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Abstract—Reconfigurable intelligent surfaces (RISs) are seen
as a promising technology to improve cellular network coverage,
due to their ability to steer the impinging signals in desired
directions. The design of the RIS can be easily addressed by
assuming full channel knowledge. Nevertheless, estimating the
channels to and from the RIS is a challenging problem, as it
requires a huge training overhead. This paper proposes an effi-
cient configuration optimization jointly with channel estimation
by exploiting deep learning tools. In particular, we propose an
algorithm that works in two steps. The first step is based on a
decision tree that requires few end-to-end channel estimates with
different RIS configurations. The configurations are iteratively
selected based on an estimate of the mutual information between
the obtained rates and the optimal configuration. The second step
instead provides the minimum mean-square-error estimate of the
optimal RIS configuration based on the data rates estimated on
the channels obtained in the first step through a neural network
(NN) trained with a supervised approach. Numerical results
confirm that the proposed solution provides a configuration close
to the optimal, with achievable rates approaching the upper
bound obtained with perfect channel knowledge.

Index Terms—Channel Estimation, Decision Tree, Neural Net-
work, Phase Configuration, Reconfigurable Intelligent Surfaces.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are among the
promising technologies of next-generation wireless networks,
thanks to their ability to purposely shape the wireless envi-
ronment [1]. Indeed, a RIS induces a phase shift on reflected
wireless signals according to the state of many nearly pas-
sive meta-material elements. The overall RIS configuration
steers wireless signals in desired directions, with benefits on
coverage and data rate [2], especially in the millimetre-wave
(mmWave) band [3].

However, to fully exploit the potential of RISs, the phase
shifts must be properly selected, which is challenging. To
this end, two main difficulties arise: (i) the problem is non-
convex, as optimization variables are phases of the complex
numbers used in linear combination for the objective and the
constraints; (ii) the propagation channels to and from the RIS
must be estimated with a significant signaling overhead. In
particular, while the receiver easily obtains an estimate of
the end-to-end channel from the source for a specific RIS
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configuration, the separate estimate of the channels to and
from the RIS remains challenging [4].

Some existing works jointly optimize the transmitter pre-
coder and the RIS configuration through alternating optimiza-
tion, successive convex optimization, and semidefinite relax-
ation algorithms [5], [6]. Still, the two optimization problems
can be solved in cascade, by first optimizing the RIS and
then the precoder, where the latter optimization leverages well-
known approaches for multiple-input multiple-output (MIMO)
channels. In this paper, we focus on the joint RIS optimization
and overall end-to-end channel (including the RIS) estimation,
while beamforming design and data detection are performed
in a later stage. Another option, left for future study, sees the
inclusion of this second step into a single process [7].

Existing solutions have been classified in [8] into a) model-
based, b) heuristic, and c) machine learning (ML) methods.

Model-based Methods: Model-based methods refer to
algorithms that approximate the RIS optimization problem
by imposing specific structures to the problem; moreover it
is assumed that the channel is perfectly known. 1 These
structures include majorization-maximization problems [9],
[10], stochastic successive convex approximation [11], alter-
nating optimization [12], and alternating direction method of
multipliers [13]. A cosine similarity theorem-based algorithm
is exploited to compute suboptimal phase shifts in [14]. The
maximization of the cascade channel trace is targeted in [15],
and a suboptimal solution based on the dominant eigenvector
of matrices obtained from the channels from and to the
RIS is derived. However, these approaches achieve reasonable
performance at the cost of a high computational effort due to
the typically large number of RIS elements, dynamic channel
conditions, and channel estimation requirements. In addition,
function transformations and relaxations are typically required
to solve optimization problems, resulting in methods strongly
depending on specific channel models that may be unrealistic.

Heuristic Methods: Heuristic methods instead solve the
RIS optimization (without specific structures) using general
heuristic algorithms. These methods typically sacrifice op-
timality in favor of lower complexity and faster solutions.
Among heuristic algorithms, greedy approaches [16], convex-
concave procedure [17], and meta-heuristic algorithms [18]
have been investigated. However, these approaches only find

1Note that machine learning methods can be based on models, but in [8]
the authors use model-based to describe at best the common features of a
type of optimization problems.
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local optima that may be far from the global optimum [17]. To
overcome these issues, heuristic methods might require many
iterations entailing in turn many channel estimates [16].

ML Methods: Due to the recent advances in ML technol-
ogy, deep-learning-based techniques are becoming attractive
to optimize RISs [19]. In [20], the authors design a deep
neural network (DNN) model that takes as input the channel
knowledge sampled from some active RIS elements. The
proposed model is trained offline to estimate the optimal RIS
configuration. In [21], [22], the received signal is used to train
a DNN that estimates the optimal RIS configuration and the
transmit beamformer, bypassing explicit channel estimation.
A DNN model that learns the implicit correlation between the
optimal RIS configuration and the estimated receiver position
is presented in [23]. For other similar investigations, we refer
the reader to [24]–[27]. Supervised learning is considered in
these works, yielding a significant computational burden.

In this paper, we propose a RIS optimization approach
based on two steps. The first step estimates the achieved data
rate under different RIS configurations. The configurations are
selected adaptively by exploring a decision tree designed to
maximize the mutual information between the estimated rates
and the optimal RIS configuration. We denote this step as
decision-tree configuration optimization (DTCO). The second
step instead provides the minimum mean squared error (MSE)
estimate of the optimal RIS configuration based on the rates
estimated on the channel observed in the first step through a
neural network (NN) trained with a supervised approach. We
denote this step as optimal configuration estimation (OCE).
The resulting algorithm is denoted as decision tree learning
model (DTLM) for RIS optimization.

