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Abstract—This paper describes a fast and effective procedure
to estimate the whole magnetic map of a synchronous reluctance
motor at standstill. Flux linkage curves are approximated by
using a coenergy-based model which only requires the knowledge
of magnetic maps borders. To measure the necessary flux linkage
curves, the proposed procedure is tailored for the chosen model,
with the aims of minimising any rotor movements and keeping
the computational effort at bay. The proposed procedure is
composed by two consecutive tests and it is suitable for the self-
commissioning of electric drives. Experimental results on a 3 kW
synchronous reluctance machine are reported.

Index Terms—synchronous reluctance motor, cross-saturation,
self-commissioning, coenergy, magnetic map

I. INTRODUCTION

The research trends of recent years can be broadly gathered
in two. In the electric machine design area, Synchronous
Reluctance (SynR), Permanent Magnet Assisted Synchronous
Reluctance (PMASynR) and Hybrid Excited Permanent Mag-
net (HEPM) motors are boosting the research and industrial
interests due to their inherent advantages, e.g., the reduced
environmental footprint and the wide constant power region
[1], [2]. However, they are characterised by a pronounced mag-
netic saturation and cross-coupling that must be properly taken
into account. From a control point of view, several model-
based control schemes have been proposed and investigated,
e.g., model predictive control algorithms [3] and sensorless
techniques [4], [5] just to mention a few. As their names
imply, these algorithms need an accurate motor model to fully
exploit the system characteristics and to guarantee a stable
behaviour. For example, low speed sensorless algorithms suffer
of magnetic cross-coupling as an estimation error appears and
the model must be available to properly compensated it [6].
The magnetic model of a motor can be obtained by Finite
Element Analysis (FEA) simulations or measured with tailored
experimental tests. The latter can be roughly divided as a
function of the operating speed and the required facilities.
Accurate constant speed methods require laboratory test bench
[7], [8], whereas standstill procedures can be carried out
without a dedicated systems [9]–[11].
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Standstill methods have an increasing interest since they
are suitable for the self-commissioning of general purpose
electric drives and they can even exploited as end-of-line test.
Few methods have been proposed in literature to estimate both
magnetic saturation and cross-coupling at standstill condition
[9]–[11]. To cover the whole current plane in the shortest time,
high voltage square wave signals are applied to the motors with
a bang-bang controller. Stator currents sweep the current plane
quickly and randomly, and the produced torque do not allow
significant rotor movements. Finally, voltages and currents can
be properly post-processed to retrieve the magnetic maps.

The estimated quantities can be stored in look-up tables
but they bring along the well known issues of interpolation
and differentiability, that can be critical in some conditions.
Standstill methods generate scattered data in the whole current
plane, so they are usually coupled with continuous interpolat-
ing functions. For examples, a neural network [8], an algebraic
model [10] or an analytical model [12] have been proposed to
fit the measured scattered data and to improve their usefulness.

This paper proposes a new standstill self-commissioning
procedure to estimate the magnetic model of a synchronous
motor, taking into account saturation and cross-coupling ef-
fects. The flux linkages along the magnetic map boundaries are
measured by means of two tests. Then, the flux linkages in the
whole current plane are estimated by exploiting a coenergy-
based model. The advantages of the proposed method are man-
ifold as it is really fast, robust against parameter uncertainties
and a continuos model is returned without any predetermined
equations. The model tuning is computationally easy and no
least square algorithms are required, so the computational
burden is kept at bay. Therefore, the proposed method is
suitable for an automatic self-commissioning procedure of
synchronous motor drives at standstill condition.

The paper is organised as follow. In Sec. II the coenergy
model is accurately reported, highlighting its peculiarities.
The proposed estimation procedure is described in Sec. III
while experimental results are reported in Sec. IV. Finally,
conclusions are drawn in Sec. V.

II. MAGNETIC COENERGY AND CROSS-SATURATION
INDUCTANCES

The coenergy-based model describing both magnetic satu-
ration and cross-coupling was proposed in [13]. The machine
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Fig. 1: Adopted current path to compute the magnetic coenergy Wmc in the
working point (id = i∗d, iq = i∗q).

magnetic domain is considered a conservative system, where
the flux linkages are functions of the currents only, namely,
hysteresis and eddy current losses are neglected. The magnetic
coenergy Wmc at point P (i∗d, i

∗
q) in Fig. 1 can be computed

following any path in the current plane. For example, the OAP
and OBP paths return the same coenergy:

