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Abstract: The heterogeneous nature of human breast cancer (HBC) can still lead to therapy inefficacy
and high lethality, and new therapeutics as well as new spontaneous animal models are needed
to benefit translational HBC research. Dogs are primarily investigated since they spontaneously
develop tumors that share many features with human cancers. In recent years, different natural phy-
tochemicals including berberine, a plant alkaloid, have been reported to have antiproliferative activity
in vitro in human cancers and rodent animal models. In this study, we report the antiproliferative
activity and mechanism of action of berberine, its active metabolite berberrubine, and eight analogs,
on a canine mammary carcinoma cell line and in transgenic zebrafish models. We demonstrate both
in vitro and in vivo the significant effects of specific analogs on cell viability via the induction of
apoptosis, also identifying their role in inhibiting the Wnt/β-catenin pathway and activating the
Hippo signals with a downstream reduction in CTGF expression. In particular, the berberine analogs
NAX035 and NAX057 show the highest therapeutic efficacy, deserving further analyses to elucidate
their mechanism of action more in detail, and in vivo studies on spontaneous neoplastic diseases are
needed, aiming at improving veterinary treatments of cancer as well as translational cancer research.

Keywords: berberine derivates; dog; mammary tumors; zebrafish; Hippo; Wnt; β-catenin

1. Introduction

Human breast cancer (HBC) is the most common type of tumor in women, accounting
for 31% of all diagnosed cancers [1]. Despite recent advancements in the detection, diagno-
sis, and treatment of HBC, the heterogeneous nature of this disease leads, in some cases,
to therapy inefficacy [2]. For this reason, spontaneous animal models of HBC are highly
important for studying the molecular mechanisms underlying the onset and progression
of these tumors. They can serve as a useful intermediary between traditional preclinical
models and human clinical trials and therefore are useful for the identification of new
therapies [3,4].
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Canine mammary tumors (CMTs) are a highly heterogeneous group of tumors repre-
senting the most common type of tumors in female dogs. Approximately 50% of diagnosed
CMTs are malignant [5], but recently, an increase in malignant vs. benign tumors was
observed with a trend similar to that also described in human oncologic patients [6]. CMTs
are spontaneous in dogs as well as in women, and many anatomic, clinical, and histologi-
cal features of CMTs are similar to those reported in HBC [7–9]. As companion animals,
dogs share the environment and lifestyle of humans and become consequently exposed to
many of the same carcinogens. Better than genetically modified mice, dogs have higher
physiological similarities with humans, such as comparable telomerase activities [10] and
a high incidence of spontaneous cancers [11], making them a valuable cancer model for
HBC research [12]. This spontaneous animal model could be highly beneficial to transla-
tional HBC research, particularly for the identification of new therapeutic targets and the
collection of highly predictive data that may accelerate human cancer clinical research.

In the last decade, the Wnt/β-catenin pathway, involving β-catenin and the adenoma-
tous polyposis coli (APC) proteins, has emerged as an important player in many human
tumor types, including HBC [13–15]. The reduced membrane expression of E-cadherin
and β-catenin has been associated with a poor prognosis in feline and canine MTs as
well as in HBC [16,17]. E-cadherin, in association with other adhesion molecules of the
β-catenin class, binds to the actin cytoskeleton. This association is important for epithelial
cell function and for tissue integrity [18]. Moreover, β-catenin has a double function as an
adhesion molecule and as an activator of the Wnt/β-catenin pathway. Specifically, in nor-
mal cells, free cytoplasmic β-catenin is entrapped by a complex containing axin, glycogen
synthase kinase 3 (GSK3), and APC that facilitates the phosphorylation of β-catenin, which
consequently can be degraded. In tumor cells, this complex is not able to phosphorylate
β-catenin, which, as a result, cannot be degraded [19,20]. To the best of our knowledge,
only little information is known about the role played by the Wnt/β-catenin signaling
pathway in CMTs [21–23].

Additionally, the Hippo pathway has been identified as highly important in HBC
onset and progression. Cordenonsi and co-authors demonstrated that the activity of the
transducer of the Hippo pathway TAZ is required to sustain tumor-initiation capacities
and the self-renewal of cancer stem cells (CSCs) in the breast. TAZ protein level is elevated
in CSCs and in poorly differentiated HBC with a poor prognosis [24,25]. To date, the role of
the Hippo pathway in CMTs has not been deeply investigated or fully clarified [23,26–28].

