
1.  Introduction
Sinuous meandering channels are common in fluvial and coastal landscapes (Leopold et al., 1964). Meandering 
channels migrate laterally through erosion and deposition of sediment along the outer and inner banks, respec-
tively, of individual meander bends. As meanders evolve, channels frequently shortcut themselves through cutoffs 
and form oxbow lakes (hereinafter “oxbows”; Dunne & Aalto, 2013; Schwenk et al., 2015; Stølum, 1996). Cutoffs, 
by which oxbows are formed (Dieras,  2013; Thomas et  al.,  2022) reduce channel sinuosity, modify rates of 
lateral migration, and affect floodplain sedimentology, stratigraphy, and sediment residence times (Camporeale 
et al., 2005; Howard & Hemberger, 1991; Zinger et al., 2011). These dynamics have broad implications for the 
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flux, storage, and sequestration of soil organic carbon (Torres et al., 2017). Meandering river floodplains feature 
visible evidence of meander migration such as scroll bars and oxbows (Constantine & Dunne, 2008; Dunne & 
Aalto, 2013; Hooke, 2013) In contrast, channels in tidal coastal floodplains have been thought to lack meander 
cutoffs, indicating an absence of active meandering (Gabet,  1998; Johnson,  1929) (Figure 1). The perceived 
stability of sinuous tidal channels—or at least the relative subtlety of their meandering dynamics—has often been 
attributed to the unique ecomorphodynamics of coastal environments, where flow bidirectionality is paramount 
(Fagherazzi et al., 2004; Hughes, 2012; Solari et al., 2002). However, recent studies highlighted morphodynamic 
commonalities between fluvial and tidal meanders, with similar planform dynamics, width-adjusted migration 
rates, and morphodynamic regimes in high-amplitude bends (Finotello et  al.,  2018,  2022; Gao, Finotello, & 
Wang, 2022; Leuven et  al.,  2016, 2018). This motivated us to question the perceived paucity of tidal mean-
der cutoffs, and to further demonstrate the parallels between tidal and fluvial meandering channels. Here, we 
analyzed the planform geometry of 600 tidal meander cutoffs identified in high-resolution satellite images from 
settings around the world, characterized by different tidal regimes, vegetation cover, and geomorphological back-
grounds. We conducted a direct comparison with 158 cutoffs in meandering rivers, uncovering striking geomet-
ric parallels. These similarities, supported by theoretical, numerical, and field research, suggest a fundamental 
commonality in morphodynamics across both tidal and fluvial domains.

2.  Material and Methods
2.1.  Data Collection

We used high-resolution satellite images, freely available from Google Earth Pro, to detect instances of meander 
cutoffs undisturbed by anthropic activities. These cutoffs, selected for their geographical diversity, span coastal 
zones and inland alluvial plains across varied climatic and geological settings. Thus, the sampled cutoffs reflect 
a range of hydrological and tidal regimes, sediment grain sizes, vegetation types, and land cover (Figures 1a–1g). 
Our full data set includes over 1,200 examples of tidal cutoffs. Of these 1,200 examples, 600 tidal cutoffs with 
clearly discernible boundaries were manually digitized as polygons using Google Earth Pro. The remainder 
lacked sufficient detail to be digitized due to poor preservation, dense vegetation canopy, low image resolution, 
complex morphology resulting from multiple cutoffs, or combinations of these factors, and were categorized as 
“unanalyzed cases” (Gao & Finotello, 2023). Furthermore, we obtained an additional set of 158 fluvial cutoffs 
specifically digitized for comparative analyses. These cutoffs were extracted from rivers located in various 
regions, including the Amazon Basin, the conterminous USA and Alaska, Russia, Canada, Kazakhstan, and New 
Zealand. The selection was made to ensure a diverse range of channel sizes, with river widths spanning approxi-
mately four orders of magnitude (Figure 2).

Tidal cutoffs were also further classified based on several criteria: tidal regime (microtidal n = 315; mesotidal 
n = 249; macrotidal n = 36), vegetation cover (mangroves n = 118; salt marshes n = 433; tidal flats n = 49), and 
geomorphological setting (bays n = 164; back-barrier lagoons n = 219; open coasts n = 105; estuaries n = 112) 
(Figure S1 in Supporting Information S1). The mean tidal range (𝐴𝐴 MTR ) at each site was determined by analyzing 
tidal gauge data from Dong (2020) and the National Oceanic and Atmospheric Administration (https://tidesand-
currents.noaa.gov/), and individual study cases were classified as macro-tidal (𝐴𝐴 MTR  > 4 m), meso-tidal (2 < 

𝐴𝐴 MTR  < 4 m), and microtidal (𝐴𝐴 MTR  < 2 m).

