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The Fourier Discrepancy Function
Gennaro Auricchio, Andrea Codegoni, Stefano Gualandi and Lorenzo Zambon

Abstract—In this paper, we propose the Fourier Discrepancy
Function, a new discrepancy to compare discrete probability
measures. We show that this discrepancy takes into account the
geometry of the underlying space. We prove that the Fourier
Discrepancy is convex, twice differentiable, and that its gradient
has an explicit formula. We also provide a compelling statistical
interpretation. Finally, we study the lower and upper tight bounds
for the Fourier Discrepancy in terms of the Total Variation
distance.

Index Terms—Fourier metrics, discrepancy, weak convergence,
maximum likelihood, tight bounds

I. INTRODUCTION

C
OMPARING probability measures is a crucial task in

several applied fields, such as computer vision [1], [2],

[3], [4], [5], [6], [7], supervised learning [8], [9], [10], [11],

[12] and generative models [13], [14], [15]. However, using

different metrics for a given task can lead to different results

[13]. For this reason, it is of crucial importance to have a

wide range of mathematical tools and understand their features.

For instance, in [16], a class of divergence measures based

on the Shannon entropy has been introduced and studied. A

relevant topic in information theory has then become to give a

comparison between different discrepancy functions, especially

in terms of tight bounds. The problem of finding tight bounds

has been introduced in [17]; since then, many works have

improved the constants of several known inequalities [18],

[19], [20]. These bounds have also been proved to be useful

for source coding [21], [22], [23].

In this paper, we introduce the Fourier Discrepancy Function,

a distance between discrete probability measures inspired by

the 1, 2−Periodic Fourier-Based Metric [24]. Metrics based on

the Fourier Transform have been introduced in [25] and used

in several fields, such as kinetic theory [26], [27], statistics

[28], and, more recently, generative models [14]. The Fourier

Discrepancy inherits the ability to capture the geometry of the

underlying space, which is an appealing property in several

applications [29], [30], [31]. Moreover, it is easy to compute

using the Fast Fourier Transform [32].

In Section II, we recall the most commonly used dis-

crepancy functions for discrete probability measures and the

1, 2−Periodic Fourier Based Metric [24]. Then, in Section

III, we introduce the Fourier Discrepancy. We prove that the

squared Fourier Discrepancy is twice differentiable. Unlike

the Wasserstein distance [33], [34], its gradient has an explicit

formula. Moreover, we prove that the Fourier Discrepancy is

convex, and we provide an interesting statistical interpretation.

Finally, in Section IV, we study the lower and upper tight
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bounds for the Fourier Discrepancy in terms of the Total

Variation distance. We close our paper with an open conjecture

on the value of the upper tight bound.

II. DISCREPANCY FUNCTIONS FOR PROBABILITY

MEASURES

A. Commonly used discrepancy functions

In this subsection, we recall the main distances and di-

vergences used to compare discrete probability measures in

computational applied mathematics. Here (X, d) denotes a

discrete finite metric space, and P(X) denotes the set of all

the probability measures over X . For a complete discussion,

we refer to [35], [36].

• The Total Variation distance (TV ) [35] is defined as

TV (µ, ν) :=
1

2

∑

x∈X

|µx − νx|.

• The Kullback-Leibler divergence (KL) [37] is defined as

KL(ν||µ) :=
∑

x∈X

log
( νx
µx

)
νx, (1)

if νx = 0 for every x such that µx = 0, and otherwise

KL(ν||µ) := +∞. We follow the convention 0 · log(0) =
0.

• The Wasserstein distance (W1) [36], [38] is defined as

W1(µ, ν) := min
π∈Π(µ,ν)

{ ∑

(x,y)∈X×X

|x− y| πx,y

}
, (2)

where

Π(µ, ν) :=

{
π ∈P(X ×X) s.t.

∑

y∈X

πx,y = µx,
∑

x∈X

πx,y = νy

}
.

Intuitively, πx,y denotes the amount of mass that is moved

from the point x to the point y to reshape the configuration

µ into the configuration ν. The cost of moving a unit of

mass from x to y is given by |x − y|. The Wasserstein

distance is then the minimum cost for performing the total

reshape.

Although these three functions are commonly used to compare

measures, their features, and thus their behaviours when applied

to a given task, are different. Studying these features is crucial

to choosing the right discrepancy to be used for the given task.

For example, the Total Variation is robust against random noise

when used as a loss function for classification tasks [39], the

Kullback-Leibler divergence is closely related to likelihood

maximisation [9], [10], while the Wasserstein distance performs

well at capturing the geometry of the underlying space [31],

[36], [38].
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B. The 1, 2−Periodic Fourier-based Metric

In this subsection, we review the main notions about the

Fourier Transform of discrete measures (DFT) and about

Fourier Based Metrics [26], [24], [25]. For a complete dis-

cussion on the DFT, we refer to [40].

In what follows, we fix X = IN , where IN ⊂ [0, 1] is

defined as

IN :=

{
0,

1

N
, . . . ,

N − 1

N

}
,

for any given N ∈ N. A discrete measure µ on IN is then

defined as

µ :=
N−1∑

j=0

µjδ j

N
, (3)

where the values µj are non-negative real numbers such that∑N−1
j=0 µj = 1. Since any discrete measure supported on

IN is fully characterised by the N−uple of positive values

(µ0, . . . , µN−1), we refer to discrete measures and vectors

interchangeably.

