
Resource Transition Systems and Full Abstraction1

for Linear Higher-Order Effectful Programs2

Ugo Dal Lago #3

University of Bologna, Italy4

INRIA Sophia Antipolis, France5

Francesco Gavazzo #6

University of Bologna, Italy7

INRIA Sophia Antipolis, France8

Abstract9

We investigate program equivalence for linear higher-order (sequential) languages endowed with10

primitives for computational effects. More specifically, we study operationally-based notions of11

program equivalence for a linear λ-calculus with explicit copying and algebraic effects à la Plotkin12

and Power. Such a calculus makes explicit the interaction between copying and linearity, which13

are intensional aspects of computation, with effects, which are, instead, extensional. We review14

some of the notions of equivalences for linear calculi proposed in the literature and show their15

limitations when applied to effectful calculi where copying is a first-class citizen. We then introduce16

resource transition systems, namely transition systems whose states are built over tuples of programs17

representing the available resources, as an operational semantics accounting for both intensional18

and extensional interactive behaviours of programs. Our main result is a sound and complete19

characterization of contextual equivalence as trace equivalence defined on top of resource transition20

systems.21

2012 ACM Subject Classification Theory of computation → Operational semantics22

Keywords and phrases algebraic effects, linearity, program equivalence, full abstraction23

Related Version http://www.cs.unibo.it/ dallago/resbranch.pdf24

Acknowledgements The authors are supported by the ERC Consolidator Grant DLV-81861625

DIAPASoN.26

1 Introduction27

This work aims to study operationally-based equivalences for higher-order sequential pro-28

gramming languages enjoying three main features, which we are going to explain: algebraic29

effects, linearity, and explicit copying.30

Algebraic Effects Since the early days of programming language semantics, the study of31

computational effects, i.e. those aspects of computations that go beyond the pure process of32

computing, has been of paramount importance. Starting with the seminal work by Moggi33

[49, 50], modelling and understanding computational effects in terms of monads [43] has34

been a standard practice in the denotational semantics of higher-order sequential languages.35

More recently, Plotkin and Power [60, 57, 58] have extended the analysis of computational36

effects in terms of monads to operational semantics, introducing the theory of algebraic37

effects. Accordingly, computational effects are produced by effect-triggering operations38

whose behaviour is, in essence, algebraic. Examples of such operations are nondeterministic39

and probabilistic choices, primitives for I/O, primitives for reading and writing from a40

global store, and many others. The operational analysis of computational effects in terms41

of algebraic operations also gave new insights not only on the operational semantics of42

effectful programming languages but also on their theories of equality, this way leading to43

mailto:ugo.dallago@unibo.it
https://orcid.org/0000-0001-9200-070X
mailto:francesco.gavazzo@gmail.com
https://orcid.org/0000-0002-2159-0615

2 Resource Transition Systems

the development of, e.g., effectful logical relations [36, 12], effectful applicative and normal44

form/open bisimulation [21, 19], and logic-based equivalences [67, 46].45

Linearity and Copying The analysis of effectful computations in terms of monads and46

algebraic effects is, in its very essence, extensional: ultimately, a program represents a function47

from inputs to monadic outputs. However, when reasoning about computational effects, also48

intensional aspects of programs may be relevant. In particular, linearity [34, 69, 8] (and49

its quantitative refinements [33, 32, 14, 4, 23]) has been recognised as a fundamental tool50

to reason about computational effects [28, 48], as witnessed by a number of programming51

languages, such as Clean [55], Rust [47], Granule [52], and Linear Haskell [9], which explicitly52

rely on linearity to structure and manage effects. Indeed, the interaction between linearity,53

copying, and computational effects deeply influences program equivalence: there are effectful54

programs that cannot be discriminated without allowing the environment to copy them, and55

thus program transformations which are sound if linearity is guaranteed, but unsound in56

presence of copying.57

A simple, yet instructive example of such a transformation, which we will carefully58

examine in the next section, is given by distributivity of λ-abstraction over probabilistic59

choice operators: λx.(e ⊕ f) ≃ (λx.e) ⊕ (λx.f). This transformation is well-known to be60

unsound for ‘classical’ call-by-value probabilistic languages [16]. However, it is sound if the61

programs involved cannot be copied [27, 26]. What, instead, we expect to be unsound is62

the transformation !(e ⊕ f) ≃ !e ⊕ !f , where the operator ! (bang) is the usual linear logic63

exponential modality making terms under its scope copyable and erasable. It is thus natural64

to ask if, and to what extent, the aforementioned notions of effectful program equivalence65

can be extended to linear languages with explicit copying.66

Our Contribution In this paper we introduce resource transition systems as an intensional,67

resource-sensitive operational semantics for linear languages with algebraic operations and68

explicit copying. Resource transition systems combine standard extensional properties of69

effectful computations with linearity and copying, whose nature is, instead, intensional. We70

model the former using monads—as one does for ordinary effectful semantics—and the latter71

by shifting from program-based transition systems to tuple-based transition systems, as one72

does in environmental bisimulation [62, 44]. Indeed, a resource transition system can be73

thought of as an ordinary transition system whose states are built over tuples of copyable74

programs and linear values representing the available resources produced by a program75

while interacting with the external environment. Another possible way to look at resource76

transition systems is as an interactive semantics defined on top of the so-called storage model77

[68]. We then define and study trace equivalence on resource transition systems. Our main78

result states that trace equivalence is sound and complete for contextual equivalence. To the79

best of the authors’ knowledge, this is the first full abstraction result for a linear λ-calculus80

with arbitrary algebraic effects and explicit copying.81

Outline This paper is structured as follows. After an informal introduction to program82

equivalence for effectful linear languages (Section 2), Section 3 recalls some background83

notions on monads and algebraic operations. Section 4 introduces our vehicle calculus and84

its operational semantics. Resource-sensitive resource transition systems and their associated85

notions of equivalence are given in Section 5. Due to space constraints, several details have86

been omitted. The interested reader can find them in the extended version of the present87

paper [20].88

U. Dal Lago and F. Gavazzo 3

2 Effects, Linearity, and Program Equivalence89

In this section, we give a gentle introduction to program equivalence in presence of linearity,90

explicit copying, and effects. In this work, we are concerned with operationally-based91

equivalences, example of those being contextual and CIU equivalences [51, 45], logical92

relations [61, 56, 66] and, bisimulation-based equivalences [1, 40, 41, 62]. Moreover, among93

operationally-based equivalences, we seek for lightweight ones, by which we mean equivalences94

which are as easy to use as possible (otherwise, contextual equivalence would be enough).95

Accordingly, we do not consider equivalences in the spirit of logical relations—which usually96

require heavy techniques such as biorthogonality [54] and step-indexing [3] when applied97

to calculi in which recursion is present, either at the level of types or at the level of terms.98

Instead, we focus on first-order equivalences [44], viz. notions of trace equivalence and99

bisimilarity.100

Our running examples in this paper are the already mentioned distributivity of (lambda)101

abstraction and bang over (fair) probabilistic choice in probabilistic call-by-value λ-calculi102

[24, 18, 27]:103

λx.(e ⊕ f) ≃ (λx.e) ⊕ (λx.f) (λ-dist)104

!(e ⊕ f) ≃ !e ⊕ !f (!-dist)105
106

It is well-known [16] that in call-by-value probabilistic languages, lambda abstraction does107

not distribute over probabilistic choice. In a linear setting, however, we see that any resource-108

sensitive notion of program equivalence ≃ should actually validate the equivalence (λ-dist)109

but not (!-dist). Why? Let us look at the transition systems describing the (interactive)110

behaviour (Figure 1) of the programs involved in (λ-dist), where we write JeK for the result of111

the evaluation of an expression e. One way to understand the failure of the equivalence (λ-dist)

λx.(e ⊕ f)

eval
��

λx.(e ⊕ f)

