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A B S T R A C T   

Background: Lesion network mapping (LNM) is a popular framework to assess clinical syndromes following brain 
injury. The classical approach involves embedding lesions from patients into a normative functional connectome 
and using the corresponding functional maps as proxies for disconnections. However, previous studies indicated 
limited predictive power of this approach in behavioral deficits. We hypothesized similarly low predictiveness for 
overall survival (OS) in glioblastoma (GBM). 
Methods: A retrospective dataset of patients with GBM was included (n = 99). Lesion masks were registered in the 
normative space to compute disconnectivity maps. The brain functional normative connectome consisted in data 
from 173 healthy subjects obtained from the Human Connectome Project. A modified version of the LNM was 
then applied to core regions of GBM masks. Linear regression, classification, and principal component (PCA) 
analyses were conducted to explore the relationship between disconnectivity and OS. OS was considered both as 
continuous and categorical (low, intermediate, and high survival) variable. 
Results: The results revealed no significant associations between OS and network disconnection strength when 
analyzed at both voxel-wise and classification levels. Moreover, patients stratified into different OS groups did 
not exhibit significant differences in network connectivity patterns. The spatial similarity among the first PCA of 
network maps for each OS group suggested a lack of distinctive network patterns associated with survival 
duration. 
Conclusions: Compared with indirect structural measures, functional indirect mapping does not provide signifi-
cant predictive power for OS in patients with GBM. These findings are consistent with previous research that 
demonstrated the limitations of indirect functional measures in predicting clinical outcomes, underscoring the 
need for more comprehensive methodologies and a deeper understanding of the factors influencing clinical 
outcomes in this challenging disease.   

1. Introduction 

Glioblastoma (GBM) is a rare and highly aggressive form of brain 
tumor, associated with a grim prognosis. With a median overall survival 
(OS) rate of approximately fifteen months, it stands as one of the most 
challenging and devastating malignancies. Despite advances in the un-
derstanding of tumors and their treatment, this disease continues to pose 
a clinical challenge due to the limited success of available interventions 

(Tan et al., 2020). The complexity of the disease, its rapid progression, 
and its tendency to infiltrate healthy brain tissue make it difficult to 
treat. Moreover, the blood-brain barrier and the inherent molecular 
heterogeneity of glioblastomas contribute to the resistance often seen in 
conventional therapies (Pandit et al., 2020). Current treatment ap-
proaches typically involve a combination of surgery, radiation therapy, 
and chemotherapy, but even with these aggressive measures, the sur-
vival rates remain low (Gilbert et al., 2013; Lin et al., 2021; Stupp et al., 
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2009). 
While the exact cause of glioblastoma remains elusive, age, extension 

of the surgery, molecular signature of the tumor, and the performance 
status are currently used in clinical practice as prognostic factors and in 
clinical trial as confounding factors for testing disease modifiers (Illic 
et al., 2017; Mansouri et al., 2020; Ostrom et al., 2018). Notably, these 
factors do not consider directly the host where all of this occurs, namely 
the brain. 

Nonetheless, it’s essential to recognize that the brain is a remarkably 
intricate organ, and this complexity manifests itself at various levels. 
This spectrum of complexity ranges from the micro-scale, (i.e., the in-
teractions among different types of cells (neurons and glia) and the 
intricate network of neurotransmitters), passing through the mesoscale, 
(the interactions within neural circuits involving around 50.000 neurons 
which roughly corresponds to 6.000 synapses), to the macroscale layer, 
assessing how large neural populations communicate via polysynaptic 
mechanisms and structural connections. Techniques such as functional 
magnetic resonance imaging (fMRI) and diffusion-weighted imaging 
(DWI) enable us to explore the connective architecture of the brain and 
how various neurological disorders affect this intricate organization 
(Sporns, 2013). 