Wmc,P(i∗d, i
∗
q) =

∫ i∗q

0

λq(0, iq) diq +

∫ i∗d

0

λd(id, i
∗
q) did

=

∫ i∗d

0

λd(id, 0) did +

∫ i∗q

0

λq(i∗d, iq) diq

= Wmcq(i∗q) +

∫ i∗d

0

λd(id, i
∗
q) did

= Wmcd(i∗d) +

∫ i∗q

0

λq(i∗d, iq) diq

(1)

where λd and λq are the dq flux linkages. It is worth noting
that the first terms of both equalities depend only on id
or iq and cross-saturation effect is not taken into account.
The magnetic coenergy variation due to cross-saturation effect
∆Wmc(i

∗
q, i

∗
q) in the point P can be computed as:

∆Wmc,P(i∗d, i
∗
q)=Wmcd(i∗d)+Wmcq(i∗q)−Wmc,P(i∗d, i

∗
q)

=

∫ i∗d

0

λd(id, 0) did−
∫ i∗d

0

λd(id, i
∗
q) did

=

∫ i∗q

0

λq(0, iq) diq−
∫ i∗q

0

λq(i∗q, iq) diq,

(2)
where both integral equations in (2) describe the same area,
as highlighted in Fig. 2.

The partial derivatives of the magnetic coenergy variation
(2) yield the variation of the flux linkage due to the cross
saturation:

∂∆Wmc(id, i
∗
q)

∂id
= λd(id, 0)− λd(id, i

∗
q)

∂∆Wmc(i
∗
d, iq)

∂iq
= λq(0, iq)− λq(i∗d, iq)

(3)

which are strictly related to the cross-saturation phenomenon.
The knowledge of partial derivative functions (3) leads to
the complete dq plane mapping, just starting from the flux
linkage characteristics along the maps borders. Let the coen-
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Fig. 2: Graphical representation of the coenergy variation due to the cross-
saturation.

ergy variation ∆Wmc be approximated by the product of two
dimensionless functions f(id) and g(iq), as:

∆Wmc(id, iq) ≈ f(id)g(iq)∆Wmc(i
∗
d, i

∗
q) (4)

where f(0)=g(0)=0 and f(i∗d)=g(i∗q)=1. It is worth noting
that both functions depend on a single motor current id or iq,
respectively. By replacing (4) in (3), the following expressions
can be obtained to get the approximating functions f and g,
as:

f(id) =

∫ i∗d

0

λd(id, 0)− λd(id, i
∗
q)

∆Wmc(i∗d, i
∗
q)

did

g(iq) =

∫ i∗q

0

λq(0, iq)− λq(i∗d, iq)

∆Wmc(i∗d, i
∗
q)

diq.

(5)

It is worth stressing out that (5) requires only the stator flux
linkages along the dq first quadrant borderlines. This pecu-
liarity is fully exploited by the proposed estimation method
described in Sec. III. Finally, once functions f(id) and g(iq)
are obtained, the dq motor flux linkages can be retrieved in
the whole current plane by using:

λd(id, iq) = λd(id, 0)− df(id)

did
g(iq)∆Wmc(i

∗
d, i

∗
q)

λq(id, iq) = λq(0, iq)− dg(iq)

diq
f(id)∆Wmc(i

∗
d, i

∗
q).

(6)

III. PROPOSED ESTIMATION METHOD

The aim of the proposed method is to measure the flux
linkages curves along the first quadrant boundaries of the dq
current plane at standstill. The overall identification procedure
is sensorless, namely, the rotor position is neither measured nor
estimated during the test. A low speed sensorless algorithm
[4], [5] can be used to identify the direct axis position
before the tests. Moreover, the identification procedure must be
carried out as fast as possible to reduce any rotor movement.
The method is composed by two consecutive tests. The former
one measures the flux linkages along the d-axis and the q-axis
sequentially, namely, without the cross-saturation effect. The
second test is designed to measure the flux linkages along
the current plane boundaries, by taking advantage of first test
results.



A. Test I - no cross-saturation curves

A simple and effective method for estimating flux linkages
along dq axes applies square wave voltage signal on each axis
sequentially. A bang-bang controller is applied to one axis by
keeping a zero voltage reference on the other one. A constant
voltage is reversed as the current reaches two predetermined
low and high threshold, usually zero and the rated motor
current IN, respectively. The lower limit can be replaced with
−IN which helps to minimise any rotor movements in case
of small rotor alignment error and to estimate the whole flux
linkage curve λd(id, 0). The control scheme for estimating
λd(id, 0) is shown in Fig. 3a. It is worth noting that no control
parameters need to be tuned, making this solution suitable
for the electric drive self-commissioning. The output voltage
reference u∗d varies between the highest and the lowest feasible
voltage level of the voltage source inverter (VSI) to force
the fastest current variation. The flux linkage is obtained by
integrating the applied voltage minus the resistance voltage
drop as:

λ̂d(id) =

∫
(ud −Rsid) did (7)

where Rs is the stator resistance. The integrated voltage ud
is the compensated reference voltage [14], as the measure
is not usually available [15]. The induced d-axis current
and the resulting flux linkage of the test are reported in
Fig. 3b. It is worth noting that the aforementioned method
is robust against stator resistance variation/mismatches and
inverter non-idealities, since high voltage signals are applied
to the motor. Moreover, the execution time of the test is really
reduced. Once the d-axis flux linkage is obtained, the same
method can be applied to measure the flux linkage along the
quadrature axis.

