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Introduction

Synchronous machines are extensively used for home appliances and industrial ap-
plications thanks to their fast dynamic response, good overload capability and high
energy density. A precise knowledge of the rotor position is required to control
efficiently this kind of motors [1]. In most of the applications resolvers or absolute
encoders are installed on the rotor shaft. The employment of position sensors leads
to significant drawbacks such as the increased size and cost of the system and a
lower reliability of the drive, caused by additional hardware and cabling.

In sensorless drives motor position is estimated and employed in the machine
control. Thus, no position sensor is required by the drive and all the drawbacks
entailed by the sensor are eliminated. Moreover, the position estimation could be
useful for redundancy in case of system failures. Therefore, position estimation
techniques are object of great interest in the electric drives field.

Position estimation techniques can be divided into two main categories: methods
that are suitable for medium or high speed and techniques suitable for low speed or
standstill operations. In the former group the motor position is estimated through
a reconstruction of the permanent magnet flux or back electromotive force (back-
EMF). In case of synchronous reluctance machines it is possible to reconstruct the
extended active flux or back-EMF [2–6]. Stator voltages and currents measurements
are needed for these reconstruction methods. Since these signals amplitude is pro-
portional to the rotor speed, position estimation can be successfully performed only
for medium and high speed machine operations.

In the low speed range, sensorless schemes exploit the rotor magnetic anisotropy.
Thus, position can be estimated only for anisotropic motors, i.e. synchronous reluc-
tance motors (SynRM), permanent magnet assisted synchronous reluctance motors
(PMA-SynRM) and interior permanent magnet synchronous motors (IPMSM). The
rotor anisotropy is recognized thanks to an high frequency voltage injection in the
stator windings. Several injection techniques have been proposed, differing from the
signal typology. In particular, high frequency sinusoidal [1,7–9] or square-wave [10]
carriers are often applied. The position information is usually extracted from the
current response through a heterodyning demodulation that entails the use of low
pass filters in the position estimator, limiting its dynamic.

The aim of the research was proposing a new algorithm to estimate the rotor
position from the HF current response, getting rid of the demodulation and its
weaknesses. Thus, the ellipse fitting technique has been proposed. Robustness
against signal processing delay effects and a reduced number of required filters
are the main advantages of this novel approach. The inverse problem related to
the ellipse fitting is solved implementing a recursive least squares algorithm. The
proposed ellipse fitting technique is not affected by signal processing delay effects,
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and it requires the tuning of only one parameter, called forgetting factor, making
the studied method suitable for industrial application thanks to its minimal setup
effort.

Besides the ellipse fitting technique for rotor position estimation, two other topics
have been studied:

• Computation of self-sensing capabilities of synchronous machines.

• Online incremental inductances identification for SynRM.

Signal-injection sensorless control methods rely on the current response of a
synchronous motor to high frequency voltage injection. Since the considered motors
can differ one from the other, it follows that the performance achievable in sensorless
control can change significantly depending on the considered machine. Moreover,
even the same motor changes its high-frequency response depending on the load.
Thus, a systematic and comprehensive method to compute and predict the self-
sensing capabilities (saliency, estimation error, convergence region) of a synchronous
motor starting from its flux linkages maps is proposed and validated.

SynRM have several advantages: they are cheap, they have high efficiency, and
they do not have permanent magnets. One the main disadvantages is that they are
characterized by highly non-linear inductances (which make the control not trivial).
Thus, an online inductance identification method (based on rotating high frequency
voltage injection) for SynRM has been proposed and validated.

Outline

This work is divided into six chapters.

Chapter 1 presents three conventional signal injection methods for low speed
sensorless control (pulsating, square-wave and rotating injection) and an innovative
approach based on a real time ellipse fitting. The similarities and peculiarities of the
presented methods are highlighted through the control schemes and the analytical
equations.

Chapter 2 describes a computational approach to compute the self-sensing capa-
bilities of a synchronous motor in order to predict its performance during a sensorless
control. The comprehensive model includes flux linkages, apparent and incremental
inductances, and the MTPA.

Chapter 3 deals with the experimental procedure to measure the convergence
region of a synchronous motor installed on a real test bench. During the first test,
the sensored trajectory t1 is measured. In the second test the sensorless trajectory
t2 is measured.

Chapter 4 presents the innovative ellipse fitting approach to estimate the rotor
position of an anisotropic synchronous motor from the high frequency currents due
to a rotating injection in αβ. Simulation and experimental results validate the
proposed method.

Chapter 5 focuses again on the ellipse fitting approach, but this time a more
efficient algorithm (based on recursive QR factorization) is adopted. Experimen-
tal results including a comparison with the convention demodulation approach are
carried out in order to validate the effectiveness of the presented method.
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Chapter 6 proposes an online algorithm to estimate the incremental inductances
of a SynRM operating in sensored opeation. The presented method is tested both
during current and speed transients in order the examine its estimation accuracy.

Original contribution

The first main contribution of the research carried out during these three years was
the ellipse fitting technique for the rotating injection in αβ. The proposed method
appears to be less sensitive, if compared with the conventional demodulation scheme,
to the signal processing delay effects.

A second contribution was the computation of the self-sensing capabilities of a
synchronous motor. With a simple and open source Python code1 it is possible to
obtain a clear prediction of the sensorless performances of a motor (as well as the
computation of the apparent/incremental inductances and the MTPA).

Another key contribution was recognizing that the rotating high frequency volt-
age injection scheme can be used for two purposes:

• Rotor position estimation if the injection is in the stationary (αβ) or estimated
(dxqx) reference frame.

• Online incremental inductance estimation if the injection is in the measured
rotor frame (dq); a position sensor is required.

1https://gitlab.com/LuigiAlberti/dolomites-python (free code)

https://gitlab.com/LuigiAlberti/dolomites-python




Glossary

PMSM Permanent magnet synchronous motor
SPMSM Surface permanent magnet synchronous motor
IPMSM Interior permanent magnet synchronous motor
SynRM Synchronous reluctance motor
PMA-SynRM Permanent magnet assisted synchronous reluctance motor
HPF High-pass filter
LPF Low-pass filter
hf High frequency
αβ Stator reference frame
dq Rotor reference frame
dxqx Estimated rotor reference frame
θme Rotor electrical position (rad)
ωme Rotor electrical speed (rad/s)
˜︁θme Estimated rotor electrical position (rad)
˜︁ωme Estimated rotor electrical speed (rad/s)
ud, uq Stator voltages (V)
id, iq Stator currents (A)
λd, λq Stator flux linkages (Vs)
R Stator resistance (Ω)
Ld, Lq Apparent inductances (H)
ldd, ldq, lqd, lqq Incremental inductances (H)
lΣ Mean incremental inductance (H)
l∆ Semi-difference incremental inductance (H)
γdd, γdq, γqd, γqq Inverse incremental inductances (1/H)
m Torque (Nm)
ξ Saliency ratio
ε Estimation error in open loop (rad)
Uh Amplitude of the voltage injection (V)
fh Frequency of the voltage injection (Hz)
I Current amplitude (A)
αie Current angle (rad)
Ihq Input of the position observer (A)
MTPA Maximum torque per ampere
REF Reference for the current control loop
t1 Sensored (fictitious) current trajectory
t2 Sensorless current trajectory

13





Chapter 1

Signal-Injection Sensorless
Control

Abstract - Additional signal injection or unconventional pulse-width modulation
(PWM) patterns are required in order to estimate the rotor position in the zero-low
speed region. This chapter reports an analysis of three different injection schemes
for low speed sensorless control (sinusoidal and square-wave pulsating injection in
dxqx, sinusoidal rotating injection in αβ). Also the innovative ellipse fitting method
is introduced for the position estimation in the case of rotating injection.
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Figure 1.1: Control scheme for synchronous machines drives: conventional PI cur-
rent control loop.

1.1 Introduction

Conventional control methods of permanent magnet synchronous motors (PMSM)
rely on the measure of the rotor position. This type of solution, hereafter called
“sensored”, requires the use either of an incremental encoder or an absolute resolver
(Figure 1.1). The position sensor increases the cost and the size of the electric drive
and, moreover, it may be subject to failure. For these reasons it is worth investing
the possibility to control a PMSM without the use of a position sensor. These kind
of techniques are known as “sensorless”. The focus of this work is on the sensor-
less control methods for standstill and low speed operation, i.e. any operation in
which the motor speed is not greater than 10% of the rated speed. Although many
high frequency (hf) injection techniques exist (pulsating, square-wave, triangular,
pseudo-random, PWM excitation), this work focuses on the rotating voltage injec-
tion in the stationary reference frame α-β. Pulsating and square-wave injection in
the estimated reference frame dxqx are briefly considered in 1.3 and 1.4 just to show
that the signal Ihq (responsible for the convergence region of the sensorless drive)
depends more on the considered machine than on the adopted injection method.

Hf injection range is between 500 Hz and 2000 Hz, reaching half of the switch-
ing frequency in the case of square-wave injection. It is worth highlighting that
the considered methods consist in extracting the position information contained in
the current response due to the hf voltage injection. An anisotropic PMSM, i.e. a
PMSM characterized by rotor magnetic saliency, is required for this kind of tech-
niques. Thus, synchronous reluctance motor (SynRM), permanent magnet assisted
synchronous reluctance motor (PMA-SynRM) and interior permanent magnet syn-
chronous motor (IPMSM) are suitable for low speed sensorless control. On the
contrary, the surface permanent magnet synchronous Motor (SPMSM) has no rotor
saliency so the position can not be estimated through hf injection methods. A mod-
ified version of SPMSM, the ringed-pole, in which a copper turn has been wound
around each rotor pole, is preferable for this kind of applications [11,12].
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1.2 High-frequency model

Signal-injection methods rely on hf voltage injection at low speed. The stator voltage
model of a PMSM is:

ud(t) = R id(t) + ldd
did(t)

dt
+ ldq

diq(t)

dt
− ωme λq

uq(t) = R iq(t) + ldq
did(t)

dt
+ lqq

diq(t)

dt
+ ωme λd

(1.1)

where R is the stator resistance, ωme the rotor electrical speed and ldd, ldq, lqq the
incremental inductances (2.4). Voltages, currents and incremental inductances are
expressed in the rotating reference frame dq.

The permanent magnet does not provide high frequency flux contribution so it
can be neglected, as well as the stator resistance. Thus, the hf model of a PMSM
is given by incremental inductances only. The hf voltage balance, where uhd(t) and
uhq(t) are the injected voltages and ihd(t) and ihq(t) represent the currents response,
can be written as:

[︃
uhd(t)
uhq(t)

]︃
=

[︃
ldd ldq
ldq lq

]︃
d

dt

[︃
ihd(t)
ihq(t)

]︃
(1.2)

From ldd and lqq it is possible to define:

lΣ =
lqq + ldd

2
l∆ =

lqq − ldd
2

(1.3)

which are the mean incremental inductance and the semi-difference incremental
inductance (2.7). It is even possible to obtain the hf voltage balance in the stator
reference frame by applying the Park transformation to (1.2):

[︃
uhα(t)
uhβ(t)

]︃
=

[︃
lα lαβ
lαβ lβ

]︃
d

dt

[︃
ihα(t)
ihβ(t)

]︃
(1.4)

where:
lα = lΣ − l∆ cos(2θme)− ldq sin(2θme)

lβ = lΣ + l∆ cos(2θme) + ldq sin(2θme)

lαβ = −l∆ sin(2θme) + ldq cos(2θme)

(1.5)

It is worth noting that the differential inductances lα, lβ and lαβ depend on the
rotor electrical position θme.

In a conventional (sensored) control scheme for PMSM, the rotor position θme

is measured, and the control operates in the actual dq reference frame. In signal-
injection (sensorless) schemes the rotor position ˜︁θme is estimated, and the the control
operates in the estimated reference frame dxqx. Since the estimation methods are
afflicted by an estimation error (due to both observer dynamics and cross-saturation
effects), the estimated rotor reference frame dxqx is usually different from the actual
dq (Figure 1.2). The angle between dq and dxqx is expressed by ∆θ. As will be
explained in Chapter 2, the steady-state open-loop error due to the cross-saturation
effects is ε = atan2(−ldq, l∆) or ε = atan2(ldq,−l∆) (depending on the adopted
motor convention).



CHAPTER 1. SIGNAL-INJECTION SENSORLESS CONTROL 18

Figure 1.2: Actual and estimated rotor reference frame.

1.3 Sinusoidal injection in dxqx (pulsating)

Among the signal-injection schemes present in the literature, one of the simplest is
characterized by sinusoidal pulsating injection in dxqx. The control scheme, shown
in Figure 1.3, is described in [8,13,14]. A pulsating hf injection is superimposed to
the dxqx voltage references:

ux
hd = Uh cos(ωht) (1.6)

ux
hq = 0 (1.7)

The sinusoidal pulsating injection in dx leads to the high frequency currents:

ixhd =
Uh

ωh (ldd lqq − l2dq)
[lΣ + l∆ cos(2∆θ)− ldq sin(2∆θ)] sin(ωht) (1.8)

ixhq = − Uh

ωh (ldd lqq − l2dq)
[l∆ sin(2∆θ) + ldq cos(2∆θ)] sin(ωht) (1.9)

or, equivalently:

ixhd =
Uh

ωh (ldd lqq − l2dq)

[︂
lΣ +

√︂
l2∆ + l2dq cos(2∆θ − 2ε)

]︂
sin(ωht) (1.10)

ixhq = − Uh

ωh (ldd lqq − l2dq)

[︂√︂
l2∆ + l2dq sin(2∆θ − 2ε)

]︂
sin(ωht) (1.11)

The hf currents ixhd, i
x
hq are obtained measuring the dxqx currents and applying a

high-pass filter (HPF). The rotor position information is extracted by a demodulation-
observer scheme applied to the current ixhq, as shown in Figure 1.4. The current ixhq
is multiplied for sin(ωht) and the result is filtered with a low-pass filter (LPF). The
result of the demodulation is the signal:

Ihq = − Uh

2ωh (ldd lqq − l2dq)
[−l∆ sin(2∆θ)− ldq cos(2∆θ)] (1.12)
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Figure 1.3: Control scheme for anisotropic synchronous machines drives: pulsating
injection in dxqx and demodulation.

Figure 1.4: Demodulation scheme in dxqx.

or, equivalently:

Ihq = − Uh

2ωh (ldd lqq − l2dq)

√︂
l2∆ + l2dq sin(2∆θ − 2ε) (1.13)

The signal Ihq is related to the convergence region of the sensorless drive since it
is the signal that the position observer (a PI+I) tries to nullify in order to find the
stable convergence points [15]. In fact, Ihq is the input of the position observer.

The output of the position observer, i.e. the estimated position ˜︁θme, is used to feed
the current control loop Park transformations.

1.4 Square-wave injection in dxqx (pulsating)

The square-wave injection has been proposed as an alternative of the sinusoidal
injection for the sensorless control of anisotropic synchronous motors [16]. A square-
wave pulsating injection in dx:

ux
hd = Uh clk[n] (1.14)

ux
hq = 0 (1.15)
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leads to square-wave currents:

∆ixhd =
Uh Ts

ldd lqq − l2dq

[︂
lΣ +

√︂
l2∆ + l2dq cos(2∆θ − 2ε)

]︂
clk[n− 2] (1.16)

∆ixhq = − Uh Ts

ldd lqq − l2dq

[︂√︂
l2∆ + l2dq sin(2∆θ − 2ε)

]︂
clk[n− 2] (1.17)

where Ts is the control period. The current ∆ixhq can be written as:

∆ixhq = Ihq clk[n− 2] (1.18)

where:

Ihq = − Uh Ts

2(ldd lqq − l2dq)

√︂
l2∆ + l2dq sin(2∆θ − 2ε) (1.19)

Ihq is the input signal for the position tracking. Comparing (1.19) and (1.13) it is
possible to notice that, theoretically, two different injection schemes lead to almost
the same signal Ihq (signal related to the convergence region, a concept that will
be deepened in chapter ). Thus, it is possible to state that the convergence region
mainly depends on the considered motor (characterized by the inductances ldd, ldq,
lqq, l∆), and not so much on the injection/demodulation method. This will be
confirmed also in the next section dealing with rotating injection in αβ.