Berberine (BBR) is a bitter-tasting isoquinoline quaternary alkaloid isolated from
many kinds of plants such as Hydrastis canadensis, Berberis vulgaris and other plant species.
A mainstay of Traditional Chinese Medicine, BBR is also in use in Ayurvedic and Na-
tive American herbal medicines for its microbial and anti-inflammatory properties [29,30].
BBR has multiple pharmacological properties, including antibacterial, anti-inflammatory,
antidiabetic, hepatoprotective, and neuroprotective. It also controls the expansion of blood
vessels and the inhibition of platelet aggregation and, therefore, has a wide spectrum of med-
ical applications against, inter alia, gastroenteritis, hyperlipidemia, non-alcoholic fatty liver
disease, coronary artery disease, hypertension, diabetes, and Alzheimer’s disease [31–34].
There is an increasing interest in the clinical efficacy of BBR, as manifested by almost
90 completed and ongoing clinical studies, including 5 for cancer indications.

In vitro studies using HBC cell lines demonstrated that BBR inhibits cancer cell mi-
gration and proliferation and affects cell viability, inducing apoptosis [15,35–37]. More
recently, it has been shown that BBR could be a promising drug able to suppress the cell
growth and cell invasiveness of triple-negative HBC (TNBC) cells through IL-8-related
mechanisms [38,39]. BBR was also demonstrated to be a promising drug in the prevention
and treatment of colon cancer through the inhibition of Wnt/β-catenin signaling [40] and
in exerting anticancer activity, delaying the development of MTs in transgenic mice for the
HER-2/neu oncogene [41–43].
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Berberrubine (BRR) is the first-pass metabolism product of BBR [44], and little is known
about its antitumor properties [45,46]. BRR has been reported to induce topoisomerase
II-mediated DNA cleavage [47] and to bind G-quadruplex nucleic acid structures [48].

The aim of our study was to evaluate the potential of BBR, BRR, and eight structurally
related analogs (Figure 1) as anticancer agents. We conducted in vitro experiments to
examine the biological effects of these compounds on a malignant CMT cell line in order
to identify candidates that might become potential anticancer agents. The analogs under
investigation possess aromatic groups attached to the 13-position of the parent alkaloid
skeleton through a hydrocarbon linker [49]. Their effects on Wnt/β-catenin signaling [50]
and on some relevant human tumor types have been reported, both in vitro [36,51–55] and
in vivo [41,56].
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Figure 1. Biochemical structure of berberine (BBR), berberrubine (BRR), and analogs.

To elucidate the mechanism involved in the antitumor effect of BBR, of BRR, and of
selected analogs, we investigated the association with the Wnt/β-catenin signaling and Hippo
pathways. More specifically, we used Wnt/β-catenin and Hippo signaling pathway reporter
zebrafish lines to confirm the in vivo effect of these BBR and BRR analogs on these pathways.
We expected to identify at least one analog able to kill cancer cells mainly by apoptosis and
better clarify how the Wnt/β-catenin and Hippo signaling pathways are involved.

2. Materials and Methods
2.1. Chemicals

Berberine (BBR—chloride form, Trust & We, Shanghai, China), berberrubine (BRR),
and analogs NAX012, NAX014, NAX035, NAX053, NAX057, NAX060, NAX085, and
NAX118 were provided by Naxospharma (Figure 1). The purity (>95%) of the derivatives
was previously assessed [51,52].
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2.2. Cell Culture and Drug Treatment

The canine mammary carcinoma cell line CF33 (kindly provided by Dr. R. De Maria,
University of Turin, Turin, Italy) was maintained in Dulbecco Modified Eagle Medium
(DMEM, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% Fetal
Bovine Serum (FBS, Thermo Fisher Scientific), 100 units/mL penicillin, and 100 µg/mL
streptomycin (Thermo Fisher Scientific) under a humidified atmosphere of 5% CO2 at
37 ◦C. BBR, BRR, and analogs were dissolved in dimethyl sulfoxide (DMSO, Thermo Fisher
Scientific), aliquoted, and stored at −20 ◦C with a stock concentration of 40 mM. The final
concentration of DMSO did not exceed 0.1%.

For the in vitro experiments, CF33 cells were plated and treated separately with BBR,
BRR, NAX012, NAX014, NAX035, NAX053, NAX057, NAX060, NAX085 and NAX118.
Two different experiments were performed. In the first experiment, we used different
drug dosages, from 2 µM to 40 µM, for a steady incubation time of 24 h. In the second
experiment, we used the same drug dosage, 10 µM, for different incubation times (from
3 to 24 h). Control cells were incubated with a respective maximal percentage of DMSO
alone (<0.1%). The two experiments were performed in triplicate.

2.3. Cell Viability Assay

CF33 cells were plated in a 96-well plate at a density of 1 × 104 cells/well in
100 µL of complete medium. After 24 h, a medium containing the specific drug was
added. To measure cell viability, cells were incubated with the different drugs, and the
in vitro toxicology assay kit TOX8 (Sigma-Aldrich, St. Louis, MO, USA) was used following
manufacturer’s instructions. The experiment was performed in triplicate. Experimental
results were expressed as percentage of cell viability in comparison with control DMSO-
treated cells.