@v

��
e[x := v] ⊕ f [x := v]

eval

��

0.5 0.5

Je[x := v]K Jf [x := v]K

(λx.e) ⊕ (λx.f)
eval

��

0.5 0.5

λx.e

@v
��

λx.f

@v
��

e[x := v]

eval
��

f [x := v]

eval
��

Je[x := v]K Jf [x := v]K

Figure 1 Interactive behaviour of λx.(e ⊕ f) and (λx.e) ⊕ (λx.f)

112

in classical (i.e. resource-agnostic) languages is that several notions of probabilistic program113

equivalence (such as probabilistic contextual equivalence [24], applicative bisimilarity [16, 24],114

and logical relations [13]) are sensitive to branching. However, sensitivity to branching does115

not quite feel like the crux of the failure of distributivity of abstraction over choice in classical116

languages. In fact, what we see is that λx.(e ⊕ f) waits for an input, and then resolves117

the probabilistic choice. Dually, (λx.e) ⊕ (λx.f) first resolves the choice, and then waits118

4 Resource Transition Systems

for an input. As a consequence, if we evaluate these programs, λx.(e ⊕ f) essentially does119

nothing, whereas (λx.e) ⊕ (λx.f) probabilistically chooses if continuing with either λx.e or120

λx.f . At this point, there is a crucial difference between the programs obtained: λx.(e ⊕ f)121

still has to resolve the probabilistic choice. If we were allowed to use it twice by passing it an122

argument v — this way resolving the choice twice — then we could observe a (probabilistic)123

behaviour different from both the one of λx.e and of λx.f . Indeed, assuming f [x := v] to124

diverge and e[x := v] to converge (with probability 1), then, we would converge (to e[x := v])125

with probability 0.25, in the former case, and with probability 0.5, in the latter case. To126

observe such a behaviour, however, it is crucial to copy λx.(e ⊕ f). Otherwise, we could only127

interact with it by passing it an argument only once, this way validating (λ-dist).128

Summing up, to invalidate (λ-dist) one has to be able to copy the results of the evaluation129

of the programs involved. This observation suggests that the deep reason why (λ-dist)130

fails relies on the copying capabilities of the calculus [63]. If the calculus at hand is linear131

(and thus offers no copying capability), we should then expect (λ-dist) to hold, while132

!λx.(e ⊕ f) ≃ !(λx.e) ⊕ !(λx.f) (and thus ultimately (!-dist)) to fail. This agrees with a133

recent result by Deng and Zhang [27, 26], who observed that if a calculus does not have134

copying capabilities, then contextual equivalence (which is a fortiori linear) validates (λ-dist).135

More generally, Deng and Zhang showed that linear contextual equivalence, i.e. contextual136

equivalence where contexts test their arguments linearly (viz. exactly once), coincides with137

linear trace equivalence in probabilistic languages.138

But what about (!-dist)? Unfortunately, linear trace equivalence has been designed for139

linear languages without copying, only. Moreover, straightforward extensions of linear trace140

equivalence to languages with copying would actually validate (!-dist), trace equivalence141

being insensitive to branching. The situation does not change much if one looks at different142

forms of equivalence, such as Bierman’s applicative bisimilarity [10]. Such equivalences143

usually invalidate (!-dist), but they all invalidate (λ-dist), too. We interpret all of this as a144

symptom of the lack of intensional structure in the aforementioned notions of equivalence.145

Ultimately, this can be traced back to the very operational semantics of the calculus, which146

is meant to be an abstract description of the input-output behaviour of programs, but gives147

no insight into their intensional structure, i.e. linearity and copying in our case [68].148

We propose to overcome this deficiency by giving calculi a resource-sensitive operational149

semantics on top of which notions of program equivalence accounting for both intensional150

and extensional aspects of programs can be naturally defined. We do so by shifting from151

program-based transition systems to transition systems whose states are tuples (Γ; ∆), where152

Γ is a sequence of non-linear (hence copyable) programs and ∆ is a sequence of linear values,153

as states. Accordingly, fixed a tuple (Γ; ∆) and a program e, we evaluate e, say obtaining a154

value v, and add v to the linear environment ∆, this way describing the extensional behaviour155

of the program. There are two intensional actions we can make on tuples. If ∆ contains a156

value of the form !e, then we can remove !e from ∆ and add e to Γ. Dually, once we have157

a program e in Γ, we can decide to evaluate it—and thus to possibly produce a new linear158

value—without removing it from Γ, this way reflecting its non-linear nature. Finally, we can159

interact with a value λx.f by passing it an argument built using programs in Γ and values in160

∆. As the latter are linear, we will then remove them from ∆.161

We conclude this section by remarking that although here we have focused on probabil-162

istic languages, a similar analysis can be made for languages exhibiting different kinds of163

effects, such as input-output behaviours as well as combinations of effects (e.g. probabilistic164

nondeterminism and global stores).165

U. Dal Lago and F. Gavazzo 5

3 Preliminaries: Monads and Algebraic Effects166

Starting with the seminal work by Moggi [49, 50], monads have become a standard formalism167

to model and study computational effects in higher-order sequential languages. Instead of168

working with monads, we opt for the equivalent notion of a Kleisli triple [43]. Additionally,169

instead of defining monads on arbitrary categories, we tacitly restrict our analysis to the170

category of sets and functions.171

▶ Definition 1. A Kleisli triple is triple (T, η, >>=) consisting of a map associating to any set172

X a set T (X), a set-indexed family of functions ηX : X → T (X), and a map >>=, called bind,173

associating to each function f : X → T (Y) a function >>=f : T (X) → T (Y). Additionally,174

these data must obey the following laws, for f and g functions with appropriate (co)domains:175

>>=η = id; >>=f ◦ η = f ; >>=g ◦ >>=f = >>=(>>=g ◦ f).176
177

Following standard practice, we write m >>= f for >>=f(m).178

The computational interpretation behind Kleisli triples is the following: if A is a set179

(or type) of values, then T (A) represent the set of computations returning values in A.180

Accordingly, for each set A there is a function ηA : A → T (A) that regards a value a ∈ A181

as a trivial computation returning a (and producing no effect). The map η corresponds to182

the programming constructor return. Similarly, µ >>= f is the sequential composition of a183

computation µ ∈ T (A) with a function f : A → T (B), and corresponds to the sequencing184

constructor let x = − in −. Following this interpretation, we can read the identities in185

Definition 1 as stipulating that η indeed produces no effect, and that sequencing is associative.186

Monads alone are not enough to produce actual effectful computations, as they only187

provide primitives to produce trivial effects (via the map η) and to (sequentially) compose188

them (via binding). For this reason, we endow monads T with (finitary) operations, i.e. with189

set-indexed families of functions opX : T (X)n → T (X), where n ∈ N is the arity of the190

operation op.191

▶ Example 2. Here are examples of monads modeling some of the computational effects192

discussed in Section 1. Further examples, such as global stores and exceptions can be found193

in, e.g., [49, 70].194

1. We model possibly divergent computations using the maybe monad M(X) ≜ X + {↑}.195

An element in M(A) is either an element a ∈ A (meaning that we have a terminating196

computation returning a), or the element ↑ (meaning that the computation diverges).197

Given a ∈ A, the map ηA simply (left) injects a in M(A), whereas >>=f sends a terminating198

computation returning a to f(a), and divergence to divergence:199

inr (a) >>= f ≜ f(a); inr (↑) >>= f ≜ inr (↑).200
201

As non-termination is an intrinsic feature of complete programming languages, we do not202

consider explicit operations to produce divergence.203

2. We model probabilistic computations using the (discrete) subdistribution monad D.204

Recall that a discrete subdistribution over a countable set X is a function µ : X → [0, 1]205

such that
∑

x µ(x) ≤ 1. An element element µ ∈ D(A) gives for any a ∈ A the probability206

µ(a) of returning a. Notice that working with subdistribution we can easily model207

divergent computations [25]. Given a ∈ A, ηA(a) is the Dirac distribution on a (mapping208

a to 1 and all other elements to 0), whereas for µ ∈ D(A) and f : A → D(B) we define209

