for case B:

p(B) = p(Ω1 > 0)p(Ω2 ≤ 0|Ω1 > 0)

= p(Yi < Ti−1,1, Si,1 ≥ Ti−1,1 − Yi +Wi−1,2 +D)

=

∞∫
0

t1∫
0

py1(y1)pT1
(t1)dy1dt1

∞∫
0

(1− PS1
(w +D))pW (w)dw

= ρ1e
−µ1D

(
(1− λD) + lim

M→∞
θ(M,−µ1)

)
= (1− λD)ρ1e

−µ1D

(
1 +

λ(eµ1D − 1)

α1eµ1D + λ

)
.

(20)
The PAoI in this case is given by Ti−1,1 + Si,1 + D. Its
conditional PDF in this case is given by:

p∆|Ti−1,1,B(τ |t1) =
pS1

(τ − t1 −D)

p(B)

×PY1
(t1)PW (τ − t1 − 2D)

=
µ1e
−µ1(τ−t1−D)

p(B)

×PW (τ − t1 − 2D)(1− e−λt1).

(21)

We can now uncondition this probability to obtain the PDF of
the PAoI in case B:

p∆|B(τ) =

∫ τ−D

D

PW (s1 −D)

p(B)
α1e
−α1(τ−s1−D)

×µ1e
−µ1s1(1− e−λ(τ−s1−D))dx

= α1
µ1

p(B)
e−α1(τ−D)−λD

×

(∫ τ−2D

0

PW (w)e−λwdw −
∫ τ−2D

0

PW (w)dw

)

=
α1(1− λD)

ρ1p(B)
e−α1(τ−D)−λD

b τ−2D
D c∑
k=0

[
e−λ(τ−2D)

−
k+1∑
j=0

(−λ)j(τ − (k + 2)D)je−λkD

j!

]
.

(22)

C. The packet is only queued at the second system

We then consider case C, in which there is no queuing at
the first system, but the packet is queued at the second. This
is equivalent to stating that Ti−1,1 ≤ Yi,1 ∧ Ωi−1,2 + D >

Si,1 − Ωi,1. Consequently, we get the following probability
for case C:

p(C) = p(Ω1 ≤ 0,Ω2 > 0)

= p(Yi ≥ Ti−1,1, Si,1 < Ti−1,1 − Yi +Wi−1,2 +D)

=

∞∫
0

y1∫
0

py1(y1)pT1
(t1)

∞∫
max(0,y1−t1−D)

PS1
(w + t1 +D − y1)

×pW (w)dwdt1dy1 = λD − p(A).

(23)

The PAoI in this case is given by Ti−1,1 +Ωi−1,2 +2D. Since
we know that we are in case C, we have:

p∆|Yi,1,Ωi−1,2,C(τ |y1, w) =
PS1

(τ − y1 −D)PY1
(y1)

p(C)
×pT (τ − 2D − w)u(y1 + w + 2D − τ)

=
α1(1− e−µ1(τ−y1−D))eα1(w−τ+2D)u(y1 + w + 2D − τ)

p(C)
.

(24)
We can now uncondition this probability on Yi,1 by applying
the law of total probability:

p∆|Ωi−1,2,C(τ |w) =

τ−D∫
τ−2D−w

λe−λy1α1e
α1(w−τ+2D)

p(C)
dy1

×(1− e−µ1(τ−y1−D))

=
eµ1(D−τ)(α1e

µ1(w+D) − µ1e
α1(w+D) + λ)

p(C)
.

(25)

We can now uncondition again on Ti−1,i and get the PDF of
the PAoI in case D:

p∆|C(τ) =

τ−2D∫
0

p∆|Ωi−1,2,C(τ |w)pW (w)dw

+
1− λD
p(C)

p∆|Ωi−1,2,C(τ |0)

=
e−µ1(τ−D)

p(C)
(
α1e

µ1Dθ

−µ1e
α1Dθ(τ − 2D,α1) + λPW (τ − 2D)

)
+

(1− λD)e−µ1(τ−2D)

p(C)
(
α1 − µ1e

−λD + λe−µ1D
)
.