2.4. Quantification of Necrosis/Apoptosis by Flow Cytometry

In order to assess the rate of necrosis and apoptosis induced by BBR, BRR, and analogs
at the same dosage (10 µM) and at the different incubation times (6, 12, 18, and 24 h
of incubation), two biological replicates (both performed in technical triplicate) of CF33
were analyzed by flow cytometry using the Annexin V-Fluorescein isothiocyanate (FITC)
Apoptosis Detection Kit (eBioscience, Thermo Fisher Scientific, Waltham, MA, USA) fol-
lowing the manufacturer’s instructions. Briefly, cells were trypsinized and centrifuged
at 1100 rpm for 10 min at 4 ◦C. Cells were resuspended in 200 µL of binding buffer with
5 µL of annexin V–FITC and incubated for 10 min in the dark at room temperature.
After the incubation, 200 µL of binding buffer was added to the cells that were subse-
quently centrifuged at 1100 rpm for 10 min at 4 ◦C, and the supernatant was discarded.
Then, 10 µL of Propidium Iodide (PI) and 900 µL of binding buffer were added. Sam-
ples were incubated for 5 min in the dark at room temperature. Cells were then ac-
quired using the flow cytometer CyFlow Space (Partec-System, Sysmex Europe GmbH,
Norderstedt-Amburgo, Germany). Data were analyzed using FlowJo (version 10, BD,
Franklin Lakes, NJ, USA) or the open-source software FCSalyzer (version 0.9.16-alpha).
Late apoptotic/necrotic cells were positive for both Annexin-V FITC and PI, while apop-
totic cells were positive for Annexin-V FITC only.

2.5. Protein Extraction and Western Blot Analysis on CF33 Cells

At the end of incubation time (24 h), CF33 cells treated with BBR, BRR or analogs at
a final dosage of 2 µM were washed twice with ice-cold phosphate-buffered saline (PBS),
and total lysate was obtained by solubilization in 5% sodium deoxycholate supplemented
with protease inhibitors (Sigma-Aldrich). Protein concentration was determined by the
bicinchoninic acid–protein assay (Pierce, Appleton, WI, USA), using bovine serum albumin
as standard. Protein fractions were stored at −80 ◦C. Proteins were resolved by SDS-PAGE
using 7.5% polyacrylamide gels [57], and the same amount of protein (20 µg) was loaded
for all the samples. After electrophoresis, proteins were transferred onto nitrocellulose,
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which was stained with Ponceau S (Sigma-Aldrich). The proteins were transferred to
the membrane and blocked in 5% skim milk before being probed overnight at 4 ◦C with
the primary antibodies. The blots were probed with the following antibodies: rabbit
polyclonal antibodies specific for WW domain-containing transcription regulator protein 1
(WWTR1) (1:1000, Sigma-Aldrich #HPA007415), recognizing both YAP and TAZ human
proteins; rabbit monoclonal antibodies to non-phosphorylated (active) β-Catenin (1:1000,
Cell Signaling, Danvers, MA, USA #8814); and mouse monoclonal antibodies to β-catenin
(1:1000, BD Biosciences, New York, NY, USA #610154). After washing the membrane, an
HRP-conjugate secondary antibody was added and incubated with the membrane for 1 h
at room temperature. The membrane was washed and analyzed by a chemiluminescence
analyzer using the chemiluminescence ECL reagent.

2.6. RT-PCR and Semi-Quantitative PCR

Total RNA was isolated from control CF33 cells and CF33 cells 24 h after treatment
with 2 µM of drug using an RNeasy Micro Kit (Qiagen, Hilden, Germany) following the
supplier’s protocol. The obtained RNA was then quantified using Qubit Fluorometric
Quantitation (LifeTechnologies, Carlsbad, CA, USA), and 500 ng was reverse transcribed
using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific), according
to the manufacturer’s instructions. Then, 5 µL of cDNA products was amplified with
1 unit of GoTaq (Promega, Madison, WI, USA) in the buffer provided by the manufacturer
containing MgCl2 with dNTPs and in the presence of the specific primers for β-catenin,
YAP, TAZ, CTGF. Actin-beta was used as a housekeeping gene. Primers and PCR conditions
are summarized in Table 1. A first cycle of 2 min at 95 ◦C was followed by 30 s at 95 ◦C,
30 s at 58 ◦C and 30 s at 72 ◦C for 27 cycles. The used number of cycles was chosen so that
none of the samples reached a plateau at the end of the amplification protocol; therefore,
all the samples were in the exponential phase of amplification. Each set of reactions always
included a negative control, where the sample was replaced by nuclease-free water and
was performed in triplicate.

Table 1. Primers and condition used for the semi-quantitative PCR analysis.

