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Abstract
In the analysis of clustered or longitudinal data structures, such as
those coming from surveys or trials, it is desirable to have accurate
estimates of parameters relative to the dependence within repeated
measurements. In this context, marginal models together with the
generalized estimating equation approaches allow to consistently esti-
mate regression coefficients. Inference may be problematic for small
and moderate sample sizes, or with models involving many covari-
ates. Moreover, the correlation structure may be misspecified and
even the empirical sandwich covariance matrix estimator has limited
effectiveness when the number of subjects is small. In this paper, we
focus on gaussian with exchangeable correlation matrix model and we
propose to use a suitable adjustment of the score function aiming at
mean and median bias reduction of maximum likelihood estimates.
Extensive simulation studies show a remarkable performance of the
proposed methods. In addition, we show that the bias reduction meth-
ods maintain an appreciable robustness with respect to the traditional
maximum likelihood and generalized estimating equations when the
covariance structure is misspecified.

Some key words: Adjusted scores, Bias reduction; Exchangeable correlation
matrix; Generalized estimating equations; Misspecified covariance.

1 Introduction

To conduct inference with multivariate responses models, that is when several
observations (K > 1) , are linked to each unit yi = (yi1 , ...yiK ), i = 1, . . . , n,
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it is natural to allow for possible dependence structure among components.
In this framework, one popular approach is based on Generalized Estimating
Equations (GEE) by Liang and Zeger (1986). In general, observations taken
repeatedly on each unit are assumed to be correlated and observations on
different subjects are considered independent. It is well known that with this
approach, the regression coefficient estimators are consistent and unbiased
while their covariance matrix depends on variance and correlation parameters
that in turn may be subject to the bias in situation of moderate sample size.
As a result, standard errors may be biased and lead to misleading inferential
conclusions.

In many applications, when the data are collected on a real and contin-
uous scale, a multivariate Gaussian distribution could often be a suitable
candidate. Hence, the GEE models coincides with the marginal model and
the standard approach to inference can be fully based on maximum likeli-
hood (ML).The method has desirable asymptotic properties even though it
may deteriorate when the sample size is finite, or in situation in which the
model involves many covariates. Despite the fact that the ML estimators of
the mean parameters are unbiased, the variance and correlation parameters
may result in substantial bias and therefore compromise the accuracy of the
inference. This affects not only the conclusions on the covariance and correla-
tion parameters theirselves, but especially the standard errors and confidence
Wald type intervals of regression coefficients.

We point out that, a delicate aspect to take into consideration concerns
the specification of the correlation matrix structure. In the literature, the
most often assumed forms for the “working” correlation matrix are indepen-
dence, exchangeable, first order autoregressive (AR-1) and unconstrained.
Usually, it is not an easy task to identify a priori which form of correlation
structure is appropriate for the underlying model. That difficulty is over-
come by using the sandwich information to compute the standard errors.
The latter are expected to be robust under misspecification of the correlation
matrix. Some works have highlighted weaknesses of this approach as well.
For instance Wang and Carey (2003) observed that the sandwich estimator
is indeed not robust when the sample size is not large enough. Guo et al.
(2005) compared the robust Wald test and the robust score test empirically
noticing that one tends to be too liberal, whereas the other is conservative.
The authors proposed a suitable modification of the score test for the special
case of comparison of two groups. To achieve better efficiency and cover-
age performance with small sample size, Wang and Long (2011) combined
the ideas of Pan (2001), who considers under mild conditions some pooling
strategy for the variance estimation, and of Mancl and DeRouen (2001), who
propose an alternative covariance estimator to the robust covariance estima-
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tor of GEE. More recently, Ford and Westgate (2018) compared a series of
proposed methodologies to deal with the problem.

In this paper, we focus on the improved estimation of the Gaussian multi-
variate model with exchangeable correlation structure, based on adjustments
of the likelihood equation that have been proposed starting from the contri-
butions of Firth (1993) and Kenne Pagui et al. (2017), resulting in mean or
median bias reduction, respectively. While mean bias reduction yields an
estimator with reduced bias, median bias reduction is such that each compo-
nent of the estimator is, with high accuracy, median unbiased, that is, it has
the same probability of underestimating and overestimating the correspond-
ing parameter component We also propose the exploration of the traditional
bias corrected (BC) approach that subtracts an estimate of the bias from
the maximum likelihood estimate, see e.g. Section 9.2 of Cox and Hinkley
(1974). Moreover, under misspecification of the correlation matrix, we pro-
pose a suitable adjustment of the likelihood equation by the improved Jeffreys
penalization (Lima and Cribari-Neto, 2019). For the underlying model, we
obtain the quantities required for mean and median BR, mean BC and the
improved Jeffreys penalization, as well as a development of R code, which is
not always straightforward, but is necessary in order to make these methods
available to practitioners.