1.5 Sinusoidal injection in αβ (rotating)

Sensorless control schemes for rotor position estimation at standstill or low speed
can operate with a pulsating injection on dx but also with of a rotating injection in
α-β [9]. The scheme is shown in Figure 1.5. A sinusoidal rotating injection in α-β:

uhα = Uh cos(ωht) (1.20a)

uhβ = Uh sin(ωht) (1.20b)

leads to high frequency currents:

ihα =
Uh

ωh (ldd lqq − l2dq)

[︂
lΣ sin(ωht) +

√︂
l2∆ + l2dq sin(ωht− 2˜︁θme)

]︂
(1.21a)

ihβ =
Uh

ωh (ldd lqq − l2dq)

[︂
−lΣ cos(ωht) +

√︂
l2∆ + l2dq cos(ωht− 2˜︁θme)

]︂
(1.21b)

The hf currents ihα and ihβ contain information on the rotor position ˜︁θme. Hetero-
dyning demodulation, shown in Figure 1.6, is the conventional approach to retrieve
the rotor position estimation [17,18]: ihα is multiplied for − cos(ωht−2˜︁θme), ihβ for

sin(ωht− 2˜︁θme). The results of the products are summed and filtered with a LPF.
The result of the demodulation (input of the position observer) is the signal:

Ihq = − Uh

ωh (ldd lqq − l2dq)

√︂
l2∆ + l2dq sin(2∆θ − 2ε) (1.22)

The signal Ihq in the case of rotating injection in αβ (1.22) is equal to the one
in the case of pulsating injection, (1.13) and (1.19), apart from a factor 2 in the
denominator. Thus, the convergence region will be almost the same in all the three
considered cases.
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Figure 1.5: Control scheme for anisotropic synchronous machines drives: rotating
injection in αβ and demodulation. When the switch is on position 1, the control
operates on the measured dq reference frame (sensored operation). When the switch
is on position 2, the control operates on the estimated dxqx reference frame (sen-
sorless operation).

Figure 1.6: Demodulation scheme in αβ.

1.6 Ellipse fitting

“Ellipse fitting” [19, 20] represents an alternative to the demodulation scheme in
α-β. The current samples are filtered with a HPF, as in the demodulation scheme,
and processed with an ellipse fitting algorithm. In fact, since the injection is a
rotating vector and the considered motors (SynRM, PMA-SynRM, IPMSM) have
salient rotor, it follows that the hf currents vector traces an ellipse in the α-β plane.
The hf vector requires one period of the injected voltage to complete the ellipse
drawing. This hf ellipse is ideally centered in the origin of the α-β plane thanks to
the effect of the HPF. Anyway, during transients, some deviations can appear. A
key aspect of the hf current response in α-β is that the hf ellipse rotates accordingly
with the rotor position. In particular, the ellipse major semi-axis is oriented with
the rotor axis characterized by lower inductance (axis d for IPMSM and PMA-
SynRM, axis q for SynRM). The main idea behind the ellipse fitting method is
recognizing in real-time the ellipse major semi-axis tilt in order to estimate the
rotor position. In mathematical terms, an inverse problem has to be solved. The
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Figure 1.7: Control scheme for anisotropic synchronous machines drives: rotating
injection in αβ and ellipse fitting. When the switch is on position 1, the control op-
erates on the measured dq reference frame (sensored operation). When the switch is
on position 2, the control operates on the estimated dxqx reference frame (sensorless
operation).

linear system is composed by the hf current samples as data points, 3 unknown
parameters (ellipse coefficients a, b, c) and known terms fixed with the amplitude
and frequency of the voltage injection (ellipse coefficient f). In [19,20] the problem
is solved through recursive least square estimator (RLSE). In particular, in [19], the
solution is computed recursively taking into consideration the incremental variation
of a, b, c with respect to the previous time step. In [20] a computationally efficient
algorithm is proposed: the inverse problem is recursively solved using an updating
QR factorization.

The hf currents induced by the rotating injection uhα, uhβ can be written in the
following form:

iαβ =

[︃
ihα
ihβ

]︃
=

Uh

ωh(ldd lqq − l2dq)

(︃
lΣ

[︃
sinωht

− cosωht

]︃
+ l∆

[︃
sin(ωht− 2θme)
cos(ωht− 2θme)

]︃
+

+ldq

[︃
cos(ωht− 2θme)
− sin(ωht− 2θme)

]︃)︃
= iΣ + i∆ + idq

(1.23)

The three equation terms represent three circular trajectories in the α-β reference
frame. Figure 1.8 shows the trajectories of the three current vectors rotating at
high frequency. The sum of the three circles leads to an ellipse that rotates exactly
at the electrical speed ˜︁ωme. At standstill the hf ellipse is stationary. The major
semi-axis tilt corresponds to the estimated rotor position ˜︁θme. It is worth noting
that the adopted HPF eliminates the fundamental component due to the operating
working point. This ensures that the hf ellipse is centered in the origin of the α-β
reference frame.

The hf ellipse brings information about rotor mechanical-electrical position and
speed, as shown in Figure 1.9. Major axis tilt ˜︁θme and rotation speed ˜︁ωme are
indirect measurements of the actual rotor position θme and speed ωme.

In the following analysis, the implicit equation of an ellipse centered in the origin
is adopted:

a x2 + b xy + c y2 + f = 0 (1.24)
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Figure 1.8: hf rotating vectors at standstill with θme = 0. Resulting ellipse is not
horizontal because of ldq ̸= 0.

where x = ihα and y = ihβ . The mathematical relationships between ellipse equa-
tion coefficients and motor inductive parameters are summarized in the following:

a = l2Σ + l2∆ + l2dq − 2 lΣ

√︂
l2∆ + l2dq cos(2

˜︁θme)

b = −4 lΣ

√︂
l2∆ + l2dq sin(2˜︁θme)

c = l2Σ + l2∆ + l2dq + 2 lΣ

√︂
l2∆ + l2dq cos(2

˜︁θme)

f = −U2
h

ω2
h

(1.25)

It is important to highlight that the ellipse coefficients a, b and c vary with the
rotor position, as shown in Figure 1.10, allowing (1.24) to describe a rotating ellipse.
Differently the coefficient f depends only on the injected signal and not on the rotor
position.

The major semi-axis tilt ˜︁θme can be written in terms of the ellipse coefficients
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Figure 1.9: hf currents response to rotating injection.

(in the case of PMA-SynRM) as:

˜︁θme =
1

2
atan2(−b, c− a) (1.26)

Cosine and sine of the estimated position ˜︁θme can be computed as:

cos(2˜︁θme) =
c− a√︁

b2 + (c− a)2
(1.27)

sin(2˜︁θme) =
−b√︁

b2 + (c− a)2
(1.28)

cos(˜︁θme) = ±

√︄
cos(2˜︁θme) + 1

2
(1.29)

sin(˜︁θme) = ±
√︂
1− cos2(˜︁θme) (1.30)

Applying the formula for the derivative of the inverse tangent to (1.26), the esti-
mated rotor angular speed results:

˜︁ωme =
1

2

(c− a)2

b2 + (c− a)2
d

dt

(︃ −b

c− a

)︃
. (1.31)

The previous equations can be used to estimate the rotor position and speed
from the the hf currents ihα, ihβ processed with the online ellipse fitting. Together
with the rotor position and speed, the real-time ellipse fitting allows to compute
also the rotor saliency. The ellipse axis detection is feasibile when the rotor saliency
can be recognized, i.e. when the ratio between the major sM and minor sm ellipse
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Figure 1.10: Rotor position, estimated position and estimated coefficients a, b, c
during a steady state test at 100 rpm.

semi-axes lenghts is greater than one. Semi-axes lenghts can be extrapolated from
the ellipse equation coefficients as:

sM =

√︃
−2f

4ac− b2

(︂
a+ c+

√︁
b2 + (a− c)2

)︂
(1.32)

sm =

√︃
−2f

4ac− b2

(︂
a+ c−

√︁
b2 + (a− c)2

)︂
(1.33)

It follows that the hf saliency ratio can be monitored online computing:

ξ =
sM
sm

=
a+ c+

√︁
b2 + (a− c)2

a+ c−
√︁
b2 + (a− c)2

(1.34)

It is also possible to obtain individually the semi-axes lengths as functions of the
differential inductances lΣ, l∆, ldq:

sM =
Uh

ωh

lΣ +
√︂
l2∆ + l2dq

l2Σ − l2∆ − l2dq
(1.35)

sm =
Uh

ωh

lΣ −
√︂

l2∆ + l2dq

l2Σ − l2∆ − l2dq
(1.36)

Moreover, the ellipse fitting approach allows to estimate online the following incre-
mental inductances:
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lΣ =
1

2

√︂
a+ c+

√︁
4ac− b2 (1.37)

√︂
l2∆ + l2dq =

1

2

√︄
b2 + (a− c)2

a+ c+
√
4ac− b2

(1.38)

ldd lqq − l2dq = l2Σ − l2∆ − l2dq =
1

2

√︁
4ac− b2 (1.39)

1.7 Conclusions

In this chapter, three different injection schemes have been briefly considered. An-
alytical equations show that the considered injection and demodulation schemes
share almost the same signal Ihq which is related to convergence region of the sen-
sorless drive. As will be seen in detail in the next chapter, sensorless performance
is inherently related with the considered motor and its operating point. Also the
ellipse fitting scheme has been introduced. This method is innovative since it allows
to the extract the rotor position information avoiding the conventional demodula-
tion approach. Experimental results of the ellipse fitting procedure will be shown
in the other chapters of the thesis.



Chapter 2

Synchronous Motor Model

Abstract - Performance achievable in sensorless control of electrical drives strictly
depends on the adopted synchronous machine. The combination of cross-saturation
and saliency, both dependent by the current load and the rotor position, makes
always the position estimation afflicted by an estimation error. When the machine
is highly saturated, the sensorless control can even diverge resulting in a useless
drive. Thus, it is of primary importance to know in advance the convergence region
of the sensorless drive, i.e. the operating points where the motor can be successfully
controlled without a position sensor.

This chapter presents a computational approach1 to calculate the inductances,
the MTPA and the self-sensing capabilities of a synchronous motor starting from
its flux linkages maps. The proposed PMSM model is valid and useful for both
sensored and sensorless control [21].

1https://gitlab.com/LuigiAlberti/dolomites-python (free code)
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https://gitlab.com/LuigiAlberti/dolomites-python


CHAPTER 2. SYNCHRONOUS MOTOR MODEL 28

2.1 Introduction

The motor itself serves as a sensor in a sensorless drive. The motor self-sensing
capability allows to estimate the rotor position measuring and processing the stator
currents. Signal injection sensorless control is known to be affected by the variation
of the motor differential inductances with the operating point. The variation of
the differential inductances makes the same motor change its response to the signal
injection depending on the load current. The saliency ratio and the estimation error
introduced by the cross-saturation change significantly on the same motor because
of the intinsic non-linearities [22,23]. Moreover, depending on the differential induc-
tances shape, some motors can be more suitable than others to be controlled without
a position sensor. In particular it has been shown that stator and rotor geometry
play a fundamental role on how the motor responds to the signal injection [24–26].

Research on signal injection sensorless control has recently progressed with the
introduction of the “convergence region” concept [15, 16]. Previous works focused
mainly on saliency ratio and estimation error [27–29]. A motor characterized on
average by high saliency ratio and low estimation error is suitable for a sensorless
drive, and viceversa. Since both saliency ratio and estimation error depend on the
current load, there exist operating points where the motor can be effectively con-
trolled without a position sensor and operating points where the sensorless operation
is even unfeasible. Researchers reported the set of operating points in which the
sensorless control is achievable with null or small estimation error as “feasible re-
gion” [27,30,31]. Exceeding the current limit imposed by the feasible region leads to
the divergence of the position observer. It follows that the concepts of saliency ratio,
estimation error and feasible region are consistent with the real behavior of a sen-
sorless drive but not entirely explanatory. The convergence region theory, recently
proposed, explains rigorously the performance of a sensorless drive including the
divergence of the position observer in heavy saturation conditions. The ambitious
task of extending the convergence region has been recently achieved [15, 16, 32, 33],
but these kind of compensations are beyond the scope of this work.

The primary aim of this chapter is to provide a complete and systematic model
to compute the self-sensing capabilities (saliency ratio, estimation error and conver-
gence region) of a given motor starting from its flux linkages maps. Since such maps
can be derived both experimentally and through simulations, the developed model
is useful for both experimental sessions in lab (for example in the characterization
of an existing motor) and during the design and development of new electric drives.
It is also highlighted that the convergence region depends on both the reference
trajectory for current control and the rotor position. Therefore, as a major contri-
bution, this work proposes a clear and systematic approach for the computation of
the convergence region of the sensorless drive.

The proposed model is supported by finite element analysis (FEA) and experi-
mental validation on a SynRM and a PMA-SynRM.

2.2 Description of the considered motors

The motors considered in this work are a SynRM and a PMA-SynRM. The two
prototypes have been designed for electric vehicle traction purpose, resulting in
highly saturated motors [34]. Main data of the considered machines are shown in
Table 2.1. The laminations of the two motors and the conventions used to define the
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Table 2.1: Main data of the considered machines.

slots/poles 36/4

rated power 2 kW
rated peak current 6 A
rated torque 16 Nm
rated speed 1400 rpm
stator resistance 4.6 Ω
d-axis apparent inductance 54 mH
q-axis apparent inductance 400 mH
stator outer diameter 200 mm
stator inner diameter 125 mm
air gap length 0.3 mm
stack length 40 mm
PM remanence (PMA-SynRM) 0.5 T

(a) SynRM (b) PMA-SynRM

Figure 2.1: Considered synchronous motors laminations and conventions.

d-q axes are shown in Figure 2.1. Signal-injection methods are designed to identify
the position of an axis by exploiting the fact that its inductance is greater or less
than the inductance of the other axis. Thus, the d-q axes convention must be taken
carefully into account. Moreover, as will be shown in Sec. 2.3.5, the estimation
error ε should be computed with two different equations depending on the adopted
convention.

2.3 Modeling of synchronous machine

The structure of the current section represents a sistematic workflow to compute
the self-sensing capabilities of a PMSM or SynRM starting from the flux linkages
maps.
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2.3.1 Flux linkages maps

Flux linkages maps are the first analysed in this work. Stator voltage equations of
a PMSM or SynRM in the synchronous reference frame d-q can be expressed as:

ud = R id +
dλd

dt
− ωme λq

uq = R iq +
dλq

dt
+ ωme λd

(2.1)

where R is the stator resistance, id and iq the currents, λd and λq the flux linkages
and ωme the rotor electrical speed. Equations (2.1) are valid whatever convention
is chosen (Figure 2.1).

The flux linkages λd and λq strictly depend on the operating point (id, iq). The
relationships λd(id, iq) and λq(id, iq) for a given motor can be found through FEA
or experimental measurements. Several characterization techniques are reviewed
in [35]. For both SynRM and PMA-SynRM, FEA and flux linkages measurements
have been realized. The offline identification process required a prime mover motor
to mantain a constant speed. The adopted method ensures that the flux linkages
measuruments are not affected by the termal drift in stator resistance [36]. The
flux linkages of SynRM are shown in Figure 2.2 and Figure 2.3. Regarding PMA-
SynRM, the simulated and measured flux linkages are depicted in Figure 2.4 and
Figure 2.6. Simulated and experimental maps have comparable shapes. Absolute
error percentage between simulated and measured fluxes is about 10% along the iron
axis and 20-30% along the flux barriers axis for both SynRM and PMA-SynRM.

As concerns the finite element simulations (Figure 2.2 and Figure 2.4), flux
linkages have been evaluated for 30 rotor positions (i.e. one electrical periodicity)
and, subsequently, the mean value has been computed and depicted. Regarding the
experimental maps (Figure 2.3 and Figure 2.6), the flux linkages have been measured
at constant speed, thus the average values on a rotor revolution are available.

Flux linkages maps, and consequently all the parameters obtainable from them,
depend on both id and iq but also on the rotor position θme. In fact, rotor rotation
with respect to the stator introduces secondary effects such as spatial harmonics and
local saturation due to the slotting. In the following, flux linkages maps are com-
puted with FEA considering the average values on a rotor revolution (Figure 2.4).
It is worth noting that the proposed computations can be extended for all rotor
positions of interest.

2.3.2 Apparent inductances

Flux linkages, can be expressed as:

λd(id, iq) = Ld(id, iq) id + λd(0, iq)

λq(id, iq) = Lq(id, iq) iq + λq(id, 0)
(2.2)

where Ld and Lq are the apparent inductances. It is worth noting that equation
(2.2) has general validity. For both the conventions in Figure 2.1 the term λq(id, 0)
can be neglected since practically equal to 0. The same consideration is valid for
the term λd(0, iq) in the case of SynRM.