(26)

D. The packet is not queued at either system

Finally, we consider case D, in which there is no queuing
at either system. This is equivalent to stating that Ti−1,1 ≤
Yi,1 ∧ Ωi−1,2 + D ≤ Si,1 − Ωi,1. Consequently, we get the
following probability for case D:

p(D) = p(Ω1 ≤ 0,Ω2 ≤ 0)

= p(Yi ≥ Ti−1,1, Si,1 ≥ Ti−1,1 − Yi +Wi−1,2 +D)

=

∞∫
0

y1∫
0

py1(y1)pT1
(t1)

∞∫
max(y1−t1−D,0)

(1− PS1
(w + t1 +D − y1))

×pW (w)dwdt1dy1 = (1− λD)− p(B).

(27)
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The PAoI in this case is given by Yi,1 + Si,1 + D. Since we
know that we are in case D, we can apply Bayes’ theorem to
get:

p∆|D,Yi,1,Ti−1,1
(τ |y1, t1) =

pS1
(τ − y1 −D)PY1

(y1)

p(D)

×PW (τ − t1 − 2D)u(y1 − t1)

=
µ1e
−µ1(τ−y1−D)PW (τ − t1 − 2D)u(y1 − t1)

p(D)
.

(28)

We can now uncondition this probability on Yi,1 by applying
the law of total probability:

p∆|D,Ti−1,1
(τ |t1) =

∫ τ−D

t

µ1e
−µ1(τ−y1−D)λe−λy1

p(D)

×PW (τ − t1 − 2D)u(y1 − t1)dy1

=
λµ1

α1p(D)
PW (τ − t1 − 2D)e−µ1(τ−D)(eα1(τ−D) − eα1t1).

(29)
We can now uncondition again on Ti−1,i and get the PDF of
the PAoI in case D:

p∆|D(τ) =

∫ τ−2D

D

λµ1

p(D)
PW (τ − t1 − 2D)e−µ1(τ−D)

×(eα1(τ−D−t1) − 1)dt1

=
λµ1

p(D)
e−µ1(τ−D)

(
eα1D

∫ τ−2D

0

PW (w)eα1wdw

−
∫ τ−2D

0

PW (w)dw

)

=
µ1λ(1− λD)

p(D)
e−µ1(τ−D)

b τ−2D
D c∑
k=0

[
1

λ
− eα1(k+1)D

+

k∑
j=0

(
(τ − (k + 2)D)j

j!

(
(−λ)j−1eλ(τ−(k+2)D)

−λ
k(−1)jeµ1(τ−(k+2)D)

µk−j+1
1

))]
.

(30)

The overall PAoI PDF is then given by using the previous
results for the four cases in Definition 1.

V. PAOI DISTRIBUTION FOR THE M/M/1 – M/M/1
TANDEM

We now consider the M/M/1 – M/M/1 tandem, which
represents edge computing-enabled systems with stochastic
computation times or communication relaying systems. To
calculate (11), we divide the computation in 4 cases, as we
did in the previous section.

A. The packet is queued at both systems

We first consider case A, in which packet i finds both
systems busy, i.e., the i-th packet arrives before the depar-
ture of the (i − 1)-th packet at each system. In this case,
Ωi,1 > 0∧Ωi,2 > 0. As the conditioned PDF of Ωi,j was given
in (10), and we know that Yi,1 is independent from Ti−1,1, as

is Si,1 from Ti−1,2, the probability of this case p(A) is given
by:

p(A) = p(Ω1 > 0)p(Ω2 > 0|Ω1 > 0) =

=

∞∫
0

pT1
(t1)

t1∫
0

py1(y1)dy1dt1

∞∫
0

pT2
(t2)

t2∫
0

pS1
(s1)ds1dt2

=
λ

µ1 + α2
.

(31)
We start from the conditioned distribution of the system time
on Ω1, Ω2, and S1, so S2 is the only remaining random
variable. In the following, the index i of the packet is omitted
where possible to simplify the notation:

pT |Ω1,Ω2,S1,A (t|ω1, ω2, s1) = µ2e
−µ2(t−ω1−s1−ω2)

×u(t− ω1 − ω2 − s1).
(32)

We now uncondition on Ω2, and then on S1, by using the law
of total probability:

pT |Ω1,A (t|ω1) =

t−ω1∫
0

pS1
(s1)

t−s1−ω1∫
0

pΩ2|Ω1,S1
(ω2|ω1, s1)

1− PΩ2|Ω1,S1
(0|ω1, s1)

×pT |Ω1,Ω2,S1,Adω2ds1

=
α2µ2(α2 + µ1)e9α2(t9ω1)(α1 + λe9µ1(t9ω1)−µ1e

9λ(t9ω1))

λα1µ1
.