According to the above classification, our solution is be-
tween the heuristic and the ML methods. Indeed, the adaptive
selection of the RIS configurations in DTCO serves as a
baseline and supplement for a ML approach for the estimation
of the optimal RIS configuration. By suitably choosing the RIS
configurations in DTCO, we limit the number of channel esti-
mates while providing an effecting input to the NN. Therefore,
with respect to the existing heuristic methods, we improve the
overall computational overhead by adaptively determining a
sequence of RIS configurations getting closer to the optimal
one with few channel estimates. Moreover, we obtain this
sequence of configurations from the observed achievable rates,
which is more raw information than the full channel matrix.
When compared to the existing ML methods, our solution
reduces the number of hidden layers while providing a data
rate close to that obtained with perfect channel knowledge.

Still, with respect to the existing literature, due to the DTCO
step, our solution is also codebook-based. Recently, a general
framework for codebook-based RIS configurations has been
provided in [28]. However, the DTLM procedure significantly
differs from [28] due to the iterative and adaptive choice of
the configurations to explore according to DTCO algorithm.
Other works address the problem of reducing the overhead
introduced by channel estimation. The deep reinforcement
learning (DRL) algorithm for RIS optimization proposed in
[29] employs the readily available user’s location information
to circumvent the channel estimation. Moreover, some other

Figure 1. System model.

recent papers similarly deal with the adaptive design of the RIS
coefficients during channel estimation [30], [31]. However,
differently from the DTLM algorithm, these approaches are
codebook-free and include the design of the transmit beam-
former.

The main contributions of this paper are:
• A channel estimation and RIS optimization technique re-

quiring very few channel estimates thanks to an adaptive
selection of the RIS configurations used in the estimation
process;

• The exchange of a small amount of information (channel
data rates) between the decision tree and the NN, while
still obtaining an accurate estimate of the optimal RIS
configuration;

• A flexible solution that merges the advantages of heuristic
and ML methods by operating an adaptive pre-processing
of the estimated channel before estimating (by the NN)
the optimal RIS configuration;

• The extensive validation of the performance of the DTLM
algorithm for the optimal RIS design by simulations.

The rest of the paper is organized as follows. Section II
introduces the considered system model. Section III describes
the problem formulation, the channel estimation procedure,
and the DTLM for the optimal RIS configuration: this includes
the presentation of the DTCO and OCE algorithms. Section IV
details the design of the main blocks of the DTLM. In
Section V, we present and discuss the simulation results. The
main conclusions are drawn in Section VI.

Notation: Throughout the paper, boldface capital letters
and boldface lower-case letters such as X and x denote
matrices and vectors, respectively. (·)T , (·)∗, (·)H , (·)−1, and
(·)† denote matrix transpose, conjugate, conjugate transpose,
inverse, and pseudo inverse, respectively. vec(·) and diag(d)
represent the vectorization and diagonal matrix whose main
diagonal is d, respectively. ||·|| and |·| represent the Frobenius
norm and the cardinality of a set, respectively. Finally, P[·]
and E[·] denote the probability and expectation operator,
respectively.

II. SYSTEM MODEL

We consider a narrowband single-user MIMO mmWave
communication system between a source and a destination
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device, as shown in the model of Fig. 1. We assume that
the direct source-destination channel is blocked, thus the
connectivity between the source and the destination is main-
tained through an RIS controlled by the destination. Note
that if the direct link is available, properly choosing the RIS
configuration may be less relevant. In fact, the signal received
via the direct link would be much stronger than that received
via the RIS, making negligible the contribution of RIS to the
overall channel. This scenario models for example the uplink
of a cellular system, where the source is the user equipment
and the destination is the base station.

We assume that both source and destination are equipped
with uniform linear arrays (ULAs) with NS and ND antennas,
respectively. The RIS has NI passive reflective elements
equally spaced along a line. To simplify the notation, we
assume that both source and destination are on the same side
of the RIS, and antennas/RIS elements are on the same plane
and with the same orientation.

We indicate with G ∈ CNI×NS and H ∈ CND×NI the
source-RIS and RIS-destination baseband equivalent channel
matrices, respectively. We adopt a block-fading channel model
wherein both G and H remain constant during the channel
coherence time, which is assumed to be larger than the
duration of channel estimation considered in this paper. We
assume that the RIS elements are implemented using only
phase shifters, and define vector

θ = [θ1, . . . , θNI
], θr ∈ [0, 2π) (1)

and r = 1, . . . , NI , collecting the phase shifts at each RIS
element and also uniquely identifying the RIS configuration.

The end-to-end channel matrix between the source and
destination for a given RIS configuration θ is

Q(θ) = H diag([ejθ1 , . . . , ejθNI ])G. (2)

III. DECISION-TREE LEARNING MODEL
FOR RIS OPTIMIZATION

The performance of the communication channel between
the source and the destination depends on Q(θ), thus on the
selected RIS configuration θ and the channels H and G.
In this paper, we aim to select the RIS configuration θ̄ that
maximizes the achievable rate of the source-RIS-destination
link, i.e.,

θ̄ = argmax
θ

C(Q(θ))

= argmax
θ

max
P

log2 det

(
I +

1

σ2
R

Q(θ)PQH(θ)

)
,

(3)

where σ2
R is the noise power per receive antenna during data

transmission, P is the correlation matrix of the transmitted
vector signal on the NS antennas. Note that P is obtained
from the singular value decomposition (SVD) of Q(θ) and
applying the waterfilling algorithm on the singular values to
satisfy the transmit power constraint [32].

As discussed in the Introduction, the solution of (3) is
complicated since channel matrices H and G are not readily

available and the problem is non-convex. Indeed, the desti-
nation can easily estimate Q(θ) for a given RIS configura-
tion, using standard techniques for the estimation of MIMO
channels. In particular, the source transmits pilot signals, and
the destination uses a least square method to obtain the noisy
estimate of the end-to-end channel

Q̂(θ) = Q(θ) +w, (4)

where w is the estimation error matrix with independent
Gaussian entries having zero mean and variance σ2. Note that
σ2 ≤ σ2

R, since the latter is the noise power on each symbol
and the channel estimate is averaged over multiple pilot
symbols, thus reducing the estimation error power. However,
the estimate of the end-to-end channel does not immediately
provide the single channels H and G, thus it is not easy to
infer the end-to-end channel for other configurations.