Apparent inductances (or absolute inductances, [37]) represent the gradient of
the flux linkages versus the currents respect to the origin. Rearranging (2.2) it is
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Figure 2.2: Flux linkages λd, λq in the case of SynRM. Finite element analysis.
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Figure 2.3: Flux linkages λd, λq in the case of SynRM. Experimental measurements.
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Figure 2.4: Flux linkages λd, λq in the case of PMA-SynRM. Finite element analysis.

possible to obtain:

Ld(id, iq) =
λd(id, iq)− λd(0, iq)

id

Lq(id, iq) =
λq(id, iq)− λq(id, 0)

iq

(2.3)
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Figure 2.5: Flux linkages λd, λq in the case of PMA-SynRM. Finite element analysis
(θme = 0).
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Figure 2.6: Flux linkages λd, λq in the case of PMA-SynRM. Experimental mea-
surements.

Differently to the incremental inductances (2.3.3) that can be calculated consider-
ing the variation of the fluxes between two adjacent working points, the apparent
inductances are computed independently for each steady-state operating point. Fig-
ure 2.7 shows the apparent inductances of PMA-SynRM in the case of finite element
analysis. Apparent inductances are useful for the computation of global quantities,
such as the torque.

2.3.3 Incremental parameters

The incremental (or differential) inductances are the key parameters needed for the
computation of the self-sensing capabilities of a considered synchronous machine
(2.3.5). Two methods, both valid and with comparable results, for computing the
incremental inductances using the finite element analysis can be found in literature,
such as the small-signal model of the machine [38, 39] and the frozen permeability
method [40].

In the following, incremental inductances are directly calculated as the local
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Figure 2.7: PMA-SynRM apparent inductances maps (FEA).

derivatives of the flux linkages maps:

[︄
ldd(id, iq) ldq(id, iq)

lqd(id, iq) lqq(id, iq)

]︄
=

⎡
⎣

∂λd(id,iq)
∂id

∂λd(id,iq)
∂iq

∂λq(id,iq)
∂id

∂λq(id,iq)
∂iq

⎤
⎦ (2.4)

Figure 2.8 shows the incremental inductances computed for the PMA-SynRM. As
expected, the cross-saturation inductance ldq is equal to lqd.

As regards the computation of the incremental inductances, the derivative of a
matrix can be obtained in Python and MATLAB using either the function “diff” or
the function “gradient”. The function “diff” computes the derivative calculating the
single-sided differences. The result is an array with smaller size than the array on
which diff is computed. In particular, incremental inductances ldd and lqd (obtained
applying diff along direction id) have one less row than the starting matrices λd

and λq. On the other hand, incremental inductances ldq and lqq (obtained applying
diff along direction iq) have one less column than the starting matrices λd and λq.
In order to guarantee the same number of rows and columns in all the matrices,
one should duplicate the last row of ldd and lqd and the last column of ldq and
lqq. Regarding “gradient”, the function computes the derivative calculating central
difference. The result of the differentiation with gradient is an array with the same
size of the original fluxes. Moreover, the use of gradient has a smoothing effect in
the resulting inductances.

A close correlation between Ld and ldd can be noted (Figure 2.7a and Fig-
ure 2.8a), as well as between Lq and lqq (Figure 2.7b and Figure 2.8d). The ana-
lytical relationship between the incremental and the apparent inductances can be
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Figure 2.8: Incremental inductances ldd, ldq, lqd, lqq in the case of PMA-SynRM
(FEA).

obtained by applying the partial derivatives to (2.3):

ldd(id, iq) = Ld(id, iq) +
∂Ld(id, iq)

∂id
id

ldq(id, iq) =
∂λd(0, iq)

∂iq
+

∂Ld(id, iq)

∂iq
id

lqd(id, iq) =
∂λq(id, 0)

∂id
+

∂Lq(id, iq)

∂id
iq

lqq(id, iq) = Lq(id, iq) +
∂Lq(id, iq)

∂iq
iq

(2.5)

It follows that:

Ld(id, iq) =

∫︁
ldq(id, iq) diq − λd(0, iq)

id

Lq(id, iq) =

∫︁
lqd(id, iq) did

iq

(2.6)

As stated in 2.3.2, the term λq(id, 0) is equal to zero for a PMA-SynRM. In the case
of SynRM, the terms λd(0, iq) and λq(id, 0) are both zero. In the case of an ideal



CHAPTER 2. SYNCHRONOUS MOTOR MODEL 35

−6 −3 0 3 6
id (A)

−6

−3

0

3

6

i q
(A

)

-239

-177

-115

-52

10

0

(a) l∆(id, iq) (mH) SynRM

−6 −3 0 3 6
id (A)

−6

−3

0

3

6

i q
(A

)

-16

47

111

174

237

0

(b) l∆(id, iq) (mH) PMA-SynRM

Figure 2.9: Semi-difference incremental inductance l∆ computed with (2.7).

motor (linear flux linkages), it is clearly ldd = Ld = const, lqq = Lq = const and
ldq = lqd = 0.

The inductances lΣ and l∆ should be defined for the computation of the sensorless
capabilities (2.3.5):

lΣ(id, iq) =
lqq(id, iq) + ldd(id, iq)

2

l∆(id, iq) =
lqq(id, iq)− ldd(id, iq)

2

(2.7)

The incremental inductance lΣ is the mean value between ldd and lqq in each op-
erating point (id, iq), while l∆ is the semi-difference. Incremental inductance l∆
in the case of SyRM and PMA-SynRM is depicted in Figure 2.9. The term l∆ is
related to the negative sequence of the current response to the high frequency in-
jection [41,42]. Such negative sequence of the current response, which amplitude is

proportional to
√︂
l2∆ + l2dq, contains the position information which is exploited for

the rotor position estimation.
The area of |l∆ ̸= 0| has been reported as “feasible region” in literature because

the sensorless control can operate safely and with acceptable estimation error within
this region [26,27,30,31]. Many researchers consider the trajectory l∆ = 0 critical for
sensorless control and crucial for the self-sensing capabilities assessment. Exceeding
the current limit of the feasable region leads to a warning zone (characterized by high
estimation error) and to a not feasable zone (with high risk of control divergence)
[22]. Generally the definition of the feasible region is approximate and not rigorous.
Moreover it has been found that sensorless operation is possible beyond the l∆ =
0 region adopting appropriate control strategies [31], thus the concept of feasible
region should be revisited. Sec. 2.3.5 will focus on a novel concept, the convergence
region computation, that fully explains the operation of a sensorless drive, i.e. the
control of a motor when the estimated position is used in closed loop.

The incremental inductances matrix has been defined in (2.4). Computing the
inverse of (2.4), it is possible to obtain:

[︄
γdd(id, iq) γdq(id, iq)

γqd(id, iq) γqq(id, iq)

]︄
=

[︄
ldd(id, iq) ldq(id, iq)

lqd(id, iq) lqq(id, iq)

]︄−1

(2.8)



CHAPTER 2. SYNCHRONOUS MOTOR MODEL 36

The incremental parameters γxx in the case of PMA-SynRM are depicted in Fig-
ure 2.10. The incremental parameters γxx can be directly computed from the incre-
mental inductances lxx expanding equation (2.8) into the following:

γdd(id, iq) =
lqq(id, iq)

∆

γdq(id, iq) =
−ldq(id, iq)

∆

γqd(id, iq) =
−lqd(id, iq)

∆

γqq(id, iq) =
ldd(id, iq)

∆

(2.9)

where:

∆ = ldd(id, iq) lqq(id, iq)− ldq(id, iq) lqd(id, iq) (2.10)

The incremental parameters γxx are not necessary for the computation of the self-
sensing capabilities. Actually, equations in 2.3.5 could be rewritten as function of the
incremental parameters γ, but it would not be useful. The incremental parameters
γxx defined in (2.8) can be used for creating the non-linear Simulink model with the
current as state variable (appendix A).

2.3.4 Maximum Torque Per Ampere trajectory

The maximum torque per ampere (MTPA) trajectory for a considered motor can be
obtained with offline and online methods [43,44]. In this work, MTPA is calculated
through derivation of the torque with respect to the current angle αie.

It is possible to consider the torque available with the finite element analysis
(from Maxwell’s stress tensor) or the dq torque obtainable with the following equa-
tion:

m(id, iq) =
3

2
p [λd(id, iq) iq − λq(id, iq) id] (2.11)

where p is the number of pole pairs.

Figure 2.11a shows the PMA-SynRM torque obtained with finite element anal-
ysis. Once the torque is computed, the tangential derivative can be calculated as:

∂m(id, iq)

∂αie
= −∂m(id, iq)

∂id
iq +

∂m(id, iq)

∂iq
id (2.12)

The torque derivative with respect to the current angle, in the case of PMA-SynRM,
is depicted in Figure 2.11b. The dashed lines represent the locus where the torque
derivative is zero. For a PMA-SynRM the MTPA is located in the second quadrant.
The MTPA trajectory can be extracted from the map in Figure 2.11b and expressed
in cartesian coordinates as in Figure 2.12a. For the computation of the convergence
region (2.3.5), it is useful to express the MTPA trajectory in polar coordinates as
shown in Figure 2.12b. For a SynRM the MTPA trajectory is equivalently in the
first and third quadrant of the d-q plane.
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The MTPA can also be computed analytically [45] considering the torque equa-
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Figure 2.12: MTPA in the case of PMA-SynRM.

tion (2.11) obtaining:

∂m(id, iq)

∂αie
= 2 ldq(id, iq) id iq − (ldd(id, iq) i

2
q + lqq(id, iq) i

2
d)

+ λd(id, iq) id + λq(id, iq) iq (2.13)

or, equivalently:

∂m(id, iq)

∂αie
= 2 ldq(id, iq) id iq −

[︁
ldd(id, iq) i

2
q + lqq(id, iq) i

2
d

]︁

+ Ld(id, iq) i
2
d + Lq(id, iq) i

2
q + λd(0, iq) id + λq(id, 0) iq (2.14)

2.3.5 Self-sensing capabilities

In this section, the computation of saliency ratio, estimation error (in open loop) and
convergence region are explained. Saliency ratio and estimation error are commonly
referred to as self-sensing capabilities [27–29, 46, 47]. The concept of “convergence
region” [15, 16] replaces the concept of “feasible region” [27, 30, 31] as it is more
rigorous and explanatory.

The saliency ξ is the ratio between the major and minor semi-axes lengths, sM
(1.32) and sm (1.33), of the current response to the high frequency rotating voltage
injection [22,47] and it can be defined as:

ξ(id, iq) =
lΣ(id, iq) +

√︂
l2∆(id, iq) + l2dq(id, iq)

lΣ(id, iq)−
√︂
l2∆(id, iq) + l2dq(id, iq)

(2.15)

The saliency ratio can be computed as ξ =
lqq
ldd

when the cross-saturation induc-

tance ldq is neglected [27]. The saliency ratio in the case of SynRM and PMA-SynRM
is depicted in Figure 2.13. Theoretically, a saliency ratio ξ > 1 makes the position
estimation possible. In practice, the area in which the saliency is little greater than
one can be considered critical for the position estimation using saliency tracking
methods.
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Figure 2.13: Saliency ratio ξ computed with (2.15).

The estimation error ε is the second parameter related to the self-sensing capa-
bilities which can be predicted from the incremental inductances. Without applying
any compensation, the position observer of any signal injection method will never
be able to estimate θme, because of the altered response of the machine due to the
cross-saturation. What can be estimated is ˜︁θme, where:

˜︁θme(id, iq) = θme + ε(id, iq) (2.16)

˜︁θme is the rotor position θme altered by the presence of the estimation error ε
[15, 16, 23]. It appears that the estimated position corresponds exactly to ˜︁θme at
steady state, that is the reason why ε is called estimation error. Inevitably during
transients the estimated position can assume other values. Estimation error ε can
be computed as:

ε =

⎧
⎪⎪⎨
⎪⎪⎩

1
2 atan2(−ldq, l∆) = arctan

(︃
−ldq

l∆+
√

l2∆+l2dq

)︃
, for PMA-SynRM

1
2 atan2(ldq,−l∆) = arctan

(︃
ldq

−l∆+
√

l2∆+l2dq

)︃
, for SynRM

(2.17)

and it results a function of id, iq as ldq and l∆. Estimation error ε for SynRM and
PMA-SynRM is shown in Figure 2.14. It is worth noting that a critical area where
the estimation error abruptly skips from −90◦ to 90◦ exist. This region should be
avoided to guarantee a safe sensorless control operation.

Conventional PMSM control requires a reference trajectory to be chosen for the
current control loop. The current amplitude reference IREF , generated by the speed
control loop, is converted to the projections idREF to iq REF following the current
reference trajectory, which usually corresponds to the MTPA.

Definition of trajectory t1

During a sensored operation, the measured position is used to control the motor
along the reference trajectory. The position observer, if present, is set in open-
loop thus the estimated position is not used for control, but only monitored. The
estimated position will be different from the measured one because of the presence of
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Figure 2.14: Estimation error (in open loop) ε computed with (2.17).

the cross-saturation effect. In other words, the trajectory drawn by the observer in
open loop during a sensored operation, hereafter called sensored trajectory t1, will be
different from the reference trajectory. The sensored trajectory t1 can be predicted
starting from the open loop estimation error ε (Figure 2.14b) and the reference
trajectory REF (Figure 2.12a). The procedure to compute the sensored trajectory
t1 in the case of PMA-SynRM is described with the help of Figure 2.15. At first, the
estimation error map has to be interpolated along the reference trajectory, leading
to ε(I) (Figure 2.15a). Then, ε(I) has to be added to the reference trajectory itself,
leading to the sensored trajectory t1 (Figure 2.15b). It is possible to notice that the
observer trajectory t1 is close to the reference only for low current amplitudes, i.e.
when ldq ≈ 0 thanks to the low saturation level. Increasing the current amplitude,
t1 progressively moves away from the reference trajectory because of the increase of
the cross-saturation and, consequently, of the absolute value of ε(I). It is relevant
noting that t1 is a fictitious trajectory. A position sensor is required to cover the
reference trajectory REF and draw the observer trajectory t1.

Definition of trajectory t2

During a sensorless operation, no position sensor is used. While in the sensored
control the estimation error afflicts only the estimated position but not the operating
point, during a sensorless operation the control loop is closed with the estimated
angle and so the operating point is afflicted by the estimation error ε. In particular,
the motor operates along a trajectory different from the desired reference one. This
trajectory, hereafter called sensorless trajectory t2, can be computed following the
next steps:

• computation of ∆θ(id, iq)

• computation of Ihq(id, iq)

• computation of Ihq(id, iq) = 0 and
∂Ihq(id,iq)

∂αie
< 0

As will be clarified shortly, the sensorless trajectory t2 is just one of the trajectories
belonging to the convergence region.
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Figure 2.15: Procedure to compute the sensored trajectory t1 given the reference
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the the reference trajectory (on the left). The second step consists in adding ε to
reference trajectory itself (on the right).

The first step consists in computing ∆θ(id, iq) over a portion of id-iq plane as:

∆θ(id, iq) = αie(id, iq)− θREF (I) (2.18)

where αie(id, iq) = atan2(iq, id) and I(id, iq) =
√︂

i2d + i2q. The term θREF (I) can be

obtained from the reference trajectory expressed in polar coordinates (Figure 2.12b).
Figure 2.16a shows the computation of ∆θ for an example point (-1,4) in the id-iq
plane. It is possible to notice that, given a point in d-q plane, ∆θ is the angle
between the point itself and the reference trajectory (REF) with the same current
amplitude. ∆θ has to be evaluated for all the current points where it is interesting
to investigate the self-sensing capabilities of the considered sensorless drive.