(33)
The knowledge that we are in case A means that we have
Ω1 > 0: the denominator in the first integral is the probability
of this happening, which we need to account for to get the
correct conditional probability. We then condition on Y1 and
uncondition on Ω1:

pT |Y1,A (t|y1) =

t∫
0

pT |Ω1,A (t|ω1)
pΩ1|Y1

(ω1|y1)

1− PΩ1|Y1
(0|y1)

dω1

=
µ2α2e

−α1y1

λp(A)

(
α1(e−α1t − e−α2t)

(µ2 − µ1)

+
λe−α1t(1− e−µ2t)

µ2
− µ1(e−α1t − e−µ2t)

µ2 − α1

)
.

(34)
We can now derive the PDF of the system time T :

pT |A(t) =

∫ ∞
0

pY1
(y1)pT |Y1,A(t|y1)dy1

=
µ2α2

µ1p(A)

(
α1(e−α1t − e−α2t)

(µ2 − µ1)

+
λe−α1t(1− e−µ2t)

µ2
− µ1(e−α1t − e−µ2t)

µ2 − α1

)
.

(35)
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Finally, we get the PDF of the PAoI, given by T + Y1:

p∆|A (τ) =

∫ τ

0

pT |Y1,A (t|τ − t) pY1
(τ − t)dt

=
µ1 + α2

λ

(
α2µ1µ2(e−µ1τ − e−µ2τ )

(µ2 − µ1)(µ2 − α1)
− λe−µ1τ (1− e−α2τ )

+
α1α2µ2(e−µ1τ − e−α2τ )

(µ2 − µ1)(µ1 − α2)
+
α1µ1µ2(e−α1τ − e−µ1τ )

(µ2 − µ1)(µ2 − α1)

)
.

(36)

B. The packet is only queued at the first system

We now consider case B, in which the first system is busy
but the second one is free when packet i reaches it, i.e., the
packet is not queued at the second system. We have Ωi,1 >
0 ∧ Ωi,2 ≤ 0, and this case happens with probability p(B):

p(B) = p(Ω1 > 0)p(Ω2 ≤ 0|Ω1 > 0)

=

∞∫
0

t1∫
0

py1(y1)pT1
(t1)dy1dt1

∞∫
0

∞∫
t2

pS1
(s1)pT2

(t2)ds1dt2

=
λα2

µ1(µ1 + α2)
.

(37)
In this case, the system time PDF is independent of Ω2, and
we can just give the conditioned PDF as:

pT |Ω1,S1,B (t|ω1, s1) = µ2e
−µ2(t−ω1−s1)(1− e−α2s1)

×u(t− ω1 − s1).
(38)

As for case A, we condition on Y1 and uncondition on S1 and
Ω1:

pT |Y1,B (t|y1) =
µ1(µ1 + α2)e−α1(y1+t)

α2

(
1− e−µ2t

−α2µ2(1− e(α1−µ2)t)

(µ2 − µ1)(µ2 − α1)
+
α1µ2(1− e−λt)
λ(µ2 − µ1)

)
.

(39)

From this result, we derive the conditioned PDF of the system
time T for case B:

pT |B(t) =
λe−α1t

p(B)

(
1− e−µ2t+

α1µ2(1− e−λt)
λ(µ2 − µ1)

−
α2µ2

(
1− e−(µ2−α1)t

)
(µ2 − µ1)(µ2 − α1)

)
.

(40)

We can now find the unconditioned PDF of the PAoI for case
B:

p∆|B (τ) =
µ1

p(B)
(e−α1τ − e−µ1τ )− λµ1e

−µ1τ (1− e−α2τ )

α2p(B)

+
α1µ1µ2(e−α1τ − (1 + λτ)e−µ1τ )

λ(µ2 − µ1)p(B)

+
µ1µ2α2 ((e−µ1τ − e−α1τ )(µ2 − µ1) + λ(e−µ1τ − e−µ2τ ))

(µ2 − µ1)2(µ2 − α1)p(B)
.