Primer F (5′-3′) Primer R (5′-3′) Amplicon Length (pb) Number of Cycles

ACTB TGGCACCACACCTTCTACAA CCAGAGGCGTACAGGGATAG 182 25

β-catenin ACACGTGCAATCCCTGAACT CACCATCTGAGGAGAACGCA 138 26

TAZ TCCAATCACCAGTCCTGCAT AGCTCCTTGGTGAAGCAGAT 125 28

YAP CCCAGACTACCTTGAAGCCA CTTCCTGCAGACTTGGCATC 107 28

CTGF CGACTGGAAGACACGTTTGG AGGAGGCGTTGTCATTGGTA 136 27

2.7. Gel Electrophoresis, Acquisition of Gel Images and Quantitative Analysis

The PCR products were loaded onto a 2% agarose gel stained with gel-red (Promega,
Milano, Italy). A 100 bp DNA ladder molecular weight marker (Life Technologies,
Rockville, MD, USA) was run on each gel to confirm the expected molecular weight
of the amplification product. Images of the RT-PCR agarose gels were acquired with Bio-
Rad gel imaging systems and band quantification was performed using ImageJ software
(version 1.53s). The ratio between the gene of interest and actin-beta was calculated to
normalize for initial variations in sample concentration and as a control for reaction effi-
ciency. The mean and standard deviation of all experiments performed were calculated
after normalization to actin-beta.

2.8. Ethics Statements

Zebrafish embryos and adults were raised, staged, and maintained at the Zebrafish
Facility of the University of Padua, under standard conditions [58]. All husbandry and
experimental procedures complied with European Legislation for the Protection of Ani-
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mals used for Scientific Purposes (Directive 2010/63/EU) and with Italian law on animal
experimentation (D.L. 4 March 2014, n.26). All the procedures were carried out under
authorization n. 407/2015-PR from the Italian Ministry of Health. The project was also
examined and approved by the Ethics Committee of the University of Padua with protocol
number 18746.

2.9. Zebrafish Housing and Maintenance

Zebrafish used for all the experiments were taken from the breeding stocks of the
Zebrafish Facility of the University of Padua and fed four times a day on a variable diet of
dried food and live Artemia. Fish were kept in a 14:10 light:dark cycle in a 10 L multi-tank
constant flow system. Water temperature was 28.5 ◦C and water was replaced at a rate of
10% per day. Eggs were collected and transferred in 10 cm petri dishes. The following day,
dead eggs were removed, and dishes were cleaned. Zebrafish embryos were kept at 28.5 ◦C
in system water mixed with methylene blue (2 mL 0.1% methylene blue per 1 L). Humane
endpoints were not used considering that all the experimental procedures were performed
in wild-type and transgenic larvae 5 days post fertilization. For the anesthesia or euthanasia
of zebrafish embryos and larvae, Tricaine was added to the fish water at 0.16 or 0.3 mg/mL,
respectively. The study was carried out in compliance with the ARRIVE guidelines as
reported by Percie du Sert and colleagues [59]. All the experimental procedures were
performed by specifically trained personnel—the veterinary staff working in the Zebrafish
Facility of the University of Padua.

2.10. Zebrafish Tg(7xTCF-Xla.-Siam:mCherry) and Tg(Hsa.CTGF:mCherry) Transgenic Lines

In order to confirm the in vivo effect of BBR and NAX035, NAX053 and NAX057 on
the Wnt/β-catenin and Hippo pathways, we used two zebrafish transgenic lines named
Tg(7xTCF-Xla.-Siam:mCherry) [60] and Tg(Hsa.CTGF:mCherry), respectively [61]. Fish of
all strains, maintained in Padua Zebrafish Facility, were monitored daily for the presence
of signs of sickness, pain, distress, suffering, or moribund conditions; all treated zebrafish
larvae were euthanized before the phenotypic analysis.

2.11. LD50

The median lethal dose (LD50) of BBR and analogs identified as the drug dosage able
to kill 50% of 24 h post-fertilization (hpf) zebrafish larvae, incubated with the drugs for
24 h, was calculated with the Quest Graph™ LD50 Calculator, (AAT Bioquest, Inc.,
Sunnyvale, CA, USA). Different dosages of drugs were directly added to the fish wa-
ter in 96-well plates. For each treatment, we used at least 96 embryos, and the experiment
was performed in triplicate.

2.12. In Vivo Drug Treatments

Zebrafish embryos were incubated with 100 µM BBR (BBR LD50) and 10 µM of
NAX035, NAX053 and NAX057 (LD50) at 24 hpf for 24 or 48 h. Drugs were added directly
to the fish water in six-well plates. For each treatment performed in triplicate, at least
10 embryos were used.