(µ >>= f)(b) ≜
∑

a µ(a) · f(a)(b). Finally, we generate probabilistic computations using a210

binary fair probabilistic choice operation ⊕ thus defined: (µ⊕ν)(x) ≜ 0.5 ·µ(x)+0.5 ·ν(x).211

6 Resource Transition Systems

3. We model computations with output using the output monad O(X) ≜ O∞ × (X + {↑}),212

where O∞ is the set of finite and infinite strings over a fixed output alphabet O and ↑ is213

a special symbol denoting divergence. An element of O(A) is either a pair (o, inl a), with214

a ∈ A, or a pair (o, inr ↑). The former case denotes convergence to a outputting o (in215

which case o is a finite string), whereas the former denotes divergence outputting o (in216

which case o can be either finite or infinite). Given a ∈ A, the pair (ε, inr a) represents217

the trivial computation that returns a and outputs nothing (ε denotes the empty string).218

Further, sequential composition of computations is defined using string concatenation as219

follows, where f(a) = (o′, x):220

(o, inr ↑) >>= f ≜ (o, inr ↑); (o, inl a) >>= f ≜ (oo′, x).221
222

Finally, we produce outputs using (a O-indexed family of) unary operations printc223

mapping (o, x) to (co, x).224

4. We model computations with input using the input monad I(X) = µα.(X + {↑}) + αI ,225

where I is an input alphabet (for simplicity, we take I = {true, false}). An element in226

I(A) is a binary tree whose leaves are labeled either by elements in A or by the divergent227

symbol ↑. The trivial computation returning a is the single leaf labeled by a, whereas228

given a tree t ∈ I(A) and a map f : A → I(B), the tree t >>= f is defined by replacing229

the leaves of t labeled by elements a ∈ A with f(a). Finally, we consider a binary input230

operation whereby read(ttrue, tfalse) is the tree whose left child is ttrue and whose right231

child is tfalse.232

We restrict our analysis to monads T preserving weak pullbacks, and thus preserving233

injections. As a consequence, if i : A ↪→ X is the subset inclusion map, then T (i) : T (A) ↪→234

T (X) is an injection, which can be regarded as monadic inclusion. Intuitively, given an235

element µ ∈ T (X), we think about the smallest set i : A ↪→ X such that µ ∈ T (A) as the236

support of µ, and denote such a set as supp(µ). Of course, in general the support of an237

element µ may not exist and therefore we restrict our analysis to monads coming with a238

notion of countable support.239

▶ Definition 3. We say that a monad is countable if for any set X and any element240

µ ∈ T (X), there exists the smallest countable set i : Y ↪→ X, denoted by supp(µ), such that241

µ ∈ T (Y) (i.e. there exists ν ∈ T (Y) such that µ = T (i)(ν)).242

All monads in Example 2 are countable (for instance, the subdistribution monad D is243

countable by definition). An example of a non-countable monad is the powerset monad P.244

Nonetheless, since we will apply monads to countable sets only (viz. sets of λ-terms and245

variations thereof), we can regard P to be countable by taking its countable restriction.246

3.1 Algebraic Effects247

Following Example 2, let us consider a probabilistic program e ≜ E[e1 ⊕ e2], where E is248

an evaluation context. The operational behaviour of e is to fairly choose ei ∈ {e1, e2}, and249

then execute E[ei]. That is, E[e1 ⊕ e2] evaluates to E[e1] (resp. E[e2]) with probability 0.5.250

But that is exactly the behaviour of E[e1] ⊕ E[e2], so that we have the program equivalence251

E[e1 ⊕ e2] ≡ E[e1] ⊕ E[e2]. It does not take much to realize that a similar equivalence holds252

for all operations in Example 2. Semantically, operations justifying these equivalences are253

known as algebraic operations [58, 59].254

U. Dal Lago and F. Gavazzo 7

▶ Definition 4. An n-ary (set-indexed family of) operation(s) opX : T (X)n → T (X) is an255

algebraic operation on T , if for all X, Y , f : X → T (Y), and µ1, . . . , µn ∈ T (X), we have:256

(opX(µ1, . . . , µn)) >>= f = opY (µ1 >>= f, . . . , µn >>= f).257
258

Using algebraic operations we can model a large class of effects, including those of259

Example 2, pure nondeterminism (using the powerset monad and set-theoretic union as260

binary nondeterminism choice), imperative computations (using the global states monad and261

operations for reading and updating stores), as well as combinations thereof [35].262

3.2 Continuity263

Another feature shared by all monads in Example 2 is that they all endow sets T (X) with an264

ω-complete pointed partial order (ω-cppo, for short) structure making >>= strict, monotone,265

and continuous in both arguments, and algebraic operations monotone and continuous in all266

arguments. This property has been formalized in [21] as Σ-continuity.267

▶ Definition 5. Let T be a monad and Σ be a set of algebraic operations on T . We say that268

T is Σ-continuous if for any set X, T (X) carries an ω-cppo structure such that >>= is strict,269

monotone, and continuous in both arguments, and (algebraic) operations in Σ are monotone270

and continuous in all arguments.271

▶ Example 6. 1. The maybe monad is ∅-continuous, with M(X) endowed with the flat272

order.273

2. The subdistribution monad is {⊕}-continuous, with subdistributions ordered pointwise274

(i.e. µ ≤ ν if and only if µ(x) ≤ ν(x), for any x ∈ X).275

3. Let Σ ≜ {printc | c ∈ O}. Then, the output monad is Σ-continuous, with O(A)276

endowed with the order: (o, x) ⊑ (o′, x′) if and only if either x = inr ↑ and o ⊑ o′ or277

x = inl a = x′ and o = o′.278

4. The input monad is {read}-continuous with respect to the standard tree ordering.279

4 A Linear Calculus with Algebraic Effects280

In this section, we introduce a core linear call-by-value calculus with algebraic operations and281

explicit copying and its resource-agnostic operational semantics. The syntax of the calculus282

is parametric with respect to a signature Σ of operation symbols (notation op ∈ Σ), whereas283

its dynamics relies on a Σ-continuous monad T , which we assume to be fixed.284

4.1 Syntax285

Our vehicle calculus is a linear refinement of fine-grain call-by-value [42], which we call Λ!.286

The syntax of Λ! is given by two syntactic classes, values (notation v, w, . . .) and computations287

(notation e, f, . . .), which are thus defined:288

v ::= x | λx.e | !e289

e ::= a | val v | vv | let x = e in e | op(e, . . . , e) | let !a = v in e.290
291

The letter x denotes a linear variable, and thus acts as a placeholder for a value which has292

to be used exactly once. Dually, the letter a denotes a non-linear variable, and thus acts as293

a placeholder for a computation which can be used ad libitum.294

8 Resource Transition Systems

Following the fine-grain discipline, we require computations to be explicitly sequenced295

by means of the let x = − in − constructor. The latter comes in two flavors: in the first296

case, we deal with expressions of the form let x = e in f , where x is a linear variable in f297

(and thus used once). The intuitive semantics of such an expression is to evaluate e, and298

then bind the result of the evaluation to x in f . As x is linear in f , the result of e cannot be299

copied. In the second case, we deal with expressions of the form let !a = v in f , where a is300

a non-linear variable in f (and thus it can be used as will). As we are going to see, for such301

an expression to be meaningful, we need v to be a banged computation !e. The intuitive302

semantics of such an expression is thus to ‘unbang’ !e, and then bind e to a in f , this way303

enabling f to copy e at will.304

When the distinction between values and computations is not relevant, we generically305

refer to terms, and denote them as t, s, We adopt standard syntactic conventions as in306

[5]. In particular, we work with terms modulo renaming of bound variables, and denote by307

t[x := v] (resp. t[a := e]) the result of capture-avoiding substitution of the value v (resp.308

computation e) for the variable x (resp. a) in t.309

4.2 Statics310

The syntax of Λ! allows one to write undesired programs, such as programs having runtime311

errors (e.g. (!e)v) and programs that should be forbidden by any reasonable type system312