(41)

C. The packet is only queued at the second system

We can then consider case C, in which the i-th packet does
not experience any queuing at the first system, i.e., Ω1 ≤ 0,
but there is queuing in the second system, i.e., Ω2 > 0. The
probability of a packet experiencing case C is given by:

p(C) = p(Ω1 ≤ 0,Ω2 > 0)

=

∞∫
0

y1∫
0

∞∫
0

py1(y1)pT1(t1)pS1(s1)

∞∫
s1−t1+y1

pT2(t2)dt2ds1dt1dy1

=
λ

µ2(µ1 + α2)
.

(42)
The conditioned PDF of the system time is:

pT |Ω1,Ω2,S1,C (t|ω1, ω2, s1) = µ2e
−µ2(t−s1−ω2)u(t−s1−ω2).

(43)
As in case A, we condition on Y1 and uncondition on Ω2, S1,
and Ω1:

pT |Y1,C (t|y1) =
µ2α2e

−α2t(e−α1y1 − e−α2y1)

λ(µ2 − µ1)p(C)
×
(
α1 − µ1e

−λt + λe−µ1t
)
.

(44)

We can now find the PDF of the system delay:

pT |C(t) =
α2e
−α2t

(
α1 − µ1e

−λt + λe−µ1t
)

µ1p(C)
. (45)

The conditioned PDF of the PAoI is then:

p∆|C(τ) =
µ2

(µ2 − µ1)p(C)

(
α1α2(e−µ1τ − e−α2τ )

α2 − µ1

+λe−µ1τ − µ1α2(e−µ1τ − e−µ2τ )

µ2 − µ1
− α1α2(e−α2τ − e−µ2τ )

λ

−λe−(µ1+α2)τ + α2µ1τe
−µ2τ − λα2e

−µ2τ (1− e−α1τ )

α1

)
.

(46)

D. The packet is not queued at either system

Finally, we examine case D, in which the packet experiences
no queuing, i.e., Ωi,1 ≤ 0∧Ωi,2 ≤ 0. This case happens with
probability p(D):

p(D) = p(Ω1 ≤ 0,Ω2 ≤ 0) =
α1µ2(µ1 + α2))− λµ1

µ1µ2(µ1 + α2)
. (47)

Since the system time probability is independent of Ω2, we
can just give the conditioned system time PDF as:

pT |Ω1,S1,D (t|ω1, s1) =
µ1µ2e

−µ2(t−s1)(1− e−α2(s1−ω1))

α1

×u(t− s1).
(48)

We then condition on Y1 and uncondition on S1 and Ω1:

pT |Y1,D (t|y1) =
µ1µ2

(µ2 − µ1)
(
p(D)

e−µ1t(1− e−α1y1)

−e−µ2t(1− e−α2y1) + e−(µ2+α1)t(e−α1y1 − e−α2y1)
)
.
(49)
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The PDF of the system time is:

pT |D(t) =
µ2(µ1 − λ)e−µ1t − µ1(µ2 − λ)e−µ2t

λ(µ2 − µ1)p(D)

+
λe−(µ2+α1)t

p(D)
.

(50)

We can now find the PDF of the PAoI in case D:

p∆|D(τ) =
µ1µ2λ

p(D)

(
τ(e−µ2τ − e−µ1τ )

µ2 − µ1

+
α1e
−µ2τ − α2e

−µ1τ

α1α2(µ2 − µ1)
+

(
e−λτ + e−(µ1+α2)τ

)
α1α2

)
.

(51)

As for the M/M/1 – M/D/1 system, the total PDF is
given by Theorem 1.

E. PAoI in the case with equal service rates
In this subsection, we consider a special case in which the

general formula of the PAoI PDF is indeterminate, µ1 = µ2 =
µ. We follow the same steps as in the normal derivation. The
other cases in which the general formula is indeterminate,
µ1 = α2 and µ2 = α1, are not derived in this paper.

In case A, i.e., for Ω1 > 0 ∧ Ω2 > 0, we have:

p(A) =
λ

µ+ α
. (52)

Following the same steps as in the general case, we get:

p∆|A (τ) =
e−µτ

p(A)

(
µ(eλτ − 1) + λ(e−ατ − eλτ )

+
µα(α+ µ)(1− eλτ ) + µαλτ(αeλτ + µ)

λ2

)
.

