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On the connectivity of the non-generating graph
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Abstract. Given a 2-generated finite group G, the non-generating graph
of G has as vertices the elements of G and two vertices are adjacent if
and only if they are distinct and do not generate G. We consider the
graph Σ(G) obtained from the non-generating graph of G by deleting
the universal vertices. We prove that if the derived subgroup of G is
not nilpotent, then this graph is connected, with diameter at most 5.
Moreover, we give a complete classification of the finite groups G such
that Σ(G) is disconnected.
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1. Introduction. Let G be a finite group. The generating graph of G, written
Γ(G), is the graph in which the vertices are the elements of G and there is an
edge between g1 and g2 if G is generated by g1 and g2. If G is not 2-generated,
then there will be no edge in this graph. Thus, it is natural to assume that
G is 2-generated. Quite a lot is known about this graph when G is a non-
Abelian simple group; for example, Guralnick and Kantor [9] showed that
there is no isolated vertex in Γ(G) but the identity, and Breuer, Guralnick,
Kantor [2] showed that the diameter of the subgraph of Γ(G) induced by
non-identity elements is 2 for all G. If G is an arbitrary finite group, then
Γ(G) could contain many isolated vertices. Let Δ(G) be the subgraph of Γ(G)
that is induced by all the vertices that are not isolated. In [5] and [11], it
is proved that if G is a 2-generated soluble group, then Δ(G) is connected
and diam(Δ(G)) ≤ 3. The situation is different if the solubility assumption is
dropped. It is an open problem whether or not Δ(G) is connected, but even
when Δ(G) is connected, its diameter can be arbitrarily large. For example,
if G is the largest 2-generated direct power of SL(2, 2p) and p is a sufficiently
large odd prime, then Δ(G) is connected but diam(Δ(G)) ≥ 2p−2 − 1 (see [6,
Theorem 5.4]).
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The aim of this paper is to investigate the connectivity of the complement
graph of Δ(G), denoted by Σ(G). This graph can be described as follows:
we take the non-generating graph of G, i.e. the graph whose vertices are the
elements of G and where there is an edge between g1 and g2 if 〈g1, g2〉 �= G and
we remove the universal vertices (corresponding to the isolated vertices of the
generating graph). We prove that Σ(G) is connected, except for some families
that can be completely described. In any case, if Σ(G) is disconnected, then
G is soluble and its derived subgroup is nilpotent.

Theorem 1. Let G be a 2-generated finite group. Then Σ(G) is connected if
and only if none of the following occurs:
(1) G is cyclic;
(2) G is a p-group;
(3) G/Frat(G) ∼= (V1 × · · · × Vt) � H, where H ∼= Cp for some prime p,

and V1, . . . , Vt are pairwise non-H-isomorphic non-trivial irreducible H-
modules.

(4) G/Frat(G) ∼= (V1 × · · · × Vt) � H, where H ∼= Cp × Cp for some prime
p, V1, . . . , Vt are pairwise non-H-isomorphic non-trivial irreducible H-
modules and CH(V1 × · · · × Vt) ∼= Cp.

Moreover, if Σ(G) is connected, then diam(Σ(G)) ≤ 5, and diam(Σ(G)) ≤ 3
under the additional assumption that G is soluble.

We do not know whether the bound on the diameter of Σ(G) is the best pos-
sible. In any case, if B is the Baby Monster, then diam (Σ(B)) ≥ 4 (see the end
of Section 3). On the other hand, for soluble groups, the bound diam(Σ(G)) ≤ 3
is the best possible. Consider for example G = 〈a〉×〈b〉×〈c〉, with |a| = |b| = 2
and |c| = 3. In this case, 1, c, c2 are the isolated vertices of the generating
graph Γ(G). Moreover, if g is adjacent to ac in Σ(G), then g ∈ 〈ac〉, hence
g ∈ {a, ac2}. Similarly b and bc2 are the only vertices of Σ(G) that are adja-
cent to bc. Hence a shortest path in Σ(G) between ac and bc is (ac, a, b, bc).

When Σ(G) is disconnected, it is possible that it contains some isolated
vertices. However this occurs only in few particular cases.

Proposition 2. Let G be a 2-generated finite group. Then Σ(G) has an isolated
vertex if and only if
(1) G is cyclic;
(2) G ∼= C2 × C2;
(3) G ∼= Dp is a dihedral group with 2p elements for p an odd prime.

The structure of the paper is as follows. In Section 2, we study Σ(G) in
the particular case when G is a primitive soluble group. In Section 3, we
investigate Σ(G) when G is a monolithic group whose socle is non-Abelian.
Thanks to the fact that if N is a proper normal subgroup of G and Σ(G/N) is
connected, then Σ(G) is also connected (see Proposition 15), using the results
from Sections 2 and 3, we prove in Section 4 that if Σ(G) is disconnected, then
the derived subgroup of G is nilpotent. The case when the derived subgroup is
nilpotent is analysed in Section 5. In the last section, we combine the partial
results obtained in the previous sections to complete the proof of Theorem 1.
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Although it is elementary and independent from the proof of Theorem 1, the
proof of Proposition 2 is given at the end of Section 6.