Once computed ∆θ(id, iq), the map of Ihq(id, iq), i.e. the amplitude of the input
signal of the position estimation observer (1.22), can be computed as:

Ihq = − Uh

2πfh

√︂
l2∆ + l2dq

ldd lqq − l2dq
sin(2∆θ − 2ε) (2.19)

where Uh and fh are the amplitude and the frequency of the high-frequency injected
voltage. The map of Ihq(id, iq) in the case of PMA-SynRM and MTPA chosen as
current reference is shown in Figure 2.16b. Being the position estimation observer
a PI controller (Figure 1.4, 1.6, 2.17), the convergence of the position estimation is
found once the input signal Ihq is nullified. In practice, the position observer varies
its output (the angle of the estimated position) until the zero-crossing of the input
Ihq is found. In Figure 2.16b, the locus Ihq = 0 is depicted in dashed lines. The whole
locus Ihq = 0 includes both stable and unstable convergence points of the observer.
Only the stable points of the locus Ihq = 0 can be defined as convergence region. In
particular, the convergence region is the subset of points of Ihq = 0 characterized
by negative slope with respect to the current angle. Thus, the tangential derivative
of Ihq has to be computed in order to extract the convergence region.
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Figure 2.16: Procedure to compute the convergence region and the sensorless tra-
jectory t2. The first step consists in computing ∆θ for all the current points with
(2.18) (top-left). The second step consists in computing Ihq, input of the position
observer, using (2.19) (top-right). The third step consists in computing the deriva-
tive of Ihq with respect to the current angle with (2.20) (bottom-left). The last
step consists in extracting the convergence region from Ihq = 0 (bottom-right). The
sensorless trajectory t2 is the first part of the convergence region, depicted in blue.

Figure 2.17: Conventional demodulation and position observer scheme for signal-
injection sensorless control. Ihq is the input of the position observer or, equivalently,
the output of the demodulation process.

The derivative of Ihq with respect to the current angle can be computed as:

∂Ihq(id, iq)

∂αie
= −∂Ihq(id, iq)

∂id
iq +

∂Ihq(id, iq)

∂iq
id (2.20)

The map of the tangential derivative of Ihq is depicted in Figure 2.16c. Stable
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Figure 2.18: Results of the proposed computations on 4 different datasets. t1 is a
fictitious trajectory representing the output of the position observer (in open loop)
during a sensored operation along the reference trajectory REF. t2 is the effective
trajectory in sensorless operation, with the estimated position used in closed loop.
In blue the set of points of Ihq = 0 with negative slope (i.e. the convergence region).
In red the set of points of Ihq = 0 with positive slope.

convergence points of Ihq = 0 can be found where the tangential derivative of
Ihq is negative. The convergence region (Figure 2.16d) is obtained computing the

intersection between the conditions Ihq(id, iq) = 0 and
∂Ihq(id,iq)

∂αie
< 0. As shown

in Figure 2.16d, the sensorless trajectory t2 is just the first part, starting from
the origin, of the convergence region. It represents the trajectory of the effective
operating points controlling the motor in sensorless operation, i.e. closing the control
on the estimated rotor position. As long as the negative-slope zero-crossing of Ihq
with respect to the current angle αie exists, the position can be estimated. When
a motor is highly saturated, Ihq does not cross zero for any current angle and the
trajectory t2 stops. The length of t2 can be considered as the operational limit of
a signal-injection sensorless drive. Sensorless-oriented motor design should focus on
making the trajectory t2 as close as possible to the reference REF.
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Figure 2.18 shows the convergence regions of SynRM and PMA-SynRM com-
puted both on simulated and measured flux linkages maps. MTPA is set as current
reference. Moreover, in each picture, the sensored trajectoy t1 and the sensorless
trajectory t2 are depicted. Convergence regions obtained from SynRM simulated
and measured flux maps appears to be very similar (Figure 2.18a and Figure 2.18c).
The maximum length of trajectory t2 is about 5 A, meaning that theoretically
(assuming ideal conditions like steady-state operations and absence of noise) the
considered motor can operate in sensorless operation up to this current amplitude
(without adopting compensations). As concerns the PMA-SynRM, sensorless trajec-
tory t2 reaches 4.5 A in the case of simulated flux maps (Figure 2.18b) and 5.5 A in
the case of measured flux maps (Figure 2.18d). Considering that both motors have
a rated current of 6 A, from Figure 2.18 it is possible to predict that compensation
techniques [15, 16, 32, 33] are required to reach at least the rated current. Compen-
sation is needed firstly to extend the operational limit and secondly to guarantee
the sensorless operating trajectory is close as possible to the reference trajectory. It
is worth noting that the proposed computation approach of the convergence region
is valid for different reference trajectories. Thus, a simplified MTPA trajectory or
any other trajectory can be chosen depending on the requirements.

2.4 Conclusion

In this chapter, a complete and systematic model of synchronous machines has
been presented and adopted for computing the convergence region of a sensorless
drive. The starting point for the analysis are the motor flux linkages maps. The
self-sensing capability of the drive has been described by the difference between the
sensored and the sensorless operation trajectories, t1 and t2 respectively. Both the
trajectories can be evaluated offline starting from simulation results or experimental
tests.



Chapter 3

Convergence Region
Measurement

Abstract - In this chapter, a measurement procedure of the convergence region,
i.e. the operating points where the motor can be successfully controlled without a
position sensor, of a PMSM sensorless drive is presented and validated [48].

45
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Figure 3.1: (a) Convergence region computed from the simulated flux linkages maps
(FEA) for θme = 0, using the method presented in 2.3.5. (b) Convergence region
measured with the proposed method.

3.1 Introduction

In this work, an experimental procedure to measure the self-sensing capability of a
synchronous sensorless drive is proposed. During the first measurement, the sen-
sored trajectory t1 (the trajectory of the position observer in open-loop during a
sensored operation) is detected. During the second measurement, the sensorless
trajectory t2 (the trajectory of the effective operating points controlling the mo-
tor in sensorless operation) is obtained. The proposed experimental procedure is
compared and validated with finite element analysis (FEA) results. The original
contributions presented in this work are:

• The explanation of the dependency of the actual control trajectory (t2) on the
considered reference trajectory.

• An experimental validation to measure and give clear evidence to such a de-
pendancy.

3.2 Considered motor

A PMA-SynRM is considered in this work. The geometry and the convention
adopted to define the rotor reference frame are shown in Figure 2.1b, while Ta-
ble 2.1 summarizes the main data of the considered machine. The motor has been
characterized for rotor position θme = 0 through FEA. The corresponding flux link-
ages λd and λq are shown in Figure 2.5.

Figure 3.1a shows the convergence region of the considered PMA-SynRM com-
puted on the simulated flux linkages maps. The sensored trajectory t1 moves
away from the MTPA reference for increasing current values because of the cross-
saturation effect on the estimated rotor position [23]. As can be noticed, the sen-
sorless trajectory t2 has a shorter length than t1 because it exists a working point
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(a) Locked PMA-SynRM (b) dSPACE1104 and in-
verter

Figure 3.2: Experimental setup.

beyond which the observer is not able to estimate the rotor position leading to the
sensorless control divergence [15]. The maximum length of trajectory t2 is about 4
A, meaning that the considered motor can operate in sensorless operation up to this
current amplitude (without adopting compensations). For higher current values it
is not possible to estimate the rotor position, and additional compensations should
be adopted [15,16,32,33].

3.3 Proposed method explanation

In Figure 3.1a the sensored trajectory t1 and the sensorless trajectory t2 have been
computed through post-processing computations on the FEA maps. In the follow-
ing, the trajectories t′1 and t′2 will be recorded online during two experimental tests
(the first sensored and the second sensorless) using the MTPA as reference trajectory
for the current control. The tests have been performed on the test bench shown in
Figure 3.2, where the PMA-SynRM has been locked at θme = 0. The control scheme
has been implemented on a dSPACE1104 using a control frequency of 10 kHz. The
amplitude of the voltage injection is Uh = 40 V, and the injection frequency is
fh = 1 kHz. The cut-off frequency has been set to 100 Hz for both high-pass filters
(HPF) and the low-pass filters (LPF) in the control scheme of Figure 1.7.

3.3.1 Trajectory t1 measurement

The first test is performed in sensored mode: the measured position θme = 0 is used
for the current control (the swith in Figure 1.7 is on position 1) while the estimated

position ˜︁θme and the currents id and iq are used for the online computation of the
trajectory t′1. The coordinates of trajectory t′1, i.e. the currents in the estimated
dxqx reference frame ixd and ixq , are so computed:

ixd = id cos(˜︁θme − θme)− iq sin(˜︁θme − θme) (3.1a)

ixq = id sin(˜︁θme − θme) + iq cos(˜︁θme − θme) (3.1b)

It is worth noting that in this test the difference between the estimated position ˜︁θme

and the measured position θme is the open-loop estimation error ε (2.17). Figure 3.3a
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The currents id, iq and the estimated position in open-loop ˜︁θme are used to compute
the currents ixd , i

x
q . The rotor is locked at θme = 0.

shows the results of the first test represented on the d-q plane. The test consists in
controlling the motor using as reference a current ramp, along the MTPA, growing
at rate of 1 A per second. In fact, the operating points represented by the measured
currents id and iq follow the trajectory MTPA from (0,0) up to the rated current
amplitude value (6 A). The trajectory t′1, which coordinates are the currents ixd and
ixq , is shifted with respect to the reference trajectory of a growing angle equal to ε.
The results of the first test are represented also as a function of time. Figure 3.4a
shows the amplitude of the current reference growing at rate of 1 A per second.
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Figure 3.5: Trajectory t′2 measurement procedure represented as a function of time.

The currents ixd , i
x
q and the estimated position in closed-loop ˜︁θme are used to compute

the currents id, iq. The rotor is locked at θme = 0.

Figure 3.4b shows the measured currents id and iq. Figure 3.4c shows the estimation
error, which is null at zero currents and increases up to -15 electrical degrees at the
rated current amplitude. Finally, Figure 3.4d shows the coordinates of trajectory
t′1.

3.3.2 Trajectory t2 measurement

Contrary to the first test, the second test is performed in sensorless mode: the
estimated position ˜︁θme is used for the current control (the switch in Figure 1.7 is
in position 2) while the measured position θme = 0 and the currents ixd and ixq are
used for the online computation of the trajectory t′2. The coordinates of trajectory
t′2, i.e. the currents in the actual dq reference frame id and iq, are so computed:

id = ixd cos(
˜︁θme − θme)− ixq sin(

˜︁θme − θme) (3.2a)

iq = ixd sin(
˜︁θme − θme) + ixq cos(

˜︁θme − θme) (3.2b)

The results of the second test are shown both on the d-q plane (Figure 3.3b) and as a
function of time (Figure 3.5). The test consists in controlling the motor in sensorless
mode using as reference a current ramp, along the MTPA, growing at rate of 1 A per
second. Since the current control is closed on estimated position ˜︁θme, the operating
reference frame is the estimated dxqx. The measured currents ixd and ixq appear
to follow the MTPA reference in the shifted control frame, but the real operating
point is in a different place (t′2). The actual operating point id-iq is different from
the trajectory covered in the first test (the MTPA), thus during a sensorless test -
in which no compensations are actuated - the motor is actually controlled along a
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wrong load-dependent current reference. Since the motor parameters are not linear
and depend on the operating point, the trajectory t′2 cross a region of the d-q plane
where the inductances ldq and l∆ are different from those encountered along the
MTPA trajectory. As a consequence of that, it is possible to notice that the closed-
loop estimation error in Figure 3.5c is different from the open-loop estimation error
in Figure 3.4c. While the open-loop estimation ε error has a direct expression (2.17),
the closed-loop estimation error requires some additional steps to be computed. In
particular, the sensorless trajectory t2 can be computed from the signal Ihq, defined
in (2.19). As concerns the trajectory t′2 recorded during the second test, it is possible
to notice that it is more distant from the MTPA than the sensored trajectory t′1.
Moreover, at a current amplitude of 5 A (at time 5 s) the control diverges. This
can be noted also in oscillations of ixd and ixq (in Figure 3.5b), of id and iq (in

Figure 3.5d), and of ˜︁θme (in Figure 3.5c). The phenomenon of sensorless control
divergence happens in the regions of the d-q plane where the signal Ihq does not
cross the zero for any current angle [15]. When the position estimation and the
control are lost, the sensorless drive becomes unusable.

To conclude, the trajectories computed during the experimental tests are com-
pared and validated with the trajectories obtained from the FEA flux-linkages maps.
The comparison is done considering t1 and t2 (from Figure 2.18), t′1 (from Fig-
ure 3.3a), and t′2 (from Figure 3.3b). In Figure 3.1b it is possible to appreciate that
standstill operation and quasi-steady-state current control make the experimental
results (t′1 and t′2) comparable with the ones predicted assuming an ideal control
(t1 and t2). In particular, the sensored trajectories t1 and t′1 are perfectly coinci-
dent. Regarding the sensorless trajectories, the FEA trajectory t2 is truncated at a
current amplitude of 4 A while the experimental trajectory t′2 reaches the current
amplitude of 5 A. The control diverges for a current amplitude inferior to the rated
value in both cases, indicating that the adopted motor is not completely suitable for
signal injection sensorless control. Adequate compensation methods could improve
the convergence region making it longer and more adherent to the MTPA reference.

In the following, the influence of the reference trajectory and rotor position on
the convergence region are taken into account.

3.4 Dependency on the reference trajectory

Figure 3.6 shows the results of tests covering the influence of the reference trajectory.
Four different linear references have been taken into account while the rotor position
has been kept fixed at θme = 0. The variation of the computed trajectories t1
and t2 for different current references (in terms of distance from the MTPA and
lenght of curve t2) is prominent. In particular, it can be noted that for θREF =
110◦ (Figure 3.6a) the operational limit of t2 is 2 A. On the other hand, when the
reference θREF = 170◦ is chosen, the sensorless operation is guaranteed for current
amplitudes even greater than the nominal current (6 A), but this trajectory is not
practically adopted. A good correspondence can be found between the computed
t1, t2 and measured trajectories t′1, t

′
2. In Figure 3.6a, Figure 3.6b and Figure 3.6c,

the measured trajectories t′2 appear to be slightly wider than the computed t2.
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Figure 3.6: Dependency on the reference trajectory. Comparison between the tra-
jectories computed on FEA data (t1, t2) and the trajectories recorded during the
experimental tests (t′1, t

′
2). The PMA-SynRM is locked at θme = 0◦. The reference

trajectories are linear (θREF is constant).
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Figure 3.7: Dependency on the rotor position. Comparison between the trajectories
computed on FEA data (t1, t2) and the trajectories recorded during the experimental
tests (t′1, t′2). The PMA-SynRM is locked at different rotor positions θme. The
reference trajectory is the MTPA.



CHAPTER 3. CONVERGENCE REGION MEASUREMENT 53

3.5 Dependency on the position

In the last group of tests (Figure 3.7) the effect of the rotor position is considered.
The MTPA trajectory is adopted as current reference for both computations and
measurements on PMA-SynRM. Six rotor positions have been considered. From
the finite element simulations it appears that the theoretical operational limit of
t2 is between 4 A and 5.5 depending on the rotor position. In Figure 3.7 a good
matching between sensored trajectories t1 and t′1 can be found. Regarding the
sensorless trajectories, the curves t′2 appear to be slightly longer than the computed
t2 in all the six figures except Figure 3.7f. The dependence on rotor position can be
noticed in experimental tests (t′2), but it is not as evident as in the computations
(t2).

3.6 Conclusions

In this chapter, an experimental investigation about the convergence region of a
sensorless drive has been presented and adopted. The self-sensing capability of the
drive has been described and highlighted by the difference between the sensored
and the sensorless operation trajectories, t1 and t2 respectively. Both the trajecto-
ries can be evaluated online with proper measurements adopting a standard drive
equipped with a position sensor. It has been demonstrated that the proposed mea-
surement method allows to properly compute and evaluate the trajectories of the
drive considering the effects of the current loop reference trajectory and the rotor
position.





Chapter 4

Recursive Ellipse Fitting
Algorhitm

Abstract - In this chapter a sensorless control scheme is proposed for low speed
or standstill operation of a synchronous motor drive, characterized by a rotor
anisotropy. The method is based on a high frequency voltage injection in the sta-
tor motor windings. High frequency current response to this injection is obtained
from the measured currents thanks to a high pass filter. These filtered currents
describe an ellipse trajectory, that is deeply analysed considering all its compo-
nents. In particular, ellipse major semi-axis tilt is related to the rotor position.
A recursive least squares estimator is proposed for the ellipse equation coefficients
identification. After some manipulations, the rotor position is extrapolated from
these information [19].
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4.1 Introduction

In this chapter a new position estimation algorithm is proposed for low speed or
standstill operation. The estimator is based on a high frequency rotating voltage vec-
tor injection. Unlike the solution described in [42,49], the position is reconstructed
every sampling period thanks to the identification of the current ellipse equation co-
efficients. These coefficients are recursively updated using a recursive least squares
estimator (RLSE). Since the ellipse major semi-axis tilt depends on the rotor po-
sition, it can be easily computed by elaborating the ellipse equation coefficients.
The proposed algorithm has the same known limits of the other injection-based
sensorless techniques. Since the estimation is based on the motor anisotropy, rotor
position cannot be extrapolated when the machine works in operating points where
no anisotropy could be distinguished. Moreover, the presence of a strong correlation
between the direct and quadrature axes, i.e. cross-saturation effect, introduces an
error in the position estimation. Compensation techniques are beyond the scope of
this work.