In the last decades, numerous studies have explored how molecular 
pathologies associated with degenerative conditions (e.g., amyloid-beta, 
tau, alpha-synuclein, huntingtin) can propagate through this neural 
connectome. This research highlights a close interplay between the 
micro-level and macro-level elements of the brain (Buckner et al., 2005; 
Palmqvist et al., 2017; Pereira et al., 2019; Pini et al., 2020; Warren 
et al., 2012). 

Recent investigations have extended this concept to brain tumors. 
Mandal et al. have shown that functional hub regions within the brain 
are susceptible to glioma concentration. Notably, gliomas exhibit a 
predilection for brain areas expected to act as connector hubs, which 
facilitate communication between diverse cognitive subsystems, as 
opposed to local/provincial hubs that primarily handle communication 
within their respective subsystems (Mandal et al., 2023). These macro- 
scale findings align with molecular insights, as demonstrated by Oss-
wald and colleagues, who uncovered interconnections among GBM 
cells, enabling the exchange of genetic material and information. This 
interconnected network augments the tumor’s resilience and resistance 
to conventional cancer treatments like chemotherapy (Osswald et al., 
2015), consequently resulting in a more adverse prognosis. Accordingly, 
intra-network functional connectivity strength within GBM tumors ap-
pears to correlate with OS, even after accounting for potential con-
founding variables (Daniel et al., 2021). 

Overall, these findings underscore a strong relationship between OS 
and the connectivity properties of the brain when assessed directly using 
patients’ data. A novel connectivity framework called lesion network 
mapping (LNM) has been introduced. The main advantage of LNM is the 
possibility to estimate the functional disconnection of the brain caused 
by a focal lesion from structural MR scans. This means that fMRI 
acquisition in clinical setting is no required. Specifically, LNM operates 
on the premise that the disconnection between specific brain regions 
affected by lesions can be evaluated using healthy connectome data. In 
other words, it involves embedding a specific lesion within a compre-
hensive normative connectome to determine which brain regions are 
typically connected to the lesion in a healthy population, thus identi-
fying likely disconnections in patients with that specific lesion (Fox, 
2018). LNM has found extensive application in the study of various 
syndromes arising from brain lesions, including anosognosia, aphasia, 
and amnesia (Babyar et al., 2019; Boes et al., 2015; Monai et al., 2023). 
This framework promoted the development of new indirect connectivity 
measures to study lesion topology or to predict clinical/cognitive out-
comes in neurological conditions, such as structural indirect connec-
tivity (Foulon et al., 2018), approaches based on local fiber density 
(Salvalaggio et al., 2023), those based on graph analysis (Reber et al., 
2021), or those based on the structural connectome (Wei et al., 2023). 

While these new approaches showed promising results in clinical pre-
diction (Salvalaggio et al., 2023; Talozzi et al., 2023; Bowren et al., 
2022), we demonstrated that “classical” LNM when applied to predict 
clinical outcomes in a stroke population shows low predictive power 
(Pini et al., 2021; Salvalaggio et al., 2021; Salvalaggio et al., 2020). 
Here, we extended LNM study to GBM, referred to here as functional 
disconnectivity (FDC). Specifically, we aimed at investigating whether 
indirect functional disconnection maps computed from a large and well 
characterized healthy connectome could predict OS in patients with 
GBM. The results of this study would shed light on the possibility to 
apply the FDC framework in the neuro-oncology field. 

2. Materials and methods 

2.1. Lesion data and tumor segmentation 

A dataset with n = 99 patients with diagnosis of GBM was retro-
spectively included. Patients were enrolled at the University Hospital 
(Azienda Ospedale Università di Padova – AOUPD) and the Venetian 
Institute of Oncology (IOV) of Padova, Italy. The GBM dataset is fully 
described in Salvalaggio et al. (2023). The whole analytical strategy is 
reported in Fig. 1. All the procedure was run on Python 3.9 through an 
ASUS TUF Dash F15 machine (12th Gen Intel(R) Core (TM) i7-12650H 
2.30 GHz) running on an Ubuntu 20.04.6 LTS (Focal Fossa) environ-
ment. The following libraries were utilized within a conda environment: 
scikit-learn v1.4.1, scipy v1.9.1, and factor-analyzer v0.4.1. 