2.13. Microscopy and Image Acquisition

The mCherry-expressing embryos belonging to the transgenic lines named Tg(7xTCF-
Xla.-Siam:mCherry) and Tg(Hsa.CTGF:mCherry) were analyzed using a Leica M165FC
epifluorescent microscope. All pictures were acquired with a Leica DC 500 digital camera,
and contrast and brightness were elaborated with Adobe Photoshop 6.0 software. In each
transgenic embryo, to quantify the level of fluorescence (that is strictly associated with
the activity of Wnt/β-catenin of Hippo pathways), the integrity density was calculated
using ImageJ software (version 1.53s). With ImageJ, we were able to analyze the embryos’
fluorescence in the head, cardiac region, and spinal cord. The yolk sac was not included
since it usually shows autofluorescence after drug treatment.
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2.14. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9 software. Mean differences
among groups were analyzed using the one-way ANOVA with Tukey’s multiple compari-
son test when data were normally distributed. When data were not normally distributed,
the Kruskal–Wallis test with Dunn’s multiple comparison test was used. The Shapiro–Wilk
test was used to test for normal distribution. The level of significance was set at p < 0.05.

3. Results
3.1. BBR, BRR, and Analogs Induce a Dose-Dependent Inhibition of Tumor Cell Viability

To evaluate the in vitro antiproliferative effect of BBR, BRR, and analogs (Figure 1) on
CF33 cells, we measured cell viability after treatment. In the first experiment, cells were
treated with BBR and analogs for 24 h using different dosages (2 µM, 5 µM, 10 µM, 20 µM,
and 40 µM) (Figure 2a). The half maximal inhibitory concentration (IC50) was analyzed
for each compound and is reported in Table S1. Consequently, we performed a second
cell viability assay at different time points, using a dosage of 10 µM for all the compounds
(Figure 2b). In this experiment, cells were treated with each drug at the dosage of 10 µM,
and cell viability was measured at different times (3, 6, 12, 15, 18, and 24 h) (Figure 2b).
Treatments with BBR, BRR, and analogs exerted a dose- and time-dependent inhibition of
cell viability (Figure 2).
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Figure 2. Effect of berberine (BBR), berberrubine (BRR) and other analogs on CF33 cell viability.
(a) Cells were treated with 2 µM, 5 µM, 10 µM, 20 µM, and 40 µM of the different compounds for
24 h. (b) Cells were treated with 10 µM of the different compounds and cell viability was measured
at different time points (3, 6, 12, 15, 18, and 24 h). BBR, BRR and analogs exerted a dose- and
time-dependent inhibition of cell viability.

NAX012, NAX035, NAX053, NAX057, and NAX060 were identified as promising drug
candidates able to kill more than 50% of tumor cells after 3 h. NAX035, NAX053, NAX057,
and NAX060 were able to kill more than 85% of tumor cells after 24 h (Figure 2b) and were
selected for further analyses. BRR was also included as a comparison, being an apparently
less efficient compound.

3.2. Induction of Necrosis/Apoptosis in Canine Mammary Tumor Cells by BBR Analogs

Next, we investigated whether the cytotoxic effects of BBR and analogs were due to
apoptotic or necrotic cell death. CF33 cells were exposed to 10 µM of each drug, and early
apoptosis and late apoptosis/necrosis were measured after 6, 12, 18, and 24 h of treatment
by flow cytometry (Figure 3). From 6 to 12 h, an increased rate of early apoptosis versus
necrosis was observed for most drugs (e.g., BBR, NAX012, NAX014, NAX035, NAX053,
NAX057, NAX060, BRR, NAX085) (Figure 3). From 12 to 18 h, while some drugs (e.g., BBR,
NAX012, NAX014, BRR) showed an even higher rate of early apoptosis versus necrosis,
other drugs (e.g., NAX035, NAX053, NAX057, NAX060, NAX085) showed an increased rate
of late apoptosis/necrosis. After 6 h, NAX053 and NAX057 induced a significantly higher
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amount of late apoptosis/necrosis when compared to the control (DMSO-treated cells).
Similarly, after 12 h, treatment with NAX053 resulted in a significantly higher amount of late
apoptosis/necrosis when compared with the control. After 18 h, BBR, NAX012, NAX014,
and BRR induced a significantly higher amount of early apoptosis when compared with
DMSO-treated cells. Finally, after 24 h, NAX085 caused a significantly higher amount
of early apoptosis than control cells (Figure 3). Altogether, these data show a different
time-dependent induction of apoptosis/necrosis among the different compounds.
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treated with 10 µM of the different compounds at 6 h, 12 h, 18 h, and 24 h, measured using flow cytometry
with double staining for annexin V and propidium iodide (PI). Early apoptosis cells were Annexin V+/PI−,
whereas late apoptosis/necrosis were Annexin V+/PI+. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.3. NAX035, NAX053, NAX057, and NAX060 Induce a Down-regulation of Wnt/β-Catenin and
an Activation of the Hippo Signaling Pathways in CF33 Cells

To evaluate the effect of BBR and the most efficacious analogs on the Wnt/β-catenin
and Hippo pathways, we analyzed the protein expression of total β-catenin, active
β-catenin, YAP, and TAZ after treatment.