Moreover, from (4) we note that the quality of the estimate
of the channel (e.g., in terms of channel gain ||Q(θ)||2)
depends on the used RIS configuration θ through (2). This
quality will also affect the estimation of the optimal RIS
configuration to maximize the achievable rate. Thus the prob-
lems of channel estimation and RIS optimization are strictly
interlaced.

To address the two problems jointly, we propose an adaptive
strategy where the complete end-to-end channel Q(θ) is
estimated for several RIS configurations that are adaptively
chosen during the estimation process itself to reduce the MSE
of the estimate of the optimal RIS configuration. The selected
RIS configuration at each iteration depends on the achievable
rates estimated in previous iterations.

In detail, we propose an approach based on two steps.
The first step, denoted decision-tree configuration optimization
(DTCO) collects information on the end-to-end channel. Its
output will be the set of estimated end-to-end channels and the
set of estimated achievable rates obtained by using a suitably
defined set of RIS configurations, which will also be output.
The list of used RIS configurations is found iteratively, based
on previously estimated rates and by exploring a decision tree
trained with a supervised approach.

The second step instead obtains an estimate θ̂ of the optimal
RIS configuration based on the DTCO output, and is denoted
optimal configuration estimation (OCE). In particular, the OCE
step aims at obtaining the minimum MSE estimate of the
optimal configuration, E[||θ̂ − θ̄||2] and is implemented by
a NN trained in a supervised manner.

The resulting algorithm (including both steps) is denoted as
decision tree learning model (DTLM) for RIS optimization.
Fig. 2 shows the block scheme of the proposed DTLM
solution. We observe that our solution fits also a multiuser sce-
nario, where the joint channel estimation and RIS optimization
are performed for each user separately. This can be achieved
when user transmissions are transmitted over different time
frames.

In the following, we provide the details of the two steps.

A. The DTCO Algorithm
The DTCO algorithm is the first step of the proposed DTLM

scheme and aims at providing enough information for the best
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Figure 2. Block scheme of the DTLM solution, which consists of two steps:
DTCO and OCE algorithms. Specifically, i is the index of the current DTCO
iteration, θi is the currently explored RIS configuration, Q̂i is the end-to-
end estimated channel with the selected configuration θi, A and C are the
codebooks of the achievable rate and the RIS configurations, respectively.
When the maximum number of iterations K for DTCO is reached, the
DTCO outputs the set of explored configurations F and the set of resulting
(unquantized) rates R. W and b are the weights and bias of the NN,
respectively. θ̂ is the estimated optimal RIS configuration.

estimation of the optimal RIS configuration in the next step.
The DTCO explores K different RIS configurations. The

input of the DTCO is the estimated end-to-end channels2

collected over K iterations, where at each iteration the RIS
configuration is adaptively selected based on the achievable
rates obtained with RIS configurations in the previous itera-
tions.
At the end of the DTCO process, the output of this algorithm
is a) the set of configurations that have been used at the kth
channel estimation, k = 1, . . . ,K,

F = {θ1, . . . ,θK}, (5)

and b) the set of the achievable rates obtained with the K
explored RIS configurations, i.e.,

R = {C(Q̂1), . . . , C(Q̂K)}, (6)

where Q̂1, . . . , Q̂K , are the end-to-end estimated channels
with the selected RIS configurations.

To simplify the DTCO algorithm, the RIS configurations
in the K iterations are selected from a finite codebook of Z
configurations

C = {c1, . . . , cZ}, (7)

with [cz]n ∈ [0, 2π), for z = 1, . . . , Z, and n = 1, . . . , NI .
Moreover, the selection of the RIS configuration is based on
a quantized version of the achievable rates in the previous
iterations, where the codebook of p quantized rates is

A = {a1, . . . , ap}. (8)

The quantization of the rates is performed with a minimum
distance criterion, as the unquantized rate C is quantized into

C̃ = argmax
a∈A

|C − a|. (9)

In detail, the DTCO algorithm works as follows.
An initial configuration θ1 ∈ C is selected, as better

described in Section IV-B, and the end-to-end channel matrix
Q̂1 is estimated for this configuration. Then, the corresponding

2The end-to-end channels estimates are obtained using standard methods
for the MIMO channel estimation as discussed at the beginning of this section.

a1 a2

a1 a2 a1 a2

θ1 = c3

θ2 = c1θ2 = c4

θ3 = c2 θ3 = c7 θ3 = c6 θ3 = c2

Figure 3. Example of decision tree of the DTCO algorithm for K = 3
explored configurations and a p = 2 size of the rate quantization codebook.

rate C(Q̂1) is computed by (3), stored in R, i.e., the set of
unquantized estimated rates. The rate is also quantized into
C̃1 ∈ A.

Then, K−1 iterations are performed. At the generic iteration
k = 2, . . . ,K, let the set of previously explored configurations
be

Fk−1 = {θ1, . . . ,θk−1}, (10)

and the set of previously obtained quantized achievable rates
be

R̃k−1 = {C̃1, . . . , C̃k−1}. (11)

Then, the configuration selected for the next end-to-end chan-
nel estimation is taken from codebook C using function f(·)
described in Section IV-B as

θk = f(R̃k−1,Fk−1) ∈ C. (12)

For the selected configuration θk, the end-to-end channel is
estimated and the obtained achievable rate is quantized into
C̃k ∈ A.

After K iterations, the output of DTCO is the set of explored
configurations F = FK and the set of unquantized rates R.