2.2. Standard protocol approvals, registrations, and patient consents 

The study proposal was in accordance with ethical standards of the 
Declaration of Helsinki and was approved by the Comitato Etico per la 
Sperimentazione Clinica della Provincia di Padova (No. 70n/AO/20), 
with no written consent required due the retrospective design. 

2.3. Functional disconnections 

Lesion masks were non-linearly registered in the MNI space and used 
as seed ROIs to compute FDC maps (details in (Salvalaggio et al., 2023)). 
Resting-state functional magnetic resonance (rs-fMRI) data from 173 
subjects from the Human Connectome Project (HCP) scanned at 7 Tesla 
were pre-processed according to the minimal pre-processing pipeline for 
HCP. Briefly, the data were slice-timing corrected, whole-brain intensity 
normalized, distortion corrected using synthetic field map estimation, 
and spatially realigned within and across fMRI runs. Data were regressed 
to remove sources of spurious variance from head motion (six parame-
ters), the average signal over the whole brain, ventricles, and CSF, and 
white matter. These masks were identified through Structural MRI 
segmentation using Freesurfer (https://surfer.nmr.mgh.harvard.edu). 
Finally, temporal filtering was applied to retain frequencies in the 
0.009–0.08-Hz band. Frame censoring was computed using framewise 
displacement with a threshold of 0.5 mm. 

Pre-processed HCP data were then used to compute brain dis-
connectivity in our sample. To this aim, we applied our enhanced FDC 
approach that improves the anatomical specificity of functionally 
disconnected networks through principal component analysis (PC-FDC) 
(Pini et al., 2021). Specifically, this method involves a first step aimed at 
identifying a mean (across the connectome) correlation across fMRI 
volumes between each voxel mapping within the lesion. For each voxel, 
values were averaged to obtain a single measure expressing the mean 
connectivity strength between that voxel with the other lesioned voxels. 
This procedure was repeated for every HCP subject, resulting in a matrix 
expressing the normative within-connectivity strength between lesioned 
voxels, which was then fed into a principal component analysis aimed at 
identifying voxels with the most similar time course within the lesion. 
According to our previous analysis (Pini et al., 2021), the coefficients of 
the first PC, explaining the highest amount of variance in the data, were 
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projected back to the lesion space and only voxels with absolute co-
efficients higher than the 20th percentile of the distribution were 
considered. Finally, these PC1 lesion-voxels were used as seed ROIs to 
compute whole brain seed-connectivity voxel-wise analysis, according 
to standard procedure (Boes et al., 2015). For the present analysis, PC- 
FDC maps were computed using the tumor core masks (including both 
areas of contrast and non-contrast enhancement and necrotic tissue), 
without considering the edema. The PC-FDC approach separates gray 
and white matter involvement of lesions by computing different maps 
for each tissue (Pini et al., 2021). 

2.4. Network description 

For each disconnectivity map we computed the spatial correlation 
with Yeo’s 7 networks atlas. Analysis of variance (ANOVA) was run to 
compare disconnectivity pattern across networks. Before running the 
ANOVA, we checked for the homoscedasticity of the data using the 
Levene’s test. For data with unequal variance, we used the Welch 
ANOVA which better controls for type I error in case of heterogeneity of 
variance (Liu, 2015). 

2.5. Overall survival regression and classification 

First, a linear regression approach was applied to investigate the 
association between OS and network disconnectivity. A nonparametric 
inference based on FSL-randomise with n = 1000 permutations was 
applied. Multiple comparisons were corrected across space using a 
family-wise error (FWE) based on permutation testing at a threshold- 
free cluster enhancement (TFCE). Significance was set at a p-value 
<0.05. To account for the influence of age and core size, we included 
these factors as covariates in the voxel-wise analysis. The analysis was 
conducted using a conservative approach, wherein PC-FDC maps were 
thresholded with an arbitrary cut-off of 0.2. Additionally, a sensitivity 
analysis was performed employing a more liberal approach, without 
applying any threshold to the maps. 