We focus only on “neck” cutoffs, formed when a high-amplitude loop gets isolated by the pinching connection 
of two adjacent bends. In the tidal settings we examined, we found no “chute” cutoffs, which are formed when a 
river bend is shortcutted by a new channel cutting through meander point bars—and possibly observed in large, 
sand-bedded, multi-thread estuarine channels (Leuven et al., 2016).

2.2.  Data Analysis

To calculate their morphometric parameters, cutoff polygons were projected into appropriate Universal Trans-
verse Mercator (UTM) coordinates and converted to binary images. The channel centerline was computed based 
on a standard skeletonization procedure and then resampled using standard cubic spline-fit polylines. Cutoff 
endpoints were determined as the two branchpoints of the polygon skeleton (Figure 1l). To further quantify cutoff 
planform features, we computed the curvature 𝐴𝐴  ([m −1]) of the channel centerline as 𝐴𝐴  = −𝑑𝑑𝑑𝑑∕𝑑𝑑𝑑𝑑 , where 𝐴𝐴 𝐴𝐴 is the 
angle between the tangent to the channel axis and an arbitrarily selected reference direction, 𝐴𝐴 𝐴𝐴(𝑠𝑠) and 𝐴𝐴 𝐴𝐴(𝑠𝑠) are the 
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Figure 1.  Meander cutoffs in tidal and fluvial landscapes. (a–d) Examples of individual tidal meander cutoffs from distinct coastal settings worldwide (image© 
Google, Maxar). (f–i) Examples of tidal environments characterized by widespread meander cutoffs (image©Google: TerraMetrics, CNES/Airbus, Maxar, Landsat/
Copernicus). (j, k) Examples of river floodplains littered by oxbow lakes and cutoff traces (image©Google: Maxar). Geographic coordinates are reported in each panel. 
Dotted red and blue lines highlight discernible traces of meander cutoffs in tidal and fluvial landscapes, respectively. (l) Sketch illustrating the main morphometric 
features of meander cutoffs analyzed in this study.
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Figure 2.  Cutoff morphometrics. Cutoff radius of curvature (𝐴𝐴 𝐴𝐴 ), Amplitude (𝐴𝐴 𝐴𝐴 ), and intrinsic length (𝐴𝐴 𝓁𝓁 ) are plotted against channel width (𝐴𝐴 𝐴𝐴  ) both separately for all 
tidal and fluvial cutoffs on record and for different tidal-cutoff ensembles based on geomorphological settings and vegetation cover color-coded based on tidal ranges. 
Continuous black lines represent best-fit power law regressions obtained for different data ensembles, using a common exponent derived from all data and applied to 
calculate scaling coefficients for each ensemble. Note that the vertical offset among individual data plots is arbitrary: each vertical y-axis ranges from 10 0 to 10 3, and 
symbols are positioned at the bottom of the axis to aid in identifying the corresponding data plot.
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Cartesian coordinates of a given centerline point, and 𝐴𝐴 𝐴𝐴 is the intrinsic (i.e., along-channel) coordinate, assumed 
to be positive in the upstream (i.e., landward) direction. Because flow orientation within tidal meanders changes 
with tidal phases, we hereinafter assume a river-like reference system in which the terms “upstream” and “down-
stream” refer to landward and seaward directions, respectively.