DTCO as a Decision Tree: Since the configuration
vectors and achievable rates are taken from codebooks, we
can consider f(·) as a decision function among a finite
set of alternatives (output set C), given observations R̃k−1.
Therefore, DTCO is a decision tree algorithm, where each
level of the tree corresponds to an iteration, and each node
provides the configuration to be used at the iteration given by
the tree level. In particular, the set of quantized achievable
rates R̃k−1 identifies the path from the root to the node of
level k where the next configuration to be used is found. An
example of the resulting tree for p = 2 and K = 3 is shown
in Fig. 3, where we note that the index k of θk is the node
level (starting from the root at level k = 1), ak enumerates
the edges departing from each node, while in each node the
selected configurations θk depend on the decision process and
are not related to the tree structure, as detailed in the following.
By considering DTCO as a decision tree, we observe that the
set of quantized achievable rates R̃k−1 uniquely identifies the
set of explored configurations Fk−1. Lastly, we note that the
decision tree is used by the base station, which goes through
it (from the root to one leaf) to select a new RIS configuration
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for which the channel is estimated. Thus, the decision tree is
neither explicitly communicated nor handled by the RIS.

DTCO Complexity: The computational complexity
ODTCO of DTCO algorithm depends on the dichotomic
search performed at each node of the tree to determine the
quantization value to associate with the observed achievable
rate. Specifically, this requires log2(2

p) comparisons, where
2p is the number of quantization intervals. It follows then

ODTCO = pK, (13)

where the multiplication by K is due to the fact that K pilot
sequences are transmitted so that K rates can be estimated.

B. The OCE Algorithm

The OCE algorithm provides the minimum MSE estimate θ̂
of the optimal RIS configuration obtained from the set F of the
used configurations and the set R of the resulting achievable
rates, as provided by the DTCO algorithm. We aim at solving
the following problem

θ̂ = argmin
θ

E[ ||θ − θ̄||2 | R,F ]. (14)

For the estimation, we resort to an ensemble of pK−1 NNs,
one for each possible set of configurations F , i.e., for each leaf
of the decision tree. The set F given by the DTCO selects the
NN that is fed with the set of corresponding unquantized rates
in R and provides as output the estimated RIS configuration
θ̂. Each NN is trained on a dataset of achievable rates obtained
with the specific F and aims at minimizing the MSE.

The NNs capture the non-linear relationships among sys-
tem parameters and rates, as the optimal RIS configuration
depends on the unknown H and G from (3). These channel
matrices depend on the electromagnetic characteristics of
surroundings, including their geometry, scatter materials, and
source/destination positions. Such a dependency cannot be
captured by mathematical modeling. Nevertheless, we aim at
obtaining a RIS optimization process that is aware of the
electromagnetic environment. Thus, we resort to the ensemble
of NNs that, by suitable training, can learn the characteristics
of the environment.

In this ML framework, DTCO can be considered as a
pre-processing algorithm (also known as feature selection
algorithm) of the input to a NN for the MSE estimation of the
optimal RIS configuration. Note that we could also include
the full estimated channel instead of only the achievable rate.
However, this would imply a significant increase in complexity
and here we focus on the set of achievable rates.

The ensemble of NNs is trained in a supervised manner.
In particular, we assume that we have pK−1 datasets, one for
each set F ,

D(F) = {Rn, θ̄n} (15)

of rates provided by the DTCO algorithm and corresponding
optimal RIS configurations. Such datasets can be obtained by
simulations or measurements in the field. The optimal RIS
configuration θ̄ can be computed using one of the several
model-based approaches available in the literature [14], [15],
[33], [34]. If the considered datasets are large enough to

represent the environment where the system is then deployed,
each NN will provide accurate estimations of the optimal
RIS configuration. Note that the output of each NN is not
constrained to be in the quantization set C. Lastly, we compute
the complexity of the OCE algorithm in Section IV-C, once
the main NN architecture parameters are introduced.

NN Ensemble: The ensemble of NNs yields a complexity
burden, in particular when either p or K (the number of the
quantized data rates and the tree depth) are large. However,
this solution ensures the highest flexibility in the estimation
process, as each NN is trained on a specific set of explored
configurations from which the input data rates are obtained.

Single NN With Input (F ,R): A first alternative to the
NN ensemble is a single NN with input both sets F and R.
While we still provide all the information to the NN as in the
case of multiple NN, the complexity may not be significantly
reduced, since the number of possible input sets F is finite,
thus we expect that the single NN will operate internally as
an ensemble of pK−1 NNs. Indeed, this structure becomes
advantageous when pK−1 becomes large.

Single NN With Input R: A second option is a single
NN taking as input only the set R (as each NN of the
ensemble). In this case the ML model does not know the
set of RIS configurations selected by DTCO, thus we may
expect a suboptimal performance. Moreover, since the input
space becomes larger and the relation between each input with
the target optimal RIS configuration becomes more complex,
we expect that such single NN will require more layers and
neurons than each NN of the ensemble. In Section V we
compare the performance of the NN ensemble and single NNs
with input R.

Maximum-Rate Configuration Design: As an alternative
to the MSE approach, we may consider the optimization of the
RIS in the OCE algorithm to maximize the achievable rate. In
this case (14) is replaced by

θ̂ = argmin
θ

E
[
− log2 det

(
I +

1

σ2
R

Q(θ)PQH(θ)

)
| R,F

]
.

(16)
Note that we are considering the opposite of the rate (with a
minus sign) and a minimization problem to frame it into a stan-
dard ML notation, where the loss function is minimized. Such
an approach is more consistent with the DTCO. However, we
note that using the rate as a loss function entails a significantly
higher computational complexity than using the MSE. Indeed,
to obtain the rate for a specific channel and configuration we
need to optimize P , which requires computing the SVD of the
cascade channel and the water-filling solution on the singular
values: such operations must be computed also to evaluate
numerically the gradient of the loss function of the OCE NN.