Second, patients were stratified into three different groups based on 
overall survival. A first group highlighted patients with low survival, 
defined as OS <6 months. An intermediate group consisted of patients 
with a survival range between 6 and 20 months. A third group was 
characterized by patients with an overall survival above 20 months. 
Compared to Fyllingen’s study we set a high survival threshold to 20 
months for creating groups with comparable size (Fyllingen et al., 
2021). These groups roughly correspond to the 33◦ and 66◦ percentile of 
OS distribution values. Network disconnectivity between groups was 
compared through a non-parametric procedure (TFCE with n = 1000, 
significant level set to pFWE<0.05). Age and lesion size were included as 
covariates. Further, from the network maps the average connectivity 
network strength was computed for each participant. ANOVA was run to 
compare network strength across groups, as described above (2.3 
Network description). Both group voxel-wise analysis and average 
network strength were computed using a liberal (unthreshold) and a 
conservative (threshold >0.2) approach. 

Moreover, for each participant, network maps were associated to a 
specific Yeo’s map through a “winner-take-all-approach” based on 
spatial correlation (Pearson’s coefficient). A chi square statistic was 
applied to investigate whether OS groups showed a different distribution 
on network assignments. Additionally, we carried out an additional 
analysis to assess the differences in correlation between network maps 
and network templates between groups using a repeated measures 
ANOVA. This analysis included the network template as the within 
factor and group as the between factor. The interaction between group 
and network was significant at p < 0.05. 

Finally, we checked the classification accuracy of network dis-
connectivity patterns in predicting patients belonging to the low, in-
termediate, or high survival group (Fyllingen et al., 2021). To this end, a 
principal component analysis (PCA) was applied to the thresholded 
(conservative) network maps (in voxel space). Kaiser-Meyer-Olkin 
(KMO) test was run to test the sampling adequacy of the PCA. The PCs 
explaining >90% of the variance were used as features in a Kmeans 
algorithm. Each time we executed the Kmeans algorithm, we evaluated 

Fig. 1. Workflow of the analysis. 
Tumors were segmented (panel 1) and used as masks for computing functional disconnection patterns (panel 2). Different levels of analysis were performed: a linear 
voxel-wise relationship between overall survival (OS) and network dysconnectivity (panel 3a); a group analysis assessing different network connectivity profiles 
between patients stratified as low survival (<6 months), intermediate survival (6–20 months) and high OS (>20 months). A classification analysis based on Kmeans 
and linear discriminant algorithms to predict patients with different degrees of OS. 
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two groups to examine the alignment between OS groups (n = 2) and 
connectivity-based clusters (fixed at k = 2). The OS groups were sub-
sequently compared in pairs to evaluate the consistency between sur-
vival stratification and connectivity-based clusters. Classification 
accuracy was then computed. The same analysis was performed 
considering the (liberal) unthresholded maps. To ensure the prediction 
was not influenced by the algorithm selection, we also run a linear 
discriminant analysis (LDA) with leave-one-out hyperparameter vali-
dation (solver: singular value decomposition; least squares; eigenvalue 
decomposition) splitting the dataset into train (using the 60% of the 
total dataset) and test sets. The same approach, comparing each time 
two groups with two connectivity-classes, was adopted considering the 
original classification of the three OS groups (Fyllingen et al., 2021). 

Additionally, the Kmeans analysis was repeated considering the 
extreme groups (lowest vs highest survivors) using different OS 
percentile for the stratification: i) 50th percentile; ii) 25th and 75th 
percentiles; and 20th and 80th percentiles. 