4.2 Ellipse detection method for the position esti-
mation

4.2.1 High frequency rotating voltage injection

A standstill and low-speed rotor position estimator is proposed in this chapter for
sensorless electric motor drives application. The method is based on the injection
of a hf voltage signal that is superimposed to the voltage reference generated by the
d-q axis current control loops. The rotor position can be extrapolated exploiting the
current anisotropic responses to this injection, due to the rotor magnetic anisotropy.
For this purpose the hf component of the currents is extracted by using a HPF, as
shown in Figure 1.7.

A rotating voltage space vector in the α-β stationary reference frame of ampli-
tude Uh and frequency ωh = 2πfh is used as injected signal. The permanent magnet
flux linkage does not contribute to the hf voltage balance and the resistive drop can
often be neglected due to the high frequency of the injected signal. According to
these hypothesis, the motor equation assumes the following form:

[︃
uhα

uhβ

]︃
=

d

dt

[︃
λα

λβ

]︃
=

∂λαβ

∂iαβ

diαβ
dt

=

[︃
lα lαβ
lαβ lβ

]︃
d

dt

[︃
ihα
ihβ

]︃
(4.1)

As already explained in 1.6, in the case of anisotropic motor the current response
to a rotating injection is a hf ellipse. The ellipse major-semi axis follows to rotor
position. Thus, a real-time ellipse fitting technique can be used to extract the
position information from the rotating ellipse (Figure 4.1).

4.2.2 A recursive ellipse parameters reconstruction

In this subsection the ellipse fitting technique is analysed. The problem of recon-
structing ellipse equation parameters has already been faced [50]. Considering our
case, ellipse parameters are time variant since the ellipse rotates at the electrical
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(a) Rotating ellipse (b) Current samples and fit

Figure 4.1: hf currents and ellipse fitting.

speed. However, since ellipse rotation is quite slow, the same happens for its equa-
tion coefficients. This is due to the operating speed range of the injection based
sensorless algorithms, i.e. low speed and standstill.

Least squares estimator (LSE) is used to fit a set of current points with an ellipse,
as shown in Figure 4.1b. This can be written in matrix form as:

H ˜︁x = y (4.2)

where:

H =

⎡
⎢⎢⎢⎣

i2α1 iα1iβ1 i2β1
i2α2 iα2iβ2 i2β2
...

...
...

i2αn iαniβn i2βn

⎤
⎥⎥⎥⎦ ˜︁x =

⎡
⎣
a
b
c

⎤
⎦ y =

⎡
⎢⎢⎢⎣

−f
−f
...

−f

⎤
⎥⎥⎥⎦ (4.3)

The n × 3 matrix H is the measured data matrix, where the couples (iα1, iβ1),
(iα2, iβ2) . . . (iαn, iβn) are the sampled hf filtered α-β current points. Each sampling
period the matrix H is updated with a new couple of measured currents. The n× 1
vector y can be imposed equal to the ones vector since f is a fixed scaling constant
(1.25), related only to the hf injected voltage signal.

The coefficients a, b, c estimated with the LSE minimize the sum of the squares
of the algebraic distances between the fitting ellipse and the data points. Coefficients
vector ˜︁x can be evaluated as follows:

˜︁x =
(︁
HT H

)︁−1
HT y (4.4)

This solution requires a long buffer of n sampled points to guarantee a good fit, thus
demanding high computational efforts. For this reason the LSE is not adopted and a
recursive estimator [51] if preferred. In fact, under the hypothesis of low parameter
changes, a recursive step by step ellipse identification appears more suitable:

˜︁x(k) = ˜︁x(k − 1) + ∆˜︁x(k) (4.5)

A proper recursive least squares estimator (RLSE) is implemented to estimate the
ellipse equation coefficients. The RLSE can be performed exploiting less points than
the LSE. Recursions are composed of three main steps:
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• gain matrix K computation

K(k) = P(k − 1) HT
(︁
H P(k − 1) HT +R

)︁−1
(4.6)

• covariance matrix P update

P(k) =
1

λ

(︁
P(k − 1)−K(k) H P(k − 1)

)︁
(4.7)

• ellipse parameters vector ˜︁x update

˜︁x(k) = ˜︁x(k − 1) +K(k)
(︁
y −H ˜︁x(k − 1)

)︁
(4.8)

In the previous expressions, R is the measurement covariance matrix while λ is
a forgetting factor. The fitting algorithm effectiveness is shown in the simulation
and experimental tests in Sec. 4.3.

4.2.3 Rotor position reconstruction

The RLSE guarantees a recursive update of the parameters a, b, c. Neglecting cross-
saturation effects, the position coincides to the ellipse major semi-axis tilt. Thus
the rotor position estimation can be obtained from the parameters a, b, c by the
following equation (in the case of PMA-SynRM):

˜︁θme =
1

2
atan2(−b, c− a) (4.9)

Eq. (4.9) generates a position signal ˜︁θme between 0 and π, as shown in Figure 1.10,
because of the coefficient 1

2 . However for the machine control a position varying
between 0 and 2π is necessary. The solution adopted in this work to maintain the
estimated position in the desired interval is described hereafter. After an initial
alignment, an incremental electric position is computed using the ellipse coefficients
calculated during two following iterations:

θk − θk−1 =
1

2
arctan

(︃ −ak bk−1 + bk ak−1 − bk ck−1 + ck bk−1

ak ak−1 − ak ck−1 + bk bk−1 − ck ak−1 + ck ck−1

)︃
(4.10)

Coefficients subscripts indicate the sample time step. Keeping the position estima-
tion in the desired interval results quite simple thanks to the incremental approach.

4.3 Simulation and experimental results

Several simulations have been performed to validate the proposed sensorless solu-
tion. Simulations are carried out on a PMA-SynRM motor whose parameters are
reported in Table 2.1.

Sensorless control schemes performance is mainly influenced by ldq and l∆, as
already noticed in Sec. 4.2.1 and in Chapter 2. The PMA-SynRM motor is con-
trolled on its MTPA trajectory (Figure 2.12a). The operating working point has
to be quite far from the region where l∆ = 0 (Figure 2.9), that is the area where
the convergence of the method is critical because of the loss of the rotor saliency
containing the position information.
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Figure 4.2: PMA-SynRM current ellipse shapes in different current operating points
at standstill with θme = 0 (simulations results).

Several simulations have been carried out to validate the relationship between equa-
tions (1.35) and (1.36) and the l∆ map (Figure 2.9b). The rotor is kept in a fixed
position (θme = 0) and the hf rotating voltage signal is injected. Current responses
are reported in Figure 4.2 for different operating points. A good correspondence is
observed between the decrease of l∆ and the reduction of the semi-axis ratio. The
ellipse correspondent to the current point (id = 0A, iq = 4A) is vertical because of
an l∆ sign change.

Experimental tests have been performed on the PMA-SynRM motor to further vali-
date the proposed sensorless scheme. The test bench consists of a master permanent
magnet (PM) synchronous motor and the PMA-SynRM under test, whose data has
already been reported in Table 2.1. The proposed sensorless scheme (Figure 1.7) has
been implemented thanks to a dSPACE 1104 Fast Control Prototyping Board. The
board generates the six inverter reference voltages used to command the three-phase
two-levels inverter that drives the PMA-SynRM.

During the test, the master assures the speed control (10 rpm), and different
load torque are imposed through the PMA-SynRM motor in sensorless operation.
Figure 4.3 shows the experimental results for different MTPA current points, and
also the simulation error is reported. No error compensantion is adopted.

A good correspondence is observed between experimental and simulation results.
The comparison between different operating points highlights that the higher is the
current reference, the higher is the position estimation error. This result is consistent
with the expected estimation error (Figure 2.14b). Increasing the current, in fact,
the cross-saturation effect is stronger and the estimation error rises. The mean of
experimental error is always negative because the considered MTPA current points
are in the second quadrant of the d-q plane. During the 4 A test the 6th spatial
harmonics of the inductances appear in the experimental results.

For higher current points the convergence of the algorithm is guaranteed only
adopting an error compensation technique.
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(a) Test bench setup

SIMULATION

(b) |i∗| = 0 A

SIMULATION

(c) |i∗| = 2 A

SIMULATION

(d) |i∗| = 4 A

Figure 4.3: Position estimation and related estimation error during a 10 rpm oper-
ation: experimental (and simulation) results.

4.4 Conclusions

This chapter presents a method for the sensorless control of synchronous motors at
low speed or standstill. The technique employs a high frequency rotating voltage
vector injection, thus it is valid for anisotropic machines such as synchronous reluc-
tance and interior permanent magnet motors. Unlike other solutions, the proposed
algorithm does not require a heterodyning demodulation of the current response.
The position information is extracted from the sampled high frequency currents by a
recursive ellipse coefficients identification algorithm. Simulations and experimental
tests are presented for validating the method effectiveness.



Chapter 5

Recursive QR Ellipse Fitting
Algorhitm

Abstract - In the conventional signal-injection control schemes, the rotor posi-
tion estimation is achieved through the demodulation of the high frequency current
response. In this chapter, an efficient ellipse fitting procedure is presented for de-
tecting rotor position from the rotating high frequency injection current response.
The inverse problem related to the ellipse fitting is solved implementing a QR recur-
sive least squares algorithm. Efficient updating QR factorization has been adopted
because of its features in terms of numerical stability and required limited computa-
tional effort. The proposed sensorless control scheme is validated by means of many
experiments [20].
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5.1 Introduction

This chapter deals with a sensorless synchronous motor drive based on high fre-
quency sinusoidal voltage injection suitable for standstill and low speed applications.
At every control sample, rotor position and speed are reconstructed by a recursive
update using a least squares (RLS) estimator algorithm. Compared to most of its
competitors, the RLS exhibits extremely fast convergence. However, this benefit
comes at the cost of higher computational complexity. The ellipse fitting of the
current response locus to rotating high frequency voltage injection has already been
faced in [19].
An efficient QR updating factorization is implemented in this chapter. In linear
algebra, a QR decomposition, also known as a QR factorization or QU factorization
is a decomposition of a matrix A into a product A = QR of an orthogonal matrix
Q and an upper triangular matrix R. QR decomposition is often used to solve the
linear least squares problem and is the basis for a particular eigenvalue algorithm,
the QR algorithm. In this work, Givens rotations [52,53] are implemented in order
to reduce the computational effort drawback of the factorization, and achieving per-
formance which makes the proposed algorithm mature even for industrial embedded
applications.

Moreover, a comparison is done with the conventional demodulation scheme [1]
which shares the same rotating injection in the stationary reference frame.

The work is organized as follows: firstly the mathematical model and the overall
control scheme is derived in Sec. 5.2; the recursive least squares algorithm and the
QR updating factorization are stated in Sec. 5.3; then many experimental results
are shown and commented in Sec. 5.4 to fully validate the proposed approach.

5.2 Mathematical model

The proposed sensorless scheme operates in the stator reference frame. A voltage
vector uhαβ(t) rotating at high frequency, ωh = 2π 1000 rad/s, is injected in the
stator windings.

uhαβ(t) =

[︃
uhα(t)
uhβ(t)

]︃
=

[︃
Uh cos(ωht)
Uh sin(ωht)

]︃
(5.1)

Thus, a corresponding high frequency current response, ihαβ(t), arises:

ihαβ(t) =

[︃
ihα(t)
ihβ(t)

]︃
(5.2)

An implicit equation for the ellipse centered in zero described by ihαβ(t) is given
by:

a i2hα(t) + b ihα(t)ihβ(t) + c i2hβ(t) + f = 0 (5.3)

where:

f = −U2
h

ω2
h

(5.4)

Measuring iαβ and filtering its high frequency component ihαβ , knowing the injected
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hf voltage magnitude Uh and frequency ωh, it is possible to solve an inverse problem
in order to estimate the coefficients a, b, c describing the ellipse in (5.3). An in-
verse problem, in science, is the process of calculating from a set of observations the
causal factors that produced them. Inverse problems are some of the most impor-
tant mathematical problems in science and mathematics because they tell us about
parameters that we cannot directly observe. In the considered case study, the rotor
electrical position and speed information are intrinsic in the ellipse.

To compute a, b, c coefficients from the current measures, an inverse problem
has to be solved. The unknown coefficients vector is defined as x = [a, b, c]T ∈ R3,
thus at least three measurements ihαβ , sampled in three consecutive control time
instants, are necessary. Since measurements can be affected by noise, it is better to
consider the overdetermined system stated in (5.5).

Ax = b (5.5)

where

A =

⎡
⎢⎢⎢⎣

i2hα1 ihα1ihβ1 i2hβ1
i2hα2 ihα2ihβ2 i2hβ2
...

...
...

i2hαm ihαmihβm i2hβm

⎤
⎥⎥⎥⎦ x =

⎡
⎣
a
b
c

⎤
⎦ b =

⎡
⎢⎢⎢⎣

−f
−f
...

−f

⎤
⎥⎥⎥⎦ (5.6)

Once the coefficients a, b, c have been computed, the rotor position and speed can
be used to properly control the drive. In the following, an efficient algorithm to
solve this inverse problem is presented.

5.3 QR Recursive Least Squares

5.3.1 Linear Least Squares

The method of least squares (LS) is a standard approach in regression analysis
to approximate the solution of overdetermined systems. In particular, the linear
LS problem can be defined as the following optimization problem as a function of
x ∈ Rn, where A ∈ Rm×n , b ∈ Rm and m > n.

min
x

||Ax− b||22 (5.7)

For small and medium size linear LS problems with full-rank matrix A, there are
three main well-known methods to compute the solution x: 1) solving the associated
normal equations system of (5.7) with direct methods such as Cholesky factoriza-
tion (CF); 2) using the QR factorization of A; or 3) computing the singular value
decomposition (SVD) of A. The system of normal equations is obtained by setting
the gradient of (5.7) equal to zero.

min
x

J(x) = min
x

||Ax− b||22 = min
x

(Ax− b)T (Ax− b)

= min
x

xTATAx− 2xTAT b+ bT b;

∇J(x) = 2ATAx− 2AT b = 0;

⇒ ATAx = AT b.

(5.8)
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1) Since in the case study of this work the Hessian 2ATA is real, positive definite and
symmetric, so that the Cholesky factorization can be a suitable solution regarding
the computational effort it requires to be implemented in embedded hardware.

2) The full-rank assumption of A guarantees the existence of its QR factorization
A = QR, where Q is orthonormal and R is upper triangular. Hence, substituting
in (5.8) and using the orthogonality of Q, one has

RTQTQRx = RTQT b

RTRx = RTQT b

Rx = QT b.

(5.9)

Since R is upper triangular, the last system can be backward solved with minimal
computational effort. However, the QR factorization of A requires a higher com-
putational effort than the CF, mostly if Givens rotations are used to obtain the
orthogonal triangularization of R. As an advantage over other techniques to build
the factorization of QR, Givens rotations guarantee stability if a backward error
analysis is studied. This is an important property for embedded applications, where
limited machine precision can badly affect the solution accuracy.

3) Using SVD for solving (5.7) is in general suggested when A is severely ill-
conditioned or even singular, because it allows to find anyway the minimum norm
solution. As a drawback, this approach requires the highest computational effort
if compared with the two previous methods, hence it is not in general suitable for
embedded applications using hardware with limited computational power, which is
a hard constrain for SVD implementation.

The target of this work is industrial applications, where hardware with limited
computational power, memory and single machine precision is in general adopted.
Thus, the QR factorization has been chosen as good compromise in terms of com-
putational effort and reliability in the solution quality when the problem is ill-
conditioned. A possible situation of ill-conditioned problem, related with the con-
sidered application, can occur when the hf injection is too slow respect to the sam-
pling measurement time. In the just described condition, the new data can be very
similar with the old data, hence A can result ill-conditioned.