The numerical studies indicate that, overall, bias correction and reduction
are both preferable to standard likelihood inference, especially with moderate
sample sizes and large number of covariates. Improvement trough the Jeffreys
penalized likelihood provides comparable results to mean and median BR,
both in terms of coverages of Wald confidence intervals and robustness under
misspecification of the correlation structure when the sample size is relatively
small. Moreover, the results indicate that inference based on the adjusted
scores for the multivariate Gaussian with exchangeable structure is in general
robust under different possible misspecification of the correlation matrix. The
methods have been applied on a real dataset.

The rest of this paper is organized as follows. In the next section, we
introduce the notation and review the basic background on bias reduction
methods. Section 3 illustrates our contribution in obtaining the required
quantities in the Gaussian multivariate model with exchangeable correlation
structure. Extensive simulation studies are presented in Section 4. Section 5
focuses on an application. Finally, a brief discussion is given in Section 6.
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2 Bias-reducing adjusted scores

Consider a regular model with d-dimensional parameter θ, log-likelihood ℓ(θ)
and score function U(θ). We let Ur(θ) be a component of U(θ), j(θ) =
−∂2ℓ(θ)/∂θ∂θT be the observed information and i(θ) = Eθ[j(θ)] the expected
information. Moreover, the maximum likelihood estimate denoted with θ̂ is
a solution of the equation U(θ) = 0. Under random sampling, the bias
expansion of the ML estimator has form Eθ[θ̂ − θ] = b(θ) + O(n−2), where
b(θ) = i(θ)−1A∗(θ) with A∗(θ) having components

A∗
r(θ) =

1

2
tr
{
i(θ)−1[Pr(θ) +Qr(θ)]

}
,

where Pr(θ) and Qr(θ) are d× d matrices defined as

Pr(θ) = E[U(θ)U(θ)TUr(θ)], Qr(θ) = E[−j(θ)Ur(θ)], r = 1, . . . , d,

The quantities Pr(θ) and Qr(θ) are first used in Kosmidis and Firth (2010).
The mean bias corrected estimator, see e.g. Section 9.2 of Cox and Hink-

ley (1974), Section 5.3 of Barndorff-Nielsen and Cox (1994) and Cordeiro
and McCullagh (1991), is obtained as θ† = θ̂ − b(θ̂). Firth (1993) proposed
an adjusted score of form

U∗(θ) = U(θ) + A∗(θ),

with A∗(θ) a model-dependent adjustment term of order O(1), which is built
in such a way that b(θ) is implicitly removed. The resulting mean BR esti-
mator, θ∗, solution of U∗(θ) = 0, has bias of order O(n−2), smaller than that
of θ̂, which is O(n−1).

When θ is the canonical parameter of a full exponential family, the mean
BR estimator θ∗ corresponds to the mode of the posterior distribution ob-
tained using Jeffreys prior (Jeffreys, 1946), which is a well known improper
prior with invariance property. On the other hand, Jeffreys invariant prior is
used in the literature to penalize the likelihood function with aims of solving
issues related to boundary estimates that can occur with positive proba-
bility in models for discrete data (Kosmidis and Firth (2018)) and in Cox
regression (Heinze and Schemper, 2001; Kenne Pagui and Colosimo, 2020).
Some authors also proposed small modifications to the Jeffreys adjustment
to achieve desirable sampling estimator properties, such as unbiasedness out-
side of exponential families. In that direction, Lima and Cribari-Neto (2019)
suggested to use the penalized log-likelihood of form

ℓadj(θ) = ℓ(θ) + η log |i(θ)|, η ∈ R,
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where η ends up being a power to which the prior is elevated. With η = 1 the
original penalization is obtained, while η = 0 gives the usual log-likelihood.
We derive the corresponding estimating equation as

Ū(θ) =
∂ℓadj(θ)

∂θ
= U(θ) + Ā(θ, η).

Following a similar idea of Firth (1993) and Kosmidis et al. (2010), Kenne Pagui
et al. (2017) developed an adjusted score of form

Ũ(θ) = U(θ) + Ã(θ).