Finally, we conducted an analysis to investigate whether a similar 
network topology among patients could be utilized for predicting OS. 
Our approach involved partitioning the GBM dataset into two equal- 
sized groups, each comprising 49 patients, with one patient randomly 
excluded to avoid unbalanced datasets. We employed the 
Kuhn–Munkres algorithm (Kuhn, 1955) and used ‘earson’s correlation 
as the distance metric between thresholded PC-FDC maps to pair up the 
patients. The OS of one patient in each pair was used to predict the OS of 
the other patient, and we calculated the corresponding R value across 
the entire sample. This process was repeated iteratively for a total of n =
1000 random dataset splits. A high mean distribution of R values would 
indicate a potential relationship between PC-FDC network topology and 
OS. Further, the mean absolute error (MAE) between predicted and real 
OS was compared with a random distribution built using n = 1000 
permutations. 

2.6. Connectivity projection into a 2D space 

Finally, we explored the relationship between indirect functional 
connectivity and OS projecting the thresholded PC-FDC maps into a 2D 
space by means of the Uniform Manifold Approximation and Projection 
(UMAP) algorithm, a non-linear embedding approach that distributes 
data variability along major axes (McInnes et al., 2018). We employed 
UMAP for its ability to transform data onto a low dimensional space 
maintaining the original structure of the data. Thus, patients with 
similar disconnectivity profile cluster together in the 2D space, while 
patients with different distribution of connectivity are located further 
apart. The visualization was complemented by highlighting patients 
within the various OS class distributions (low, intermediate, and high). 
UMAP was executed for both volumetric maps, which included only the 
gray matter masks using the Harvard-Oxford gray matter maps with a 
50% probability, and surface maps (MNI maps projected onto the fsa-
verage 164 K vertices space) for the left and right hemispheres sepa-
rately. Variance explained by the 2D dimensions of UMAP was 
computed considering UMAP as an approximation of the original matrix 
X (m × n connectivity data, where m = number of voxels/vertices and n 
= number of patients) and fitting a partial least square model 

X = α+ β UMAP matrix+ ε 

and estimate the fraction of data variance explained by UMAP 
components via R-squared. 

Finally, a Gaussian mixture model (GMM) with three classes was 
employed on the UMAP (defined by GM-masked volume) to evaluate the 
alignment between the 2D network space and the overall survival (OS) 
categorization. 

3. Results 

Mean age of the patients included was 62 ± 12, with 29% being 

female and an overall mean survival rate of 14 ± 10. The frequency map 
of the core GBM distribution is reported in Fig. 2. 

3.1. Network disconnectivity involvement 

Results are shown in Fig. 2. We reported a significant difference in 
terms of similarity between disconnectivity maps (p < 0.001). Specif-
ically, disconnectivity maps showed the highest spatial similarity with 
the sensory (sensory-motor, and visual) and attentional networks 
(ventral and dorsal attentional networks), while the frontoparietal and 
memory networks (default mode and limbic networks) showed the 
lowest similarity pattern. 

3.2. Linear relationships with overall survival 

No negative and positive relations were reported between network 
disconnection strength and overall survival in the whole cohort of pa-
tients surviving at the multiple comparison threshold (p > 0.05 FWE). 
When we applied a less stringent threshold (p < 0.001 uncorrected) we 
confirmed no-significant effects surviving the threshold. These results 
were reported for both the (liberal) unthresholded and (conservative) 
thresholded maps, with or without the inclusion of age and lesion size as 
covariates. 

3.3. Survival group analysis 

When patients were compared based on OS stratification, we found 
no significant differences in network connectivity at voxel-wise level 
(for both the liberal and conservative thresholding approaches), 
regardless of the inclusion of age and lesion size as covariates. Null re-
sults were observed for the full contrasts matrix (low vs high; low vs 
intermediate, and high vs intermediate). Null results were observed with 
a threshold corrected for multiple comparison (pFWE<0.05). Similar 
null results were reported applying a less stringent threshold (p < 0.001 
uncorrected). Similarly, the ANOVA comparing network disconnectivity 
strength showed comparable patterns across groups (unthresholding: p 
= 0.201; unthreshlding: p = 0.909). Mean maps from the three groups 
showed high spatial similarity (r > 0.9 for all the groups). Finally, the 
Chi square statistics applied on network distribution (winner-take-all 
approach) suggested that similar disconnectivity patterns were observed 
across OS groups. These results were confirmed when we assessed dif-
ferences between groups using correlation network-template measures. 
A significant network effect was observed (p < 0.001), while group (p =
0.223), and group*network interaction term (p = 0.909) were not sig-
nificant, suggesting a similar connectivity patterns across survival 
groups. Results are shown in Fig. 3 (conservative threshold) and Fig. 4 
(liberal threshold). 