After computing curvature, a Savitzky–Golay low-pass filter was applied to smooth noise in the original signal. 
Then, the apex of any individual cutoff was identified as the locus of maximum curvature (Figure  1l), and 
the cutoff asymmetry index was computed as 𝐴𝐴  = (𝓁𝓁𝑢𝑢 − 𝓁𝓁𝑑𝑑)∕(𝓁𝓁𝑢𝑢 + 𝓁𝓁𝑑𝑑) ([−]) where 𝐴𝐴 𝓁𝓁𝑢𝑢 and 𝐴𝐴 𝓁𝓁𝑑𝑑 are the distances 
between the cutoff apex and its upstream and downstream endpoints, respectively (Figure 1l). Negative values 
of 𝐴𝐴  correspond to upstream-skewed cutoffs, and positive values of 𝐴𝐴  to downstream-skewed cutoffs. Other 
morphometric parameters were also calculated, including: average channel width 𝐴𝐴 𝐴𝐴(𝑠𝑠) ([m]); cutoff intrinsic 
length 𝐴𝐴 𝓁𝓁 = 𝓁𝓁𝑢𝑢 + 𝓁𝓁𝑑𝑑 ([m]); cutoff cartesian length 𝐴𝐴 𝐴𝐴 ([m]), which is the planar distance between cutoff endpoints; 
cutoff sinuosity 𝐴𝐴 𝐴𝐴 = 𝓁𝓁∕𝐿𝐿 ([−]); cutoff amplitude 𝐴𝐴 𝐴𝐴 ([m]), computed as the maximum point-line distance between 
the cutoff centerline and the line connecting the two cutoff endpoints; cutoff radius of curvature 𝐴𝐴 𝐴𝐴 ([m]), defined 
as the radius of the best-fitting circle through all cutoff axis points; and flow-diversion angle 𝐴𝐴 𝐴𝐴 between the cutoff 
and its parent channel (Figure 1l). Because of bidirectional flow through tidal channels, morphodynamically 
meaningful flow-diversion angles can be identified at both the cutoff upstream (𝐴𝐴 𝐴𝐴𝑢𝑢 ) and downstream (𝐴𝐴 𝐴𝐴𝑑𝑑 ) ends. 
By comparison, because of the unidirectional flow through river channels, only the upstream flow-diversion 
angle (𝐴𝐴 𝐴𝐴𝑢𝑢 ) is morphodynamically meaningful for fluvial cutoffs (Dieras, 2013).

To directly compare meander cutoffs of different sizes, dimensional morphometric variables were normalized 
using channel width (𝐴𝐴 𝐴𝐴  ), such that width-adjusted cutoff radius of curvature, amplitude, and lengths are defined 
as �∗ = � ⁄�  , �∗ = � ⁄�  , �∗ = � ⁄�  , and 𝐴𝐴 𝓁𝓁

∗ = 𝓁𝓁∕𝑊𝑊  .

3.  Results
Dimensional morphometrics—𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝓁𝓁 —all exhibit statistically significant power-law relationships to cutoff 
width 𝐴𝐴 𝐴𝐴  (p-value <0.01) with matching best-fit power-law exponents and limited separation in power-law scal-
ing constants (Figure 2 and Figure S2 in Supporting Information S1). We also found a statistically significant 
quasi-linear relation between 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  (Figure S3 in Supporting Information S1), with 𝐴𝐴 𝐴𝐴  ≅ 𝐴𝐴 𝐴𝐴  . The latter has 
been described previously as the condition leading to neck cutoff (Li et al., 2022), whereas 𝐴𝐴 𝐴𝐴  < 𝐴𝐴 𝐴𝐴  represents a 
geometrically impossible configuration (Hayden et al., 2021). Similarly, radius of curvature 𝐴𝐴 𝐴𝐴  = 𝐴𝐴 𝐴𝐴 ∕2 represents 
a physically meaningful lower bound, since the edges of a channel centerline with a radius of curvature smaller 
than half its width would intersect each other (Hayden et al., 2021). Although theoretically there are no physical 
limits to the development of both 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝓁𝓁 (besides the basic requirements that 𝐴𝐴 𝐴𝐴  > 0 and 𝐴𝐴 𝓁𝓁  > L in order for a 
centerline to be sinuous), the prevalence of smaller curves weights the distribution of meander features toward 
the physically meaningful lower bound (Vermeulen et  al.,  2016). For these reasons, the scaling similarity in 
dimensional metrics reported in Figure  2 is likely due to the finite-width nature of the sinuous features we 
measured, rather than representing a suitable diagnostic with which to distinguish the fluvial or tidal nature of 
meander cutoffs. Indeed, previous studies suggest that dimensionless meander morphometrics should be used 
to infer morphological similarity (Frascati & Lanzoni, 2009; Howard & Hemberger, 1991). We thus performed 
Kolmogorov-Smirnov tests (𝐴𝐴 𝐴𝐴  = 0.05) on dimensionless morphometric descriptors to highlight that tidal cutoffs 
are typically less sinuous (i.e., lower 𝐴𝐴 𝐴𝐴 ) and feature smaller with-adjusted radii (𝐴𝐴 𝐴𝐴

∗ ), amplitudes (𝐴𝐴 𝐴𝐴
∗ ), and intrin-

sic lengths (𝐴𝐴 𝓁𝓁
∗ ) (Figure 3 and Table S1 in Supporting Information S1).