(such as (val !e) ⊕ (val λx.f)). To overcome this problem, we follow [18] and endow Λ! with313

a simply-typed system with recursive types, using the system in, e.g., [6]. Types are defined314

by the following grammar:315

σ ::= x | !σ | σ ⊸ σ | µx.σ ⊸ σ | µx.!σ316
317

where x is a type variable. Types are defined up to equality, as defined in Figure 2, where318

σ[τ/x] denotes the substitution of τ for all the (free) occurrences of x in σ. In the third rule319

in Figure 2, we require ρ to be productive in x, meaning that each free occurrence of x in ρ320

is under the scope of either ⊸ or !.321

µx.σ ⊸ τ = σ[µx.σ ⊸ τ/x] ⊸ τ [µx.σ ⊸ τ/x] µx.!σ =!σ[µx.!σ/x]
σ = ρ[σ/x] τ = ρ[τ/x]

σ = τ

Figure 2 Type Equality

In order to define the collection of well-typed expressions, we consider sequents Σ | Ω ⊢v
322

v : σ and Σ | Ω ⊢Λ e : σ, where Ω is a linear environment, i.e. a set without repetitions of the323

form x1 : σ1, . . . , xn : σn, and Σ is a non-linear environment, i.e. a set without repetitions of324

the form a1 : τ1, . . . , an : τn. Rules for derivable sequents are given in Figure 3. We write Vσ325

and Λσ for the collection of closed values and computations of type σ, respectively. We write326

V and Λ when types are not relevant.327

▶ Remark 7 (Notational Convention). In order to facilitate the communication of the main328

ideas behind this work and to lighten the (quite heavy) notation we will employ in the next329

sections, we avoid to mention types (and ignore them in the notation) whenever possible.330

Nonetheless, the reader should keep in mind that from now on we work with typable terms331

only. We refer to such an assumption as the type assumption.332

U. Dal Lago and F. Gavazzo 9

Σ | x : σ ⊢v x : σ a : σ, Σ | ∅ ⊢Λ a : σ

Σ | x : σ, Ω ⊢Λ e : τ

Σ | Ω ⊢v λx.e : σ ⊸ τ

Σ | Ω ⊢v v : σ

Σ | Ω ⊢Λ val v : σ

Σ | Ω ⊢v v : σ ⊸ τ Σ | Ω′ ⊢v w : σ

Σ | Ω, Ω′ ⊢Λ vw : τ

Σ | ∅ ⊢Λ e : σ

Σ | ∅ ⊢v !e : !σ
Σ | Ω ⊢v v : !σ Σ, a : σ | Ω′ ⊢Λ e : τ

Σ | Ω, Ω′ ⊢Λ let !a = v in e : τ

Σ | Ω ⊢Λ e : σ Σ | Ω′, x : σ ⊢Λ f : τ

Σ | Ω, Ω′ ⊢Λ let x = e in f : τ

Σ | Ω ⊢Λ e1 : σ . . . Σ | Ω ⊢Λ en : σ

Σ | Ω ⊢Λ op(e1, . . . , en) : σ

Figure 3 Statics of Λ!

4.3 Dynamics333

The dynamic semantics of Λ! associates to any closed computation e of type σ a monadic334

element in T (Vσ). The dynamics of Λ! is defined in Figure 4 by means of an N-indexed family of335

evaluation functions mapping a closed computation e ∈ Λσ to an element JeKΛ
k ∈ T (Vσ), where336

we stipulate JeKΛ
0 ≜ ⊥. Since (JeKΛ

k)k≥0 forms an ω-chain in T (V), we define JeKΛ ≜
⊔

k≥0JeK
Λ
k.337

Notice that thanks to the type assumption, we ignore programs causing runtime errors.338

Finally, we lift J−KΛ to monadic computations, i.e. to elements ξ ∈ T (Λ) by setting339

JξKΛ∗
≜ ξ >>= (e → JeKΛ) (and similarity for J−KΛ

k).340

Jval vKΛ
k+1 ≜ η(v)

J(λx.e)vKΛ
k+1 ≜ Je[x := v]KΛ

k

Jlet x = e in fKΛ
k+1 ≜ JeKΛ

k >>= (v → Jf [x := v]KΛ
k)

Jlet !a = !e in fKΛ
k+1 ≜ Jf [a := e]KΛ

k

Jop(e1, . . . , en)KΛ
k+1 ≜ JopK(Je1KΛ

k, . . . , JenKΛ
k)

Figure 4 Operational Semantics of Λ!

4.4 Observational Equivalence341

In order to compare Λ!-terms, we introduce the notion of contextual equivalence [51]. To do342

so, we follow [67, 22] and postulate that once an observer executes a program, she can only343

observe the effects produced by the evaluation of the program. For instance, in a pure (resp.344

probabilistic) calculus one observes pure (resp. the probability of) convergence. Following345

this postulate, we define an observation function obsΛ∗ : T (V) → T (1) as T (!V), where346

1 = {∗} is the one-element set and !V : V → 1 is the terminal arrow. As a consequence, we347

see that obsΛ∗ is strict and continuous, so that we have, e.g., obsΛ∗(
⊔

k ξk) =
⊔

k obsΛ∗(ξk).348

▶ Example 8. Notice that T (1) indeed describes the observations one usually works with349

in concrete calculi. For instance, D(1) ∼= [0, 1], so that obsΛ∗(JeK) gives the probability of350

convergence of e, and M(1) ∼= {⊥, ⊤}, so that obsΛ∗(JeK) = ⊤ if and only if e converges.351

In order to define contextual equivalence, we need to introduce the notion of a Λ!-context.352

The latter is simply a Λ!-term with a single linear hole [−] acting as a placeholder for a353

10 Resource Transition Systems

computation (we regard a value v as the computation val v). We do not give an explicit354

definition of contexts, the latter being standard.355

▶ Definition 9. Define contextual equivalence ≡ctx as follows:356

v ≡ctx w ⇐⇒ val v ≡ctx val w e ≡ctx f ⇐⇒ ∀C. obsΛ∗ JC[e]K = obsΛ∗ JC[f]K.357
358

The universal quantification over contexts guarantees ≡ctx to be a congruence relation.359

However, it also makes ≡ctx difficult to be used in practice. We overcome this deficiency by360

characterising contextual equivalence as a suitable notion of trace equivalence.361

5 Resource-Sensitive Semantics and Program Equivalence362

The operational semantics of Section 4.3 is resource-agnostic, meaning that linearity de facto363

plays no role in the definition of the dynamics of a program. To overcome this deficiency, we364

endow Λ! with a resource-sensitive operational semantics: we give the latter by means of a365

suitable transition systems, which we dub resource transition systems. Resource transition366

systems (RTSs, for short) provide an operational semantics for Λ!-programs accounting for367

both their intensional and extensional behaviour. Those are defined as first-order transition368

systems in the spirit of [44], and generalise the Markov chains of [18].369

5.1 Auxiliary Notions370

In order to properly handle resources, it is useful to introduce some notation on sequences.371

Let S, S′ be sequences over objects s1, s2, Unless ambiguous, we denote the concatenation372

of S and S′ as S, S′. Moreover, for S = s1, . . . , sk we denote by |S| = k the length of373

S, and write S[s]i, with i ∈ {1, . . . , k + 1}, for the sequence obtained by inserting s in S374

at position i, i.e. the sequence s1, . . . , si−1, s, si, . . . , sk of length k + 1. Given a sequence375

S = s1, . . . , sk, we will form new sequences out of it by taking elements in S at given376

positions. If c̄ = c1, . . . , cn is a sequence with elements in {1, . . . , k} without repetitions,377

then we write Sc̄ for the sequence sc1 , . . . , scn
, and S ⊖ c̄ for the sequence obtained from S378

by removing elements in positions c1, . . . , cn. In order to preserve the order of S, we often379

consider sequences c̄ = (c1 < · · · < cn) with ci ∈ {1, . . . , k}. We call such sequences valid for380