3.4. Classification accuracy based on network patterns 

A principal component analysis on the whole cohort revealed that 
the first 5 components explained >90% of the variance, in line with 
previous studies in stroke patients (Salvalaggio et al., 2020). Thus, we 
retained these components to investigate classification accuracy of 
network patterns into OS groups (nlow = 27, nintermediate = 44, nhigh =

28). Results showed a low accuracy classification score (around 50%) for 
the full set of comparisons (see Fig. 3). Similar results were reported for 
the LDA (low vs high: accuracy test set: 52%; high vs intermediate: ac-
curacy test set: 50%; low vs intermediate: accuracy test set: 52%). When 
we applied the same analysis to the unthresholded maps, we obtained 
comparable classification accuracy results, approximately 50%, using 
the K-means algorithm (Fig. 4). 

A low classification accuracy was reported when patients were 
stratified into low and high survivors using different distribution of OS 
values (50th percentile: accuracy = 53% nlow = 49, nhigh = 50; 25th vs 
75th percentile: accuracy = 54%, nlow = 25, nhigh = 25; 20th vs 80th 
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percentile: accuracy = 53%, nlow = 20, nhigh = 20) compared with 
kmeans connectivity-clusters based on the thresholded connectivity 
maps. 

Finally, patient matching based on PC-FDC similarity did not yield 
consistent OS outcomes. Although the MAE between real and predicted 
OS compared with a random distribution showed significant lower 
values (t = 2.93; p = 0.003), the average correlation between observed 
OS and the OS predicted for patients sharing a similar PC-FDC profile 
was near to zero (rmean = 0.02). The highest and lowest correlation 
values within the distribution (n = 1000) hovered around 0.45 and −
0.35, respectively (Fig. 3). These results underscore a notably limited 
alignment between PC-FDC similarity and OS across patients. 

3.5. UMAP space 

As reported in Fig. 5, connectivity maps projected onto a 2D space 
did not exhibit a clear association with OS classification, thereby con-
firming the linear results described previously. The 2D UMAP di-
mensions explained 30%, 31%, and 38% of the variance of the PC-FDC 
maps for volume, left surface, and right surface, respectively. The 
absence of a distinct connection between OS and indirect connectivity 
outcomes was observed in both volumetric and surface-projected PC- 
FDC maps. The GMM applied to the 2D UMAP volume maps reveals a 
distinctly separated space. For each GMM class, a mean cortical map was 
computed by averaging across all the maps falling into that class. The 
results indicate a separation within the dorsal-attention, ventral-atten-
tion, and sensorimotor networks, consistent with the findings of the 
network disconnectivity analysis (section 3.1). The lack of correspon-
dence between the GMM and overall survival (OS) classes confirms the 
absence of a relationship between indirect connectivity and clinical 
outcomes. 

4. Discussion 

We performed a comprehensive investigation to determine whether 
FDC could serve as predictors for OS in patients diagnosed with GBM. 
We reported that GBM maps onto sensorial and attentional networks, in 
line with the load of the core lesion over these networks (Sansone et al., 
2023). DAN results are in line with a previous study by Mandal et al. 
reporting evident tumor-DAN connectivity across a large cohort of 

patients with gliomas related to long-term postsurgical outcomes 
attentional functions (Mandal et al., 2024). While Mandal’s study 
assessed connectivity through participant’s functional scan, our indirect 
analyses consistently revealed a lack of any significant relationship be-
tween OS and indirect functional connectivity outcomes. This null as-
sociation persisted when we assessed the relationship with OS at a voxel- 
wise level. Additionally, our attempts to predict OS, both as a categorical 
and continuous variable, using PC-FDC maps, were unsuccessful. The 
volume and topology of the GBM lesions did not predict the clinical 
outcome of GBM (Salvalaggio et al., 2023). 