Since meander size and sinuosity are expected to increase with time, our findings indicate that tidal cutoffs 
are less morphodynamically mature (i.e., less sinuous and planimetrically complex) than their fluvial counter-
parts. This points to an overall faster evolutionary trajectory from meander inception to cutoffs in tidal settings. 
However, similar width-adjusted meander migration rates in tidal and fluvial settings (Finotello et  al.,  2018) 
contrast with such an interpretation. Furthermore, KS tests demonstrate similar values of asymmetry (𝐴𝐴  ) and 
upstream flow-diversion angle (𝐴𝐴 𝐴𝐴𝑢𝑢 ) in tidal and fluvial cutoffs (Figure 3 and Table S1 in Supporting Informa-
tion S1). Given that neither of these parameters are affected by meander size, the observed similarity not only 
reflects similar morphodynamic maturity but also suggest shared cutoff-triggering mechanisms, likely associated 
with the planform configuration of the parent channel (Dieras, 2013). Notably, both fluvial and tidal cutoffs 
exhibit negative median and peak values of the asymmetry index 𝐴𝐴  (Figure 3e). That is, both types of cutoffs 
tend to be upstream-skewed, supporting similarity in their dominant morphodynamic regime (sensu Seminara 
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Figure 3.  Dimensionless cutoff morphometrics. (a) Width-adjusted radius of curvature (𝐴𝐴 𝐴𝐴
∗ ); (b) width-adjusted amplitude (𝐴𝐴 𝐴𝐴

∗ ); (c) width-adjusted intrinsic length (𝐴𝐴 𝓁𝓁
∗ ); 

(d) sinuosity (𝐴𝐴 𝐴𝐴 ); (e) asymmetry index (𝐴𝐴  ); (f, g) upstream and downstream flow-diversion angles (𝐴𝐴 𝐴𝐴𝑢𝑢 and 𝐴𝐴 𝐴𝐴𝑑𝑑 ). Panels in the first column show empirical probability 
distributions for tidal (red) and fluvial (blue) cutoffs. Panels in the other columns report empirical cumulative frequency distributions for tidal cutoffs subdivided based 
on tidal range, vegetation cover, and geomorphological setting. The fifth column contains sketch-up views for each investigated morphometric.
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et al., 2001). This observation likely stems from the morphodynamic dominance, in tidal channels, of either flood 
or (more commonly) ebb flows that effectively render tidal meanders similar to their fluvial counterparts featur-
ing unidirectional flows (Fagherazzi et al., 2004; Kleinhans et al., 2009).

We propose that the comparatively smaller size of tidal cutoffs, relative to fluvial ones, is not a result of funda-
mental differences in their morphodynamics. Instead, it appears to be predominantly influenced by the specific 
hydrological, ecological, and geomorphological attributes inherent to tidal wetlands. Specifically, we hypothesize 
that the dense distribution of tidal channels that typically characterizes tidal wetlands accounts for the reduced 
size and sinuosity of tidal cutoffs, with enhanced hydrological connectivity explaining the apparent paucity of 
cutoff traces in tidal environments as we discuss below.