2. Primitive soluble groups.

Definition 3. Let G be a finite group. We denote by V (G) the subset of G
consisting of the elements x with the property that G = 〈x, y〉 for some y.

Lemma 4 ([14, Proposition 2.2]). Let G be a primitive soluble group. Let N =
soc(G) and let H be a core-free maximal subgroup of G. Given 1 �= h ∈ H and
n ∈ N , hn ∈ V (G) if and only if h ∈ V (H). In particular, V (H)\{1} ⊆ V (G).

Proposition 5. Let G be a 2-generated primitive soluble group. Then Σ(G) is
disconnected if and only if either G ∼= Cp or G/ soc(G) ∼= Cp. Moreover, if G
is connected, then diam(Σ(G)) ≤ 3.

Proof. If G is nilpotent, then G ∼= Cp. In this case, Σ(G) is a disconnected
graph with p vertices and no edges. So we may assume that G is not nilpotent.
Thus G ∼= V � H, where V = soc(G) is a faithful irreducible H-module.

If |H| = p, with p a prime, then 〈g, v〉 = G for any 1 �= v ∈ V and g /∈ V.
In particular, V \ {1} is a connected component of Σ(G).

So we may assume that |H| is not a prime. Suppose that g1 = v1h1, g2 =
v2h2 are two different elements of V (G), with v1, v2 ∈ V, h1, h2 ∈ H. By
Lemma 4, for i ∈ {1, 2}, either hi = 1 (and therefore H is cyclic) or hi ∈ V (G).
If neither h1 nor h2 is a generator of H, then (v1h1, h1, h2, v2h2) is a path in
Σ(G). So we may assume H = 〈h1〉. In this case, h1 and g1 are conjugate in
G, so it is not restrictive to assume v1 = 1. Since |H| is not a prime, we can
choose 1 �= h ∈ H with |h| < |H|. Since all the complements of V in G are
conjugate, there exists v ∈ V such that 〈g2〉 ≤ 〈hv

1〉. But then (h1, h, hv, g2) is
a path in Σ(G). �

3. Monolithic groups with non-Abelian socle. Let G be a 2-generated finite
monolithic group, with a non-Abelian socle. The aim of this section is to prove
that the graph Σ(G) is connected, with diameter at most 5.

Assume A = soc(G) ∼= Sn, with S a finite non-Abelian simple group and
n ∈ N. We may identify G with a subgroup of Aut(Sn) = Aut(S) 
 Sym(n),
the wreath product of Aut(S) with the symmetric group of degree n. So the
elements of G are of the kind g = (α1, . . . , αn)σ, with αi ∈ Aut(S) and σ ∈
Sym(n). For this section, we will refer to this identification and we will denote
by π the homomorphism π : Aut(S)
Sym(n) → Sym(n) mapping (α1, . . . , αn)σ
to σ.

We begin with two lemmas concerning some properties of Aut(S).

Lemma 6. Let S be a finite non-Abelian simple group. There exist a subgroup
H of Aut(S) and a prime divisor r of the order of S with the following prop-
erties:
(1) H ∩ S < S;
(2) HS = Aut(S);
(3) for every h ∈ H, we can find an element s ∈ S∩H such that |h|r �= |hs|r.
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Proof. First suppose that S is an alternating group of degree n (with n �= 6)
or a sporadic simple group. We claim that in this case we can take r = 2 and
H ∈ Syl2(Aut(S)). This is equivalent to saying that any coset (S∩H)h of S∩H
in H contains x and y with |x|2 �= |y|2. If h ∈ S, then it suffices to take x = 1
and y a non-trivial element of H ∩ S. If h /∈ S, then, since |Aut(S) : S| ≤ 2,
we must have |H : H ∩ S| = |Aut(S) : S| = 2 and (H ∩ S)h = H\H ∩ S. It
is known that in this case Aut(S) \ S (and consequently H \ H ∩ S) contains
both an involution and an element of order 4 (see, for example, [1, Theorem
2]).

Now assume that S is a simple group of Lie type, defined over a field of
characteristic p. The proof of the Lemma in [13, Section 2] implies that, except
when S = PSL(2, q) and q is odd, we can take r = p and H = NAut (S)(P )
for P ∈ Sylp(S). We remain with the case when S = PSL(2, q) and q is odd.
In this case, let r = 2, P ∈ Syl 2(S), and H = NAut (S)(P ). We may choose
P so that the Frobenius automorphism σ belongs to H. Let h ∈ H. Up to
multiplying with a suitable element of S ∩H, we may assume h = yσ1σ2, with
y ∈ H, |y| = 2, σ1, σ2 ∈ 〈σ〉, |σ1| a 2-power, |σ2| odd, and [y, σ] = 1. Let q̃ be
the size of the subfield of GF (q) centralized by σ2. By [1, Theorem 2], there
exists t ∈ PSL(2, q̃)〈yσ1〉 ∩ H such that |tyσ1|2 > |yσ1|2. We have |th|2 > |h|2.
�

Lemma 7. Let S and H be as in the previous lemma. For any h1, h2 ∈ H,
there exist s ∈ S, t ∈ H ∩ S such that 〈h1s, h2t〉 = 〈h1, h2〉S.