IV. DESIGN OF DTLM ALGORITHM

In this section, we address the design of the blocks of the
DTLM algorithm. In particular, we describe the design of a)
the configuration codebook C for DTCO, b) the function f(·)
to select the configuration in the decision tree, and c) the NN
ensemble. We consider supervised learning for the design of
both the decision tree (i.e., the function f(·)) and the NN.
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A. Design of Codebook C
For the design of the codebook C we resort to the Linde-

Buzo-Gray (LBG) algorithm [35] (also known to K-mean
clustering) applied on the dataset L={θ̄} of optimal RIS
configurations obtained from a set of channels {H,G}. Nu-
merical methods should be used for the computation of the
optimal RIS configuration unless we can exploit the structure
of the channels. This occurs for example for channels with a
single path, as better detailed in Section V-A.

The LBG algorithm provides the codebook that minimizes
the mean square error between the optimal RIS configuration
and its quantized version. Let c(θ̄) be the quantized version
(in codebook C) of the optimal RIS configuration θ̄. The LBG
algorithm computes the codebook C∗ that solves

C∗ = argmin
C

∑
θ̄∈L

1

||L||
[||c(θ̄)− θ̄)||2], (17)

where c(θ̄) are taken from the set C over which the mini-
mization is performed. The LBG algorithm is run offline (by
simulations).

B. Design of Function f(·)
The objective of the DTCO algorithm is to provide infor-

mation on the channel (through the quantized achievable rate)
good for the estimation of the optimal RIS configuration. At
iteration k, we measure this information by conditional mutual
information (CMI) between the optimal configuration θ̄ and
the estimated rates, given the current node in the tree (or,
equivalently, R̃k−1) and the considered RIS configuration θk,
i.e.,

I(θ̄; C̃k|R̃k−1,θk). (18)

Note that (18) is evaluated based on the statistics of the channel
that leads to the statistics of θ̄ and C̃k. Then, for a given
set of quantized estimated achievable rates R̃k−1, function
f(R̃k−1,Fk−1) provides the configuration θk (among those
not already explored) that maximizes the CMI between the
optimal configuration θ̄ and the quantized data rate, given
previously obtained quantized rates R̃k−1, i.e., (for k > 1)

θk = f(R̃k−1,Fk−1) = argmax
c∈C\Fk−1

I(θ̄; C̃k|R̃k−1,θk = c).

(19)

For the first iteration, we have instead

θ1 = argmax
c∈C

I(θ̄; C̃1|θk = c), (20)

where we drop the condition on previous quantized achievable
rates from the CMI. Regarding Fig. 3, the value of θ3 for the
node achieved starting from the root and following branches
a1 and a2 (θ3 = c7 in the figure) is obtained by (19) with
F2 = {c3, c4}.

For the computation of the CMI, first, let us define the
following probability mass distribution (PMD) functions

pθ̄,C̃k|R̃k−1,θk
(θ, a|R̃k−1, c) = P[θ̄ = θ, C̃k = a|R̃k−1, c],

(21a)
pC̃k|R̃k−1,θk

(a|R̃k−1, c) = P[C̃k = a|R̃k−1, c], (21b)

pθ̄|R̃k−1,θk
(θ|R̃k−1, c) = P[θ̄ = θ|R̃k−1, c], (21c)

where for the first iteration (k = 1) we define R̃0 = ∅, i.e.,
we drop the condition on the quantized achievable data rates.
Note that the randomness in the probabilities (21) is due to
the randomness of the channels that yield random optimal
RIS configurations and data rates. Thus the probabilities are
obtained from the channel statistics, as better detailed in the
following.

The CMI is then computed as

I(θ̄; C̃k|R̃k−1,θk = c) =

=
∑
θ∈C

∑
a∈A

pθ̄,C̃k|R̃k−1,θk
(θ, a|R̃k−1, c)×

log

(
pθ̄,C̃k|R̃k−1,θk

(θ, a|R̃k−1, c)

pC̃k|R̃k−1,θk
(a|R̃k−1, c)pθ̄|R̃k−1,θk

(θ|R̃k−1, c)

)
.

(22)

On the Computation of the PMDs: For the computa-
tion of PMDs (21) we first generate a dataset D obtained
by randomly generating channel realizations, evaluating the
quantized data rates for all possible RIS configurations, and
identifying the optimal RIS configuration θ̄. The generic entry
of D is [θ̄, Q̃(c1), . . . , Q̃(cZ)] for each channel realization.
To compute the PMD pθ̄,C̃k|R̃k−1,θk

(θ, a|R̃k−1, c), we extract
from D all entries having among the quantized data rates
all the values in R̃k−1. In this sub-dataset, we evaluate the
sampling frequency of the entries with optimal RIS configu-
ration θ̄ = θ and quantized data rate Q̃(c) = a. A similar
procedure is applied to compute the other PMDs in (21). The
size of the dataset grows with the size of the RIS configuration
codebook, Z, and the computation of the PMDs may become
very complex for large codebooks.

On The Use of CMI: The choice of the (conditional)
mutual information between the RIS configuration and quan-
tized achievable rate as a target metric aims at (i) limiting
the computational complexity of CMI evaluation; and (ii)
being consistent with the performance metric of the proposed
scheme. Indeed, the final objective of this paper is the opti-
mization of the RIS to maximize the achievable rate of the link,
and this task requires (in part) the estimation of the channel.
What matters for the achievable rate is not only the value
of the channel matrix entries but also their relation (through
the eigenvectors and eigenvalues). The achievable rate is then
more meaningful to consider as the performance metric of
interest and in the evaluation of (18).

C. Design of The NNs Ensemble
As we are considering an ensemble of NNs in OCE, a

different NN is considered (and then trained) for each set of
explored configurations F , i.e., for each leaf of the DTCO
tree. We expect that the training of each NN would benefit
from this assumption since the path traversed on the decision
tree provides information on the optimal configuration. Indeed,
the NN ensemble better captures the relationship between the
observed achievable rates R and optimal RIS configuration θ̄.