Western blot analysis revealed a decreased amount of total β-catenin in CF33 cells
treated with NAX035, NAX053, NAX057, and NAX060. Interestingly, cells treated with the
same compounds showed a notably lower expression of active β-catenin when compared
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to the controls and other analogs, suggesting a down-regulation of the Wnt/β-catenin
pathway (Figure 4).
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Figure 4. Protein expression after drug treatment. Representative cropped Western blots of
YAP/TAZ, β-catenin and active β-catenin in protein lysates obtained from CF33 cells treated with
berberine (BBR), NAX035, NAX053, NAX057, NAX060 and berberrubine (BRR) for 24 h. Bands of the
expected sizes for YAP (~70 kDa), TAZ (~55 kDa), β-catenin (~92 kDa) and active β-catenin (~92 kDa)
are present in all samples. The experiment was performed in quadruplicate. Each lane corresponds
to a replicate. Ponceau red was used as a loading control.

Considering the Hippo pathway, Western blot analysis also revealed a down-regulation
of YAP and TAZ proteins in cells treated with NAX035, NAX053, NAX057, and NAX060
when compared to the control, which was more evident for TAZ (Figure 4). These results
suggest a down-regulation of the Wnt/β-catenin and an activation of the Hippo pathway,
respectively, when cells are treated with NAX035, NAX053, NAX057, and NAX060, when
compared to the control cells.

We focused on genes specifically involved in the Wnt/β-catenin and Hippo path-
ways. β-catenin mRNA expression was not significantly altered after treatment with
NAX035, NAX053, NAX057 and BRR in comparison with cells treated with BBR and control.
β-catenin mRNA expression was significantly higher (p < 0.01) in cells treated with NAX060
when compared to the control (Figure 5a).
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Figure 5. mRNA expression after drug treatment. Gene expression analysis by semi-quantitative
PCR of genes directly or indirectly involved in Wnt/β-catenin and Hippo pathways in CF33
cells treated with berberine (BBR), NAX035, NAX053, NAX057, NAX060 and berberrubine (BRR).
(a) β-catenin, (b) YAP, (c) TAZ, and (d) CTGF mRNA expression levels in CF33 cells. Relative
gene expression levels are shown following normalization with beta-actin. *, p < 0.05; **, p < 0.01;
***, p < 0.001.

Interestingly, YAP mRNA expression was significantly higher in cells treated with
BBR, NAX053, and NAX060 when compared to the control (p < 0.05) (Figure 5b), whereas
TAZ mRNA expression was not altered after treatment (Figure 5c). We also looked at the
mRNA expression of CTGF, which is regulated by the Hippo pathway. Notably, CTGF
mRNA expression was significantly lower in cells treated with NAX035 (p < 0.01) and
NAX057 (p < 0.001) when compared to the control (Figure 5d), indicating an activation of
the tumor-suppressor Hippo pathway after treatment with these BBR analogs.

3.4. BBR and NAX057 Reduce the Activity of Wnt/β-Catenin and Activate Hippo Signaling
Pathways in Zebrafish Embryos

Next, we used zebrafish embryos to study the toxicity response to BBR, BRR and
analogs by assessing the Median Lethal Dose (LD50) at 24 and 48 h of drug treatment. The
LD50 of BBR, BRR, NAX085, and NAX118 was defined at 200 µM. NAX012 and NAX014
had an LD50 of 100 µM. NAX035 and NAX060 had an LD50 of 20 µM. Finally, NAX053 and
NAX057 had an LD50 of 10 µM (Table S2). For all tested compounds, zebrafish embryo
LD50 values were not dependent on the duration of exposure, such that longer exposures
(48 h) were not associated with lower LD50 values.
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We tested BBR, NAX035, NAX053, and NAX057 on zebrafish Tg(7xTCF.Xlasiamois:
nlsmCherry) and Tg(Hsa.CTGF:mCherry) transgenic lines, in which the expression of
the reporter gene mCherry is regulated by specific cell signaling pathway-responsive ele-
ments [52,53]. By fluorescent microscopy imaging, we analyzed the amount of fluorescence
indicating the expression of specific target genes in treated fish compared with controls.
The analysis of these responsive transgenic lines, in which the expression of the reporter
protein mCherry is directly associated with the activity of the canonical Wnt/β-catenin
and Hippo signaling pathways, is simple and relatively immediate. In these in vivo ex-
periments, we decided to use the drug dosages of 100 µM for BBR, 10 µM for NAX035,
and 5 µM for NAX053 and NAX057 because these dosages were tested on zebrafish and
did not induce any alteration in fish morphology and development. Indeed, fluorescence
analysis and quantification need to be performed on animals that are correctly formed and
developed. Tg(7xTCF.Xlasiamois:nlsmCherry) reporter animals treated with BBR, NAX035,
NAX053, and NAX057 showed a significantly lower fluorescence when compared to the
control (p < 0.0001) (Figure 6a), suggesting that these compounds down-regulated the
canonical Wnt/β-catenin pathway in vivo.
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mCherry under control of (a) TCF/LEF and of (b) CTGF genes. Quantification of mCherry fluorescence
in control transgenic zebrafish in comparison with transgenic zebrafish treated with berberine (BBR)
and other analogs (NAX035, NAX053, NAX057). *, p < 0.05; ***, p < 0.001.