Proof. It follows from Lemma 6 (3) that there exists t ∈ H ∩ S such that
〈h2t〉 ∩ S �= 1. Indeed, if 〈h2〉 ∩ S �= 1, then we can take t = 1. Otherwise
take t ∈ H ∩ S such that |h2|r �= |h2t|r; then 〈h2t〉 ∩ S contains a non-trivial
r-element. Now let 1 �= u ∈ 〈h2t〉 ∩ S. By [3, Theorem 1], there exists s ∈ S
such that 〈h1s, u〉 = 〈h1, S〉. This implies 〈h1s, h2t〉 = 〈h1, h2〉S. �

In the next two lemmas, let H̃ = {(α1, . . . , αn)σ ∈ G | α1, . . . , αn ∈ H},
where H is the subgroup of Aut(S) introduced in the statement of Lemma 6.
Clearly, since H ∩ S < S, H̃ is a proper subgroup of G. Moreover, in the
proof of the next lemma, we will use a quasi-ordering relation on the set of
the cyclic permutations which belong to the group Sym(n), whose definition
depends on the choice of the prime r appearing in the statement of Lemma 6.
Let σ1, σ2 ∈ Sym(n) be two cyclic permutations (including cycles of length 1);
we define σ1 ≤ σ2 if either |σ1|r < |σ2|r or |σ1|r = |σ2|r and |σ1| ≤ |σ2|.
Lemma 8. Suppose 〈g1, g2〉A = G and that one of the following holds:
(1) gπ

1 has a fixed point;
(2) gπ

2 has a fixed point;
(3) (g1g

i
2)

π is fixed-point-free for every i ∈ Z.

Then there exist u1, u2 in A such that 〈u1g1, u2g2〉 = G and u1g1 ∈ H̃.

Proof. Since SH = Aut(S), it is not restrictive to assume g1, g2 ∈ H̃. By [13,
Theorem 1.1] and its proof, there exist u1, u2 ∈ A such that 〈u1g1, u2g2〉 = G.
With a careful revision of the proof, it can be shown that u1, u2 can be chosen
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with the additional property that u1 ∈ A∩Hn. The proof of [13, Theorem 1.1]
is constructive, but unfortunately long (7 pages) and intricate. Our aim here is
not to repeat all the proof, but only to give a short sketch and indicate which
parts of the proof require some adjustment in order to achieve the stronger
formulation.

First we fix our notation. Since they are quite technical and it could be
difficult to understand immediately their meaning, at any step we will indicate
how our definitions work in the particular case when gπ

1 has a fixed point.
We assume g1 = (α1, . . . , αn)ρ, g2 = (β1, . . . , βn)σ, with αi, βj ∈ Aut(S)

and ρ, σ ∈ Sym(n). Then we write ρ = ρ1 · · · ρs(ρ) as products of disjoint cycles
(including possibly cycles of length 1) in such a way that

ρ1 ≤ · · · ≤ ρs(ρ).

For 1 ≤ i ≤ s(ρ), let ρi = (mi,1, . . . ,mi,|ρi|) and set m = m1,1. Notice that in
the particular case when gπ

1 = ρ has at least one fixed point, m is one of these
fixed points (i.e. ρ1 = (m)).

The permutation σ has an orbit (possibly of length 1) containing m and
acts on this orbit as a cycle (m,n2, . . . , nt).

For a given pair v1 = (x1, . . . , xn), v2 = (y1, . . . , yn) of elements of A = Sn,
we define

ᾱr = xrαr, β̄r = yrβr, 1 ≤ r ≤ n,

ai = ᾱmi,1 · · · ᾱmi,|ρi|
, 1 ≤ i ≤ s(ρ).

Moreover, let a = αmᾱm1,2 · · · ᾱm1,|ρ1| , b = βmβ̄n2 · · · β̄nt
and consider K =

〈a, b, S〉. In the particular case when m is a fixed point of ρ, we just have
a = αm.

Now we say that the 2n-tuple (x1, . . . , xn, y1, . . . , yn) ∈ S2n is good if the
following two conditions are satisfied:

(1) 〈a1, b1〉 = 〈xma, ymb〉 = K.
(2) If 2 ≤ i ≤ s(ρ), then a

|ρ1···ρi|/|ρi|
i is not conjugate to a

|ρ1···ρi|/|ρ1|
1 in

Aut(S).

The reason for this definition is the following. The first part of the proof of
[13, Theorem 1.1] (ending with the last paragraph of page 177) shows that
conditions (1) and (2) ensure that there exists a partition Φ of {1, . . . , n}
invariant for the action of 〈ρ, σ〉 such that 〈v1g1, v2g2〉∩Sn =

∏
B∈Φ DB , where,

for every block B ∈ Φ, DB is a full diagonal subgroup of
∏

j∈B Sj . Moreover,
if B is the block of Φ containing m, then B ⊆ supp(ρ1). In particular, if m
is fixed by ρ, then B = {m}, hence A = Sn ≤ 〈v1g1, v2g2〉 and therefore
G = 〈v1g1, v2g2〉.