The resulting median BR estimator, θ̃, satisfies in the continuous case the
improved median centering property,Prθ(θ̃r < θr) = 1/2 + O(n−3/2), r =
1, . . . , d, in contrast with the corresponding O(n−1/2) order of error for the
ML estimator. The quantity Ã(θ) = A∗(θ)− i(θ)F (θ), where F (θ) is a vector
of components Fr = [i(θ)−1]Tr F̃r, r = 1, . . . , p+2. The vector F̃r has elements
F̃r,t = tr{hr[(1/3)Pt+(1/2)Qt]}, t = 1, . . . , p+2 and the matrix hr is defined
as hr = {[i(θ)−1]r[i(θ)

−1]Tr }/irr(θ), where [i(θ)−1]r is the r-th column of i(θ)−1

and irr(θ) its r-th element. The estimators θ̃ and θ∗ have the same asymptotic
distribution as θ̂. In practice, standard errors are computed using diagonal
elements of the inverse Fisher information, evaluated at the corresponding
estimates, i.e i(θ̃)−1, i(θ∗)−1, i(θ̂)−1. We point out that mean and median
bias reduction have the disadvantage of being directly applicable only when
the score functions, Fisher information and the first order bias term (b(θ))
of the maximum likelihood estimator are available in closed form.

3 Exchangeable multivariate Gaussian model

Longitudinal analyses often involve multiple outcomes measured repeatedly
from the same subject or cluster. When the outcome responses are contin-
uous, the multivariate gaussian model with a suitable correlation structure
is often assumed. One of the main issues is the correct definition of the de-
pendence among repeated measures. In the literature, most often assumed
forms for the “working” correlation matrix are independence, exchangeable,
first order autoregressive (AR-1) and unconstrained. Here, we focus on the
Gaussian multivariate model with exchangeable correlation structure. In this
case the mean and median BR adjustment terms are obtainable in a closed
form. We also assume that we have the same fixed number of responses (K)
per subjects.

Consider n independent observations from a q-variate normal, Yi ∼ Nq(µi, V ),
i = 1, ..., n, with µi = Xiβ, where Xi is a q × p design matrix and β =
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(β1, . . . , βp). Let N = n × q, and Y = (Y1, . . . , Yn)
T , then Y ∼ NN(µ,V),

with µ = (µ1, . . . , µn)
T ∈ RN .

In the above, the N ×N block diagonal matrix V has form

V =


V 0 . . . 0
0 V . . . 0
...

...
. . .

...
0 0 . . . V

 , with V = σ2


1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1

 .

The model has in total p + 2 parameters: θ = (β1, . . . , βp, σ
2, ρ)T . Denoting

by Ω the inverse of V , the log-likelihood is

ℓ(θ; y) = −n

2
[(q − 1) log(1− ρ) + q log σ2 + log(qρ− ρ+ 1)]

− 1

2
(y −Xβ)TΩ(y −Xβ).

The derivatives of the log-likelihood with respect to the components β, σ2, ρ
are

Uβ = XTΩ(y −Xβ),

Uσ2 =
N

2σ2
− 1

2
(y −Xβ)TΩσ2(y −Xβ),

Uρ = − N(q − 1)ρ

2(ρ− 1)(qρ− ρ+ 1)
− 1

2
(y −Xβ)TΩρ(y −Xβ),

where Ωσ2 = ∂Ω
∂σ2 and Ωρ =

∂Ω
∂ρ
·. The information matrix has form

i(θ) =

XTΩX 0 0

0 N
2σ4

N(q−1)ρ
2(ρ−1)(qρ−ρ+1)σ2

0 N(q−1)ρ
2(ρ−1)(qρ−ρ+1)σ2

3N(q−1)(qρ2−ρ2+1)
2(ρ−1)2(qρ−ρ+1)2

 ,

with the corresponding inverse given by

i(θ)−1 =

(XTΩX)−1 0 0

0 2σ4(qρ2−ρ2+1)
N

2(ρ−1)ρ(qρ−ρ+1)σ2

N

0 2(ρ−1)ρ(qρ−ρ+1)σ2

N
2(qρ−ρ+1)2(ρ−1)2

N(q−1)

 .

The maximum likelihood estimator is obtained as a solution of Uβ = 0, Uσ2 =
0, Uρ = 0. It is straightforward to derive the estimator for the β as follows

β̂ = (XTΩX)−1XTΩY.
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The ML estimator β̂ is asymptotically normal, with variance given by (XTΩX)−1.
The estimates of β, σ2 and ρ are obtained iteratively. As usual, standard
errors are computed using diagonal elements of Fisher information inverse
evaluated at the corresponding estimates. Under a specific condition for
which the vector subspace generated by the columns of X is the same of
that generated by the columns of ΩX, the regression coefficient estimates
simplify to β̂ = (XTX)−1XTY . The latter corresponds to the estimates ob-
tained under full independence, see Salvan et al. (2020, Section 1.6.4) for
more details.