4.  Discussion
4.1.  Dense Channel Distribution Limits Stream Meandering and Cutoff Formation

Meander migration in densely channeled tidal floodplains shapes the landscape differently than in fluvial contexts, 
where rivers can freely migrate laterally without intercepting other channels and confluences are comparatively 
infrequent. Tidal wetlands are characterized by high drainage density—taken as the mean shortest distance that 
a parcel of water placed on the wetland surface would need to travel before reaching the closest channel (Marani 
et  al.,  2003). Such enhanced drainage density limits meander dynamics by preventing channels from freely 
migrating and meanders from fully developing without intercepting adjoining streams (Letzsch & Frey, 1980; 
Vilas et al., 1999). A similar dynamic is described in multi-thread, anabranching rivers with individual sinu-
ous anabranches, where enhanced channel density limits cutoff formation (Schumm et al., 1996). Accordingly, 
evidence from modern and ancient deposits shows that channel piracies (i.e., stream captures) in dense tidal 
networks (Figure S4 in Supporting Information S1) limit the lateral accretion of point bar bodies and can modify 
the network-scale distribution of the tidal prism, feeding back into the long term ecomorphodynamic evolution 
of the entire tidal system (Cosma et al., 2020; Finotello, Ghinassi, et al., 2020). Hence, enhanced channel density 
limits tidal meander dynamics and cutoff formation.

Our hypothesis is further corroborated by systematic statistically significant differences observed in the distri-
butions of 𝐴𝐴 𝐴𝐴

∗ , 𝐴𝐴 𝐴𝐴
∗ , 𝐴𝐴 𝐴𝐴

∗ , and 𝐴𝐴 𝐴𝐴 as a function of vegetation cover, with effects of tidal regime and geomorphological 
background being significant but less systematic (Figure 3 and Tables S2–S13 in Supporting Information S1). 
Tidal cutoffs in salt marshes are smaller and less sinuous than those found in mangrove forests and tidal flats 
(Figure 3).

This trend resonates with existing research indicating that tidal channel networks are denser in vegetated areas, 
especially in salt marshes (Kearney & Fagherazzi, 2016; Schwarz et al., 2022).

This evidence supports our contention that in densely channelized tidal wetlands, meander cutoffs are constrained 
in their size and sinuosity growth due to the increased likelihood of channel piracy during lateral migration. Simi-
lar cutoff asymmetries (𝐴𝐴  ) and flow-diversion angles (𝐴𝐴 𝐴𝐴𝑢𝑢 , 𝐴𝐴 𝐴𝐴𝑑𝑑 ) among distinct tidal settings also support similarity 
in the morphodynamic processes responsible for cutoff development. Kolmogorov-Smirnov tests reveal signifi-
cant differences in the distributions of 𝐴𝐴 𝐴𝐴𝑢𝑢 , 𝐴𝐴 𝐴𝐴𝑑𝑑 , and 𝐴𝐴  only based on geomorphological setting (Tables S2–S13  in 
Supporting Information  S1), but we find no differences in these morphometrics as a function of tidal range 
and vegetation cover despite the potential influence that both controls can exert on channel bank erosion (Gao, 
Finotello, D’Alpaos, et al., 2022; Gasparotto et al., 2022; Zhao et al., 2022).

4.2.  Hydrological Connectivity Control on Post-Cutoff Development

To further substantiate that differences in tidal and fluvial cutoff morphology do not stem from dissimilarities in 
meander morphodynamics, we also examined the connection state of individual cutoffs with their parent channels. 
Once a river meander is cut off, a plug bar forms in response to flow separation and reduced energy conditions, 
leading to the rapid deposition of coarse sediment and blockage of both cutoff entrances (Toonen et al., 2012). 
Eventually, the cutoff becomes completely disconnected from the parent channel and forms an oxbow. Based on 
the presence and position of plug bars in our tidal and fluvial examples, we classified cutoffs into four groups: 
completely connected, upstream connected, downstream connected, and disconnected (Figure 4). The upstream- 
and downstream-connected cases can also be merged into a broader category of partially connected cutoffs. 
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Whereas more than 43% of fluvial cutoffs in our data set are entirely disconnected and only 28% are completely 
connected (Figure 4a), tidal cutoffs tend to remain connected to their parent channels, with 87% of examples 
completely connected, 9% partially connected, and only 4% entirely disconnected (Figure 4a).

This observed distinction in the connection state of tidal versus fluvial cutoffs appears to be independent of 
factors such as tidal range, vegetation cover, and geomorphological setting (Figure 4). This finding effectively 
dispels the notion that the absence of plug bars in tidal cutoffs depends on site-specific landscape characteristics 
(e.g., sediment grain size; Kleinhans et al., 2024).