We claim that we can find a good 2n-tuple with the additional property that
x1, . . . , xn ∈ H. To construct such a 2n-tuple, we start by choosing arbitrarily
x1, . . . , xn, y1, . . . , yn ∈ S∩H, and then we modify the elements xm, ym and the
elements xi for i ∈ {mi,1 | 2 ≤ i ≤ s(ρ)}. This can be done in two consecutive
steps.
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(i) First, by Lemma 7, we can find x ∈ H ∩S and y ∈ S such that 〈xa, yb〉 =
K. We substitute the original xm, ym by xxm and yym.

(ii) Then let i ∈ {2, . . . , s(ρ)}. Since ρ1 ≤ · · · ≤ ρi, |ρ1 · · · ρi|/|ρi| is coprime
with r and therefore, by Lemma 6, there exists si ∈ S ∩ H such that
(siai)|ρ1···ρi|/|ρi| is not conjugate to a

|ρ1···ρi|/|ρ1|
1 in Aut(S). We substitute

xmi,1 by sixmi,1 .

Our first conclusion is that if ρ has at least a fixed point and
(x1, . . . , xn.y1, . . . , yn) is a good 2n-tuple with the additional property ensured
by the previous paragraph, then (x1, . . . , xn) and (y1, . . . , yn) satisfy the
request of our statement.

The case when σ has a fixed point can be dealt with a similar argu-
ment, working with the ordered pair (g2, g1) instead of (g1, g2). However, if
we repeat precisely the same procedure as above, we obtain v1, v2 ∈ A such
that 〈v1g2, v2g1〉 = G and v1g2 ∈ H̃, while our request is to have v2g1 ∈ H̃.
On the other hand, when in step (i) we apply Lemma 7, we are free to choose
x, y either with the property that x ∈ H ∩ S and y ∈ S or with the property
that x ∈ S and y ∈ H ∩ S, and the second choice solves the problem.

We remain with the case when ρσi is fixed-point-free for every i ∈ Z. As we
have seen before, we can find v1 = (x1, . . . , xn), v2 = (y1, . . . , yn) ∈ Sn with
the properties that (x1, . . . , xn, y1, . . . , yn) is a good 2n-tuple with x1, . . . , xn ∈
H∩S. This implies that 〈v1g1, v2g2〉∩Sn =

∏
B∈Φ DB for a suitable partition Φ

of {1, . . . , n}. Clearly this is not enough to reach our conclusion and indeed this
is the case for which the proof of [13, Theorem 1.1] requires more work. The
crucial observation is that the conditions that make (x1, . . . , xn, y1, . . . , yn) a
good 2n-tuple involve only the elements x1, . . . , xn and the value of the product
ymβmyn2βn2 · · · ynt

βnt
. This leaves a large freedom in the choice of elements

y1, . . . , yn. Indeed, the second part of the proof of [13, Theorem 1.1], from
page 177 to page 181, shows that we may choose y1, . . . , yn so that

∏
B∈Φ DB

is normalized by 〈v1g1, v2g2〉 only if Φ = {{1}, . . . , {n}}. With this choice,
〈v1g1, v2g2〉 = G, as required. �
Corollary 9. Let g be a vertex of Σ(G). If G/ soc(G) is not cyclic, then there
exists a vertex g̃ ∈ Σ(G) such that g̃ ∈ H̃ and the distance between g and g̃ in
Σ(G) is at most 2.

Proof. Since g ∈ Σ(G), there exists g2 ∈ G such that 〈g, g2〉 = G. If g and g2

satisfy one of the three conditions in the statement of Lemma 8, then there
exists u, u2 in soc(G) = A such that 〈ug, u2g2〉 = G and g̃ = ug ∈ H̃. In
particular, g̃ ∈ Σ(G) and 〈g, g̃〉 ≤ 〈g〉A < G since we are assuming that G/A
is not cyclic, and therefore g and g̃ are adjacent vertices of Σ(G). Now assume
that gπ and gπ

2 are fixed-point-free but there exists i ∈ Z such that g3 = ggi
2

has a fixed point. If 〈g, g3〉 = G, then we repeat the previous argument using
g3 instead of g2 and we find an element g̃ with the required properties. Suppose
〈g, g3〉 �= G. In any case, 〈g2, g3〉 = 〈g2, g〉 = G, so g3 is a vertex of Σ(G) which
is adjacent to g. Moreover, we may apply Lemma 8 to the generating pair
(g3, g2) in order to find g̃3 ∈ H̃ which is adjacent in Σ(G) to g3. So (g, g3, g̃3)
is a path in Σ(G) and we may take g̃ = g̃3. �
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Proposition 10. The graph Σ(G) is connected, with diameter at most 5.