5.3.2 Recursive QR Factorization

In Sec. 5.2 the estimation issue has been presented, where an on-line parameter
identification problem has been stated. Because of its properties, a recursive least
squares algorithm is implemented to identify the coefficients describing the ellipse
which best fits measured currents in the αβ stationary reference frame. In this
kind of application it is necessary to re-factor a given matrix A after it has been
altered by appending a row to it. Hereon it is shown that in situations like this, it is
much more efficient to update A’s QR factorization than to generate it from scratch.
Furthermore, before beginning, it is worth mentioning that there are also techniques
for updating different factorizations, like CF and SVD. However, updating these
factorizations can be quite delicate because of pivoting requirements and because
when a positive definite matrix is tampered using these techniques, the result may
not be positive definite. Moreover, regarding the updating SVD factorization, it
is based on an iterative method, thus it is more computational expensive than CF
and QR. Mostly, the convergence it is not always guaranteed, specially if just few
iterates are considered in order to achieve the real-time feasibility of the method.
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In a generic control instant k, it is supposed the knowledge of the factorization
Qk−1 Rk−1 = Ak−1 ∈ Rm×n. The objective is to compute the updated factorization
since new data measurements wk ∈ Rn are available. The matrix Ak can be written
as:

Ak =

[︃
λAk−1

wk

]︃
=

[︃
Qk−1 0
0 1

]︃ [︃
λRk−1

wk

]︃
(5.10)

defining

Q∗ =

[︃
Qk−1 0
0 1

]︃
R∗ =

[︃
λRk−1

wk

]︃
(5.11)

It is worth mentioning that λ is the so-called forgetting factor, which gives expo-
nentially less weight to older measurements. It can be observed that matrix R∗ is
upper triangular except for the last row. Thus, n orthogonal transformations have
to be applied for setting to zero the last row of R∗. In particular, Givens rotations
are suitable for this purpose, since they are orthogonal transformations which selec-
tively set to zero singly individual elements. These are rank-two corrections to the
identity of the form

Gi,j =

⎡
⎢⎢⎢⎢⎣

I
cos(θ) sin(θ)

I
−sin(θ) cos(θ)

I

⎤
⎥⎥⎥⎥⎦

(5.12)

GT
i,j is also clearly orthogonal. Furthermore, premultiplication by GT

i,j amounts to a
counterclockwise rotation of θ radians in the (i, j) coordinates plane. For a generic
vector z ∈ Rn, if one defines

cos(θ) =
zi√︂

z2i + z2j

, sin(θ) =
−zj√︂
z2i + z2j

, (5.13)

Then for GT
i,jz = y one obtains

yk =

⎧
⎪⎨
⎪⎩

cos(θ)zi − sin(θ)zj k = i

0 k = j

zk k ̸= i, j

(5.14)

therefore only elements i, j are affected. The same result can be achieved if R∗ is
premultiplied by GT

i,j , with the difference that just rows i and j will be modified,
while the element R∗(i, j) will be zero. Thus, to find QkRk = Ak, n Givens matrix
transformations Gi,j ∈ Rm+1×m+1 have to be defined to eliminate wk component-
wise to give

GT
n,m+1G

T
n−1,m+1...G

T
1,m+1R

∗ = Rk (5.15)

so, finally,

Ak = Q∗R∗ = Q∗G1,m+1G2,m+1...Gn,m+1Rk = QkRk (5.16)

Once the updating of the QR factorization is obtained, the solution of the RLS
problem at the control sample instant k is then found by backward solving the
system (5.17), where the last row of Rk and Qk can be deleted since one has been
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set to zero and the other holds to the ker(Q) respectively. In this way, system
(5.17) has always 3× 3 dimension, since the unknown coefficients vector is defined
as x = [a, b, c]T ∈ R3.

Rkxk = QT
k bk (5.17)

It is worth to remark that the QR updating factorization is the best solution for
this kind of application, since it guarantees all the previously mentioned numerical
features and it is the most efficient algorithm in terms of computational effort.

The unique drawback, which has to be faced, is the first complete QR factor-
ization required for starting the updating algorithm. In the considered work, the
complete QR factorization using Givens rotations has been implemented since the
dimension of A is small. However, because of limited DSP computational power,
in the control instant where the complete QR factorization of A is required, some
control tasks are not run in order to avoid overrun situations. In particular, the
estimation of x, by solving (5.9), and then all the algebraic manipulations necessary
to calculate the estimated rotor position are not run till the complete QR factoriza-
tion is computed. Thus, for the firsts control instants, the estimated rotor position
is set to zero, dealing with an open loop control just for the initial instants.

5.4 Experiments

5.4.1 Setup Description

The proposed sensorless drive control strategy has been implemented in two dif-
ferent control platforms. At first a dSPACE 1104 rapid prototyping system has
been adopted. The software has been developed using MATLAB-Simulink package
in order to test the estimation performances of the proposed method under differ-
ent operating conditions. Then, to validate the industrial application maturity, an
efficient C code has been implemented on an industrial micro-controller (RX23T)
running at 40 MHz with a single precision floating-point operation unit. The turn
around time (tat) of RLS, including the updating of the QR factorization, is shown
for both control platforms in Table 5.1, confirming the maturity of the algorithm
for industrial embedded applications.

Regarding the motor under test, it is a PMA-SynRM prototype [34] connected
to an industrial three-phase inverter. The BUS DV voltage is 300 V, and the
adopted control frequency is 10 kHz. Main data of the considered motor are shown
in Table 2.1. PMA-SynRM under test is mechanically connected to another PMSM,
here on called “master motor”, as shown in Figure 5.2a. This configuration allows
to control the PMA-SynRM through the current loops, when the master holds the
speed, and the speed loop, when the master applies a certain torque load.

Figure 1.7 presents the current control scheme. As it can be observed, once
the phase currents are measured, they are filtered with a high pass filter (HPF) for
letting the QR-RLS algorithm processing the high frequency component ihαβ , while
a low pass filter (LPF) is adopted to cut off the high frequency component from
the proportional integral (PI) current control loops. The adopted HPF and LPF
are digital first-order Infinite Impulse Response (IIR) filters. The continuous-time
transfer functions of high-pass and low-pass filters are defined as:

H(s)HPF =
τs

τs+ 1
H(s) LPF =

1

τs+ 1
(5.18)
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Table 5.1: QR-RLS routine turn around time on the two considered hardware.

CPU tat RLS
DS1104 250 MHz 10 µs
RX23T 40 MHz 20 µs

Figure 5.1: Sensorless speed control scheme.

where the filter time constant τ is equal to the reciprocal of the cutoff frequency
ωc = 2πfc. In the presented application, characterized by an injection frequency
equal to fh = 1000 Hz, the cutoff frequency has been set to fc = 500 Hz for
both HPF and LPF filters. For the implementation in the control algorithm, the
transfer functions in the Z-domain have been obtained through the forward Euler
discretization of (5.18). The computational time of each digital filter is just under
1 µs in the dSPACE 1104 platform.

The speed control loop is represented in Figure 5.1. It has been designed with a
PI controller coupled with a linear MTPA trajectory for translating the PI output
|i∗| into the current references i∗d, i

∗
q . The estimated speed feedback is indicated

with ˜︁ωme.

5.4.2 Results

The proposed sensorless control drive is validated by means of experiments. At
first, the current control performance and the rotor position estimation accuracy
are shown, imposing different speeds with the master motor and changing the d-q
currents references. Secondly, the speed control performance is evaluated, using the
master motor as load.

Current Control

Sensorless steady-state current control results are shown in Figure 5.3, 5.4, 5.5, 5.6.
The first test is done at no load holding a speed of 10 rpm with the master motor.
A forgetting factor λ = 0.98 is used. In the first plot of Figure 5.3 the estimated
position ˜︁θme (obtained from the QR-RLS) and the actual position θme (measured
with an encoder) are shown. Also the position error is illustrated. The mean value
of the the position error is zero. However, its profile is not constant. This happens
because the incremental inductances l∆ and ldq, supposed constant in Sec. 5.2,
change with the current working point but also with the actual rotor position [16,54].
The resultant position fluctuation, depending on the motor incremental inductances,
is between -3 and 3 electrical degrees in this current working point (id, iq = 0; only
the hf voltage is applied).
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(a) Test bench. (b) Inverter and controller.

Figure 5.2: Experimental setup.

Figure 5.3: Sensorless current control results with |i∗| = 0 A, n = 10 rpm, λ = 0.98

Figure 5.4: Sensorless current control results with |i∗| = 0 A, n = 50 rpm, λ = 0.97

Figure 5.4 shows a no load test at 50 rpm. Comparing the results with the 10
rpm test, an offset appears in the position error. This issue can be explained con-
sidering the fitting procedure (5.6). The current points ihαβ are buffered in matrix
A, which is recursively factorized in QR form. Sampling a rotating ellipse implies
that the older measurements are unreliable, especially if the ellipse rotates at high
speed, because the points sampled first are not updated with the actual rotor po-
sition. Decreasing the forgetting factor it is possible to give less weight to older
measurements. In this way the offset error in the estimated position can be reduced
or completely eliminated. However, values of λ less than 0.95 are not suggested
because they increase the variance error (the noise in the estimated position). A
compromise between bias and variance estimation error must be found at the dif-
ferent operating speeds. For example, λ = 0.97 has been chosen at n = 50 rpm.
In Figure 5.5 and Figure 5.6 the steady-state tests, at 10 and 50 rpm, have been
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Figure 5.5: Sensorless current control results with |i∗| = 3 A, n = 10 rpm, λ = 0.98

Figure 5.6: Sensorless current control results with |i∗| = 3 A, n = 50 rpm, λ = 0.965

repeated with a MTPA current reference of 3 A. Considering the 10 rpm tests, the
mean value of the error is 0° at no load, and −5° at 3 A (Figure 5.3, Figure 5.5),
which is still acceptable by the controller. Because speed n and forgetting λ = 0.98
are the same in the two tests, the increase of the estimation error can be attributed
to the cross-saturation effect [24,55]. In fact the cross-saturation inductance ldq af-
fects the position estimation introducing a bias error. The value of ldq increases with
the current amplitude. As concerns the 50 rpm test, choosing λ = 0.965 reduces
the bias error but increases the variance error, as can be noticed in (Figure 5.6).
However, the controller shows stability and a higher forgetting factor could filter
the estimation as analysed in Sec. 5.4.2.
A MTPA current step from 0 to 3 A has been performed. Figure 5.7, 5.8 show the
results at 10 and 50 rpm. As expected, in both cases the bias error increases after
the current step because of the cross-saturation effect. The steady-state errors are
coherent with the ones obtained in Figure 5.3,. The proposed algorithm shows good
stability in dynamic current control operating condition. The latter means that the
estimator is fast enough to not corrupt PI controllers; in fact PI bandwidth has not
been changed passing from sensored to sensorless current control.
Resuming the obtained results for the proposed sensorless current control, it has
been tested in different speeds and currents both in steady-state and dynamic con-
ditions, showing promising performance in terms of estimation accuracy and control
stability. As a drawback, it has been demonstrated that the estimation accuracy
shows speed and currents dependency. The speed dependency can be avoided adopt-
ing a look-up table (LUT) with different forgetting factors. Regarding the current
dependency, which is a known limit of hf voltage injection techniques, valid solu-
tions, as proposed in [16, 54], suggest an error compensation method based on the
current operating point.
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Figure 5.7: Sensorless current control results with 3 A MTPA current reference step,
n = 10 rpm, λ = 0.98

Figure 5.8: Sensorless current control results with 3 A MTPA current reference step,
n = 50 rpm, λ = 0.965

Speed Control

Speed estimation is necessary if a speed control operation is required. The proposed
algorithm deals with equation (1.31) discretized using forward Euler method. PI
speed control loop feedback has been closed using (1.31) filtered with a LPF. Fig-
ure 5.9 shows a rise speed step from 0 to 100 rpm. Error percentage between the
estimated and measured speed is shown. It can be noticed that in steady-state con-
dition the error is always smaller than 10%, which is a good result considering that
100 rpm is a high rate for hf voltage injection technique applied to the considered
PMA-SynRM. It is worth mentioning that a constant forgetting factor equal to 0.96
has been implemented for this experiment, showing a wide operating range without
the needed of LUT. Furthermore, even in this case, the PI bandwidth has not been
changed passing from sensored to sensorless speed control.

Important Considerations

It is important to highlight that the novelty of this work is the adopted method used
for solving the RLS problem applied to sensorless synchronous motor drive applica-
tion. The efficient implementation of updating QR factorization allows to achieve
the minimum computational effort with good reliability in the solution goodness
when the problem is ill-conditioned. Last feature is significant when the adopted
hardware has single precision floating-point operation unit, thus if matrix A is ill-
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Figure 5.9: Sensorless speed control results with 100 rpm speed reference step.

conditioned, the Hessian 2ATA is even more ill-conditioned and the solution quality
could be poor if Cholesky factorization has implemented. Instead, using the QR
factorization, (5.9) has to be solved and R holds the same condition number of A.

Comparison with conventional demodulation method

In the conventional hf injection methods, the rotor position estimation is achieved
through the demodulation of the high frequency current response. In this subsection,
a comparison of the latter with the proposed algorithm is investigated, highlighting
different aspects as well as showing off pros and cons of the two techniques. The
adopted demodulation technique in shown in Figure 1.5 [9]. Experiments done in
Figure 5.7, 5.8 and Figure 5.9 are repeated using the sensor measurements. In this
way the two techniques can work with the same transfer function system in the
control so that a meaning comparison is obtained.

Figure 5.10 and Figure 5.11 show the current control comparison performance
at 10 and 50 rpm. As it can be noticed in both experiments, the ellipse fitting
techniques presents a smaller estimation error (Figure 5.10b and Figure 5.11b) and
faster response in tracking the rotor position when the current reference changes
at time 0.4 s (Figure 5.10a and Figure 5.11a). Indeed, the proposed algorithm is
less affected by signal processing delay effects. In particular, these latter are a well
known issue for the demodulation technique [56] and they request particular further
details to be avoided [57], increasing the computational effort.

Figure 5.12 shows the speed control comparison results with 100 rpm reference
step at low load condition, where speed estimation is necessary for the control
purpose. Even in this case, the ellipse fitting technique exhibit a faster response in
tracking the speed when a change event occurs, while in steady state condition the
two schemes have comparable performance, regarding the speed estimation.

To measure the difficulty of solving a computational problem, one may wish to
see how much time the algorithm requires to solve the problem. Thus, for the sake
of completeness, in Table 5.2 there are shown the turn around times of both the
compared techniques. As it can be observed, the two techniques are comparable in
the sense that they have the same order of magnitude. It should be noted that the
considered demodulation scheme does not include the compensation strategy for the
signal processing delays.

Summarizing pros and cons highlighted in this subsection:

• the ellipse fitting is less sensitive to offset errors due to digital implementation;

• the ellipse fitting requires a smaller tuning effort than demodulation technique
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Figure 5.10: Comparison current control results with 3 A MTPA current reference
step at 10 rpm. Experimental results.

Figure 5.11: Comparison current control results with 3 A MTPA current reference
step at 50 rpm. Experimental results.

(just λ has to be tuned), since less filters and PIs are present in the control
scheme;

• the ellipse fitting is more expensive regarding the computational effort, but us-
ing the proposed updating QR factorization, it appears, from the turn around
time comparison, that it has been achieved feasible real-time implementation
for embedded industrial controller.

Forgetting Factor Tuning

In this subsection it is given a further analysis about the tuning of λ. As previously
mentioned, the forgetting factor gives exponentially less weight to older measure-
ments. For example, to better understand, taking λ = 1 it is like calculating the
average value of all the measurements taken into account from the beginning, when
the algorithm started. Based on this concept, the forgetting factor tuning has been
done manually, finding which are the values that better allow the ellipse fitting in
function of the speed. In other words, since the ellipse is rotating, old measurements
belonged to another ellipse respect to the current one, thus the weight (memory) of
these measurements has to be reduced (forgotten) in the optimal problem. This is
the reason why in Figure 5.9 a forgetting factor λ = 0.98 has been chosen at n = 10
rpm, while λ = 0.965 has been selected at n = 50 rpm.

For the sake of completeness, in the following references [58], [59] there are shown
other techniques for the forgetting factor decision. In our case, forgetting factor has
been chosen after a preliminary simulation analysis, done offline with measured
currents.
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Figure 5.12: Comparison speed control results with 100 rpm reference step at low
load condition. Experimental results.

Table 5.2: Turn around time comparison.