For the underlying model with exchangeable correlation matrix, after
algebra calculations, we provide the expressions of the adjustment terms in
a closed form for the proposed approaches. The expectations involved in
the estimating equations are available in the Appendix. In particular, the
adjustment term components for mean BR are given by A∗(θ)

A∗
β = 0,

A∗
σ2 = −2qρ2 − 2ρ2 − p

2σ2
,

A∗
ρ =

−(q − 1)(2qρ3 − 2ρ3 − ρ)

2(ρ− 1)(qρ− ρ+ 1)
− 1

2
tr{(XTΩX)−1XTΩρX}·

The adjustment term components for the median BR is

Ãβ = 0,

Ãσ2 = A∗
σ2 +

3q2ρ4 − 6qρ4 + 3ρ4 + 6qρ2 − 6ρ2 − qρ+ 2ρ+ 1

3(qρ2 − ρ2 + 1)σ2
,

Ãρ = A∗
ρ +

3q3ρ5 − 9qρ5(q − 1)− 3ρ5 + 9ρ3(q2 + 1)

3(ρ− 1)(qρ− ρ+ 1)(qρ2 − ρ2 + 1)

+
−18qρ3 − 2q2ρ2 + 6qρ2 − 4ρ(ρ− q + 1)− q + 2

3(ρ− 1)(qρ− ρ+ 1)(qρ2 − ρ2 + 1)
·

With a similar derivation, the components of the adjustment term using
Jeffreys penalization are as follows

Āβ(η) = 0,

Āσ2(η) = −η
(2 + p)

2σ2
,

Āρ(η) = η
4qρ− 4ρ− 2q + 4

2(1− ρ)(qρ− ρ+ 1)
+ tr{(XTΩρX)−1(XTΩρX)}.

We remark that the above results can be generalized only with respect to the
case of independence correlation structure, with ρ = 0. For a more complex
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correlation structure, the needed algebra in obtaining the corresponding ad-
justment terms may be tedious and closed forms even not available. For this
reason, we devote major effort in evaluating the robustness of the proposed
approaches under alternative specifications of the correlation structure.

4 Simulation study

To illustrate the properties of the proposed estimators, a simulation study
was conducted under two different scenarios. In the former (scenario 1),
the regression coefficient estimates are equal for all methods, while they are
different in the latter (scenario 2). We check the robustness of the proposed
methods under possible misspecification of the correlation matrix structure.
A total of seven methods are compared: maximum likelihood (ML), bias
corrected (BC), mean bias reduction (BR), median bias reduction (MBR),
maximum penalized likelihood with Jeffreys power prior (JEF), generalized
estimating equations (GEE) and GEE with robust estimation of standard
errors (ROB) (Huber et al., 1967). For the maximum penalized likelihood
with Jeffreys power prior, we only present results with η = −1/2, which is
the one showing better performance.

The properties of the estimators are assessed by simulating 10 000 samples
with different sample sizes n = 20, 50 with vector sizes q = 5, 10. Performance
of estimetors are evaluated in terms of relative bias (RB), 100 × B/|β|; rel-
ative increase in mean squared error from its absolute minimum due to bias
(IBMSE), 100×B2/SD2; empirical percentage of underestimation (PU), and
coverage of nominally 95% Wald-type confidence intervals (WALD). Here, B
denotes the absolute bias and SD, its standard deviation. The measure PU
is calculated as the proportion of times that the estimate is smaller than the
corresponding true parameter value. We consider five covariates with true
coefficient values set to β = (2, 0.3,−1, 3,−0.5) and σ2 = 5 in all scenarios.
We fixed ρ = 0.9, for both the exchangeable and first order autoregressive
correlation matrices. The unstructured (unstr) and cluster (clus) correlation
matrices are provided in the Appendix. We underline that in all the settings,
even though the correlation matrix is misspecified, the fitting model is based
on the exchangeable normal defined in Section 2.

Scenario 1. Consider a regression model with mean as follows

µi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5, i = 1, . . . , n,

xi2 are independent realizations of uniform random variables on (-10,10);
xi3 independent realizations of an exponential distribution with rate 0.5; xi4
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and xi5 are independent realizations of Bernoulli random variables with suc-
cess probabilities of 0.5 and 0.2, respectively. The values of the explanatory
variables xi2, xi3, xi4 and xi5 were held constant throughout the simulations.

In this case, the ML estimator of the regression coefficients is unbiased and
does not depend on σ2 and ρ. Therefore, all the proposed methods provide
the same estimates for the regression coefficients. The difference appears on
the estimates of σ2 and ρ. As a result, we only look at the WALD as a
performance measure although we anyway report all the others.