Indirect functional metrics have been widely employed to explore 
whether different neurological syndromes are linked to specific network 
disruptions following brain lesions (Fox, 2018; Boes et al., 2015; Monai 
et al., 2023). However, when applied to predict cognitive deficits in a 
clinical stroke population, the predictive value of FDC was found to be 
lower compared to using lesion-based metrics (Pini et al., 2021; Salva-
laggio et al., 2020). These findings strongly imply that cognitive and 
clinical outcomes are influenced by numerous factors, including neural 
effects involving both structural and functional reorganization in re-
gions distant from the initial lesion (Griffis et al., 2019). Indirect ap-
proaches are limited in their ability to describe these secondary and 
distal changes, only capturing the primary level of disconnection. 
Consequently, they fall short of providing significant insights into the 
prediction of behavioral deficits following brain lesions. We expanded 
upon and reinforced this perspective within our study of patients with 
GBM. This complexity is further compounded by the fact that the solid 
component of gliomas exhibits substantial functional connectivity with 
remote brain regions. Sprugnoli and colleagues (2022) observed a sig-
nificant association between this connectivity pattern and individual OS 
(Sprugnoli et al., 2022), suggesting widespread alterations which can 
explain different OS between patients. 

Recently, we have shown that indirect approaches based on struc-
tural data can lead to more accurate OS predictions (Salvalaggio et al., 
2023). Specifically, in our prior work we did not focus on the discon-
nection caused by GBM but instead examined a local property, the 
number of fibers affected by GBM, inferred from a normative dataset. 
Employing a normative structural connectome atlas, we calculated the 
average number of fibers encompassing each brain tumor, effectively 
condensing each tumor into a single value termed the track density 
index (TDI). This approach differs from FDC, as it is based on the 

Fig. 2. Network disconnectivity. 
Top left panel: disconnectivity patterns in glioblastoma showed the highest similarity with sensory and attentional networks. Black lines represent post-hoc sig-
nificant comparison between networks. Bottom left panel: each PC-FDC is assigned to a specific network template through a ‘winner-take-all-approach’ based on 
spatial correlation values; no significant differences were reported in terms of network disconnectivity strength between networks in the whole cohort. Right panel: 
Frequency map of core glioblastoma masks included in the analysis. 
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computation of indirect functional connectivity maps. We showed a 
significant association between TDI and OS, surpassing relationships 
with classical prognostic factors such as age, genetics, and health sta-
tus23. The underlying assumption in our approach is different in nature: 
we hypothesized that regions with higher fiber density would result in a 
poorer prognosis due to higher potential for cancer cells to spread within 
the brain. Our previous results align with prior research that 

demonstrated how GBM can lead to widespread disruptions in structural 
connectivity beyond the focal lesion, which play a crucial role in 
mediating patient survival (Wei et al., 2023). In contrast, the current 
findings underscore that greater indirect functional disconnection does 
not necessarily correlate with a worse prognosis for these patients. 
Although on the surface, these results might appear contradictory – 
where structural disconnections are predictive of OS compared to 