S (although we should say valid for |S|).381

5.1.0.1 System K382

The resource-sensitive operational semantics of Λ! is given by the RTS K. Following [44],383

K-states are defined as configurations (Γ; Θ), i.e. pairs of sequences of terms, where Γ is a384

(finite) sequence of (closed) computations and Θ is a (finite) sequence of (closed) terms in385

which only the last one need not be a value. To facilitate our analysis, we write (Γ; ∆; e)386

if Θ = ∆, e, with ∆ finite sequence of closed values and e ∈ Λ. Otherwise, we write (Γ; ∆),387

with ∆ as above.388

In a configuration (Γ; ∆; e) (and similarly in (Γ; ∆)), Γ represents the non-linear resources389

available, which are (closed) computations: the environment can freely duplicate and evaluate390

them, as well as use them ad libitum to build arguments to be passed as input to other391

programs. Once a resource in Γ has been used, it remains in Γ, this way reflecting its392

non-linear nature. Dually, ∆ represents the linear resources available, which are closed values.393

Values in ∆ being closed, they are either abstractions or banged computations. In the latter394

case, the environment can take a value !e, unbang it, and put e in Γ. In the former case, the395

U. Dal Lago and F. Gavazzo 11

environment can pass to a value λx.f an input argument made out of a context C (provided396

by the very environment) using values and computations in Γ, ∆. Since resources in ∆ are397

linear, once they are used by C, they must be removed from ∆. Finally, the program e is398

the tested program. The environment can only evaluate it, possibly producing effects and399

values (linear resources). Once a linear resource v has been produced, it is put in ∆.400

The calculus Λ! being typed, it is convenient to extend the notion of a type to con-401

figurations by defining a configuration type (notation α, β, . . .) as a pair of sequences402

(σ1, . . . , σn; τ1, . . . , τm) of ordinary types. We say that a configuration K = (Γ; Θ) has403

type α = (σ1, . . . , σn; τ1, . . . , τm) (and write ⊢ K : α) if each computation ei at position i in404

Γ has type σi, and each term ti at position i in Θ has type τi.405

Notice that configuration types almost completely describe the structure of configurations.406

However, they do not allow one to see whether the last argument in the second component407

Θ of a configuration (Γ; Θ) is a value (so that the type will be inhabitated by configurations408

of the form (Γ; ∆)) or a computation (so that the type will be inhabitated by configurations409

of the form (Γ; ∆; e)). To avoid this issue, we add a special label to the last type τm of the410

second component of a configuration type, this way specifying whether τm refers to a value411

or to a computation.412

We denote by Cα the collection of configurations of type α. Notice that if K, L ∈ Cα,413

then they have the same structure. In particular, terms in K and L at the same position414

have the same type and belong to the same syntactic class. As usual, following the type415

assumption, we will omit configuration types whenever possible.416

States of K are thus (typable) configurations, whereas its dynamics is based on three417

kind of actions: evaluation, duplication, and resource-based application, which are extensional,418

intensional, and mixed extensional-intensional actions, respectively. Formally, we consider419

transitions from (typable) configurations, i.e. elements in
⋃

α Cα to monadic configurations420

in
⋃

α T (Cα), i.e. monadic configurations κ such that all configurations in the support of421

κ have the same type. This ensures that all configurations in supp(κ) can make the same422

actions. As usual, such a property follows by typing, hence by the type assumption. We now423

spell out the main ideas behind the dynamics of K.424

Given a configuration (Γ; ∆; e), the environment simply evaluates e. That is, we have the
transition:

(Γ; ∆; e) eval−−→ JeK >>= (v → η(Γ; ∆, v)).

Given a configuration of the form (Γ; ∆[!e]l), the environment adds e to the non-linear
environment, and removes !e from the linear one. We thus have the transition:

(Γ; ∆[!e]l)
?l−−→ η(Γ, e; ∆).

In a configuration of the form (Γ[e]l; ∆), the environment has the non-linear resource e at
its disposal, which can be duplicated (and eventually evaluated via an eval action). We
model such a behaviour as the following transition (notice that e is not removed from
Γ[e]l):

(Γ[e]l; ∆) !l−−→ η(Γ[e]l; ∆; e).

For the last action, namely resource-based application, we consider open terms as playing425

the role of contexts. An open term is simply a term Σ | Ω ⊢ t. We refer to an open426

term a1, . . . , an | x1, . . . , xm ⊢ t as a (n, m)-(value/computation) context, depending on427

whether t is a value or a computation. Given sequences Γ = e1, . . . , en, ∆ = v1, . . . , vm,428

we write t[Γ, ∆] for the substitution of variables in t with the corresponding elements in429

Γ, ∆. As usual, following the type-assumption we assume types of variables to match types430

12 Resource Transition Systems

of the substituted terms. Given sequences ı̄, ȷ̄ of length n, m valid for Γ, ∆, respectively,431

we can build a new (closed) term out of Γ, ∆ and a (n, m)-context t as t[Γı̄, ∆ȷ̄]. Since432

resources in ∆ are linear, the construction of t[Γı̄, ∆ȷ̄] affects ∆, this way leaving only433

resources ∆ ⊖ ȷ̄ available. We formalise this behaviour as the transition:434

t (n, m)-value context |̄ı| = n, |ȷ̄| = m ı̄, ȷ̄ valid for Γ, ∆

(Γ; ∆[λx.f]l)
(ı̄,ȷ̄,l,t)−−−−→ η(Γ; ∆ ⊖ ȷ̄; f [x := t[Γı̄, ∆ȷ̄]])435

▶ Definition 10. System K is the (resource) transition system having typable configurations
as states, actions

{eval, ?l, !l, , (̄ı, ȷ̄, l, t), α | l ∈ N, t (n, m)-value context, |̄ı| = n, |ȷ̄| = m}

where α ranges over configuration types, and dynamics defined by the transition rules in436

Figure 5, where we employ the notation of previous discussion.437

(Γ; ∆; e) eval−−→ JeK >>= v → η(Γ; ∆, v) (Γ; ∆[!e]l)
?l−−→ η(Γ, e; ∆).

(Γ[e]l; ∆) !l−−→ η(Γ[e]l; ∆; e) (Γ; ∆[λx.f]l)
(ı̄,ȷ̄,l,t)−−−−→ η(Γ; ∆ ⊖ ȷ̄; f [x := t[Γı̄, ∆ȷ̄]])

Figure 5 Transition rules for K

▶ Remark 11. Notice that given K ∈ Cα, K can always make a α-transition, this way making438

its type visible. Additionally, we see that the transition structure of K is type-driven. That439

is, given a configuration K ∈ Cα and a K-action ℓ, α and ℓ alone determine whether K440

can make an ℓ-transition. Moreover, if that is the case, then there is a unique κ such that441

K
ℓ−−→ κ. Besides, κ ∈ T (Cβ) for some configuration type β which is uniquely determined by442

ℓ and α. That is, there is a partial function b from configuration types and actions such that443

if b(α, ℓ) is defined and K ∈ Cα, then K
ℓ−−→ κ with κ ∈ T (Cb(α,ℓ)). From now on, we write444

b(α, ℓ) = β to mean that b(α, ℓ) is defined and equal β. As a consequence, we have the rule:445

K ∈ Cα ∧ b(α, ℓ) = β =⇒ ∃!κ ∈ T (Cβ). K
ℓ−−→ κ.446

Having defined system K, there are at least two natural ways to compare its states.447

The first one is by means of bisimilarity, which can be defined in a standard way [21].448

Unfortunately, bisimilarity being sensitive to branching, it is bound not to work well for our449

purposes, as already extensively discussed. The second natural way to compare K-states is450

by means of trace equivalence which, contrary to bisimilarity, is not sensitive to branching,451

and thus qualifies as a suitable candidate program equivalence for our purposes.452