The simulation results are displayed in Figures 1 and 2. We note that the
MBR, BR, JEF are generally better when the model is correctly specified.
Indeed, the empirical coverages are close to 94%, against ML’s 89%. When
the correlation matrix is misspecified instead, the JEF slightly seems to be
more robust. The simulation results about the variance and correlation pa-
rameters are presented in Table 1 and fulfill the expected properties. Both
mean and median BR estimators perform better than the ML, with respect to
the four performance measures. This appears more evident for small sample
size.

q=5 q=10
PU RB WALD IBMSE PU RB WALD IBMSE

n = 20 MBR 49.92 4.05 88.22 1.34 49.36 4.50 88.47 1.66
JEF 51.11 2.76 89.46 0.72 50.53 3.23 89.52 0.99

σ2 BR 54.23 0.01 86.58 0 53.89 0.50 86.79 0.02
BC 61.86 -5.93 83.04 3.59 61.54 -5.43 83.16 3.03

MLE 82.95 -23.14 64.61 85.42 82.37 -22.55 65.77 81.40
MBR 49.81 -0.93 91.23 3.87 49.54 -0.85 89.63 3.47
JEF 52.18 -1.01 93.55 5.45 51.44 -0.87 92.08 4.31

ρ BR 44.92 -0.38 89.06 0.71 44.62 -0.36 87.51 0.67
BC 43.56 -0.28 87.69 0.36 43.58 -0.28 85.96 0.39

MLE 79.74 -4.93 91.77 67.39 80.29 -4.83 89.34 69.27

n = 50 MBR 49.43 1.41 92.70 0.52 50.05 1.25 92.43 0.42
JEF 48.20 2.03 93.74 1.12 48.50 1.88 93.43 1.00

σ2 BR 52.31 0.06 92.03 0 53.11 -0.08 91.72 0
BC 54.25 -0.89 91.64 0.22 54.96 -1.02 91.22 0.30

MLE 71.69 -9.18 82.99 28.00 71.74 -9.20 83.17 29.02
MBR 49.61 -0.27 93.34 1.16 49.80 -0.29 93.62 1.49
JEF 48.76 -0.19 94.07 0.66 48.69 -0.20 94.16 0.79

ρ BR 45.51 -0.02 92.47 0.01 45.82 -0.06 92.79 0.07
BC 45.11 0 92.33 0 45.38 -0.04 92.59 0.03

MLE 69.05 -1.55 94.30 31.68 70.59 -1.57 93.31 36.97

Table 1: Scenario 1: simulation results for σ2, ρ when data are generated
using the exchangeable correlation matrix.
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Figure 1: Scenario 1. Simulation study about the regression coefficients β =
(β1, β2, β3, β4, β5) with n = 20. PU, empirical percentage of underestimation;
RB, empirical relative bias; WALD, 95% Wald-type confidence intervals.
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Figure 2: Scenario 1. Simulation results about the regression coefficients β =
(β1, β2, β3, β4, β5) with n = 50. PU, empirical percentage of underestimation;
RB, empirical relative bias; WALD, 95% Wald-type confidence intervals.
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Scenario 2. Consider a regression model with mean as follows

µij = β1 + β2xi2 + β3xi3 + β4xij4 + β5xij5,

where xi2 and xi3 are independent realizations of Bernoulli random variables
with success probabilities of 0.5 and 0.2, respectively; xij4 are independent
realizations of N(0, 10) with non fixed observations within subjects. The co-
variate xij5 = j is the fixed observation time, for each subject (j = 1, . . . , q).
The true parameter values are the same as in the previous scenario. The
choice of the covariates and the true values of the parameters allows the het-
erogeneity between the subjects. In this case, the estimator of the regression
coefficients depend on those of σ2, ρ. Results are reported in figure 3 and
4. Even here, we note that the WALD confidence intervals provided by the
MBR, BR, JEF methods achieve remarkable empirical coverage, closer to
the nominal 95are better with respect to those of ML and GEE. The same
conclusion is obtained in case of misspecification of the correlation matrix.
The proposed methods outperform even the coverages obtained by ROB, for
small sample size in all the cases, with exception of the the AR-1 type of mis-
specification. In the latter, the worst performance of the proposed methods
is only on β5, a coefficient relative to the time varying covariate, xij5 = j.
In fact, assuming an exchangeable correlation structure instead of the au-
toregressive type, lead to the underestimation of the corresponding standard
error. On the other hand, the robust method works better in correcting that
standard error. A summary of the performance on the estimators for σ2, ρ
with the correctly specified model, is given in Table 2.