Interestingly, Hippo pathway reporter animals showed a lower fluorescence when
treated with BBR (p < 0.001), NAX035, and NAX057 (p < 0.05) when compared to the
control (Figure 6b), while transgenic embryos treated with NAX053 showed an increased
fluorescence compared to untreated siblings (p < 0.0001) (Figure 6b).

4. Discussion

HBC is the most common invasive cancer in women. The treatment of HBC depends
on the subtype of breast cancer, the stage of the disease, sensitivity to hormones, the
patient’s age, and overall health [1]. The main treatment options include radiation therapy,
chemotherapy, surgery, and hormone therapy. With treatment, a woman who receives a
diagnosis of HBC has a percentage chance of surviving for at least 5 years ranging from
almost 100 to 22 percent, depending on the stage of the disease at diagnosis and the tumor
subtype [62]. For this reason, new treatment strategies are needed.

In recent years, phytochemicals, considered as bioactive ingredients present in plant
products, became interesting drugs to study for their antitumor activity. This effect was
demonstrated both in vitro and in vivo [63]. BBR is a phytochemical that has been reported
to inhibit carcinogenesis in rats and mice [64] and in certain types of human cancers, as
revealed by both in vitro and in vivo studies [38,41,65,66] and one clinical administration
to human patients [40].
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Regarding breast cancer, most in vitro studies on HBC cell lines have demonstrated
BBR antitumoral effects with several involved molecules and pathways, mainly regarding
cell proliferation and cell cycle, apoptosis, autophagy, and metastasis [65,67]. Only one
study investigated BBR effects in vitro on a canine mammary tumor cell line (CF41.Mg),
showing a decrease in cell viability after 24 h of BBR treatment (100 µM) [67]. In vivo
mouse models also showed a reduction in tumor volume, tumor weight, or vessel density
after BBR exposure [41,66,68–73]. In a recent study, Pierpaoli and collaborators explored
the efficacy of the oral administration of a BBR derivative (NAX014) in a mouse model of
HER2-overexpressing breast cancer. The authors showed no signs of toxicity after the oral
administration of a high dose of the compound, suggesting its safety [56].

A major challenge today is to design novel drugs that target tumor cells specifically,
with minimal cytotoxic effects on normal cells. Marverti and collaborators showed a
prominent decrease in cell viability on two ovarian cancer cell lines, but a minimal effect on
normal cells [74], when treated with BBR. This might indicate that BBR specifically targets
tumor cells.

In this study, we chose eight semi-synthetic BBR analogs to investigate their effects
on the CMT CF33 cell line for the first time, in comparison with BBR. In order to study
the in vivo effect of these compounds, we used a transgenic zebrafish model. Despite this
preliminary study being performed with a simple methodology, this type of comparison of
the two models has never been performed before for CMTs. Our data demonstrated that
the BBR analogs NAX035, NAX053, NAX057, and NAX060 affected cell viability, exerting a
higher cytotoxic effect on cancer cells acting at a lower dosage in comparison with BBR.
Generally, most of the tested drugs increased cell death by inducing cell apoptosis, which
is a desirable effect for novel anticancer drugs. Apoptosis is a programmed cell death often
overcome by tumors, whereas necrosis is often present in tumors and can be associated with
increased metastases [75]. In line with our results, the BBR capacity to induce apoptosis is
well known [65]. Wang and co-authors demonstrated that BBR inhibits proliferation and
induces apoptosis of human cervical cancer (HeLa229) cells in a dose- and time-dependent
manner, by the up-regulation of p53 and the down-regulation of Bcl2 and Ptgs2 mRNA
expression levels [76]. Additionally, the pro-apoptotic activity of BBR is well-documented
in various breast cancer cell lines and many other cell cancer types [35].

