Production of ⁴⁷Sc Through Proton Irradiation of ⁴⁸Ti target

L. De Nardo^{1,2}, L. De Dominicis^{1,3}, G. Pupillo³, L. Mou³, J. Esposito³, A. Rosato^{4,5}, L. Meléndez-Alafort^{3,5}

 1 Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy. 2 INFN, Sezione di Padova, Padova, Italy.

3 INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy. ⁴ Dipartimento di Scienze Chirurgiche Oncologiche e

Gastroenterologiche, dell'Università di Padova, Padova, Italy.

⁵ Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.

INTRODUCTION

Scandium offers different radioisotopes having proper nuclear decay properties to perform both imaging and therapeutic studies aimed at the development of new theranostic radiopharmaceuticals. In particular, ⁴⁷Sc ($\tau_{1/2}$ = 3.35 d) has suitable features both for SPECT imaging, due to the 159 keV γ-ray emission, and for treatment of smallsize tumours, owing to the intense β ⁻-emission (mean β ⁻ energy: 162.0 keV). Its efficacy has been demonstrated at preclinical stage in former studies, however the low availability has up to now limited the clinical applications of ⁴⁷Sc-labelled radiopharmaceuticals. For such a reason, different ⁴⁷Sc-production routes are currently investigated. The proton irradiation of natV targets has been previously studied, also considering the co-production of other Sc radioisotopes and their contribution to the absorbed dose to the patient [1]. This activity has been now also performed supposing proton irradiation of fully enriched ⁴⁸Ti targets.

MATERIALS AND METHODS

The yields of Sc radioisotopes obtained by ⁴⁸Ti thick target bombardment with proton beams of different energy were calculated, considering different irradiation times, using experimental cross sections data from EXFOR nuclear database [2] and recently measured data A ⁴⁷Sc-labelled DOTA-folate conjugate (⁴⁷Sc-cm10) was used as an example of radiopharmaceutical for the dosimetric analysis. Biodistribution data of tumor-bearing mice treated with ⁴⁷Sc-cm10 [3] were used to perform dosimetric calculations with the OLINDA v.2.2 code using the human adult male phantom [4].

Fig. 1. AD to the kidneys and ED for the $x \text{S}c\text{-cm}10$ radiopharmaceutical and the adult male phantom.

RESULTS

Figure 1 shows the summary of the dosimetric calculation results for all the Sc-radioisotopes (43Sc, 44Sc, 44mSc, 46Sc, ⁴⁷Sc) produced by irradiation of ⁴⁸Ti target at $E_P < 40$ MeV. For each ^{4x}Sc-radioisotope, the organ receiving the highest absorbed dose (AD) following $4x$ Sc-cm10 injection is the kidney. In this organ, the AD per unit of injected activity of 46 Sc is a factor 3.6 higher compared to 47 Sc, while it is lower for all the other produced radioisotopes. The effective dose (ED) for 46 Sc results a factor 7.6 bigger than that of 47 Sc (0.0252 mSv/MBq).

Fig. 2. Yields of ^{4x}Sc radioisotopes expected by irradiation of ⁴⁸Ti target at different proton energies and irradiation times.

Yields of Sc radioisotopes obtained at different proton energies as well as irradiation times (t_{irr}) are plotted in Figure 2. The highest 47 Sc activity is obtained by using the larger energy window (i.e. <40 MeV) and the longer irradiation time (i.e. 80 h). For all the scenarios, the Radionuclidic Purity (RNP), initially very low, is rapidly increasing, due to the decay of the short half-life impurities ⁴³Sc and 44gSc (Figure 3). After about 30 h, the RNP rises more slowly, due to the decay of 44m Sc. For E_P > 30 MeV the RNP reaches a maximum $(\approx 50 - 55\%)$ and then decreases, due to contribution of the long half-life impurity ⁴⁶Sc. For $E_P < 30$ MeV, the RNP is instead continuously increasing, as in this case ⁴⁶Sc is not produced, however a 99% value may be achieved only \approx 1500 h after the EOB, corresponding to almost 20 half-lives of ⁴⁷Sc.

Fig. 3. Time evolution of Radionuclidic Purity (RNP) of ⁴⁷Sc obtained through irradiation of ⁴⁸Ti target at different proton energies and irradiation times (continuous lines: 24 h, dashed lines: 80 h).

DISCUSSION

The 47 Sc yield obtained by irradiation of 48 Ti is larger (971) MBq/ μ A for E_p<30 MeV and t_{irr}=80 h) when compared to the use of natV target (279 MBq/ μ A for E_p=35-19 MeV and $t_{irr}=80$ h), which has been previously investigated [1]. Moreover, the long-lived contaminant ⁴⁶Sc, causing high AD, is not produced by 48 Ti irradiation for E_P <30 MeV. However, the RNP obtained for irradiation of ⁴⁸Ti target achieves values acceptable for medical purposes only at very long times after the EOB. On the contrary, irradiation of a natV target with $E_P < 35$ MeV guarantees a RNP>99% over an extended time window after the EOB (Figure 4).

Besides, in these conditions, the dose increase caused by the presence of Sc-contaminants is maintained lower than 10%. This production route has also the advantage to employ a low-cost and commercially easily available target material $(^{\text{nat}}V: 50V, 0.250\%$ and $51V, 99.750\%)$ and rather common medium-energy proton cyclotrons. The amount of ⁴⁷Sc activity produced through natV irradiation is also much higher than that obtained after a comparable time of irradiation of a ⁴⁶Ca target at a high-flux reactor through the commonly employed ⁴⁶Ca(n,γ)⁴⁷Ca ($\tau_{1/2}$ = 4.536 d) \rightarrow ⁴⁷Sc reaction.

CONCLUSIONS

As the RNP obtained for irradiation of ⁴⁸Ti target reaches values acceptable for medical purposes only after very long times after the EOB, when the 47 Sc yield becomes too low to have practical applications, this production route can not be considered a valid alternative to the use of a natV target. However, cross sections measurements have been recently performed for proton irradiation of ⁴⁹Ti and ⁵⁰Ti targets and the analysis here described will be also extended to those production routes.

Fig. 4. Time evolution of Radionuclidic Purity (RNP) of ⁴⁷Sc obtained through irradiation of natV target at different proton energies and irradiation times (continuous lines:24 h, dashed lines: 80 h).

- [1] L. De Nardo et al., Phys. Med. Biol. 66 (2021) 025003.
- [2] EXFOR Database, available at: https://wwwnds.iaea.org/exfor/exfor.htm.
- [3] C. Müller et al. J Nucl Med 55 (2014) 1658-64.
- [4] M. Stabin, and A. Farmer, J. Nucl. Med. 53 (2012) 585.