(53)

The probability of being in case B, i.e., Ω1 > 0 ∧ Ω2 ≤ 0,
is:

p(B) =
λα

µ(µ+ α)
. (54)

The conditioned PDF of the PAoI is then:

p∆|B (τ) =
µe−µτ

p(B)

(
α2(eλτ − 1)

λ2
− λ(1− e−ατ )

α

−µ(αλτ2 + (α− λ)τ)

2λ

)
.

(55)

In this case, as the system is entirely symmetrical and both
queues are M/M/1, it is also time reversible, making case B
equivalent to case C in reverse. The probability of being in
case C, i.e., Ω1 ≤ 0∧Ω2 > 0, and the conditional PDF of the
PAoI are then the same as in case B:

p(C) =p(B)p∆|C (τ) = p∆|B (τ) . (56)

Finally, we look at case D, in which both systems are free:

p(D) =
α(µ+ α)− λ
µ(µ+ α)

. (57)

We then have the conditioned PDF of the PAoI:

p∆|D (τ) =
µ2λe−µτ (2cosh(ατ)− α2τ2 − 2)

α2p(D)
. (58)

As in the general case, the overall PAoI is given by Theorem 1.

TABLE II: Main simulation parameter values (unless otherwise
specified).

Parameter Value Description

λ 0.5 Packet generation rate
µ1 1 Service rate of M/M/1 system 1
µ2 1.25 Service rate of M/M/1 system 2
D 0.8 Service time of the M/D/1 system
N 107 Number of simulated packets
N0 1000 Initial transition

VI. SIMULATION RESULTS

We compared the results of our analysis with a Monte Carlo
simulation, transmitting N = 107 packets and computing the
system delay and PAoI for each. The initial stages of each
simulation were discarded, removing N0 = 1000 packets
to ensure that the system had reached a steady state. We
also divided the packets in the four cases, depending on the
queuing they experienced at each system. As the derivation
of the PAoI distribution does not involve any approximations,
the simulation results should perfectly match the theoretical
curves. The Monte Carlo simulation consisted of a single
episode, with all packets being transmitted one after the other.
The simulation parameters are listed in Table II, and are used
for all plots, unless otherwise specified.

A. M/M/1 – M/D/1 tandem

We first consider the tandem in which the first queue is
M/M/1, while the second is M/D/1. We note that, in all the
following figures, the simulation results match the theoretically
derived curves, showing the soundness of our calculations.

Although not shown, the system time has the expected
behavior: it is highest in case A when the packet is queued
at both, and lowest in case D, in which both systems are
free. However, the PAoI shows a different trend. While system
time increases monotonically with the traffic load, the PAoI is
the combination of the system and interarrival time: at one
extreme, when the system has very low traffic, it is dominated
by the interarrival time, while at the other, it is dominated
by the system time. The optimal setting to minimize PAoI
is somewhere in the middle, striking a balance between the
two causes of age. Furthermore, deterministic service reduces
uncertainty, particularly when traffic is high and queuing is
the main cause of ageing.

Fig. 5 shows the CDF of the PAoI in the four cases. It is
interesting to note that the PAoI is never smaller than 2D, as
even serving packets instantaneously at the first system would
still lead to a minimum delay: once packet i− 1 is generated,
it needs at least a time D to get through the system because
of the M/D/1 queue, and even if packet i is generated right
after it it needs another D to be served by the edge node,
leading to a minimum age of 2D. The PAoI is far smaller in
case C, i.e., when the packet is queued only at the M/D/1
system, as the queue will often be short and is guaranteed to
empty in a limited time. Cases A and B show a far worse
performance, because of the first system’s lower service rate
(D = 0.8 corresponds to a rate of 1.25) and of its exponential
system time distribution. If the packet is not queued at either
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Fig. 5: CDF of the PAoI ∆ for the M/M/1 – M/D/1 tandem in
the four subcases.
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Fig. 6: CDF of the PAoI ∆ for the M/M/1 – M/M/1 tandem for
different values of λ.
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Fig. 7: CDF of the PAoI ∆ for the M/M/1 – M/M/1 tandem for
different values of µ1 and D.

system (case D), the PAoI is dominated by the interarrival
time between the two packets, leading to higher ages.
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Fig. 8: Tail of the CDF for the M/M/1 – M/D/1 tandem with
µ1 = 1 and D = 0.8, for different values of λ.