The architecture of each NN includes L layers, each in turn
composed of Bℓ neurons, ℓ ∈ {1, . . . , L}, and followed by a
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Figure 4. Example of the considered neural network, with L = 3 layers,
K = 4 DTCO iterations, and NI = 6 RIS elements.

non-linear activation function [36]. Fig. 4 depicts the general
NN structure. It is worth noting that the layers of the designed
NN do not have physical meanings. In general, multiple
layers are required to provide the sophisticated mapping from
the observed achievable rates to the optimal phase shifts
introduced by the RIS.

Specifically, the Bℓ × 1 vector Fℓ is the input of layer ℓ,
where Bℓ is the input dimension of layer ℓ. For the first layer
(ℓ = 1) we have F1 = R, the set of K rates estimated by
DTCO.

The output of the hidden layer 1 ≤ ℓ < L is computed as

Fℓ+1 = gℓ(WℓFℓ + bℓ), (23)

where Wℓ (size Bℓ+1 × Bℓ) and bℓ (size Bℓ+1 × 1) are the
trainable weights and bias, with gℓ the activation function.

The output of the last layer (ℓ = L) provides the estimate
of the optimal RIS configuration

θ̂ = gL(WLFL + bL). (24)

The activation function in the last layer gL is typically different
from those used in the other layers. In fact, gL strictly depends
on the properties desired NN output, while at inner layers more
generic non-linear functions are preferable. Considering that
the target θ̄ has real continuous entries in the interval [0, 2π),
we set gL as the sigmoid function [37] scaled between 0 and
2π.

Since we aim at obtaining the MSE of the optimal RIS
configuration from (14), we use the MSE loss function to train
the NN, i.e.,

MSE(θ̄, θ̂) =
1

||D(F)||
∑

(R,θ̄)∈D(F)

||θ̂(R)− θ̄||2. (25)

OCE Complexity: The computational complexity OOCE

of the OCE step can be evaluated as the sum of the number
of mathematical operations Oℓ performed by all layers ℓ,
ℓ = 1, . . . , L. In particular, Oℓ is the sum of the number of
multiplication (Oℓ,m) and additions (Oℓ,a) at each layer ℓ.

Thus we have
Oℓ,m = Bℓ+1 ·Bℓ, (26)

due to the product WℓFℓ, while

Oℓ,a = Bℓ+1 · (Bℓ − 1) +Bℓ+1, (27)

where Bℓ+1 · (Bℓ − 1) comes again from the product WℓFℓ

and Bℓ+1 comes from adding the bias bℓ. It follows that

Oℓ = Oℓ,m +Oℓ,a = 2 ·Bℓ+1 ·Bℓ, (28)

and hence

OOCE =

L∑
ℓ=1

Oℓ =

L∑
ℓ=1

2 ·Bℓ+1 ·Bℓ. (29)

Ensemble of NNs vs Single NN With Input R: We observe
that designing a separate NN for each set F also requires fewer
hidden layers and reduces the computational complexity of the
OCE step.

V. NUMERICAL RESULTS

In this section, we evaluate and discuss the performance
of the proposed DTLM algorithm for the optimization of the
RIS configuration. We first describe the considered scenario,
then we detail a benchmark approach used for comparison
and the performance metric. Finally, we discuss the impact
of different system parameters on the performance of the
proposed solution.

A. Simulation Setup

Signals are transmitted in the mmWave band. We assume
that both source-RIS and RIS-destination links exhibit a line-
of-sight (LoS) condition while the direct link between source
and destination is obstructed. We consider here a single-path
scenario for the channels to and from the RIS. Let αND

(β) be
the array response column vector (also called steering vector)
for an angle of arrival (AoA) β, with entries

[αND
(β)]n = ej2π

d
λ (n−1) sin β , n = 1, . . . , ND, (30)

where λ is the wavelength at the carrier frequency. The two
channel matrices can be written as

G = ρGαNI
(ηG)α

H
NS

(γG), (31)

H = ρHαND
(ηH)αH

NI
(γH), (32)

where ρG and ρH are the complex channel gains, ηG and ηH
are the AoAs, and γG and γH are the angle of departures
(AoDs). We assume that the AoA and AoD at the RIS are
uniformly distributed in

[
−π

2 ,
π
2

]
. ρG and ρH are independent

complex Gaussian variables with zero mean and unit power.
A focus on this scenario is motivated by the following main

reasons. First, the considered system operates at mmWave
frequencies, where one path is typically significantly dominant
over a few others. The assumption of single-path transmissions
is also justified by the rank of the cascade channel matrix,
which is likely equal to one. This conclusion comes from
the considerations reported in [38]–[40]. Moreover, in this
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Table I
MAIN PARAMETERS OF NN AND ITS TRAINING.

Parameter multiple-NN OCE single-NN OCE

Nr. hidden layers 2 7

Nr. neurons 20 128

Activation func. ReLu ReLu

Optimizer Adam Adam

Learning rate 1 · 10−4 1 · 10−4

Batch size 128 128

scenario, we can compute the optimal RIS configuration in
close form as

θ̄ = [0, ψ̄, . . . , (NI − 1)ψ̄]T , (33)

where
ψ̄ = 2π

d

λ
(sin γH − sin ηG). (34)

Finally, for the single-path case, our solution will have a
limited computational complexity.

The signal-to-noise ratio (SNR), defined as the inverse of
the per antenna noise power SNR = 1/σ2

R, is considered
in the range [0, 30] dB. The channel is estimated using 100
symbols, thus σ2 = 1/(102SNR).

With reference to the uplink transmission of a cellular
system, the source (the user equipment) and the destination
(the base station) are equipped with an ULA array of NS = 2
and ND = 10 antennas, respectively. The RIS has NI = 100
elements arranged along a line and spaced by d = λ/2.

Table I summarizes the main parameter values of each NN
used in OCE (both for the NN ensemble and single NN with
input R cases) and its training procedure. Note that in the
following we denote the use of the NN ensemble in OCE as
multiple-NN OCE and the use of a single NN with input R
in OCE as single-NN OCE, respectively. In Section V-G we
consider the single-NN OCE, while all the other results of this
Section are obtained with multiple-NN OCE.