At the end of the first test, the curves λd(id, 0) and λq(0, iq)
are obtained.

B. Test II - current plane borders

The second test is designed to measure the flux linkage
curves along the current plane boundaries, namely, λd(id, IN)
and λq(IN, iq). The test must be carried out as fast as possible
to minimise any rotor movement since the flux linkages
estimation along current plane boundaries implies a high
torque generation. A conventional approach exploits the above-
described bang-bang controller applied on both axes and two
independent square wave voltage signals are applied to the
motor [9], [11]. Stator currents cover the entire current plane
and, then, only the desired values would be selected and stored
to get the desired curves. However, the above approach has two
main flaws. The former one is related to the duration of the
test, indeed hundreds of microseconds are necessary to spread
the whole plane and the rotor could move. The latter is related
to the limited available VSI voltage which must be subdivided
on both axes, limiting the rate of change of the current.

To overcome the above-mentioned issues and to fully exploit
the coenergy-based model, a tailored test is proposed. First of
all, a direct current regulator is designed and tuned to guaran-
tee a constant behaviour regardless the operating point [16]. To
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(a) Sketch of the identification scheme.
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(b) d-current and direct flux linkage.

Fig. 3: First test: control scheme and experimental results related to the direct
axis. Quadrature axis control scheme and results are similar.

carry out the tuning, the measured flux linkage curve λd(id, 0)
obtained during the first test is exploited. A well-tuned PI
controller allows for keeping the direct current to a constant
value while the other one can varies. The required voltage to
control the direct current constant to a predetermined value
is limited, then a larger one is available for varying the other
current along the desired trajectory by means of a bang-bang
controller, akin to the first test. The employed scheme for
sweeping the quadrature current by keeping almost constant
the direct one is reported in Fig. 4a.

The coenergy-based model requires the accurate knowl-
edge of flux linkages along current plane borders, i.e.,
λd(id, IN) and λq(IN, iq). To estimate the λq(IN, iq), the
above-described scheme can be directly exploited with both
current references set to the nominal motor current. Measured
stator currents during the test are reported in Fig. 4b where
the direct axis current is kept (almost) to its rated value while
the quadrature axis current varies. It is worth noting that id
oscillates since iq swing affects the other axis due to cross-
differential inductance. The current sweeps the whole plane
boundary in 4 ms, despite Fig. 4 shows more cycles. Fig. 4c
reports dq reference voltages, where quadrature voltage is a
square wave generated by the bang-bang controller whereas
direct voltage reference is the output of the direct current
regulator. Assuming no rotor movements, the quadrature flux
linkage can be computed with (7), by using quadrature voltage
and current components. It is worth remembering that the
test is carried out in sensorless open-loop mode, namely,
Park transformations are performed with an electrical position
constant and estimated before the test. Any rotor position in-
accuracy leads to wrong controlled currents so, the controlled
direct current will even have a quadrature component and a
generated torque could spin the rotor. However, the direct
axis of a SynR motor exhibits a self-stabilising behaviour
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Fig. 4: Second test: control scheme, measured stator currents, voltage
reference signals and estimated direct flux linkage. The test was carried out
with a constant current i∗d = IN = 8A.

so, the rotor aligns itself along the controlled direct current.
The oscillating quadrature current produces a high frequency
alternating torque component that does not induce significant
rotor movements.