Fig. 3. OS groups and network disconnectivity. 
Top left panels: network strength outcome (left-top-panel) and network distribution (left-bottom panel) was similar across OS groups. Group-average maps within the 
three survival groups showed similar spatial patterns. Top right panels: five components, explaining >90% of the disconnectivity variance (top panel), were entered 
in a Kmeans algorithm to classify survival groups showing very low classification accuracy. Bottom panels: patients were matched in a 1:1 fashion based on PC-FDC 
maps spatial correlation. The overall survival (OS) of a patient was used as predictive OS of the corresponding assigned patient and the R-value was computed 
between the ‘predicted’ and the observed OS. The procedure was iteratively repeated (n = 1000). Low R values were reported suggesting a null relationship between 
PC-FDC maps similarity and OS. 
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functional disconnection – they are consistent with our previous study. 
In our earlier work, we observed a similar pattern in the context of pa-
tients with stroke. Specifically, while structural disconnections could 
effectively predict cognitive deficits in patients with stroke in a manner 
similar to lesion-based outcomes, the application of the same predictive 
model to indirect functional disconnection in patients with stroke yiel-
ded very low predictive accuracy (Salvalaggio et al., 2020). These 
consistent findings suggest that the relationship between structural and 
functional connectivity and their predictive value for patient outcomes 
can underlie different processes. That is, while structural disconnections 
computed from a healthy connectome might represent a more reliable 
and homogeneous proxy of the alterations occurring in patients, func-
tional alterations might undergo more complex patterns, such as 
network unbalance, plasticity mechanisms and arising of both hyper- 
and/or hypo-synchrony patterns. The latter has been consistently re-
ported following brain stroke lesions (Corbetta et al., 2018), traumatic 
brain injury (Mayer et al., 2011), neurodegenerative disorders (Hillary 
and Grafman, 2017) and preliminary reports suggest a similar pheno-
type in brain gliomas (Ng et al., 2022; Zhang et al., 2018). Further, high 
functional variability is reported among adults, influencing cognitive 
performance (Boylan et al., 2021). Moreover, a possibility linked to the 
low relationship could be attributed to the properties of GBM. In 
contrast to stroke lesions, GBM may displace surrounding tissues rather 
than causing complete disconnection. This effect cannot be captured by 
FDC, as this approach assumes a complete disconnection of the lesion 
mask from the rest of the brain. Further studies should investigate 

whether this effect primarily influences the low prediction reported in 
this study. 

Some limitations of our study should be considered when inter-
preting the findings. First, PC-FDC maps were built using GBM core 
regions, potentially overlooking the influence of surrounding edema. 
Edema, a common feature of GBM, may introduce additional complex-
ities in the functional connectivity patterns that were not fully accoun-
ted for in our analysis. Similarly, further studies should aim to assess 
whether functional maps constructed using various definitions of core 
tumor (e.g., contrast-enhanced versus non-contrast enhancement or 
necrotic tissue) could yield divergent results. Second, our study did not 
directly address the prediction of cognitive deficits. Further in-
vestigations specifically designed to assess the predictive value of FDC 
for cognitive deficits in patients with GBM are warranted to offer a more 
comprehensive perspective on the clinical implications of our findings. 
Finally, while 7 T offers higher spatial resolution and enhanced sensi-
tivity compared to FDC generated with lower field strengths such as 3 T 
(see Fig. 1 from (Salvalaggio et al., 2021)), it might pose challenges 
related to signal-to-noise ratio, which deserve future investigations in 
this emerging cancer neuroscience field. 

5. Conclusions 

In summary, our study explored the potential of FDC as prognostic 
indicators for OS in GBM. Our comprehensive analysis consistently 
revealed no significant relationship between OS and these measures. 

Fig. 4. Top panels display the comparison between the whole group PC1 for the unthresholded (left) and thresholded (right) connectivity maps. A high spatial 
overlap (r > 0.88) is observed between these two patterns. In the bottom panel, statistical analysis compares network strength between survival groups (left) and the 
classification procedures (right) for the unthresholded maps. Consistently, similar null relationships between network connectivity/patterns and overall survival are 
observed, echoing the results from thresholded maps. 
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Our findings, align with a broader perspective we observed in stroke 
patients. The consistent lack of a substantial relationship between FDC 
and patient outcomes, raises questions about its practical utility as a 
reliable clinical tool for predicting overall survival in patients with GBM. 
This highlights the importance of considering alternative methods and 
more robust predictive models when addressing clinical decisions and 
treatment strategies in the context of GBM. 
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