5 Application to a real dataset: Stroke

We consider the Stroke dataset (Dobson e Barnett, 2008), available in the
R package MLGdata (Sartori et al., 2020) on CRAN. This was collected
with the aim of study post-heart attack rehabilitation therapies. Patients
were assigned to three experimental groups: A, treated with the innovative
therapy; B, treated with traditional therapy in the same hospital as the
patients of group A; C, treated with traditional therapy in a different hospital.
For each of the 24 patients, 8 measures of functional ability were obtained
in consecutive weeks. The study aimed to verify whether treatment A was
more effective than the others. The model considered is

µi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5,

where xi1 = 1 if the subject belongs to the group B, xi2 = 1 if the subject
belongs to the group C, xi3 refers to the week, while xi4 and xi5 are the indi-
cators resulting from the interaction terms between groups and weeks. The
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empirical relative bias; WALD, 95% Wald-type confidence intervals.
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Figure 4: Scenario 2. Simulation results about the regression coefficients β =
(β1, β2, β3, β4, β5) with n = 50. PU, empirical percentage of underestimation; RB,
empirical relative bias; WALD, 95% Wald-type confidence intervals.
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q=5 q=10
PU RB WALD IBMSE PU RB WALD IBMSE

n = 20 MBR 51.02 3.10 89.74 0.90 49.92 3.67 89.72 1.26
JEF 29.96 21.52 96.87 35.91 27.11 23.84 97.20 43.91

σ2 BR 55.20 -0.52 88.06 0.03 54.51 0.08 88.25 0
BC 49.01 4.86 90.91 2.12 47.66 5.55 90.87 2.77

MLE 73.71 -14.56 77.19 29.77 72.70 -13.78 77.43 26.72
MBR 50.20 -0.86 92.16 3.79 50.38 -0.78 91.85 3.47
JEF 28.45 1.38 83.23 18.05 26.38 1.45 83.60 22.60

ρ BR 44.30 -0.26 89.60 0.36 44.49 -0.24 89.95 0.36
BC 29.41 1.33 79.27 11.92 29.69 1.19 80.24 10.28

MLE 67.87 -2.82 94.81 31.05 70.33 -2.92 93.71 36.69

n = 50 MBR 50.43 1.17 93.30 0.37 50.53 1.08 93.02 0.32
JEF 36.26 8.09 96.28 16.80 35.48 8.49 96.14 18.67

σ2 BR 53.14 -0.14 92.63 0.01 53.38 -0.21 92.35 0.01
BC 46.93 2.88 94.22 2.20 47.03 2.82 93.84 2.13

MLE 64.90 -5.75 87.74 10.58 65.07 -5.71 87.79 10.57
MBR 50.76 -0.33 94.55 1.81 50.11 -0.28 94.03 1.55
JEF 35.14 0.57 91.20 6.95 34.63 0.59 90.85 8.44

ρ BR 46.41 -0.07 93.60 0.09 46.03 -0.05 93.20 0.05
BC 36.70 0.49 90.27 4.44 37.45 0.45 90.31 4.24

MLE 61.51 -1.00 95.24 15.13 63.32 -1.03 94.94 18.08

Table 2: Scenario 2. Simulation results for σ2, ρ when data are generated
using the exchangeable correlation matrix.

results of the fitted model is presented in Table 3. We note that the point
estimates of the coefficients are the same for all methods while mean and me-
dian BR have comparable standard errors that are different to the rest of the
approaches. Table 4 instead reports the results of a simulation study from a
maximum likelihood fit. For what concerns estimators of the regression coef-
ficients, these differ just for WALD performance. We recall that β1, β2, β3 are
coefficients related to time invariant covariates, while β4, β5, β6 deal the time
varying ones. As it was already pointed out in Section 4, the Wald intervals
based on ML improve with the time varying covariates. As a result, the BC
estimator has coverages closer to the nominal value for first block, whereas
for the second one they are worse than those of ML. On the other hand, BR
estimator instead is more stable, with coverages ranging from 93.8 to 94.6.
The JEF has coverages closer to the nominal level with range 93.9−95.3, and
it has a similar effectiveness as MBR estimator, whose empirical coverages
falls in (94.0 , 95.2). The GEE method, together with the robust one, provide
coverages far from the nominal value. We can appreciate the positive effect
of BR and BC on the estimators of σ2 and ρ. Overall the proposed methods
are preferable than the traditional approaches and robust version.
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Intercept Group B Group C Week Group B: Group C: σ2 ρ
Week Week

MLE 29.82 3.35 -0.02 6.32 -1.99 -2.69 425.57 0.83
(7.05) (9.97) (9.97) (0.46) (0.65) (0.65) (104.88) (0.04)

BC 29.82 3.35 -0.02 6.32 -1.99 -2.69 516.20 0.88
(7.84) (11.08) (11.08) (0.44) (0.62) (0.62) (133.08) (0.03)