The dual test cannot be applied to measure the flux linkage
λd(id, IN) due to the unstable behaviour of the quadrature
axis. A small estimation position error or the generated torque
during the test would move the rotor until the actual d-axis
is aligned with injected constant current vector, namely, along
the estimated quadrature one. To overcome this issue, the d-
axis flux linkage is retrieved via (7), computed during the
test for estimating λq(IN, iq). The obtained curve is shown

IN

IN

id

iq

Test I

Test II

Fig. 5: Current trajectories for both proposed tests.

in Fig. 4d, where any linear trend due to the integration
of unwanted DC components is removed. The amplitude of
the computed oscillation represents the d-axis flux linkage
variation ∆λd(IN) due to cross-differential inductance. The
d-axis flux linkage in the dq nominal current plane corner can
be computed as:

λd(IN, IN) = λd(IN, 0)−∆λd(IN). (8)

The coenergy-based model requires the complete curve
λd(id, IN) and the discretised version can be obtained by
repeating the above-described test for several values of id
in the range [0, IN], as shown in Fig. 5. It is worth noting
that the computation of ∆λd via (7) is more prone to stator
resistance mismatches since the applied voltage is reduced
(see Fig. 4c), then it must be accurately estimated. However,
DC offsets, e.g., due to inverter non idealities, do not affect
the results since only flux linkage variation is computed [14].
Fig. 6 shows the estimated flux linkage curves along all desired
current plane boundaries. The benchmark values measured
with a steady-state method is reported, as well [17]. All
estimated curves well approximate the benchmark values.

At the end of the second test, the curves λd(id, IN) and
λq(IN, iq) are collected and stored.

IV. EXPERIMENTAL RESULTS

The described identification procedure was verified on a
3 kW SynR motor, which parameters are listed in Tab. I,
and the overall procedure was implemented on a dSpace
MicroLabBox. The measured flux linkage curve along the first
quadrant boundaries (see Fig. 6) act as inputs to compute
the auxiliary functions f(id) and g(iq) defined in Sec. II
and shown in Fig. 7 as well as their derivatives functions.
The coenergy variation is equal to ∆Wmc(IN, IN) = 0.288 J.
Once the auxiliary functions are computed, a comprehensive
approximated magnetic model of the motor under test is
obtained by means of (6). Fig. 8 shows the d- and q-axis
flux linkages versus the d- and q-current for some values of
the other axis current. The benchmark values are reported, as
well [17]. The estimated flux linkage curves are close with
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Fig. 6: Estimated flux linkages with the proposed procedure and references
obtained with the steady-state method [17]. Negative direct current values are
obtained for symmetry.

Parameter Symbol Value

Resistance Rs 1.25 Ω
Pole pairs p 2

d-axis inductance Ld 240 mH
q-axis inductance Lq 60 mH
Nominal current IN 8 A
Nominal speed ωN 1500 rpm

Switching frequency Fs 10 kHz
DC bus voltage Udc 560 V

TABLE I: Electric motor and drive parameters.

the benchmark ones. Finally, the estimation errors in the first
current plane quadrant computed as:

εd,q =
(
λ̂d,q(id, iq)− λd,q(id, iq)

)
/λd,q(id, iq) · 100

are reported in Fig. 9. Both flux linkages are estimated with
a maximum estimation error of 5%. The obtained estimation
error has a negligible effect on both the calculated Maximum
Torque per Ampere (MTPA) curve and the differential induc-
tances useful for improving control algorithms.

A. Required resources

The proposed method is both accurate and requires few
computational resources. To store the first quadrant SynR
magnetic maps in two Look-up tables, 2n2x elements need to
be save where nx is the number of table breakpoints and both
axes are assumed equal. To model the same magnetic maps
over the same current domain with the coenergy-based model,
only 6 vectors must be store with a memory requirements
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Fig. 7: f(id) and g(iq) functions and their derivative functions.

of 6nx elements. Moreover, the computation of the auxiliary
functions f and g keeps the computational effort at bay. Only
two numerical integrals must be carried out and no matrix
inversions are required as with other methods, as in [8], [11]
where a neural network must be trained or in [9], [10] where
a least square problem must be solved.

The proposed algorithm takes only a hundreds of mil-
liseconds to measure the desired curves, in turn, computes
the overall magnetic maps. The estimation of λd(id, 0) takes
almost 40 ms and each execution of test II 4 ms, so an overall
execution time can be estimated in less than 100 ms.

V. CONCLUSION

The paper describes a standstill procedure for the self-
commissioning of synchronous reluctance motors. The mag-
netic map is approximated by using a coenergy-based model
which requires the flux linkage knowledge only along the first
quadrant borders. The identification method takes advantage
of the peculiar characteristics of the chosen model. Two tests
are designed to measure the desired flux linkage curve as
fast as possible to minimise any rotor movements, as the
procedure is carried out sensorless. The first test measures the
flux linkage curves without the magnetic cross-coupling while
the second one controls the direct current to a constant value
and swings the quadrature current along the desired segment
as fast as possible by applying a square wave voltage. The
quadrature flux linkage is directly estimated while the direct
axis flux linkage variation due to cross differential inductance
is retrieved. Experimental results on a 3 kW SynR prove the
good estimation accuracy, the execution speed as well as
the reduced computational and storage requirements of the
proposed method.
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