Proof. We distinguish two cases:
a) G/ soc(G) is not cyclic. Suppose that g1, g2 are two different vertices of Σ(G).
Choose g̃1, g̃2 as in the statement of Corollary 9. Since 〈g̃1, g̃2〉 ≤ H̃ < G, g̃1, g̃2

are adjacent vertices of Σ(G). So the distance in Σ(G) between g1 and g2 is at
most 5.
b) G/ soc(G) is cyclic. Recall that the intersection graph I(G) of G is the
graph whose vertices are the non-trivial proper subgroups of G and in which
two vertices H and K are adjacent if and only if H∩K �= 1. By [3, Theorem 1],
when G/ soc(G) is cyclic, the vertex set V (G) of Σ(G) coincides with the set
of the non-trivial elements of G. In particular, as explained in [4, Section 12],
(Σ(G), I(G)) is a dual pair of graphs, and therefore there is a natural bijection
between connected components of Σ(G) and connected components of I(G)
with the property that corresponding components have diameters which are
either equal or differ by 1. If G is neither soluble nor simple, then I(G) is
connected with diam(I(G)) ≤ 4 (see [16, Lemma 5]) hence diam(Σ(G)) ≤ 5.
Freedman recently proved that also when G is a finite non-Abelian simple
group, the graph Σ(G) is connected with diameter at most 5 (see the remark
after [4, Proposition 12]). �

We do not know whether the bound in the previous proposition is the best
possible. However, Freedman [7] proved that diam(I(G)) ≤ 5 for any finite
non-Abelian simple group G and that the upper bound is attained only by the
Baby Monster B and some unitary groups. In particular, since (I(B),Σ(B)) is
a dual pair of graphs, it follows that diam(Σ(B)) ≥ 4.

4. A reduction to the case when the derived subgroup is nilpotent. The main
result of this section is the following proposition, which says in particular that
if Σ(G) is disconnected, then G is soluble and the derived subgroup of G is
nilpotent.

Proposition 11. Let G be a 2-generated group. If Σ(G) is disconnected, then G
is soluble. Moreover if G is soluble, then at least one of the following occurs.
(1) Σ(G) is connected and diam(Σ(G)) ≤ 3;
(2) The derived subgroup of G is nilpotent and G/Frat(G) has the following

structure:

G/Frat(G) ∼= (V1 × · · · × Vt) � H,

where H is Abelian and V1, . . . , Vt are pairwise non-H-isomorphic non-
trivial irreducible H-modules (including the possibility t = 0).

The proof requires some preliminary easy results. First we need to notice
that Σ(G) is disconnected if G is cyclic or has prime power order.

Lemma 12. If G is a non-trivial cyclic group, then Σ(G) is disconnected.

Proof. If 〈g〉 = G, then g is an isolated vertex of Σ(G). �

Lemma 13. If G is a 2-generated finite p-group, then Σ(G) is disconnected.
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Proof. By the previous lemma, we may assume that G is not cyclic. Let F =
Frat(G). Then G has precisely p + 1 maximal subgroups M1, . . . ,Mp+1 and
V (G) = G\F. Moreover, two distinct vertices x and y of Σ(G) are adjacent if
and only if x, y ∈ Mi for some 1 ≤ i ≤ p + 1. This implies that Σ(G) is the
union of p + 1 complete graphs, with vertex sets M1 \ F, . . . ,Mp+1 \ F. �

A crucial role in our proof will also be played by the following result, due
to Gaschütz.

Proposition 14 ([8]). Let N be a normal subgroup of a finite group G and
suppose that 〈g1, . . . gk〉N = G. If k ≥ d(G), then there exist n1, . . . , nk ∈ N
so that 〈g1n1, . . . gknk〉 = G.

Using the previous proposition, we may prove the following basic observa-
tion.

Proposition 15. Let N be a proper normal subgroup of G. If Σ(G/N) is con-
nected, then Σ(G) is connected and diam(Σ(G)) ≤ diam(Σ(G/N)).

Proof. Let g1, g2 be two different vertices of Σ(G). If g1N = g2N, then
〈g1, g2〉 ≤ 〈g1, g2〉N < G since, by Lemma 12, G/N is not cyclic. In this case,
g1, g2 are adjacent vertices of Σ(G). So we may assume g1N �= g2N. In this case,
there exists a path (g1N, y1N, . . . , yrN, g2N) in Σ(G/N). By Proposition 14,
for any 1 ≤ i ≤ r, yini ∈ V (G) for some ni ∈ N. Thus (g1, y1n1, . . . , yrnr, g2)
is a path in Σ(G). �
Corollary 16. If G is non-soluble, then Σ(G) is connected and diam(Σ(G)) ≤
5.

Proof. A non-soluble group G has an epimorphic image which is monolithic
with non-Abelian socle. So the conclusion follows combining the previous
proposition with Proposition 10. �

A chief factor A = X/Y of a finite group G is said to be a non-Frattini
chief factor if X/Y �≤ Frat(G/Y ).

Corollary 17. Let G be a 2-generated soluble group. If there exists a non-
Frattini and non-central chief factor A of G such that G/CG(A) is not cyclic
of prime order, then G is connected and diam(Σ(G)) ≤ 3.