Ellipse Fitting Demodulation
dSPACE1104 10 µs 3 µs
RX23T 20 µs 7 µs

5.5 Conclusions

This work deals with sensorless drive with hf injection technique. In particular,
an efficient QR updating factorization for solving the inverse problem related to
the rotor position measurement has been presented. It allows to estimate the ro-
tor position and speed processing efficiently the hf current response. It has been
demonstrated that it is a valid solution thanks to its features in terms of numerical
stability and required computational effort. It is based on a recursive least square
algorithm and the proposed overall control strategy has been validated by means of
many experiments, testing both speed and current sensorless control drives, achiev-
ing promising results. Moreover, the algorithm has been successfully implemented
on two different control platforms. Turn around time analysis has been performed,
showing implementation feasibility even for hardware with limited memory and com-
putational power. This confirms the maturity of the proposed method for industrial
embedded application such as electric drives.





Chapter 6

Incremental Inductances
Estimation

Abstract - This chapter deals with the online incremental inductances estimation
of a synchronous motor at low speeds using a high-frequency voltage injection. The
control scheme is analogous to that used in position estimation algorithms, with
the difference that the current control and the rotating voltage injection operate
on the real dq axes. Thus a position sensor is required to apply this method.
The corresponding current response is measured, filtered, and processed with an
ellipse fitting technique. The estimated ellipse coefficients are then used to retrieve
the incremental inductances online without the need of any post processing. A
novel formulation to express the estimation error valid for other conventional signal
injection techniques is presented. The method has been validated experimetally on
a SynRM at locked rotor and during load and speed transients [60].

75
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6.1 Introduction

Permanent magnet synchronous motors are widely adopted in variable speed drives
for industrial applications due to their high torque density, dynamic performance,
and efficiency. It is well known that SynRM, PMA-SynRM and IPMSM are usu-
ally characterized by nonlinear flux linkages maps [21]. As a consequence of that,
the knowledge of an accurate model of the motor is necessary to design a high-
performance current controller [61, 62]. Several parameter identification and self-
commissioning methods for AC motor drives have been proposed in literature [35,
63], based on finite element simulations and laboratory measurements.

The focus of this work is on the identification methods based on hf voltage
injection. In particular, an online incremental (differential) inductance estimation
technique is proposed. The method is applicable to motors characterized by rotor
saliency, i.e. SynRM, PMA-SynRM and IPMSM.

Ebersberger and Piepenbreier proposed a differential inductance and stator re-
sistance identification method using test current instead of voltage injection [64].
A proportional-resonant controller located in parallel to each fundamental PI-type
current controller in dq coordinates imposes a hf current injection. The hf-portions
of the respective signals are separated online by means of the Goertzel algorithm and
used to determine the differential self and mutual inductances. The main drawback
of the method is that the test current signal injection cannot be executed simulta-
neously on both d and q axes. When the current signal is injected into the d-axis,
the inductances ldd and lqd can be estimated. When the current signal is injected
into the q-axis, the inductances ldq and lqq can be estimated. Another limit of the
method is that its validity has been proved only at standstill (locked rotor).

Kuehl and Kennel proposed a method to estimate the differential inductances
using a conventional pulsating voltage injection in dq superimposed to a sensored
control scheme [65]. The differential inductance matrix is obtained measuring both
the eigenvalues of the uncoupled inductance matrix and the estimation error ε from
the sensorless algorithm. Similarly to [64] two separate measurements are necessary:
one, where the sensorless algorithm tracks the estimated d-axis, and one for the q-
axis. A post-processing least-squares optimization problem has to be solved to find
the optimal correction variables. The method has been validated on an IPMSM
coupled to a load motor, which was controlled at a fixed speed by an industrial
inverter.

The identification method presented in this work tries to extend the works in [64]
and [65]. First of all, a rotating injection in dq allows to estimate simultaneously
all the incremental inductances ldd, ldq, and lqq without the necessity of perform
two tests. Moreover, while the previous techniques were tested at locked rotor or
at steady-state fixed speed, the presented online identification method is tested also
during load and speed transients showing a good match with the expected induc-
tances. The proposed method requires to solve an online least-squares problem
(ellipse fitting) and presents innovative analytical equations that link estimation er-
ror and incremental inductances. Experimental tests validate the proposed method.

6.2 Considered Motor

The motor considered in this work is a 2-kW SynRM. The convention used to define
d- and q-axis is depicted in Figure 2.1a, and the main data of the motor are shown in
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Table 6.1: Fit coefficients for the considered SynRM.

coefficient value coefficient value

ad0 2.03 H−1 S 5.42
add 2.20 T 0.39
adq 12.83 U 1.90
aq0 2.89 H−1 V 0
aqq 20.53
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Figure 6.1: Measured (fitted) flux linkages.

Table 2.1. As concerns the flux linkages λd and λq, the motor has been characterized
through experimental measurements [36]. The adopted characterization method
required the use of a master motor to impose a speed of about 500 rpm. The flux
linkages have been measured on a grid of stator currents (id, iq) (Figure 2.3) and
then fitted with the algebraic model proposed in [66]. The model is particularly
useful since it is possible to describe the SynRM nonlinear characteristics with only
9 coefficients, shown in Table 6.1. The fitted flux linkages maps are depicted in
Figure 6.1.

The incremental inductances (2.4) are computed as follows:

ldd =
∂λd

∂id
(6.1a)

ldq =
∂λd

∂iq
=

∂λq

∂id
(6.1b)

lqq =
∂λq

∂iq
(6.1c)

The so-computed incremental inductances, shown in Figure 6.2, will be used as a
benchmark to validate the accuracy of the proposed identification method.

6.3 High-Frequency Model

The proposed identification technique relies on hf voltage injection on d- and q- axis
and real-time processing of the measured currents. In particular, a rotating injection
on d- and q- axis is adopted. It is worth noting that a position sensor (encoder or
resolver) is required to inject the voltage signal on the real d- and q- axis. The d and
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Figure 6.2: Incremental inductances computed from the measured flux linkages.

q currents are measured, filtered, and processed online. The real-time processing
consists of a least squares ellipse fitting and additional operations to compute the
incremental inductances from the estimated ellipse coefficients.

The same assumptions for position estimation methods (based on saliency and
signal injection) have to be verified. First of all, the proposed identification method
can be used with motors characterized by rotor saliency, such as the SynRM, the
PMA-SynRM and the IPMSM. Secondly, the frequency of the injected signals should
be high enough to neglect the stator resistance effect on the estimation and, at the
same time, the operating speed should be quite low (standstill or at the most 10%
of the rated speed).
The hf model of a synchronous motor at quasi-zero speed is:

[︄
uhd(t)

uhq(t)

]︄
=

[︄
ldd ldq

ldq lqq

]︄[︄
∂ihd(t)

∂t
∂ihq(t)

∂t

]︄
(6.2)

where uhd and uhq are the injected hf voltages and ihd and ihq the hf currents [39].
The adopted rotating voltage injection in the d- and q- axis is:

uhd(t) = Uh cos(ωht) (6.3a)

uhq(t) = Uh sin(ωht) (6.3b)

where Uh is the injection amplitude and ωh = 2πfh, where fh is the injection
frequency. Once measured the stator currents id and iq, the hf currents ihd and ihq
are obtained through high-pass filtering. The hf currents can be expressed as:

ihd(t) =
Uh

ωh(ldd lqq − l2dq)
[ldq cos(ωht) + lqq sin(ωht)] (6.4a)

ihq(t) =
−Uh

ωh(ldd lqq − l2dq)
[ldd cos(ωht) + ldq sin(ωht)] (6.4b)

or, in matrix form:

[︄
ihd(t)

ihq(t)

]︄
=

⎡
⎣

Uh ldq
ωh(ldq lqq−l2dq)

Uh lqq
ωh(ldd lqq−l2dq)

−Uh ldd
ωh(ldd lqq−l2dq)

−Uh ldq
ωh(ldd lqq−l2dq)

⎤
⎦
[︄
cos(ωht)

sin(ωht)

]︄
(6.5)
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From (6.5) it is possible to obtain cos(ωht) and sin(ωht) as:

cos(ωht) = − ωh [ldq ihd(t) + lqq ihq(t)]

Uh
(6.6a)

sin(ωht) =
ωh [ldd ihd(t) + ldq ihq(t)]

Uh
(6.6b)

The hf currents can be written in implicit form replacing (6.6) in cos2(ωht) +
sin2(ωht) = 1 and collecting the ellipse coefficents. Finally, the hf ellipse can be
written as:

a ihd(t)
2 + b ihd(t) ihq(t) + c ihq(t)

2 + f = 0 (6.7)

where the coefficients a, b, c and f are:

a = l2dd + l2dq (6.8a)

b = 2 ldq (ldd + lqq) (6.8b)

c = l2qq + l2dq (6.8c)

f = −U2
h

ω2
h

(6.8d)

The coefficients a, b, c depend on the operating point as well as the incremental
inductances ldd, ldq, lqq. On the other hand, the term f is constant if the injection
amplitude and frequency Uh and fh are not changed during an online operation.

Some additional parameters need to be introduced for the following analysis.
The mean incremental inductance lΣ (2.7) and the semi-difference incremental in-
ductance l∆ are:

lΣ =
lqq + ldd

2
(6.9a)

l∆ =
lqq − ldd

2
(6.9b)

The incremental inductance lΣ is known to be related to the positive-sequence cur-
rent response [67,68]. On the other hand, the negative-sequence incremental induc-
tance is:

lneg =
√︂

l2∆ + l2dq (6.10)

It can be seen that the terms l∆ and ldq are intrinsically linked in lneg. The following
analysis will focus on the separation of l∆ from ldq, a problem not yet addressed in
literature. From now on, only the SynRM will be considered.

In order to split lneg into l∆ and ldq, the knowledge of the estimation error ε
(the error in the position estimation introduced by the cross-saturation effect [21])
is needed. The estimation error ε in the case of SynRM during a sensored operation
is defined as:

ε =
1

2
atan2(ldq,−l∆) (6.11)

Applying the properties of the function atan2, it is possible to re-write the estimation
error with arctan as:

ε = arctan

(︃
ldq

−l∆ + lneg

)︃
(6.12)
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This novel formulation can be exploited to compute:

cos(ε) =
1√
2

−l∆ + lneg√︂
l2neg − l∆ lneg

(6.13a)

sin(ε) =
1√
2

ldq√︂
l2neg − l∆ lneg

(6.13b)

The incremental inductances l∆ and ldq can be obtained from the incremental in-
ductance lneg and the estimation error ε with:

l∆ = lneg (1− 2 cos2(ε)) (6.14a)

ldq =
√
2
√︂

l2neg − l∆ lneg sin(ε) (6.14b)

These equations are valid for other conventional signal injection methods as well,
since the estimation error ε can be simply obtained subtracting the estimated posi-
tion from the measured one during a sensored operation with the position observer
in open loop. The proposed method, as will be explained in the following section,
computes both lneg and ε from the estimated ellipse coefficients a, b, and c.

6.4 Proposed Method

The proposed control scheme is depicted in Figure 6.3. A conventional control
scheme with PI controllers is adopted. A position sensor is used to measure the
rotor position and feed the Park transformation. The identification method consists
of a hf voltage injection, an ellipse fitting procedure, and the HPF and LPF filters
superimposed to the PI control scheme. In particular, a rotating voltage vector
is injected, consisting of two pulsating phase-shifted signals in the d- and q- axis
(6.3). A high-pass filter is adopted to extract the hf currents (6.4) which feed the
ellipse fitting procedure. A low-pass filter is used to remove the hf component in
the current control loop; however, the low-pass filter is not mandatory and it can
even be removed [69].

An ellipse fitting procedure is used to estimate in real-time the ellipse coefficients
a, b, c associated to the hf currents ihd and ihq. The ellipse fitting of the current re-
sponse locus has already been proposed in literature in the case of rotating injection
in the stationary reference frame αβ [19, 20]. The least squares problem associated
to the ellipse fitting can be computational demanding if directly solved. Thus, a
recursive solution method [19] and a recursive QR factorization technique [20] have
been proposed in order the reduce the computational effort and guarantee the real-
time operation of the ellipse fitting. Both methods can estimate the coefficients a,
b, c of a rotating ellipse in αβ. The forgetting factor should accurately be tuned
according to the rotating speed in order to guarantee a compromise between bias
and variance estimation error [20].

The ellipse fitting is executed in dq in the proposed configuration. The main
advantage of operating in dq is that a stationary ellipse can be detected, avoiding
the speed-dependent forgetting factor tuning. As shown in Figure 6.3, the ihd and
ihq current samples are processed by the real-time fitting and the ellipse coefficients
a, b, c are estimated. The estimated coefficients can be used to compute online the
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Figure 6.3: Proposed identification method scheme.

incremental inductances lΣ and lneg:

lΣ =
1

2

√︂
a+ c+

√︁
4ac− b2 (6.15a)

lneg =
1

2

√︄
b2 + (a− c)2

a+ c+
√
4ac− b2

(6.15b)

The coefficients a, b, c can be also used to compute ellipse tilt angle caused by the
cross-saturation effect, which corresponds (in the case of SynRM during a sensored
operation) to:

ε =
1

2
atan2(b, a− c) (6.16)

The following step consists in splitting the negative-sequence incremental inductance
lneg (6.15b) into l∆ and ldq using the estimation error ε from (6.16). Equations (6.14)
can be used for this purpose. The semi-difference incremental inductance l∆ and
the cross-saturation inductance ldq are now available.

The last step consists in computing ldd and lqq using lΣ estimated from (6.15a)
and l∆:

ldd = lΣ − l∆ (6.17a)

lqq = lΣ + l∆ (6.17b)

The incremental inductances ldd, ldq and lqq have been finally identified.

The following section will focus on the accuracy of the identification method at
standstill and during speed and load transients.
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The following equations hold in the case of PMA-SynRM and IPMSM:

ε =
1

2
atan2(−b, c− a) =

1

2
atan2(−ldq, l∆) = arctan

(︃ −ldq
l∆ + lneg

)︃
(6.18a)

cos(ε) =
1√
2

l∆ + lneg√︂
l2neg + l∆ lneg

(6.18b)

sin(ε) =
1√
2

−ldq√︂
l2neg + l∆ lneg

(6.18c)

l∆ = lneg (2 cos
2(ε)− 1) (6.18d)

ldq = −
√
2
√︂

l2neg + l∆ lneg sin(ε) (6.18e)

The convention used to define d- and q- axis for a PMA-SynRM or a IPMSM is
depicted in Figure 2.1b.

6.5 Experimental Results

The proposed identification method has been validated in two scenarios. The first
test consisted of locking the rotor and analyzing the estimation accuracy in a grid
of operating current points, while the second tests consisted of coupling the SynRM
to a load motor and controlling the speed while varying the load torque. The
experimental setup was composed by a dSPACE MicroLabBox and a three-phase
inverter. The sampling frequency was set to fc = 10 kHz. In both the tests the
injected voltage had amplitude Uh = 40 V and frequency fh = 1 kHz. These
values appear to be adequate for the considered motor and the chosen sampling
frequency. The following considerations have been drawn. The amplitude of the
injected voltage Uh should be as low as possible in order to reduce acoustic noise
and core losses, but it should be high enough in order to make the hf currents
detectable and distinguishable from the current measurement noise. It has been
verified that Uh = 40 V is a good compromise for the considered SynRM. Fixed
the sampling frequency fc, the injection frequency fh must not be less than one
fifth of fc. In fact, the ratio between fc and fh corresponds to the number of
points considered in the buffer of the ellipse fitting procedure. It is evident that
the quality of the estimate increases with the number of points which constitute
the circumference of the measured current ellipse. A buffer of 10 points, as the one
adopted in the experimental tests, has been found satisfactory. As concerns the
HPFs and LPFs, four digital first-order infinite impulse response (IIR) filters have
been adopted [20]. The cut-off frequency has been set to 100 Hz for both HPFs and
LPFs.

Figure 6.4 shows the results of the first test with the rotor locked. The rotor
has been locked with a mechanical brake at the position θme = 0. The incremental
inductances ˜︁ldd, ˜︁lqq and ˜︁ldq have been estimated online and stored without the need
of post processing. The algorithm has been tested on a grid of currents from 0 to 6
A, with a step of 0.1 A. The sequence of 61×61 reference currents (id, iq) has been
applied with the same pattern used in [70]. Considering a time step of 6 ms for
each reference operating point, the total time required for the mapping was about
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Figure 6.4: Estimated incremental inductances at θme = 0 (first test).
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Figure 6.5: Percentage error between the estimated incremental inductances at
θme = 0 (first test) and the incremental inductances obtained from the flux-linkage
characterization performed at 500 rpm. The MTPA trajectory of the considered
SynRM is shown in dashed line.