BR 29.82 3.35 -0.02 6.32 -1.99 -2.69 478.97 0.86
(7.54) (10.67) (10.67) (0.47) (0.66) (0.66) (123.64) (0.04)

MBR 29.82 3.35 -0.02 6.32 -1.99 -2.69 492.01 0.85
(7.61) (10.76) (10.76) (0.47) (0.66) (0.66) (123.64) (0.04)

JEF 29.82 3.35 -0.02 6.32 -1.99 -2.69 529.59 0.86
(7.91) (11.19) (11.19) (0.47) (0.66) (0.66) (134.57) (0.04)

GEE 29.82 3.35 -0.02 6.32 -1.99 -2.69 439.29 0.81
(7.13) (10.09) (10.09) (0.50) (0.70) (0.70) - -

ROB 29.82 3.35 -0.02 6.32 -1.99 -2.69 439.29 -
(10.18) (11.63) (10.90) (1.13) (1.48) (1.47) - -

Table 3: Stroke data: estimates and standard errors in parenthesis.

6 Discussion

For the exchangeable Gaussian model, we developed inference based on ad-
justed score equations aiming to improve the properties of the traditional
maximum likelihood such as mean and median bias. We also proposed a
suitable adjustment of the Jeffreys penalization. We derived the required ad-
justment terms in a closed form for all the proposed methods. In this work,
we consider only the model with exchangeable correlation matrix, since other
widely used structure of correlation may required cumbersome expectations
leading to a not closed form of the resulting estimating equation. In fact, the
main drawback of mean and median bias reduction is their limited applica-
bility to models whose the likelihood and related quantities are available in
a closed forms. For the underlying model, we studied the behaviour of the
proposed methods under misspecification of the correlation structure of the
data.

Simulation results confirm the theoretical properties of the methods and
indicate that they are effective in improving over standard likelihood infer-
ence, especially in situation of small or moderate sample size. In particular,
when there are no time varying covariates (as in scenario 1), the proposed
approaches are preferable over traditional methods both in terms of bias
reduction and robustness When the mean structure involves time varying
covariates and the model is misspecified by the autoregressive correlation
structure, we observe that the proposed methods fail in terms of robustness
for the corresponding associated coefficients. In the latter case, Huber’s ro-
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bust method implemented in gee R package shows better results in terms of
coverages. As expected, all the methods improve as the sample size increases.

Finally, we note that the adjusted score with Jeffreys penalization acts
similarly as mean and median bias reduction. An advantage is due to its
simplicity since the adjustment term involves only the Fisher information.
On the other side, the important issue concerns the determination of the
optimal value for η which is not straightforward. In practice, we suggest to
run a parametric bootstrap for different values of η using maximum likelihood
estimates as true values and then, choose the one with smaller mean bias.
This aspect is subject of the future research.
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MLE BC JEF BR MBR GEE ROB
PU β1 50.34 50.34 50.34 50.34 50.34 50.34 50.34

β2 50.40 50.40 50.40 50.40 50.40 50.40 50.40
β3 49.19 49.19 49.19 49.19 49.19 49.19 49.19
β4 50.17 50.17 50.17 50.17 50.17 50.17 50.17
β5 49.22 49.22 49.22 49.22 49.22 49.22 49.22
β6 48.80 48.80 48.80 48.80 48.80 48.80 48.80
σ2 70.64 42.98 51.65 53.50 49.82 66.49 66.49
ρ 66.68 27.31 52.68 44.42 49.66 80.64

RB β1 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15
β2 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09
β3 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
β4 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
β5 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30
β6 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18
σ2 -10.78 7.88 1.50 0.25 2.92 -7.91 -7.91
ρ -3.61 2.53 -1.34 -0.22 -0.94 -5.78

WALD β1 92.36 94.75 93.90 93.79 94.02 92.62 89.31
β2 92.89 95.35 94.62 94.53 94.75 93.20 91.97
β3 92.75 95.29 94.54 94.40 94.70 93.02 91.57
β4 95.02 93.61 95.27 94.58 95.21 96.25 89.54
β5 94.82 93.28 95.12 94.34 95.07 96.26 91.24
β6 94.70 93.26 95.00 94.33 94.93 96.10 91.11
σ2 80.51 92.78 90.15 89.47 90.44
ρ 93.03 78.96 92.93 90.38 91.90

IBMSE β1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β3 0.01 0.01 0.01 0.01 0.01 0.01 0.01
β4 0.00 0.00 0.00 0.00 0.00 0.00 0.00
β5 0.01 0.01 0.01 0.01 0.01 0.01 0.01
β6 0.01 0.01 0.01 0.01 0.01 0.01 0.01
σ2 21.50 7.36 0.32 0.01 1.13 10.85 10.85
ρ 27.75 20.11 4.56 0.13 2.25 74.47