Proof. If A is a non-Frattini chief factor of G, then G admits as an epimor-
phic image the semidirect product A � G/CG(A), so the conclusion follows
combining Propositions 5 and 15. �
Proof of Proposition 11. By Corollary 16, we may assume that G is soluble.
Denote by W and F , respectively, the Fitting subgroup and the Frattini sub-
group of G. By [10, Theorem 10.6 (c)], W/F has a complement in G/F and
it is a direct product of minimal normal subgroups of G/F. In particular,
G/F ∼= (V1 ×· · ·×Vu)�K, where Vj is an irreducible K-module for 1 ≤ j ≤ u
and

⋂
1≤j≤u CK(Vj) = 1. Now let A be the set of the non-trivial irreducible

G-modules that are G-isomorphic to a non-Frattini chief factor. By Corol-
lary 17, we may assume that G/CG(A) is cyclic of prime order for every
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A ∈ A. This implies in particular that, for 1 ≤ j ≤ u, either CK(Vj) = K
or K/CK(Vj) ∼= Cpj

for some prime pj . Moreover, K ≤ ∏
1≤j≤u K/CK(Vj) is

Abelian. This implies in particular that G/W is Abelian, hence the derived
subgroup G′ of G is contained in W and therefore is nilpotent. We may assume
that Vj ≤ Z(G) if and only if j > t. So we have G/F ∼= (V1 × · · · × Vt) � H,
with H = (Vt+1 ×· · ·×Vu)×K. If 1 ≤ j1 < j2 ≤ t, then (Vj1 ×Vj2)�H, being
an epimorphic image of G, must be 2-generated, and this implies Vj1 �∼=H Vj2 .

�

5. Groups with nilpotent derived subgroup. In this section, we investigate the
connectivity of the graph Σ(G) under the additional assumption that G is a
finite soluble group whose derived subgroup is nilpotent. First we consider the
particular case when G itself is nilpotent. The analysis of this case relies on
Lemma 19, whose proof requires the following preliminary observation.

Lemma 18. Let A and B be soluble groups without common epimorphic
images. Then two elements (x1, y1), (x2, y2) of A × B generate A × B if and
only if 〈x1, x2〉 = A and 〈y1, y2〉 = B.

Proof. Suppose A = 〈x1, x2〉 and B = 〈y1, y2〉. Since H is a subdirect product
of A and B, by Goursat’s lemma (see, for example, [15, 4.3.1]), we can have
H < G only if A and B have a common non-trivial epimorphic image. �

Lemma 19. If G = A × B is a non-cyclic soluble group and A and B have no
common Abelian epimorphic image, then Σ(G) is connected and diam(Σ(G)) ≤
3, with equality if and only one of the following occurs:
(1) A is cyclic and either Σ(B) is disconnected or diam(Σ(B)) > 2.
(2) B is cyclic and either Σ(A) is disconnected or diam(Σ(A)) > 2.

Proof. By Lemma 18, V (G) = V (A) × V (B). We may assume that A is not
cyclic (if A and B are both cyclic, then either they have a common epimorphic
image or A×B is cyclic). Suppose that g1 = (a1, b1), g2 = (a2, b2) are two dif-
ferent vertices of Σ(G). If B �= 〈b1〉, then ((a1, b1), (a2, b1), (a2, b2)) is a path in
Σ(G). Similarly, if B �= 〈b2〉, then ((a1, b1), (a1, b2), (a2, b2)) is a path in Σ(G).
If B = 〈b1〉 = 〈b2〉, then ((a1, b1), (a1, 1), (a2, 1), (a2, b2)) is a path in Σ(G). In
the last case, if (a1, a, a2) is a path in Σ(A), then ((a1, b1), (a, b1), (a2, b2)) is
also a path in Σ(G).

Finally assume that B = 〈b〉 is cyclic and there exist a1, a2 ∈ V (A) without
a common neighbour in Σ(A). Then (a1, b) and (a2, b) do not have a common
neighbour in Σ(G) and therefore diam(Σ(G)) ≥ 3. �

Corollary 20. Let G be a 2-generated finite nilpotent group. Then Σ(G) is dis-
connected if and only if G is either a cyclic group or a p-group. Moreover, if
G is neither a cyclic group nor a p-group, then diam(Σ(G)) = 3 if G has only
one non-cyclic Sylow subgroup, diam(Σ(G)) = 2 otherwise.

Proof. We decompose G = P1 × · · · × Pt × Q1 × · · · × Qu where P1, . . . , Pt

are the cyclic Sylow subgroups of G and Q1, . . . , Qu are the remaining Sylow
subgroups. If u = 0, then Σ(G) is disconnected by Lemma 12. So we may
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assume u ≥ 1. If u = 1 and t = 0, then Σ(G) is disconnected by Lemma 13.
If u = 1 and t > 0, then G = X × Q1 with X = P1 × · · · × Pt. So by
Lemma 19, Σ(G) is connected, and, since X is cyclic and Σ(Q1) is disconnected,
diam(Σ(G)) = 3. If u ≥ 2, then G = K×Qu with K = P1×· · ·×Pt×Q1×· · ·×
Qu−1. Neither K nor Qu is cyclic, so, again by Lemma 19, Σ(G) is connected
and diam(Σ(G)) = 2. �

It remains to investigate the case when G is as described in Proposition 11
(2) and t > 0. By the following lemma it is not restrictive to assume Frat(G) =
1.

Lemma 21. Let G be a 2-generated finite group. Then Σ(G) is connected if and
only if Σ(G/Frat(G)) is connected.