Performance is evaluated then in terms of the average
normalized achievable rate loss

ϵ = E

[
C(Q(θ̄))− C(Q(θ̂))

C(Q(θ̄))

]
, (35)

where the average is taken over the channel and noise realiza-
tions.

B. Benchmark

For comparison purposes, we consider a benchmark ap-
proach that applies the OCE on a fixed set of K RIS
configurations FB = {θ1, . . . ,θK}, instead of considering
the adaptive set of RIS configuration provided by the DTCO
algorithm. The set FB is obtained by maximizing the aver-
age mutual information between the set of achievable rates

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

SNR (dB)

10-3

10-2

10-1

100

K=1

K=2

K=3

K=4

K=5

Figure 5. Average normalized achievable rate loss ϵ as a function of the SNR
in [0, 30] dB for K ∈ {1, 2, 3, 4, 5}.

R(FB) = {C(Q̂1), . . . , C(Q̂K)}, resulting from using FB

and the optimal RIS configuration θ̄. In formulas,

FB = argmax
F∈F̃

E[I(θ̄;R(F))], (36)

where the average is computed over the channel realizations
and F̃ represents the set of all the permutations of K elements
from C. Note that the choice of the configuration at each itera-
tion of DTLM depends on the evaluation of the instantaneous
CMI as in (19).

Remark: Although the benchmark is very close to the
solution proposed in [28] it differs for the codebook gener-
ation. DTLM instead significantly differs from the solution
in [28], as the latter has a fixed set of explored configurations
while DTLM adaptively chooses the configurations for channel
estimation. In Section V-E, we compare DTLM with both
benchmark and the OCE algorithm of [28] with sum-distance
maximization (SDM) codebook design.

C. DTLM Performance

We first assess the overall performance of DTLM as a
function of the SNR and K, and then we examine its two
steps separately.

Fig. 5 shows the average normalized achievable rate loss
ϵ as a function of the SNR for the proposed DTLM. The
number of iterations K is in the set {1, 2, 3, 4, 5}. As expected,
a more accurate estimate of the optimal RIS configuration
(which corresponds to a lower ϵ) is achieved at a higher SNR.
Moreover, a larger number of channel estimates in the DTCO
step of DTLM (i.e., a higher value of K) also provides a better
estimate. Indeed, the proposed DTLM algorithm is particularly
effective when for more than 2 iterations of the DTCO part.
This is because K determines the number of input variables
provided to each NN, and with less than 3 inputs the NN
cannot learn the nonlinear relationship between the estimated
achievable rates and the optimal RIS configuration θ̄. This
results in a very poor estimation capability of the trained NN.
This explanation is confirmed by Fig. 6, which shows the MSE
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Figure 6. MSE on the estimated RIS configuration as a function of K ∈
{1, 2, 3, 4, 5}, for SNR in {0, 10, 20, 30} dB.
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Figure 7. Average normalized achievable rate loss ϵ as a function of K con-
sidering both the output of the DTCO algorithm and the resulting achievable
rate obtained using the estimated RIS configuration, for SNR1 = 10 dB and
SNR2 = 30 dB.

on the estimated RIS configuration as a function of K for
SNR ∈ {0, 10, 20, 30} dB. It can be observed that the MSE is
significantly higher than 0 dB for K = 1, 2, and then reaches a
value approximately in the range [−10,−20] dB when K = 5
according to the considered SNR. Moreover, for K = 1, 2, the
MSE is not sensitive to the different SNR values. In fact, even
when the noise power is reduced, only 1 or 2 input variables
provided to the NN are not informative enough to allow the
NN to be properly trained and then to estimate the optimal
RIS configuration.

Nevertheless, it can be generally stated that K = 5 iterations
of the proposed DTLM solution are sufficient to approach
the optimal achievable rate with an accuracy of about 1%
for low SNR and reach an accuracy of about 10−3 for high
SNR. Furthermore, it should be emphasized that K is also the
total number of end-to-end channel estimates in the proposed
DTLM. This means that 5 channel estimates provide achiev-
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Figure 8. Mutual information between the observed rates output of the
DTCO algorithm and the optimal RIS configuration as a function of K ∈
{1, 2, 3, 4, 5}, for SNR ∈ {0, 10, 20, 30} dB.

able rates approaching the upper bound of perfect channel
knowledge. This is a remarkably low number of estimates
considering the complexity of the channel and the number
of optimized parameters.

D. Impact of DTCO and OCE

We now evaluate the contribution of the two steps (DTCO
and OCE) to the DTLM for the optimal RIS design. Fig.
7 shows the average normalized achievable rate loss ϵ for
different values of K at both the last DTCO RIS configuration
(DTCO label in the figure) and the output of the DTLM for the
optimal RIS design (DTLM label in the figure). Two values
of SNR, SNR1 = 10 and SNR2 = 30 dB, are considered. In
general, we note that the OCE step contributes significantly
to the reduction of ϵ. We also notice that the improvement is
more significant at higher SNRs: this is because the proposed
technique is affected by the estimation noise, which is more
significant at low SNRs.

To better understand the operation of the DTCO step,
Fig. 8 shows the mutual information between the observed
achievable rates at the output of the DTCO algorithm and
the optimal RIS configuration θ̄, for K ∈ {1, 2, 3, 4, 5}, and
SNR ∈ {0, 10, 20, 30} dB. The mutual information is obtained
by averaging (18) over the channel realizations. The mutual
information increases with K, regardless of the SNR, meaning
that the explored configuration at each iteration gets closer
to the optimal one θ̄. This confirms the effectiveness of the
feature selection by the DTCO algorithm. Finally, using the
estimated RIS configuration further reduces ϵ, as shown in
Fig. 7.