▶ Definition 12. A K-trace (just trace) is a finite sequence of K-actions. That is, a trace453

t is either the empty sequence (denoted by ε), or a sequence of the form ℓ · u, where ℓ is a454

K-action and u a trace.455

We are interested in observing the behaviour of K-states on those traces that are coherent456

with their type. Therefore, given a K-state K, we define the set Tr(K) of its traces by457

stipulating that ε ∈ Tr(K), for any K, and that ℓ · u ∈ Tr(K) whenever K
ℓ−−→ κ, for some458

monadic configuration κ, and u ∈ Tr(L), for any L ∈ supp(κ). Notice that the latter clause459

U. Dal Lago and F. Gavazzo 13

is meaningful, since Tr(K) is actually determined by the type of K (rather than by K itself),460

and if K
ℓ−−→ κ, then all configurations in the support of κ have the same type.461

Now, given a K-state K, and a trace t ∈ Tr(K), the observable behaviour of K on t is462

the element in T (1) computed using the map st thus defined:463

st(K, ε) ≜ η(∗); st(K, ℓ · u) ≜ κ >>= (L → st(L, u)) where K
ℓ−−→ κ.464

465

▶ Example 13. Let us consider the (sub)distribution monad D, and let K be a configuration.466

Recall that D(1) ∼= [0, 1], and notice that st(K, ε) = 1. Suppose now K
eval−−→

∑
i∈n pi · Li.467

Then, we see that st(K, eval · u) =
∑

i∈n pi · st(Li, u) ∈ [0, 1], meaning that st(K, t) gives468

the probability that K passes the trace t.469

▶ Definition 14. The relation ≃K
Tr on K-states is thus defined:

K ≃K
Tr L ⇐⇒ Tr(K) = Tr(L) ∧ ∀t ∈ Tr(K). st(K, t) = st(L, t)

We extend the action of ≃K
Tr to Λ!-terms by regarding a computation e as the configuration470

(∅; ∅; e), and a value v as the computation val v. We denote the resulting notion ≃Λ
Tr.471

Having added ≃K
Tr to our arsenal of operational techniques, it is time to investigate its472

structural properties and its relationship with contextual equivalence. Before doing so,473

however, we take a fresh look at our running example.474

▶ Example 15. Let us use the machinery developed so far to review our introductory
examples. First, we show

val λx.(e ⊕ f) ≃Λ
Tr (val λx.e) ⊕ (val λx.f).

Let us call g the former program, and h the latter. To see that g ≃Λ
Tr h, we simply observe475

that Tr(∅; ∅; g) = Tr(∅; ∅; h) and that for any t ∈ Tr(g), the probability that (∅; ∅; g) passes476

t coincides with the one of (∅; ∅; h). All of this can be easily observed by inspecting the477

following transition systems.478

(∅; ∅; val λx.(e ⊕ f))

eval
��

(∅; λx.(e ⊕ f))

1,v

��
(∅; ∅; e[x := v] ⊕ f [x := v])

eval

��

0.5 0.5

(∅; ∅; Je[x := v]K) (∅; ∅; Jf [x := v]K)

(∅; ∅; (val λx.e) ⊕ (val λx.f))
eval

��

0.5 0.5

(∅; λx.e)

1,v

��

(∅; λx.f)

1,v

��
(∅; ∅; e[x := v])

eval
��

(∅; ∅; f [x := v])

eval
��

(∅; ∅; Je[x := v]K) (∅; ∅; Jf [x := v]K)

479

In light of Theorem 17, we can then conclude g ≡ctx h. Next, we prove that such an480

equivalence is only linear: val !(e ⊕ f) ̸≡ctx (val !e) ⊕ (val !f). For that, it is sufficient to481

instantiate e and f as the identity program val (λx.val x) and the purely divergent program482

Ω, respectively, and to take the context C defined as let x = [−] in let !a = x in (a; a; val v),483

where v is closed value, and e; f denotes trivial sequencing. Indeed, what C does is to484

evaluate its input and then test the result thus obtained twice.485

14 Resource Transition Systems

5.2 Full Abstraction of Trace Equivalence486

In this section, we outline the proof of full abstraction of trace equivalence for contextual487

equivalence. Our proof of full abstraction builds upon the technique given by Deng and488

Zhang [27] and Crubillé and Dal Lago [18] to prove similar full abstraction results for trace489

equivalences and metrics, respectively. Due to the large amount of technicalities, the full490

proof of full abstraction of trace equivalence goes beyond the scope of this paper, so that491

here we only outline its main points (see [20] for details). Let us begin by showing that trace492

equivalence is sound for contextual equivalence.493

▶ Proposition 16. ≃Λ
Tr ⊆ ≡ctx.494

To prove Proposition 16, we have to show that if e ≃Λ
Tr f , then we have obsΛ∗JC[e]KΛ =

obsΛ∗JC[e]KΛ, for any context C. Our proof proceeds by progressively building systems with
increasingly more complex state spaces, but with finer dynamics. We summarise our strategy
in the following diagram.

Λ
C[−] //� _

��

Λ∗ obsΛ∗
// T1

K �
� // K∗ C[−] // F �

� // F∗

push

OO

obsF∗

99

Since ≃Λ
Tr is defined in terms of ≃K

Tr, we consider configurations—K-states—and contexts for495

them, where a context for a K-state K is just a standard multiple-holes context whose holes496

have to be filled with with terms in K. The first step of our strategy is the determinization497

of K. This is achieved by lifting the state space of K from configurations to monadic498

configurations. The dynamics of K is then lifted relying on the (strong) monad structure of T499

in a standard way [22]. We call the resulting system K∗. The advantage of working with K∗
500

is that K∗-bisimilarity and K∗-trace equivalence coincide, K∗ being deterministic. In general,501

most of the transition systems we rely on can be ultimately described as systems S = (X, δ)502

made of a state space X and a dynamics δ : X → T (X)A, for some set A of actions. The503

determinization of S, which we usually denote by S∗, has T (X) as state space and dynamics504

δ∗ : T (X) → T (X)A defined as the strong Kleisli extension of δ (modulo (un)currying).505

Having determinized K, we reach a situation where we have to study the computational506

behaviour of a monadic configuration κ — i.e. a K∗-state — and a context C for the507

configurations in the support of κ. To do so, we build a further system, called F , whose states508

are pairs C : κ made of a monadic configuration κ and a context C for it. The dynamics of F is509

given by an evaluation function which, when applied to a F -state C : κ, gives the same result510

of evaluating the monadic computation C[κ] ∈ T (Λ), where C[κ] = κ >>= (K → η(C[K])).511

Such a dynamics explicitly separates the computational steps acting on C only from those512

making C and κ interact. This feature is crucial, as it shows that any interaction between C513

and κ corresponds to a K∗-action, so that equivalent K∗-states will have the same F -dynamics514

when paired with the same context. That gives us a finer analysis of the computational515

behaviour of the compound monadic computation C[κ], and ultimately of a compound516

computation C[e]. As we did for K, it is actually convenient to determinise F . We call517

the resulting system F∗. Finally, from F∗ we can come back to T (Λ) using the map518

push : F∗ → T (Λ) defined by push(ξ) ≜ ξ >>= (C : κ 7→ C[κ]). We summarize the systems519

introduced so far in the following table.520

System K K∗ F F∗

States Configurations K Monadic configurations κ Pairs C : κ Monadic pairs
Dynamics Definition 10 Kleisli lifting of K JC[κ]K∗ Kleisli lifting of F

521

U. Dal Lago and F. Gavazzo 15

What remains to be clarified is how relations between computations can be transformed
into relations on the aforementioned systems. The answer to this question is given by the
following lax1 commutative diagram:

Λ �
� //

≃Λ
Tr
_
��

K �
� //

≃K
Tr
_
��

K∗ C[−] //

≃K∗
Tr

_
��

F �
� //

C(≃K∗
Tr)_
��

F∗ obsF∗
//

BC(≃K∗
Tr)_
��

T1

=_
��

Λ �
� // K �

� // K∗
C[−]