We can also examine the PAoI as a function of the gen-
eration and service rates: Fig. 6 shows the PAoI CDF for
different values of λ. We can observe that a value of λ close
to 0.5 leads to the lowest PAoI, as a high traffic load increases
queuing times, while a lower load increases PAoI due to the
longer interarrival times. Fig. 7 shows what happens when the
service rates of the two systems are flipped.

In the figure, we compare two pairs of curves (orange and
cyan, violet and black): the orange and violet dashed lines
correspond to systems where the second node is faster, the
cyan solid line and the black dotted line have the M/D/1
queue as the bottleneck. As the system time in the M/D/1
queues is rarely very large (it would need a very large queue to
be significant, as all packets have the same service time), while
M/M/1 queues have an exponential system time distribution
which can take larger values more often, placing the bottleneck
on the M/D/1 system leads to a lower PAoI in the worst
case (i.e., the larger percentiles), at the cost of a worse PAoI
in favorable scenarios. The difference between the orange and
black lines is larger than between the cyan and violet ones, as
a larger difference between the rates of the two links leads to
an increased importance of the bottleneck. As for the subcase
analysis, the system time and PAoI from the Monte Carlo
simulation follow the analytical curve perfectly. As Fig. 9
shows, improving the edge computing capabilities has dimin-
ishing returns, as the M/M/1 communication system becomes
the bottleneck: even with a very low D, the PAoI cannot be
reduced beyond a certain value without also improving the
first system’s capacity.

We also make a worst-case analysis as a function of λ: Fig. 8
shows the 95th, 99th and 99.9th percentiles of the PAoI for a
system with µ1 = 1 and D = 0.8. If the traffic is very high,
the queuing time is the dominant factor, causing the worst-
case PAoI to diverge. The same happens if the traffic is too
low, as the interarrival times can be very large: in this case, the
system will almost always be empty, but updates will be very
rare. The best performance in terms of PAoI is close to the
middle. Depending on the desired reliability, system designers
should choose the range of λ that fulfils the given percentile
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µ1 = 1, for different values of D using the optimal λ.
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Fig. 10: CDF of the PAoI ∆ for the M/M/1 – M/M/1 tandem in
the four subcases.

of the PAoI in the specific conditions they consider.

B. M/M/1 – M/M/1 tandem

Fig. 10 shows the PAoI CDF in the four subcases for
λ = 0.5, µ1 = 1, and µ2 = 1.2. Interestingly, there is no
minimum delay and the CDF starts in zero, unlike in the
M/M/1–M/D/1 case. The PAoI is the lowest in case C, and
almost identical in cases B and D. This is due to the effect of
the interarrival times on the PAoI, as case D usually means that
the instantaneous load of the system is low and packets are far
apart, increasing the PAoI. In case C, the faster system is busy
and the bottleneck is empty. Intuitively, this can reduce age,
as the second system will probably be able to serve packets
fast enough, but at the same time the instantaneous load will
be high enough to avoid having a strong impact on the age.

We can now examine the PAoI CDFs for different values of
λ: the system time is always higher for higher values of λ, as
it depends on the traffic. The same is not true for the PAoI, as
Fig. 11 shows: as for the M/M/1 – M/D/1 tandem, the PAoI
is lowest for λ = 0.5, as the high interarrival time becomes the
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Fig. 11: CDF of the PAoI ∆ for the M/M/1 – M/M/1 tandem for
different values of λ.
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Fig. 12: CDF of the PAoI ∆ for the M/M/1 – M/M/1 tandem for
different values of µ1 and µ2.

dominant factor for λ = 0.25. Interestingly, the gap between
the system with λ = 0.25 and the one with λ = 0.75 is
wider: the M/D/1 system is better able to handle high load
situations, as having a high system time is far rarer than in the
M/M/1. On the other hand, the values of µ1 and µ2 also have
an important effect, as Fig. 12 shows: while the bottleneck
always has a service rate 1, changing the service rate of the
other link and even switching the two can have an impact on
the PAoI. Naturally, increasing the rate of the other link from
1.2 to 1.6 slightly reduces the PAoI, but we note that for both
values, having the first or second system as the bottleneck has
a negligible effect on performance. Unlike in the M/M/1 –
M/D/1 tandem, the location of the bottleneck in the tandem
seems to have a very small influence on the distribution of
the PAoI, as both queues have the same type of service time
distribution.