Table 4: Stroke data. Simulation results with true parameter values fixed to
the ML estimates. The estimators considered are those from ML, BC, JEF,
BR, MBR, GEE and ROB. PU, empirical percentage of underestimation;
RB, empirical relative bias; WALD, 95% Wald-type confidence intervals and
IBMSE, relative increase in mean squared error from its absolute minimum
due to bias.
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Appendix

The expectations involved in the adjustment terms for mean and median BR
are

E[(y − µ)] = E[(y − µ)(y − µ)(y − µ)] = 0,

E[(y − µ)TΩσ2(y − µ)) =
q

σ2
,

E[(y − µ)TΩρ(y − µ)) = − (q − 1)qρ

(ρ− 1)(qρ− ρ+ 1)
,

E((y − µ)TΩσ2σ2(y − µ))] =
2q

σ4
,

E[(y − µ)TΩσ2ρ(y − µ))] =
(q − 1)qρ

(ρ− 1)(qρ− ρ+ 1)σ2
,

E[(y − µ)TΩρρ(y − µ))] =
2(q − 1)q(qρ2 − ρ2 + 1)

(ρ− 1)2(qρρ+ 1)2
,

E[(y − µ)TΩσ2(y − µ))((y − µ)TΩσ2σ2(y − µ))] =
2q(q + 2)

σ6
,

E[(y − µ)TΩσ2(y − µ))((y − µ)TΩρρ(y − µ))] = −2(q − 1)q(q + 2)(qρ2 − ρ2 + 1)

(ρ− 1)2(qρ− ρ+ 1)2σ2
,

E[(y − µ)TΩρ(y − µ))((y − µ)TΩρρ(y − µ))]

= −2(q − 1)q(q3ρ3 − 3qρ3 + 2ρ3 + q2ρ+ 5qρ− 6ρ− 2q + 4)

(ρ− 1)3(qρ− ρ+ 1)3
,

E[(y − µ)TΩρ(y − µ))((y − µ)TΩσ2σ2(y − µ))] = − 2(q − 1)q(q + 2)ρ

(ρ− 1)(qρ− ρ+ 1)σ4
·

We give below the forms of the correlation matrices used in the simula-
tions of Section 4 for q = 5 and q = 10, respectively.

� unstructured (unstr):
1 0.59 −0.30 0.02 −0.37

0.59 1 −0.57 −0.68 −0.71
−0.30 −0.57 1 0 0.86
0.02 −0.68 0 1 0.20
−0.37 −0.71 0.86 0.20 1
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and

1 −0.17 0.03 0.07 0.16 0.11 0.11 0.06 −0.06 0.03
−0.17 1 0.18 −0.37 −0.02 −0.01 0.20 0.25 0.06 −0.01
0.03 0.18 1 −0.21 0.22 −0.15 0.22 −0.24 0.17 −0.15
0.07 −0.37 −0.21 1 0.28 −0.07 −0.08 0.09 0 −0.23
0.16 −0.02 0.22 0.28 1 −0.11 0.17 0.08 −0.02 −0.18
0.11 −0.01 −0.15 −0.07 −0.11 1 −0.06 0.13 0.12 −0.04
0.11 0.20 0.22 −0.08 0.17 −0.06 1 −0.31 −0.08 −0.16
0.06 0.25 −0.24 0.09 0.08 0.13 −0.31 1 0.11 0.13
−0.06 0.06 0.17 0 −0.02 0.12 −0.08 0.11 1 −0.32
0.03 −0.01 −0.15 −0.23 −0.18 −0.04 −0.16 0.13 −0.32 1


� clustered (clus): 

1 −0.20 0 0 0
−0.20 1 0 0 0

0 0 1 0.70 0.70
0 0 0.70 1 0.70
0 0 0.70 0.70 1


and

1 −0.20 0 0 0 0.83 −0.17 0 0 0
−0.20 1 0 0 0 −0.17 0.83 0 0 0

0 0 1 0.70 0.70 0 0 0.83 0.58 0.58
0 0 0.70 1 0.70 0 0 0.58 0.83 0.58
0 0 0.70 0.70 1 0 0 0.58 0.58 0.83

0.83 −0.17 0 0 0 1 −0.20 0 0 0
−0.17 0.83 0 0 0 −0.20 1 0 0 0

0 0 0.83 0.58 0.58 0 0 1 0.70 0.70
0 0 0.58 0.83 0.58 0 0 0.70 1 0.70
0 0 0.58 0.58 0.83 0 0 0.70 0.70 1
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