Proof. Let F = Frat(G). Since G is cyclic if and only if G/F is cyclic, by
Lemma 12, we may assume that G is not cyclic. By Proposition 15, we only
have to prove that if Σ(G/F ) is disconnected, then Σ(G) is also disconnected.
So assume that Ω is a connected component of Σ(G/F ) and that there exists
yF ∈ V (G/F )\Ω. Since 〈g1, g2〉 = G if and only if 〈g1F, g2F 〉 = G/F, it follows
immediately that Ω∗ = {x ∈ G | xF ∈ Ω} is a connected component of Σ(G)
and y ∈ V (G) \ Ω∗. �

Assume now that Frat(G) = 1 and that G is a non-nilpotent group satis-
fying the description given in Proposition 11 (2). We have:
(∗) G ∼= (V1 × · · · × Vt) � H, where H is Abelian and V1, . . . , Vt are pairwise

non-H-isomorphic non-trivial irreducible H-modules.
Notice that if G satisfies (∗) and M is a maximal subgroup of G, then either
M = (V1 × · · · × Vt)K for some maximal subgroup K of H or M contains
a conjugate of H (and consequently it contains H ∩ Z(G)). In particular,
Z(G) ∩ Frat(H) ≤ Frat(G) = 1.

The following lemma describes the possibilities that can occur if G satisfies
(∗).

Lemma 22. Assume that G satisfies (∗). Then one of the following occurs:
(1) Σ(G) is connected and diam(G) ≤ 3;
(2) H ∼= Cp for a suitable prime p;
(3) H ∼= C2

p for a suitable prime p.

Proof. Let Ci = CH(Vi) and Hi = H/Ci. The primitive soluble group
Ki = Vi � Hi is an epimorphic image of G. If |Hi| is not a prime, then by
Propositions 5 and 15, Σ(G) is connected and diam(Σ(G)) ≤ 3. So we may
assume |Hi| = pi, with pi a prime for 1 ≤ i ≤ t. Suppose pi �= pj for some
1 ≤ i < j ≤ t. Then Ki × Kj is an epimorphic image of G and it can be
easily seen that V (K1 × K2) = V (K1) × V (K2). Arguing as in the proof
of Lemma 19, it can be deduced that Σ(K1 × K2), and consequently Σ(G),
is connected with diameter at most 3. So pi = p for 1 ≤ i ≤ t. Moreover,⋂

1≤i≤t Ci = Z(G), and therefore H/Z(G) is an Abelian group of exponent p.

Let A be a p′-Hall subgroup of Z(G). Then A has a complement, say B, in H
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and G = ((V1 × · · · × Vt) � B) × A. Since A and (V1 × · · · × Vt) � B have no
common Abelian epimorphic image, it follows from Lemma 19 that Σ(G) is
connected with diameter at most 3. So H is a p-group and since Hp ≤ Z(G),
it follows that Hp ≤ Frat(H)∩Z(G) = 1. Since G is 2-generated, we conclude
that H ∼= Cd

p with d ≤ 2. �

In the notation introduced in (∗), let Fi = EndH(Vi). Since H is Abelian,
dimFi

Vi = 1. We may identify Vi with the additive group of the field Fi.
Moreover, if h ∈ H, then there exists αi(h) ∈ F ∗

i such that vh = αi(h)v for
every v ∈ Vi. The following holds:

Lemma 23. Assume that g1 = (v1,1, . . . , v1,t)h1 and g2 = (v2,1, . . . , v2,t)h2 are
elements of G. For 1 ≤ j ≤ t, consider the matrix

Aj :=
(

1 − αj(h1) 1 − αj(h2)
v1,j v2,j

)

.

Then 〈g1, g2〉 = G if and only if the following hold:
(1) 〈h1, h2〉 = H;
(2) det(Aj) �= 0 for every 1 ≤ j ≤ t.

Proof. See [12, Proposition 2.1 and Proposition 2.2]. �

With the help of the previous lemma, we may analyse the connectivity
of Σ(G) when G is as described in (2) or (3) of Lemma 22. There are three
situations that can occur, as described in the following three lemmas.

Lemma 24. Assume that G satisfies (∗). If H ∼= Cp, then Σ(G) is disconnected.

Proof. Let W = V1 × · · · × Vt. By Lemma 23, if w = (v1, . . . , vt) ∈ W , then
w ∈ V (G) if and only if vi �= 0 for 1 ≤ i ≤ t. Consider Ω = W ∩ V (G). If
w1, w2 are two different elements of Ω, then they are adjacent in Σ(G). Again
by Lemma 23, if g ∈ V (G)\Ω, then G = 〈g, w〉 for any w ∈ Ω. This implies
that Ω is a proper connected component of Σ(G). �

Lemma 25. Assume that G satisfies (∗). If H ∼= Cp × Cp and Z(G) �= 1, then
Σ(G) is disconnected.

Proof. In this case, Z(G) = 〈h〉 is a subgroup of G of order p. Let W =
V1 × · · · × Vt. By Lemma 23, if x = (v1, . . . , vt)hj ∈ W 〈h〉, then x ∈ V (G) if
and only if hj �= 1 and vi �= 0 for 1 ≤ i ≤ t. Consider Ω = W 〈h〉 ∩ V (G). If
x1, x2 are two different elements of Ω, then they are adjacent in Σ(G). Again
by Lemma 23, if g ∈ V (G)\Ω, then G = 〈g, x〉 for any x ∈ Ω. This implies
that Ω is a proper connected component of Σ(G). �

Lemma 26. Assume that G satisfies (∗). If H ∼= Cp × Cp and Z(G) = 1, then
Σ(G) is connected and diam(Σ(G)) ≤ 2.