Moreover, similar flow-diversion angles are observed in all our study cases, with median values consistently 
ranging between 105° and 108° (Figures 4b and 4c) and further pointing to similar cutoff-triggering mechanisms 
in fluvial and tidal landscapes. Morphological differences thus can be expected to emerge once cutoffs have 
formed. The percentage of completely connected fluvial cutoffs decreases as the flow-diversion angle increases, 
implying that larger 𝐴𝐴 𝐴𝐴𝑢𝑢 promote the formation of plug bars and oxbows (Figure 4d). In contrast, tidal cutoffs tend 
to remain connected to their parent channel irrespective of flow-diversion angles, whether upstream or down-
stream (Figure 4d and Figure S5 in Supporting Information S1).

Therefore, unlike fluvial analogs, most tidal cutoffs remain hydrodynamically active to some extent: periodic 
overbank flows in tidal channels result in significant rates of lateral flow injections from the adjoining tidal 
floodplains during ebb tide, which maintain active flows even in cutoff bends and prevent plug-bar formation 
by keeping the cutoff entrance flushed. Notably, some tidal cutoffs may also remain connected to other active 
parts of the network through minor lateral tributaries flowing directly into the cutoff (Figures 1a–1i and Figure 
S6 in Supporting Information S1). Hence, pronounced hydrological connectivity in tidal wetlands prevents the 
formation of plug bars and the subsequent evolution of tidal cutoffs into oxbows. Such an evolutionary trajec-
tory clearly differs from fluvial cutoffs, which are typically abandoned and receive water and sediment input 

Figure 4.  Cutoff connectivity. (a) Barplot showing the relative frequency of different connection types between cutoffs and parent channels, differentiating tidal 
(red) and fluvial (blue) cutoffs, and further segmenting tidal cutoff ensembles based on tidal range (orange), vegetation cover (green), and geomorphological settings 
(purple). (b, c) Frequency distributions of flow-diversion angles (𝐴𝐴 𝐴𝐴 ) for tidal and fluvial cutoffs. Different colors denote different connectivity with the parent channel. 
Solid and dashed lines denote upstream and downstream diversion angles, respectively. (d) Share of completely connected tidal (red) and fluvial (blue) cutoffs across 
uniform 10° diversion-angle intervals. Solid squares and empty dots denote upstream and downstream diversion angles, respectively. (e) Tidal cutoffs found in the 
microtidal lagoon of Venice (Italy) characterized by different connectivity.
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almost exclusively during major floods either through minor tie channels carved through the plug bar (Rowland 
et al., 2009) or as the entire alluvial plain floods (Shen et al., 2021).

Among the partially connected cutoffs in our data set, the fluvial ones are preferentially connected with their 
parent channels at the upstream end: plug bars tend to form at the cutoff downstream end where flow separa-
tions and recirculation create a zone of dead velocity that hinders mixing and promotes sediment deposition 
(e.g., Turnipseed et al., 2021). In contrast, the few partially connected tidal cutoffs on record, tend to maintain 
connectivity at the downstream end (Figure 4a), aligned with the direction of typically dominant ebb flows that 
seemingly keep the cutoff downstream end periodically flushed.

4.3.  Meander Cutoffs in Tidal Coastal Landscapes: Rare or Everywhere?

Abundant tidal cutoffs akin to oxbow-rich alluvial floodplains can be found in some tidal settings with possibly 
lower drainage density and/or sediment supply that limits cutoff infill and vegetation encroachment (Figures 1f–1i; 
Figures S7 and S8 in Supporting Information S1). This further corroborates the observation that tidal and fluvial 
meandering channels not only evolve through similar morphodynamic processes, but also that tidal meanders 
are as prone to form cutoffs as their fluvial counterparts given conducive environmental conditions. Given the 
apparent ubiquity of cutoffs across a variety of tidal environments, why has the notion that sinuous tidal channel 
bends are inherently unlikely to cut off prevailed for so long (Gabet, 1998; Johnson, 1929)?

We suggest that, first, the characteristic width and amplitude of fluvial cutoffs may not vary significantly along 
a given reach of a meandering river between major tributaries, whereas meander cutoffs within a given tidal 
wetland can occur across a broad range of meander wavelengths and widths (Finotello, D’Alpaos, et al., 2020). 
Low-order, narrow tidal creeks are more frequently found than higher-order, wide channels and are thus the 
most likely to express cutoff development (Figures 1a–1i; Figures S7 and S8 in Supporting Information S1). 
Yet small channels produce small cutoffs, which are especially challenging to observe from a broader spatial 
vantage, particularly when the vegetation canopy is dense (e.g., in mangrove forests, Figure S9 in Supporting 
Information S1).