22 s. Figure 6.5 shows the percentage error between the estimated incremental
inductances at θme = 0 (Figure 6.4) and the incremental inductances obtained from
the flux-linkage characterization performed at 500 rpm (Figure 6.2). The accuracy

of the method depends on the operating point. The ˜︁ldd percentage error is higher
when the current idd is close to zero, while ˜︁lqq percentage error is around 40% in

most of the considered current grid. Conversely, the ˜︁ldq percentage error appears
to be remarkable along the dq axes and less than 30% at higher current values.
The accuracy of the presented method can be assumed acceptable considering that
all the estimation procedure can be carried on without knowledge of any motor
parameters and without considering the effect of the rotor positon on the estimation.
The accuracy of the method presented in [65], which is an offline and not online
estimation, is between 10% and 20% depending on the operating point.

The results of the second test are reported in Figure 6.6. The SynRM is coupled
with a load motor which initially produces no torque. A 150-rpm speed reference
step is set after 2 s from the beginning of the test, as shown in Figure 6.6a. Then, a
trapezoidal-shape load torque is imposed by the load motor maintaining the 150-rpm
speed reference. The MTPA, shown in (Figure 6.5), is the reference trajectory for
the current control loop. The measured stator currents are depicted in Figure 6.6b.
The rated current amplitude of 6 A is reached during the load torque application.
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Figure 6.6: Results of the proposed identification method during speed and load
transients (second test). The MTPA is the reference trajectory for the current
control loop. ldd, ldq, lqq are the incremental inductances obtained from the flux-

linkage characterization, computed offline through lookup table. ˜︁ldd, ˜︁ldq, ˜︁lqq are the
incremental inductances estimated online.

Figure 6.6c, Figure 6.6e and Figure 6.6d show the online estimated inductances ˜︁ldd,
˜︁ldq, ˜︁lqq and the expected inductances ldd, ldq, lqq during the whole test. It is worth
noting that, even during the load transients, the estimation accuracy is consistent
with locked-rotor test (Figure 6.4). Complementarily to the first standstill test,
the method appears to be effective also during the second test characterized by a
conventional operation. The chosen speed of 150 rpm can be assumed the upper limit
for the considered SynRM for low speed signal injection techniques, consistently with
the signal injection position estimation techniques which are usually valid up to a
tenth of the rated motor speed.

6.6 Conclusions

The chapter presents a novel identification method for reluctance and interior per-
manent magnet synchronous motors. The motor incremental inductances can be
estimated online using a rotating high-frequency injection and a computationally
efficient ellipse fitting. The relationship between the ellipse coefficients, the position
estimation error and the incremental inductances are clearly explained and pre-
sented. The identification method has been tested on a SynRM both at standstill
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and during load and speed transients. The results are compared with a conventional
flux linkages measurements technique.





General Conclusions

This work focuses on signal-injection sensorless control for permanent magnet syn-
chronous motors. Hereafter the main conclusions are reported.

Self-sensing capabilities

In Chapter 2 a systematic and comprehensive model for synchronous motors has
been presented. Starting from the non-linear flux-linkages maps, it is possible to
compute and predict the self-sensing capabilities (saliency, estimation error, conver-
gence region) of the considered motor. Both simulated and measured flux-linkages
maps can be used. The proposed computational approach is verified by means of
experiments.

In Chapter 3 the experimental method to measure the sensored and sensorless
trajectories is explained. The results are compared with the computational approach
proposed in Chapter 2, showing a good match.

The computation and the measurement of the convergence region are valid not
only in the case of rotating injection and ellipse fitting, but also in the case of pul-
sating and rotating injection with demodulation. In fact, as explained in Chapter 1,
different injection schemes exploit the same principle of extracting the rotor posi-
tion information from the high frequency current response. Analytical equations
show the similarities of the methods as concerns the signal Ihq (responsible for the
position estimation algorithm convergence).

Ellipse fitting

Conventional signal-injection techniques require a demodulation scheme to estimate
the rotor position from the measured currents. In this work, an innovative ellipse
fitting method robust to signal processing delay effects is proposed. In Chapter 4
the problem related to the ellipse fitting is solved through recursive least square
estimator, while in Chapter 5 the problem is recursively solved using an efficient
updating QR factorization. In both cases the tuning of only one parameter (called
forgetting factor) is required, making the studied methods suitable for industrial
application thanks to their minimal setup effort.

87
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Incremental Inductances Estimation

An online incremental (differential) inductances estimation algorithm for synchronous
reluctance motors is presented in Chapter 6. The proposed technique is the first
parameter estimation scheme for signal-injection schemes carried out completely
online. The method is validated both at locked rotor (on a grid of operating points
id-iq) and with load transients during a closed-loop speed control.

As future works, the accuracy of the incremental inductance method should be
improved. It would be also very interesting validating the method for motors, such
as IPMs and PMASynRMs.



Appendix A

Simulink Model

Abstract - A PMSM can be characterized, in terms of flux linkages, through ex-
perimental measurements or finite element analysis. The goal of this appendix is to
explain how to create the non-linear model, in Simulink, of a synchronous reluctance
or permanent magnet motor starting from its flux-linkage maps.

Simulink is the recommended tool to simulate an electrical motor as concerns
dynamic simulations and control validation. Dynamic simulations are in time do-
main, meaning that electrical and mechanical transients can be studied. Regarding
control validation, the use of Simulink allows to test the control algorithm without
a physical motor and test bench. Adopting an accurate model it is possible to take
into account the non-linearities and speed up the control prototyping procedure.

PMSM modeling has already been addressed [70–81]. As shown in [80], a syn-
chronous motor can be modeled in Simulink considering either the flux linkages or
the currents as state variables. The first type of model is the Flux Model, the latter
the Current Model [80]. Both the models are obtained from the flux-linkage maps,
that is the relationship between flux linkages and currents stated by experimental
results and finite element analysis. Together with the Flux Model and Current
Model, also the SynRM Model [71] will be considered in this appendix.

89
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Figure A.1: Flux Model scheme.

Flux Model

The Flux Model is explained first. Consider the voltage equations of a PMSM (2.1):

ud = R id +
dλd

dt
− ωme λq

uq = R iq +
dλq

dt
+ ωme λd

(A.1)

Rearranging the previous equations it is possible to obtain:

dλd

dt
= ud −Rid + ωmeλq

dλq

dt
= uq −Riq − ωmeλd

(A.2)

Moreover, the torque m can be computed from the flux linkages and the currents
(2.11):

m =
3

2
p [λd iq − λq id] (A.3)

The Flux Model scheme, depicted in Figure A.1, relies on equations (A.2) and (2.11).
As can be seen, the flux linkages λd and λq are obtained integrating respectively
dλd

dt and
dλq

dt . The currents id and iq are calculated interpolating the content of
inverted Lookup Tables (LUT−1). The procedure required to obtain the LUT−1

will be explained later. The LUT−1 implemented in the scheme of Figure A.1 use
linear interpolation.

In the Flux Model, the flux linkages are state variables. In fact, they are obtained
using Integrator blocks. Since definite integrals are computed, the constants of
integration (respectively λd0 and λq0) can not be neglected:

λd =

∫︂
(ud −R id + ωmeλq) dt + λd0

λq =

∫︂
(uq −R iq − ωmeλd) dt + λq0

(A.4)
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(a) Direct Lookup Table (b) Inverted Lookup Ta-
ble

Figure A.2: Graphical convention used for representing the direct and inverted
Lookup Tables of generic quantities x and y. It is worth noticing that LUT requires
as input the currents id, iq, while LUT−1 requires the fluxes λd, λq.

The user can modify λd0 and λq0 inside the Integrator block options. If no value
is set, Simulink considers λd0 = 0 and λq0 = 0 as default. This particular condition
is correct for a synchronous reluctance motor (REL), when the currents are equal
to zero. If a PM motor is considered, λd0 should be set equal to the permanent
magnet flux (λPM ) in order to force the currents equal to zero at the beginning of
the simulation.

In general, in a Flux Model, the initial conditions λd0 and λq0 should be modified
accordingly to the desired values of the currents at the beginning of the simulation.
In analytical terms:

λd =

∫︂
(ud −R id + ωmeλq) dt + λd(id0, iq0)

λq =

∫︂
(uq −R iq − ωmeλd) dt + λq(id0, iq0)

(A.5)

Using this strategy, the user can start a simulation with any desidered value of the
currents (id0, iq0).

Through experimental measurements or finite element analysis it is possible to
obtain the relationships λd(id, iq), λq(id, iq), also known as “direct maps”. The
direct maps can be interpolated in Simulink through direct Lookup Tables (LUT).
Anyway, these maps must be inverted into LUT−1 id(λd, λq), iq(λd, λq) maps for
the Flux Model implementation, as shown in Figure A.1. The convention used for
representing LUT and LUT−1 is defined in Figure A.2.

The procedure required to obtain the LUT−1 relies on the use of the following
MATLAB functions: griddata1 and scatteredInterpolant2. In a nutshell, the
measured flux linkages λd(id, iq), λq(id, iq) are defined over a regular grid of currents.
If the currents are expressed as a function of the flux linkages, scattered data in the
form id(λd, λq), iq(λd, λq) is obtained. The scattered data must be interpolated on
a query grid (a user-defined regular grid of flux-linkages) to obtain the LUT−1.

As concerns the interpolating functions, scatteredInterpolant is to be pre-
ferred over griddata since it is capable of extrapolating data. On the other hand,
griddata is available in Python3.

1https://www.mathworks.com/help/matlab/ref/griddata.html
2https://www.mathworks.com/help/matlab/ref/scatteredinterpolant.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
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Current Model

In the following section the Current Model will be analysed. The Current Model is
based on the inverse incremental inductances of the motor (LUT), thus it does not
require the inverted flux-linkage maps (LUT−1).

Consider equation (2.1), and in particular the terms dλd

dt and
dλq

dt . Adding the
dependency of the flux linkages with the currents, and applying the chain rule, it
follows that:

dλd(id, iq)

dt
=

∂λd(id, iq)

∂id

did
dt

+
∂λd(id, iq)

∂iq

diq
dt

dλq(id, iq)

dt
=

∂λq(id, iq)

∂id

did
dt

+
∂λq(id, iq)

∂iq

diq
dt

(A.6)

or, in matrix form:

[︄
dλd

dt

dλq

dt

]︄
=

[︄
ldd(id, iq) ldq(id, iq)

lqd(id, iq) lqq(id, iq)

]︄ [︄
did
dt

diq
dt

]︄
(A.7)

where the matrix of the incremental inductances (2.4) is defined as:

[︄
ldd(id, iq) ldq(id, iq)

lqd(id, iq) lqq(id, iq)

]︄
=

⎡
⎣

∂λd(id,iq)
∂id

∂λd(id,iq)
∂iq

∂λq(id,iq)
∂id

∂λq(id,iq)
∂iq

⎤
⎦ (A.8)

From equation (A.7) it is possible to extract the currents derivatives:

[︄
did
dt

diq
dt

]︄
=

[︄
γd(id, iq) γdq(id, iq)

γqd(id, iq) γq(id, iq)

]︄ [︄
dλd

dt

dλq

dt

]︄
(A.9)

where the matrix of the inverse incremental inductances (2.8) is defined as the
inverse of the matrix of the inductances:

[︄
γd(id, iq) γdq(id, iq)

γqd(id, iq) γq(id, iq)

]︄
=

[︄
ldd(id, iq) ldq(id, iq)

lqd(id, iq) lqq(id, iq)

]︄−1

(A.10)

Expanding (A.9) it is possible to obtain:

did
dt

= γd(id, iq)
dλd

dt
+ γdq(id, iq)

dλq

dt
diq
dt

= γqd(id, iq)
dλd

dt
+ γq(id, iq)

dλq

dt

(A.11)

The Current Model scheme, shown in Figure A.3, is based on equation (A.11)
and equation (A.2). In this scheme, LUT for λd and λq use linear (linear point-slope)
interpolation, while LUT for γd, γdq, γqd and γq use flat (constant) interpolation.
The incremental inductances, and consequently the inverse incremental inductances,
are computed deriving the flux linkages using the difference quotient. Since the flux
linkages are linear between the known points, it follows that their derivative is
constant. This is the reason why the Lookup Tables γd, γdq, γqd and γq should use
flat interpolation.
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Figure A.3: Current Model scheme.

In the Current Model, the currents are state variables. They are obtained as
follows:

id =

∫︂ (︃
γd(id, iq)

dλd

dt
+ γdq(id, iq)

dλq

dt

)︃
dt + id0

iq =

∫︂ (︃
γqd(id, iq)

dλd

dt
+ γq(id, iq)

dλq

dt

)︃
dt + iq0

(A.12)

Regarding the initial values id0 and iq0, they can be directly chosen by the user.
If no values is set, the simulation will start with null corrents both in the case of
REL motor and PM motor. Thus, the setup of id0 and iq0, in a Current Model, is
very simple and direct. In a Flux Model, forcing id0 and iq0 it is not so immediate
because the user can act only on the values of λd0 and λq0.

The procedure to create the Current Model from the flux-linkage maps consists
in two parts: the computation of the incremental inductances ldd, ldq, lqd, lqq (Fig-
ure 2.8) and the computation of the inverse incremental inductances γd, γdq, γqd
and γq (Figure 2.10). The corresponding functions are implemented in Apollo4:

• calc_incremental_inductances(method=’diff’)

• mot.calc_inverse_incremental_inductances()

4https://gitlab.com/LuigiAlberti/dolomites-python (free code)

https://gitlab.com/LuigiAlberti/dolomites-python
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SynRM Model

Hinkkanen et al. proposed an algebraic model proposed for the SynRM [66]. The
model is particularly useful since it is possible to describe the SynRM nonlinear
characteristics with only 9 coefficients (5 parameters ad0, add, adq, aq0, aqq and 4
exponents S, T, U, V ):

id(λd, λq) =

(︃
ad0 + add|λd|S +

adq
V + 2

|λd|U |λq|V+2

)︃
λd

iq(λd, λq) =

(︃
aq0 + aqq|λq|T +

adq
U + 2

|λd|U+2|λq|V
)︃
λq

(A.13)

It is worth noting that in (A.13) the currents are expressed as function of the flux
linkages. Thus, id(λd, λq) and iq(λd, λq) are already in the form of LUT−1, that
makes (A.13) easily implementable in the Flux Model (Figure A.1) using MATLAB
functions, getting rid of the Lookup Tables interpolations.

The coefficients of (A.13) can be obtained through a fitting procedure, imple-
mented in Apollo5 as fit_flux_SynRM(). Starting data λd(id, iq), λq(id, iq) is con-
ventionally measured (or simulated) on a grid of stator currents (id, iq), but the
function is valid also in the case of scattered data. Once obtained the 9 coefficients
of (A.13), it is possible to recalculate the fitted fluxes on a new query grid (that can
be even larger than the starting one).

Another advantage of the proposed SynRMmodel is that the incremental param-
eters can be computed and monitored in real-time in the Simulink model. Starting
from (A.13), the derivatives of the currents id and iq with respect to the flux linkages
λd and λq (i.e. the inverse incremental inductances) are:

γdd(λd, λq) = ad0 + add(S + 1)|λd|S +
adq

V + 2
(U + 1)|λd|U |λq|V+2

γdq(λd, λq) = adq|λd|Uλd
|λq|V+2

λq

γqd(λd, λq) = adq|λq|V λq
|λd|U+2

λd

γqq(λd, λq) = aq0 + aqq(T + 1)|λq|T +
adq

U + 2
(V + 1)|λd|U+2|λq|V

(A.14)

5https://gitlab.com/LuigiAlberti/dolomites-python (free code)

https://gitlab.com/LuigiAlberti/dolomites-python
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The incremental inductances can be computed with:

ldd(λd, λq) =
γqq(λd, λq)

γdd(λd, λq)γqq(λd, λq)− γdq(λd, λq)γqd(λd, λq)

ldq(λd, λq) =
−γdq(λd, λq)

γdd(λd, λq)γqq(λd, λq)− γdq(λd, λq)γqd(λd, λq)

lqd(λd, λq) =
−γqd(λd, λq)

γdd(λd, λq)γqq(λd, λq)− γdq(λd, λq)γqd(λd, λq)

lqq(λd, λq) =
γdd(λd, λq)

γdd(λd, λq)γqq(λd, λq)− γdq(λd, λq)γqd(λd, λq)

(A.15)

The model proposed in this section is valid only for SynRM, while the Flux Model
and the Current Model can be used for any other type of permanent magnet motor
(SPM, IPM, SynRM, PMA-SynRM).
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