Production of ⁴⁷Sc Through Proton Irradiation of ⁴⁸Ti target

L. De Nardo^{1,2}, L. De Dominicis^{1,3}, G. Pupillo³, L. Mou³, J. Esposito³, A. Rosato^{4,5}, L. Meléndez-Alafort^{3,5}

¹ Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy.² INFN, Sezione di Padova, Padova, Italy.

³ INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy. ⁴ Dipartimento di Scienze Chirurgiche Oncologiche e

Gastroenterologiche, dell'Università di Padova, Padova, Italy.

⁵ Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.

INTRODUCTION

Scandium offers different radioisotopes having proper nuclear decay properties to perform both imaging and therapeutic studies aimed at the development of new theranostic radiopharmaceuticals. In particular, ${}^{47}Sc$ ($\tau_{1/2}$ = 3.35 d) has suitable features both for SPECT imaging, due to the 159 keV y-ray emission, and for treatment of smallsize tumours, owing to the intense β^- -emission (mean $\beta^$ energy: 162.0 keV). Its efficacy has been demonstrated at preclinical stage in former studies, however the low availability has up to now limited the clinical applications of ⁴⁷Sc-labelled radiopharmaceuticals. For such a reason, different ⁴⁷Sc-production routes are currently investigated. The proton irradiation of ^{nat}V targets has been previously studied, also considering the co-production of other Sc radioisotopes and their contribution to the absorbed dose to the patient [1]. This activity has been now also performed supposing proton irradiation of fully enriched ⁴⁸Ti targets.

MATERIALS AND METHODS

The yields of Sc radioisotopes obtained by ⁴⁸Ti thick target bombardment with proton beams of different energy were calculated, considering different irradiation times, using experimental cross sections data from EXFOR nuclear database [2] and recently measured data: A ⁴⁷Sc-labelled DOTA-folate conjugate (⁴⁷Sc-cm10) was used as an example of radiopharmaceutical for the dosimetric analysis. Biodistribution data of tumor-bearing mice treated with ⁴⁷Sc-cm10 [3] were used to perform dosimetric calculations with the OLINDA v.2.2 code using the human adult male phantom [4].

Fig. 1. AD to the kidneys and ED for the ^{xx}Sc-cm10 radiopharmaceutical and the adult male phantom.

RESULTS

Figure 1 shows the summary of the dosimetric calculation results for all the Sc-radioisotopes (43 Sc, 44 Sc, 46 Sc, 47 Sc) produced by irradiation of 48 Ti target at E_P < 40 MeV. For each 4x Sc-radioisotope, the organ receiving the highest absorbed dose (AD) following 4x Sc-cm10 injection is the kidney. In this organ, the AD per unit of injected activity of 46 Sc is a factor 3.6 higher compared to 47 Sc, while it is lower for all the other produced radioisotopes. The effective dose (ED) for 46 Sc results a factor 7.6 bigger than that of 47 Sc (0.0252 mSv/MBq).

Fig. 2. Yields of ^{4x}Sc radioisotopes expected by irradiation of ⁴⁸Ti target at different proton energies and irradiation times.

Yields of Sc radioisotopes obtained at different proton energies as well as irradiation times (t_{irr}) are plotted in Figure 2. The highest ⁴⁷Sc activity is obtained by using the larger energy window (i.e. <40 MeV) and the longer irradiation time (i.e. 80 h). For all the scenarios, the Radionuclidic Purity (RNP), initially very low, is rapidly increasing, due to the decay of the short half-life impurities ⁴³Sc and ^{44g}Sc (Figure 3). After about 30 h, the RNP rises more slowly, due to the decay of ^{44m}Sc. For E_P>30 MeV the RNP reaches a maximum (\approx 50-55%) and then decreases, due to contribution of the long half-life impurity ⁴⁶Sc. For E_P<30 MeV, the RNP is instead continuously increasing, as in this case ⁴⁶Sc is not produced, however a 99% value may be achieved only \approx 1500 h after the EOB, corresponding to almost 20 half-lives of ⁴⁷Sc.

Fig. 3. Time evolution of Radionuclidic Purity (RNP) of ⁴⁷Sc obtained through irradiation of ⁴⁸Ti target at different proton energies and irradiation times (continuous lines: 24 h, dashed lines: 80 h).

DISCUSSION

The ⁴⁷Sc yield obtained by irradiation of ⁴⁸Ti is larger (971 MBq/ μ A for E_p<30 MeV and t_{irr}=80 h) when compared to the use of ^{nat}V target (279 MBq/ μ A for E_p=35-19 MeV and t_{irr}=80 h), which has been previously investigated [1]. Moreover, the long-lived contaminant ⁴⁶Sc, causing high AD, is not produced by ⁴⁸Ti irradiation for E_P<30 MeV. However, the RNP obtained for irradiation of ⁴⁸Ti target achieves values acceptable for medical purposes only at very long times after the EOB. On the contrary, irradiation of a ^{nat}V target with E_P<35 MeV guarantees a RNP>99% over an extended time window after the EOB (Figure 4).

Besides, in these conditions, the dose increase caused by the presence of Sc-contaminants is maintained lower than 10%. This production route has also the advantage to employ a low-cost and commercially easily available target material (^{nat}V: ⁵⁰V, 0.250% and ⁵¹V, 99.750%) and rather common medium-energy proton cyclotrons. The amount of ⁴⁷Sc activity produced through ^{nat}V irradiation is also much higher than that obtained after a comparable time of irradiation of a ⁴⁶Ca target at a high-flux reactor through the commonly employed ⁴⁶Ca(n, γ)⁴⁷Ca ($\tau_{1/2} = 4.536$ d) \rightarrow ⁴⁷Sc reaction.

CONCLUSIONS

As the RNP obtained for irradiation of ⁴⁸Ti target reaches values acceptable for medical purposes only after very long times after the EOB, when the ⁴⁷Sc yield becomes too low to have practical applications, this production route can not be considered a valid alternative to the use of a ^{nat}V target. However, cross sections measurements have been recently performed for proton irradiation of ⁴⁹Ti and ⁵⁰Ti targets and the analysis here described will be also extended to those production routes.

Fig. 4. Time evolution of Radionuclidic Purity (RNP) of 47 Sc obtained through irradiation of nat V target at different proton energies and irradiation times (continuous lines:24 h, dashed lines: 80 h).

- [1] L. De Nardo et al., Phys. Med. Biol. 66 (2021) 025003.
- [2] EXFOR Database, available at: https://www-nds.iaea.org/exfor/exfor.htm.
- [3] C. Müller et al. J Nucl Med 55 (2014) 1658-64.
- [4] M. Stabin, and A. Farmer, J. Nucl. Med. 53 (2012) 585.