Another consideration is the sustained rate of vertical accretion that characterizes tidal wetlands, coupled with 
halophytic vegetation that can tolerate significant waterlogging stress. These factors may becloud cutoff traces 
(Figures  1b, 1d, 1f–1i and Figure S9 in Supporting Information  S1) through rapid sedimentation in the less 
hydrodynamically active portions of the cutoff, and the subsequent encroachment of vegetation. This levels out 
cutoff geomorphic expressions and further hinders their identification from aerial images. Although similar 
reasoning could apply to fluvial floodplains, reduced overbank sediment supply and slower rates of riparian 
vegetation growth in permanently waterlogged areas may prolong the timescale required to fill oxbows, making 
large river-cutoff scars identifiable from aerial photos for much longer periods (Kleinhans et al., 2024) (Figures 1j 
and 1k).

The apparent absence of tidal cutoffs is thus more an artifact of observations than a consequence of physical 
mechanisms. High drainage densities in tidal wetlands surely constrain the freely meandering of tidal channels 
(Figure S10 in Supporting Information S1). Yet the relatively small size of most tidal channels, along with the 
distinctive hydrological characteristics of tidal wetlands, contribute to the transient nature of tidal cutoffs and 
make them challenging to record. That is, unlike other features of meandering channels that might jump out at the 
observer, to find tidal cutoffs one has to go carefully looking for them.

The implied morphodynamic similarity between tidal and fluvial meanders is by no means diminished by the 
absence of prominent scroll bars in tidal wetlands, standing in stark contrast to river floodplains that often—but 
not always (Candel et  al.,  2020, 2021)—showcase intricate arrangements of sub-parallel scrolls indicative of 
previous channel locations (Figure  1k) (Strick et  al.,  2018). While there is no consensus on what drives the 
formation of scroll bars (van de Lageweg et al., 2014), we offer two possible, not mutually exclusive explana-
tions for the absence of scroll bars in tidal meanders. One possibility is that tidal meanders undergo small and 
yet continuous incremental migrations, unlike fluvial meanders which tend to migrate more episodically during 
major flood events (Mason & Mohrig, 2019; Wu et al., 2016). Another hypothesis is that sustained rates of verti-
cal aggradation relative to lateral channel migration in tidal wetlands prevent scroll bars by systematically over-
shadowing any topographic irregularities (Brivio et al., 2016; Cosma et al., 2019). This explanation aligns with 
the lack of scroll bars in meandering streamflows evolving through curvature-driven fluvial-like mechanisms in 
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aggradational settings such as coastal backwater areas (Swartz et al., 2020), peatlands (Candel et al., 2017), and 
submarine turbidity-current channels (Jobe et al., 2016; Morris et al., 2024).

5.  Implications and Conclusions
Our findings demonstrate that meandering channels in tidal wetlands possess the same capacity to form meander 
cutoffs as their fluvial counterparts. The morphometric evidence we have gathered suggests that the morphody-
namic processes driving the development of both tidal and fluvial cutoffs are fundamentally similar. However, 
substantial differences arise after cutoffs have formed. Unlike fluvial cutoffs, which tend to form oxbows, tidal 
cutoffs remain preferentially connected to their parent channel. This distinction is attributed to the pronounced 
hydrological connectivity characteristic of tidal wetlands. As a result, tidal meander cutoffs continue to actively 
participate in the draining and flooding of the surrounding wetlands, and maintain their status as integral compo-
nents of the overall system.

Considered alongside previous studies, our results indicate a complete morphodynamic analogy between tidal 
and fluvial meandering channels from meander inception to cutoff (Finotello et al., 2018, 2022; Gao, Finotello, 
& Wang, 2022; Leuven et al., 2018). The unification of tidal and fluvial meander morphodynamics allows for 
extending classical techniques for modeling meandering rivers (Bogoni et al., 2017; Howard & Knutson, 1984; 
Parker et al., 2011; Seminara et al., 2001) to tidal wetland contexts, where meandering is ubiquitous and yet 
routinely omitted. Such an advance in numerical modeling would open new opportunities for how researchers 
model tidal wetland ecomorphodynamics, with important implications for the effective conservation and restora-
tion of these critical ecosystems.
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