Fig. 13 shows how the worst-case PAoI, measured using
the 95th, 99th and 99.9th percentiles, changes as a function
of λ. The figure shows that the trends for the two systems
are similar: the M/M/1 – M/D/1 queue can handle a high
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Fig. 13: Tail of the CDF for the M/M/1 – M/M/1 tandem with
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Fig. 14: Tail of the CDF for the M/M/1 – M/M/1 tandem with
µ1 = 1, for different values of µ2 and using the optimal λ.

load slightly better, and its minimum PAoI is lower by 5-10%
at all the considered percentiles. In both cases, the optimal
λ is between 0.45 and 0.5 for all the three percentiles. As
for the M/M/1 – M/D/1 tandem, increasing the rate of the
second system gives diminishing returns, and any increase past
µ2 = 2 has negligible benefits if µ1 = 1, as Fig. 14 shows.
The horizontal axis in the figure shows the inverse of µ2 to
provide a visual comparison with Fig. 8: the tail of the PAoI
distribution clearly has higher values in the system with two
M/M/1 queues, as we would expect due to the additional
randomness in the service time of the edge computing node.

Finally, Fig. 15 shows a comparison of the two kinds of
system: as expected, the M/M/1 – M/D/1 tandem has a
higher PAoI in the best-case scenario, as it has a hard minimum
of 2D, but quickly becomes better at the higher percentiles.
This difference is more pronounced if the second system is
slower, with the M/M/1 – M/D/1 tandem with D = 1
having a better PAoI than the M/M/1 – M/M/1 one with
µ2 = 1.25 for percentiles above the 60th. As the plot shows,
the two types of tandem are substantially equivalent if the
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Fig. 15: CDF of the PAoI ∆ for the two systems (analytical results)
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Fig. 16: Average PAoI ∆̄ for the two systems (analytical results) for
different values of µ1 and D.

computation is much faster than the communication. We also
show the average PAoI for the two systems in Fig. 16: this is
computable from the PDF we derived in this paper, but simpler
formulas were derived in the literature [23], [28]. As expected,
the M/M/1–M/D/1 system is better able to deal with high
traffic load than the M/M/1–M/M/1. It is interesting to
note that the M/M/1–M/D/1 queue has a larger gain in
the average PAoI than at higher percentiles, even for values
of λ between 0.45 and 0.5.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we derived the PDF of the PAoI for a tandem
with an M/M/1 system followed by an M/D/1 and for one
consisting of two M/M/1 queues. These new results can give
more flexibility in the design of bounded AoI systems, both for
edge-enabled IoT where the wireless tranmission precedes the
computation delay and in other relay applications. The results
are derived for two nodes, but the procedure is generic for K
M/M/1 nodes, potentially followed by an M/D/1 system.
If the M/D/1 system is not the last, the analytical derivation
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of the PAoI becomes intractable, as its departure process is
non-Markovian.

The optimization of the two systems can be a complex
operation to perform in real time, and finding the complete
PDF analytically might not be manageable in more complex
cases with channel errors and multiple sources. However, ap-
proximations of the optimal policies can be found by applying
deep learning techniques [51], paying particular attention to
the uncertainty in the model parameters in order to guarantee
reliability even in realistic conditions [52]. The possibility to
compute the PDF and CDF using the formulas can provide a
fast way to generate samples for a deep learning system, which
would then be able to generalize experience in previously
unseen situations with a lower computational cost: there is
an extensive body of work on similar approaches, which use
learning to quickly find a solution to optimization problems
with computationally expensive cost functions.

Aside from the possibilities offered by deep learning, a
possible avenue of future work is the introduction of multiple
independent sources in the system, possibly with different
priorities. The extension of the system to longer or more
complex queuing networks is also a possibility, but the com-
plexity of the derivation might make the analytical results
unwieldy. The inclusion of error-prone links, with packets
being randomly dropped, is another interesting extension.
Finally, the optimization of λ in all these scenarios might be
a practical application of the theoretical derivations, yielding
usable scheduling policies.
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