Proof. For h ∈ H, let Δ(h) = {i ∈ {1, . . . , t} | h ∈ CH(Vi)}. Let g =
(v1, . . . , vt)h ∈ G. By Lemma 23, g ∈ V (G) if and only if h �= 1 and vj �= 0 for
any j ∈ Δ(h). Suppose that g1 = (x1, . . . , xt)h1, g2 = (y1, . . . , yt)h2 are two
distinct vertices of Σ(G). We may assume 〈g1, g2〉 = G, otherwise g1, g2 are



574 A. Lucchini and D. Nemmi Arch. Math.

adjacent vertices of Σ(G). Up to reordering, we may assume Δ(h1) = {1, . . . , r}
for some r ∈ {0, . . . , t}. Since H = 〈h1, h2〉 and Z(G) =

⋂
1≤j≤t CH(Vj) = 1,

we must have Δ(h2) ⊆ {r + 1, . . . , t}. Up to reordering, we may assume
Δ(h2) = {r + 1, . . . , r + s} for some s ∈ {0, . . . , t − r}. Moreover, up to conju-
gation with a suitable element of V1 × · · · × Vt, we may assume xj = 0 if j > r
and yk = 0 if k ≤ r.

If r + s < t, then g = (0, . . . , 0, yr+1, . . . , yr+s, 0, . . . , 0)h2 ∈ V (G). On the
other hand, 〈g1, g〉 is contained in (V1 ×· · ·×Vt−1)�H and 〈g2, g〉 is contained
in (V1 × · · · × Vt) � 〈h2〉, so (g1, g, g2) is a path in Σ(G).

Finally assume r + s = t. In this case, Δ(h1h2) = ∅, so h1h2 ∈ V (G).
Moreover, r > 0, otherwise Δ(h2) = {1, . . . , t} and h2 ∈ Z(G), and r < t,
otherwise Δ(h1) = {1, . . . , t} and h1 ∈ Z(G). Thus 〈g1, h1h2〉 ≤ (V1 × · · · ×
Vt−1) � H and 〈g2, h1h2〉 ≤ (V2 × · · · × Vt) � H. But then (g1, h1h2, g2) is a
path in Σ(G). �

6. Proofs of Theorem 1 and Proposition 2.

Proof of Theorem 1. Suppose that G is a 2-generated finite group and that
Σ(G) is disconnected. By Proposition 11, G is soluble with a nilpotent derived
subgroup. If G is nilpotent, then, by Corollary 20, Σ(G) is disconnected if
and only if G is a cyclic group or a p-group. Suppose that G is not nilpotent.
By Lemma 21, Σ(G) is connected if and only if Σ(G/Frat(G)) is connected.
Combining Proposition 11 and Lemma 22, it follows that if Σ(G) is discon-
nected, then G/Frat(G) ∼= (V1 × · · · × Vt) � H, where either H ∼= Cp or
H ∼= Cp × Cp for some prime p, and V1, . . . , Vt are pairwise non-H-isomorphic
non-trivial irreducible H-modules. If H ∼= Cp, then Σ(G) is disconnected
by Lemma 24. If H ∼= Cp × Cp, then, by Lemmas 25 and 26, Σ(G) is dis-
connected if and only if Z(G/Frat(G)) �= 1, or, equivalently, if and only if
CH(V1 × · · · × Vt) ∼= Cp.

Finally, suppose Σ(G) is connected. If G is non-soluble, Corollary 16 implies
diam(Σ(G)) ≤ 5. If G is soluble, then diam(Σ(G)) ≤ 3: indeed, when G is nilpo-
tent, the conclusion follows from Corollary 20 and when G is non-nilpotent, it
follows by combining Proposition 11, Lemma 22, and Lemma 26. �

Proof of Proposition 2. First notice that generators of a cyclic group and invo-
lutions in C2 × C2 and Dp are isolated vertices in the corresponding graphs.
Conversely, let G be a 2-generated finite group and suppose that g ∈ G is
an isolated vertex of Σ(G). If g �= g−1, then G =

〈
g, g−1

〉
= 〈g〉, so G is

cyclic. Otherwise g is an involution. Suppose that this is the case and assume
that G is not cyclic. Since g ∈ V (G), the set Vg = {h ∈ G | 〈h, g〉 = G} is
non-empty. Suppose h ∈ Vg. Then G = 〈g, h〉 = 〈ghi, h〉 for any i ∈ Z. Hence
ghi ∈ V (G) and therefore either hi = 1 or 〈g, ghi〉 = 〈g, hi〉 = G. In other
words, if g generates G together with h, then it generates G together with any
non-trivial power of h. If 〈g, h〉 is Abelian, this is possible only if |h| is a prime,
and we must have |h| = 2 otherwise G would be cyclic. So if G is Abelian,
then G ∼= C2 × C2. If G is non-Abelian and h ∈ Vg, then g �= gh ∈ V (G), thus
G =

〈
g, gh

〉 ∼= Dn is a dihedral group of order 2n with n = |ggh|. In particular,
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g generates G together with any non-trivial power of ggh and this is possible
only if n is a prime. �
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