In recent years, several data have emerged regarding the involvement of Wnt/β-
catenin signaling in tumors. In particular, the increase in Wnt/β-catenin signaling seems to
be important for human cancer onset and progression, including tumor initiation, tumor
growth, cell death, cell differentiation and metastasis onset [77]. In this study, we showed
that BBR and other BBR analogs down-regulated Wnt/β-catenin signaling. Our data were
confirmed both at the protein level in vitro, by a decreased expression of active β-catenin in
the tested canine cell line, and in vivo in zebrafish. In other studies, BBR has been found to
deregulate Wnt/β-catenin signaling, inhibiting the proliferation, migration, and invasion
of HBC cells in vitro [78], and human colorectal cancer growth both in vitro and in vivo in
a mouse model [79,80]. Similarly, it was found by clinical administration that BBR potently
attenuated intestinal polyps in familial adenomatous polyposis human patients via the
inhibition of Wnt signaling [40]. In our study, we showed that at the gene expression
level β-catenin mRNA, instead, did not show a significant decrease after drug treatment,
except for cells treated with NAX060, which curiously presented a significant increase
in comparison with control cells. We can speculate that the down-regulation of active
β-catenin could be due to post-transcriptional or post-translational mechanisms. To date,
it is well known that the mechanism whereby nuclear β-catenin drives or inhibits the
expression of Wnt target genes is more diverse and less characterized [81]. Additional
studies will be necessary to better understand the mechanistic underpinnings of the active
β-catenin-observed plasticity. A deeper and more comprehensive characterization of the
protein networks that regulate β-catenin transcription using zebrafish as a model to dissect
molecular mechanisms involved in tumorigenesis could possibly drive us to confirm the
identification of attractive new therapeutic targets.
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The Hippo pathway is a well-conserved signaling pathway able to regulate organ size
and tissue homeostasis [82]. This pathway can be down-regulated, leading to oncogen-
esis, through a variety of mechanisms [83]. These mechanisms include the induction of
hyperproliferation, cellular invasion, and metastasis, and might play a role in cancer cell
maintenance and chemotherapy resistance [84]. Our in vitro study on zebrafish for the
Hippo pathway indicated an effect for BBR and other analogs on this signaling pathway.
Particularly, there was a decrease in YAP and, mainly, TAZ proteins in cells treated with
NAX035, NAX053, NAX057, and NAX060. Notably, the mRNA expression of the down-
stream gene CTGF was lower in cells treated with NAX035 and NAX057, when compared
to the control. The Hippo pathway has already been found to be implicated in canine
mammary carcinogenesis, and the described post-transcriptional/post-translational modifi-
cations of YAP and TAZ proteins justify the changes at the protein level, but not the changes
at the mRNA level that were found in our and other studies [23,85]. Mechanistically, YAP
and TAZ accumulate within the cytoplasm to translocate into the nucleus and activate
downstream tumor-promoting genes when the Hippo pathway is switched off, whereas
decreased cytoplasmic YAP/TAZ levels, due to their phosphorylation and degradation,
are seen when the tumor-suppressing Hippo pathway is activated [86]. More recently, a
Hippo-independent regulation of YAP/TAZ has been described, which could possibly
explain non-decreased YAP levels in our study [87]. Several anticancer mechanisms of
BBR-related compounds have been extensively studied [88], but only one study detected
cell cycle arrest and apoptosis induced by a novel synthetic cyclizing-berberine on human
cancer cell lines, which activated YAP phosphorylation [89]. No data are published on this
Hippo-related anticancer effect of BBR analogs.

The analysis of the reporter gene expression in zebrafish treated for 48 h, particu-
larly with BBR and NAX057 (NAX035 with no statistical significance) confirmed a down-
regulation of CTGF. These data suggest an activation of the Hippo pathway, in comparison
with controls, as also supported by a significant decrease in CTGF mRNA expression when
cells were treated with NAX035 and NAX057. Instead, treatment with NAX053 indicated
an in vivo up-regulation of CTGF. On one side, human studies have shown that CTGF can
have pro-tumorigenic or anti-tumorigenic effects in different situations [90,91]. On the other
hand, CTGF regulation is not controlled exclusively by the Hippo pathway [92]. Additional
analysis to better characterize the response to these drugs in the in vivo zebrafish model
should be performed, measuring the expression of other genes and proteins.

Further studies will be necessary to clarify the interesting interaction between Wnt/
β-catenin and Hippo pathways in response to BBR and other analogs. We have only touched
the tip of the iceberg in terms of understanding the intricacies and interconnections of the
Wnt/β-catenin and Hippo pathways, which are responsible for the onset and progression
of cancer proliferation, particularly in canine mammary tumors.

5. Conclusions

In conclusion, our results demonstrated that NAX035 and NAX057 could be considered
promising anti-tumoral drugs. In short, (i) they kill approximately 50% of tumor cells at
a low dose, (ii) they induce cell death mainly by apoptosis, (iii) they down-regulate the
Wnt/β-catenin pathway, and (iv) interestingly, they also seem to act on the activation
of the well-known tumor-suppressor Hippo pathway. Our results, obtained on a canine
mammary tumor cell line, are in line with similar results demonstrated only for BBR in
in vitro and in vivo human cancer studies, but with less toxicity also proved in our in vivo
zebrafish model. Considering many similarities between canine mammary tumors and
human breast cancer, these BBR analogs might represent relevant candidates to be tested in
further in vivo animal models.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomedicines11123317/s1, Table S1: Half maximal in-
hibitory dosage and standard deviation of different compounds after 24 h of treatment of CF33 cells.
Table S2: Different drugs toxicity effects and standard deviation on zebrafish larvae treated for 24 h.

https://www.mdpi.com/article/10.3390/biomedicines11123317/s1
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