// F �
� // F∗

obsF∗
// T1

Here, C(R) denotes the contextual closure of R, whereas B(R) is the Barr extension of R522

[7, 38]. Finally, the map obsF∗ is obtained postcomposing the observation map obs with523

push. Let us now move to full abstraction.524

▶ Theorem 17. ≡ctx = ≃Λ
Tr.525

To prove Theorem 17 it is sufficient to show ≡ctx ⊆ ≃Λ
Tr. The latter is proved by noticing526

that any K-action can be encoded as a context. The encoding of K-actions as contexts is527

essentially the same one of the one given by Crubillé and Dal Lago [18].528

6 Conclusion and Future Work529

In this paper, we have introduced resource transition systems as an operational account of530

both intensional and extensional behaviours of linear effectful programs with explicit copying.531

On top of resource transition systems, we have defined trace equivalence and showed that532

the latter is fully abstract for contextual equivalence.533

Although the present paper focuses on linearity (and effects), the authors believe that534

resource transition systems can be extended to deal with finer notions of context dependence535

such as structural coeffects [53, 29, 14, 52]. To do so, one should modify resource transition536

systems by considering sequences of terms indexed by elements of a resource algebra (the537

latter being a preordered semiring), and let transitions update resources. Thus, for instance,538

from a sequence (Γ, ⟨e⟩r+1, ∆), meaning that e is available according to the resource r + 1, we539

have a transition to (Γ, ⟨e⟩r, ∆; e). The authors also believe that resource transition systems540

can be used to generalise Crubillé and Dal Lago probabilistic program metric to arbitrary541

algebraic effects. To do so, one would simply replace ordinary relations with relations taking542

values over quantales [30, 31]. In the same direction, it would be interesting to study whether543

resource transition systems give fully abstract equivalences in presence of continuous, rather544

than discrete, probability (applicative bisimilarity, for instance, has been proved to be sound545

but not fully abstract on higher-order calculi with sampling from continuous distributions546

[39]).547

Finally, as a long term future work, the authors would like to study whether the ideas548

presented in this paper can be adapted to deal with quantum languages [64, 65], where the549

interaction between linearity and effects plays a central role. In fact, although we have not550

discussed tensor product types (which play a crucial role in a quantum setting), it is not551

hard to see that resource transition systems can be extended to deal with such types [17].552

1 Each square gives a set-theoretic inclusion. For instance, the leftmost square states that ≃Λ
Tr ⊆ ≃K

Tr.

16 Resource Transition Systems

6.1 Related Work553

This is not the first work on operationally-based notions of program equivalence for linear554

calculi. In particular, notions of equivalences have been defined by means of logical relations555

by Bierman, Pitts, and Russo [11], of applicative bisimilarity by Bierman [10] and Crole2
556

[15], of trace equivalence by Deng and Zhang [27, 26], as well as of a number of possible557

worlds-indexed equivalences (e.g. [2, 37]). As already remarked, one of the advantages of558

resource transition systems (and their associated trace equivalence) compared, e.g., with559

logical relations, is that they they provide a first-order account of program equality.560

Among first-order notions of program equivalence, Bierman’s applicative bisimilarity plays561

a prominent role. The latter is a lightweight extensional equivalence extending Abramsky’s562

applicative bisimilarity [1] to a pure linear λ-calculus with explicit copying. Bierman’s563

applicative bisimilarity can be readily extended to calculi with algebraic effects along the564

lines of [21], this way obtaining a notion of equivalence invalidating (!-dist). However, such a565

notion of bisimilarity stipulates that two programs !e and !f are bisimilar if and only if e566

and f are, this way making bisimilarity insensitive to linearity, and thus invalidating (λ-dist)567

as well.3568

Deng and Zhang’s linear trace equivalence has been designed to study the interaction of569

linearity and (both pure and probabilistic) nondeterminism. The latter equivalence, in fact,570

validates (λ-dist). However, linear trace equivalence does not deal with (explicit) copying:571

even worse, natural extensions of such notions to languages with copying result in equivalences572

validating (!-dist). Crubillé and Dal Lago [18] solved that problem by introducing a tuple-573

based applicative bisimilarity for a calculus with probabilistic nondeterminism and explicit574

copying. Our notion of a resource transition system can be seen as a generalisation of the575

Markov chain underlying tuple based applicative bisimilarity to arbitrary algebraic effects.576

References577

1 Samson Abramsky. The lazy lambda calculus. In D. Turner, editor, Research Topics in578

Functional Programming, pages 65–117. Addison Wesley, 1990.579

2 Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language with locations.580

Fundam. Informaticae, 77(4):397–449, 2007.581

3 Andrew W. Appel and Daddiv A. McAllester. An indexed model of recursive types for582

foundational proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–683, 2001.583

4 Robert Atkey. Syntax and semantics of quantitative type theory. In Proc. of LICS 2018, pages584

56–65, 2018.585

5 Hendrik P. Barendregt. The lambda calculus: its syntax and semantics. Studies in logic and586

the foundations of mathematics. North-Holland, 1984.587

6 Hendrik P. Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types.588

Perspectives in logic. Cambridge University Press, 2013.589

7 Michael Barr. Relational algebras. Lect. Notes Math., 137:39–55, 1970.590

8 Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In Proc. of591

LICS 1996, pages 420–431, 1996.592

9 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and593

Arnaud Spiwack. Linear haskell: practical linearity in a higher-order polymorphic language.594

PACMPL, 2(POPL):5:1–5:29, 2018.595

2 Crole’s applicative bisimilarity, however, does not deal with copying.
3 Besides, notice that bisimilarity being sensitive to branching, it naturally invalidates (λ-dist).

U. Dal Lago and F. Gavazzo 17

10 Gavin M. Bierman. Program equivalence in a linear functional language. J. Funct. Program.,596

10(2):167–190, 2000.597

11 Gavin M. Bierman, Andrew M. Pitts, and Claudio V. Russo. Operational properties of lily,598

a polymorphic linear lambda calculus with recursion. Electr. Notes Theor. Comput. Sci.,599

41(3):70–88, 2000.600

12 Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Handle with care:601

relational interpretation of algebraic effects and handlers. PACMPL, 2(POPL):8:1–8:30, 2018.602

13 Ales Bizjak and Lars Birkedal. Step-indexed logical relations for probability. In Proc. of603

FOSSACS 2015, pages 279–294, 2015.604

14 Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative605

coeffect calculus. In Proc. of ESOP 2014, pages 351–370, 2014.606

15 Roy L. Crole. Completeness of bisimilarity for contextual equivalence in linear theories. Logic607

Journal of the IGPL, 9(1):27–51, 2001.608

16 Raphaëlle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation and call-by-609

value lambda-calculi. In Proc. of ESOP 2014, pages 209–228, 2014.610

17 Raphaëlle Crubillé and Ugo Dal Lago. Metric reasoning about lambda-terms: The affine case.611

In Proc. of LICS 2015, pages 633–644, 2015.612

18 Raphaëlle Crubillé and Ugo Dal Lago. Metric reasoning about lambda-terms: The general613

case. In Proc. of ESOP 2017, pages 341–367, 2017.614

19 Ugo Dal Lago and Francesco Gavazzo. Effectful normal form bisimulation. In Proc. of ESOP615

2019, pages 263–292, 2019.616

20 Ugo Dal Lago and Francesco Gavazzo. Resource transition systems and full abstraction for617

linear higher-order effectful programs (extended version). 2021. URL: http://www.cs.unibo.618

it/~dallago/resbranch.pdf.619

21 Ugo Dal Lago, Francesco Gavazzo, and Paul Blain Levy. Effectful applicative bisimilarity:620

Monads, relators, and howe’s method. In Proc. of LICS 2017, pages 1–12, 2017.621

22 Ugo Dal Lago, Francesco Gavazzo, and Ryo Tanaka. Effectful applicative similarity for622

call-by-name lambda calculi. Theor. Comput. Sci., 813:234–247, 2020.623

23 Ugo Dal Lago and Martin Hofmann. Bounded linear logic, revisited. In Proc. of TLCA 2009,624

pages 80–94, 2009.625

24 Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for626

higher-order probabilistic functional programs. In Proc. of POPL 2014, pages 297–308, 2014.627