E. Comparison With Other Codebook-based Solutions

Fig. 9 shows the average normalized achievable rate loss ϵ
as a function of K for the proposed DTLM, benchmark (label
B), and [28] (label SDM). Specifically, in SDM we consider

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3508257

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. XX, NO. YY, NOVEMBER 2024 10

1 2 3 4 5

K

10
-3

10
-2

10
-1

10
0

DTLM SNR
1

B SNR
1

SDM SNR
1

DTLM SNR
2

B SNR
2

SDM SNR
2

Figure 9. Average normalized achievable rate loss ϵ of the proposed DTLM,
benchmark, and SDM approaches, as a function of K for SNR1 = 10 dB
and SNR2 = 30 dB.

the sum-distance maximization method for the codebook gen-
eration and OCE to optimize the RIS. Moreover, we consider
K ∈ {1, 2, 3, 4, 5}, SNR1 = 10 dB, and SNR2 = 30 dB.
The DTLM algorithm outperforms both the benchmark and
SDM for each value of K and SNR. In particular, the gain
of DTLM over the two methods is larger for a higher K,
especially for K > 2. This is because the proposed DTLM
solution involves an initial adaptive pre-processing of the input
to the NN estimating the optimal RIS configuration (i.e., the
DTCO algorithm). The processing takes into account both
the explored RIS configuration and the resulting quantized
achievable rates for building the tree. Thus, for each new
channel, a different configuration may be chosen at the same
iteration according to the observed achievable rate. This does
not occur in the benchmark and SDM approaches, where
the sequence of explored configurations is fixed, regardless
of the observed rate. Therefore, the comparison with the
benchmark and SDM approaches is a further confirmation of
the effectiveness of the adaptive configurations selection of
DTCO, which yields a much more accurate estimate of the
optimal RIS configuration through OCE.

F. Convergence

Here, we discuss the convergence with the training dataset
size for both DTCO and OCE algorithms.

For DTCO, the dataset is used for the computation of the
CMI and Fig. 10 shows the average normalized achievable rate
loss ϵ as a function of the dataset size for K ∈ {1, 2, 3, 4, 5},
and SNR=20 dB. We observe that 4 · 105 samples are enough
for the convergence of ϵ when K = 3. For K > 3, an even
higher number of samples is required. We observe that the
same intervals of ϵ can be achieved with different values of
K and different dataset sizes. In general, a larger K requires
smaller datasets for the same value of ϵ.

About the convergence of OCE, we stop the training of each
NN when the current validation error is smaller than that of
the last 6 iterations. For K = 3, 4, and, 5, the average number
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Figure 10. Average normalized achievable rate loss ϵ as a function of the
number of samples considered for the CMI computation for K ∈ {3, 4, 5}
and SNR = 20 dB.
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Figure 11. Average normalized achievable rate loss ϵ as a function of K
when a NN for each leaf (blue bars) and only one NN for the entire dataset
(orange bars) are used in OCE. In both cases, we assume SNR= 30 dB.

(on the NN ensemble) of epochs for convergence is 110, 115,
and 125, respectively.

G. Impact of The NN Architecture

Previous figures are all obtained using the NN ensemble
(multiple-NN OCE). We now consider the single NN solution
to estimate the optimal RIS configuration regardless of the path
traversed on the tree, i.e., the explored configuration. To this
end, a deeper architecture is considered, with the parameters
reported in Table I. While a less deep NN architecture would
be sufficient when considering a different NN for each leaf
node due to the higher specificity, we expect that training a
NN that operates without awareness of the path traveled in the
tree would require a more complex and deeper architecture for
a more reliable learning process.
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Figure 12. Average normalized achievable rate loss ϵ as a function of K
for single-antenna devices and single-NN OCE when the MSE loss function
(orange bar) and the rate loss function (blue bar) are used in OCE. In both
cases, we assume SNR= 10 dB.

Fig. 11 shows the average normalized achievable rate loss
ϵ as a function of K, when multiple-NN OCE (blue bars) and
single-NN OCE (orange bars) are considered for SNR= 30 dB.
We note that the solution with one NN with a deeper architec-
ture performs closer to the multiple-NN OCE, at the expense
of a higher complexity. Indeed, from (29) the computational
complexity per RIS estimation is 1020 operations for the
multiple-NN OCE and 10368 operations for single-NN OCE.
We also find that the choice of multiple-NN OCE or single-NN
OCE does not significantly affect the convergence of OCE. We
then conclude that, in the considered scenario, the ensemble
of NNs is indeed a better solution than the single NN.

H. Impact of the OCE loss function

Lastly, we have also considered the rate as the loss function
for the training of the NN of the OCE, according to the
approach described at the end of Section III-B. However,
due to the computation of the gradient for a specialized loss
function (rather than the standard MSE), the computation
time for training increased significantly. Thus, we focus on
a simpler scenario with single-antenna devices and single-NN
OCE. For K ∈ {1, 2, 3, 4, 5} and SNR = 10 dB, the obtained
average normalized achievable rate loss ϵ with the MSE and
loss and rate loss functions is shown in Fig. 12. We note that
using the rate loss function slightly improves the performance
of DTLM, at the expense of higher computational complexity,
as discussed in Section III-B.

VI. CONCLUSIONS

In this paper, we have proposed a novel technique to opti-
mize the configuration of a RIS in a wireless communication
system, jointly with the channel estimation. Our proposed al-
gorithm works in two steps. The first step collects information
about the channel. Its output is the set of achievable rates
obtained by using a suitably defined set of RIS configurations.

The second step instead estimates the optimal RIS configura-
tion based on the DTCO output: for this step, we resort to a
NN trained with a supervised approach.

Simulation results confirm that the obtained configuration
is close to the optimal one and the resulting achievable rates
approach the upper bound under perfect channel knowledge.
In particular, the proposed DTLM for the RIS design exhibits
a fast convergence to a near-optimal solution, while requiring
few end-to-end channel estimates.

As future work, it would be interesting to apply the
proposed method to stacked intelligent metasurfaces [41].
Moreover, a reinforcement learning method to find the
configuration that maximizes the achievable rate could be
considered as an alternative approach to our solution.
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