25 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda628

calculus. RAIRO - Theor. Inf. and Applic., 46(3):413–450, 2012.629

26 Yuxin Deng and Yuan Feng. Bisimulations for probabilistic linear lambda calculi. In Proc. of630

TASE 2017, pages 1–8, 2017.631

27 Yuxin Deng and Yu Zhang. Program equivalence in linear contexts. Theor. Comput. Sci.,632

585:71–90, 2015.633

28 Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. Linear-use CPS translations in the634

enriched effect calculus. Logical Methods in Computer Science, 8(4), 2012.635

29 Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien Breuvart, and Tarmo636

Uustalu. Combining effects and coeffects via grading. In Proc. of ICFP 2016, pages 476–489,637

2016.638

30 Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs:639

Applicative distances. In Proc. of LICS 2018, pages 452–461, 2018.640

31 Francesco Gavazzo. Coinductive Equivalences and Metrics for Higher-order Languages with641

Algebraic Effects. PhD thesis, University of Bologna, Italy, 2019. URL: http://amsdottorato.642

unibo.it/9075/.643

32 Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In Proc. of644

ESOP 2014, pages 331–350, 2014.645

33 J-Y. Girard, A. Scedrov, and P.J. Scott. Bounded linear logic: A modular approach to646

polynomial-time computability. Theor. Comput. Sci., 97:1–66, 1992.647

http://www.cs.unibo.it/~dallago/resbranch.pdf
http://www.cs.unibo.it/~dallago/resbranch.pdf
http://www.cs.unibo.it/~dallago/resbranch.pdf
http://amsdottorato.unibo.it/9075/
http://amsdottorato.unibo.it/9075/
http://amsdottorato.unibo.it/9075/

18 Resource Transition Systems

34 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.648

35 Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor.649

Theor. Comput. Sci., 357(1-3):70–99, 2006.650

36 Patricia Johann, Alex Simpson, and Janis Voigtländer. A generic operational metatheory for651

algebraic effects. In Proc. of LICS 2010, pages 209–218. IEEE Computer Society, 2010.652

37 Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. Integrating linear and653

dependent types. In Proc. of POPL 2015, pages 17–30, 2015.654

38 Alexander Kurz and Jiri Velebil. Relation lifting, a survey. J. Log. Algebr. Meth. Program.,655

85(4):475–499, 2016.656

39 Ugo Dal Lago and Francesco Gavazzo. On bisimilarity in lambda calculi with continuous657

probabilistic choice. In Proc. of MFPS 2019, pages 121–141, 2019.658

40 Søren B. Lassen. Bisimulation in untyped lambda calculus: Böhm trees and bisimulation up659

to context. Electr. Notes Theor. Comput. Sci., 20:346–374, 1999.660

41 Søren B. Lassen. Eager normal form bisimulation. In Proceedings of LICS 2005, pages 345–354,661

2005.662

42 Paul B. Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value663

programming languages. Inf. Comput., 185(2):182–210, 2003.664

43 Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.665

44 Jean-Marie Madiot, Damien Pous, and Davide Sangiorgi. Bisimulations up-to: Beyond666

first-order transition systems. In Proc. of CONCUR 2014, pages 93–108, 2014.667

45 Ian A. Mason and Carolyn L. Talcott. Equivalence in functional languages with effects. J.668

Funct. Program., 1(3):287–327, 1991.669

46 Cristina Matache and Sam Staton. A sound and complete logic for algebraic effects. In Proc.670

of FOSSACS 2019, pages 382–399, 2019.671

47 Nicholas D. Matsakis and Felix S. Klock II. The rust language. In Proceedings of the 2014672

ACM SIGAda annual conference on High integrity language technology, HILT 2014, Portland,673

Oregon, USA, October 18-21, 2014, pages 103–104, 2014.674

48 Rasmus Ejlers Møgelberg and Sam Staton. Linear usage of state. Logical Methods in Computer675

Science, 10(1), 2014.676

49 Eugenio Moggi. Computational lambda-calculus and monads. In Proc. of LICS 1989, pages677

14–23. IEEE Computer Society, 1989.678

50 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.679

51 J. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, MIT, 1969.680

52 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program681

reasoning with graded modal types. Proc. ACM Program. Lang., 3(ICFP):110:1–110:30, 2019.682

53 Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a calculus of context-683

dependent computation. In Proc. of ICFP 2014, pages 123–135, 2014.684

54 Andrew M. Pitts. Parametric polymorphism and operational equivalence. Mathematical685

Structures in Computer Science, 10(3):321–359, 2000.686

55 Marinus J. Plasmeijer. CLEAN: a programming environment based on term graph rewriting.687

Electr. Notes Theor. Comput. Sci., 2:215–221, 1995.688

56 Gordon Plotkin. Lambda-definability and logical relations. Technical Report SAI-RM-4,689

School of A.I., University of Edinburgh, 1973.690

57 Gordon D. Plotkin and John Power. Adequacy for algebraic effects. In Proc. of FOSSACS691

2001, pages 1–24, 2001.692

58 Gordon D. Plotkin and John Power. Semantics for algebraic operations. Electr. Notes Theor.693

Comput. Sci., 45:332–345, 2001.694

59 Gordon D. Plotkin and John Power. Notions of computation determine monads. In Proc. of695

FOSSACS 2002, pages 342–356, 2002.696

60 Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied697

Categorical Structures, 11(1):69–94, 2003.698

U. Dal Lago and F. Gavazzo 19

61 John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress, pages699

513–523, 1983.700

62 Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for701

higher-order languages. ACM Trans. Program. Lang. Syst., 33(1):5:1–5:69, 2011.702

63 Davide Sangiorgi and Valeria Vignudelli. Environmental bisimulations for probabilistic higher-703

order languages. In Proceedings of POPL 2016, pages 595–607, 2016.704

64 Peter Selinger and Benoît Valiron. A lambda calculus for quantum computation with classical705

control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.706

65 Peter Selinger and Benoît Valiron. A linear-non-linear model for a computational call-by-value707

lambda calculus (extended abstract). In Proc. of FOSSACS 2008, pages 81–96, 2008.708

66 Kurt Sieber. Reasoning about sequential functions via logical relations. In Johnstone P. T.709

Fourman, M. P. and A. M. Pitts, editors, Applications of Categories in Computer Science,710

volume 177 of London Mathematical Society Lecture Note Series, pages 258–269. Cambridge711

University Press, 1992.712

67 Alex Simpson and Niels Voorneveld. Behavioural equivalence via modalities for algebraic713

effects. In Proc. of ESOP 2018, pages 300–326, 2018.714

68 David N. Turner and Philip Wadler. Operational interpretations of linear logic. Theor. Comput.715

Sci., 227(1-2):231–248, 1999.716

69 Philip Wadler. Linear types can change the world! In Programming concepts and methods,717

1990, page 561, 1990.718

70 Philip Wadler. Monads for functional programming. In Advanced Functional Programming,719

First International Spring School on Advanced Functional Programming Techniques, Båstad,720

Sweden, May 24-30, 1995, Tutorial Text, pages 24–52, 1995.721

	1 Introduction
	2 Effects, Linearity, and Program Equivalence
	3 Preliminaries: Monads and Algebraic Effects
	3.1 Algebraic Effects
	3.2 Continuity

	4 A Linear Calculus with Algebraic Effects
	4.1 Syntax
	4.2 Statics
	4.3 Dynamics
	4.4 Observational Equivalence

	5 Resource-Sensitive Semantics and Program Equivalence
	5.1 Auxiliary Notions
	5.2 Full Abstraction of Trace Equivalence

	6 Conclusion and Future Work
	6.1 Related Work