Definition 1. The Discrete Fourier Transform (DFT) of µ is

the N−dimensional vector µ̂ := (µ̂0, . . . , µ̂N−1) defined as

µ̂k :=
N−1∑

j=0

µje
−2πi j

N
k, k ∈ {0, . . . , N − 1}. (4)

Remark 1. Since the complex exponential function k →
e−2πi j

N
k is a N−periodic function for any integer j, we set

µ̂k := µ̂modN (k)

for any k ∈ Z, where modN (k) is the N−modulo operation.

In particular, µ̂−k = µ̂N−k for any k ∈ {0, . . . , N − 1}.

Remark 2. The DFT of a discrete measure can be expressed

as a linear map:

(µ̂0, . . . , µ̂N−1) = Ω · (µ0, . . . , µN−1), (5)

where Ω is the N ×N matrix defined as

Ω :=




ω0,0 ω0,1 . . . ω0,N−1

ω1,0 ω1,1 . . . ω1,N−1

. . . . . . . . . . . .

ωN−1,0 ωN−1,1 . . . ωN−1,N−1


 , (6)

and ωk,j := e−2πi j

N
k. Since the matrix Ω is invertible, the

DFT is a bijective function.

We now introduce the 1, 2−Periodic Fourier-based Metric [24].

Definition 2. Let µ and ν be two discrete measures over IN .

The 1, 2−Periodic Fourier-based Metric is defined as

f2
1,2(µ, ν) :=

∫

[0,1]

∣∣∑N−1
j=0 (µj − νj)e

−2πijk
∣∣2

|k|2 dk. (7)

In [24], it is proved that the integral in (7) converges for

any pair of probability measures µ and ν, and that f1,2 is

equivalent to W1.

III. THE FOURIER DISCREPANCY FUNCTION

In this section, we introduce the Fourier Discrepancy

function, inspired by (7).

We compare the Fourier Discrepancy Function with other

discrepancies, and we show with an example its ability to

take into account the geometry of the underlying space. Then,

we prove that the Fourier Discrepancy Function is convex,

and we provide the explicit formula for the gradient and the

Hessian matrix of its corresponding loss function. Finally,

we present a statistical model with Gaussian noise in the

space of frequencies, in which the minimisation of the Fourier

Discrepancy is equivalent to the maximisation of the likelihood.

Remark 3. Herein, we only consider one-dimensional discrete

measures, but all the results may be extended to a multi-

dimensional setting.

Moreover, for the sake of simplicity, we assume that N is

an even number.

Since µ̂k = µ̂N−k, we have
∣∣µ̂k − ν̂k

∣∣ =
∣∣µ̂N−k − ν̂N−k

∣∣, (8)

which means that the k-th discrete frequencies give us the

same information of the (N − k)-th ones. Therefore, we only

consider the first N
2 − 1 frequencies and we take half of the

N
2 -th frequency. We then propose the following discrete version

of the metric in (7).

Definition 3. We define the Fourier Discrepancy function

F : P(IN )× P(IN ) → [0,+∞) as

F
2(µ, ν) :=

N
2 −1∑

k=1

|µ̂k − ν̂k|2
|k|2 +

∣∣ 1
2

(
µ̂N

2
− ν̂N

2

)∣∣2

|N2 |2

=

N
2 −1∑

k=1

|µ̂k − ν̂k|2
|k|2 +

|µ̂N
2
− ν̂N

2
|2

|N |2 . (9)

Remark 4. The function F is a distance on P(IN ). Moreover,

the following holds:

1

N
C1 ·W1 ≤ F ≤ C2 ·W1, (10)

where C1, C2 are positive constants that do not depend from N .

This follows from the equivalence between the Fourier-based

metric and the Wasserstein distance [24].

Example 1. Figure 1 shows the behaviours of different dis-

crepancy functions when comparing Dirac’s delta distributions.

We have omitted the KL, since it is always equal to +∞
whenever the supports of the two distributions are disjoint. We

highlight how the Fourier discrepancy, similarly to the W1, is

able to take into account the geometry of the underlying space.

To conclude, we provide an upper bound for the Fourier

Discrepancy with respect to the Total Variation and the

Kullback-Leibler.

Proposition 1. For any pair of probability measures µ and ν,

we have that

F(µ, ν) ≤ 2√
6
π TV (µ, ν). (11)
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Fig. 1. Distance between δ0 and δn. We have scaled the distances for visual
convenience.

The proof is reported in Appendix A.

Remark 5. Using the Pinsker’s inequality [41], we also obtain

the following bound:

F(µ, ν) ≤ π√
3

√
KL(µ||ν).

A. Analytical properties

In what follows, we study the analytical properties of the

Fourier Discrepancy Function.

Let us introduce the matrix K := diag(b), where the vector
b is defined as

b :=
1

2

(

1, 1−2
, . . . ,

(

N

2
− 1

)

−2

,
2

N2
,

(

N

2
− 1

)

−2

, . . . , 1−2

)

(12)

We can express the Fourier Discrepancy function as a quadratic

form:

F
2(µ, ν) = (µ̂− ν̂)TK(µ̂− ν̂)

= (µ− ν)TΩT
KΩ(µ− ν), (13)

where Ω is the DFT matrix defined in (6).

We now study the matrix H := ΩTKΩ to derive the

analytical properties of the Fourier Discrepancy.

Proposition 2. The matrix H is positive definite and its

eigenvalues are given by

λi = N · bi, i = 0, . . . , N − 1,

where b is the vector in (12).

Since H is positive definite, there exists a matrix L such

that LTL = H. Therefore, we can write

F(µ− ν) = ‖L(µ− ν)‖.
Since F is given by the composition of a linear function with

the norm operator, we have the following.

Proposition 3. The Fourier Discrepancy is convex in µ− ν.

In many applications, discrepancies are used to evaluate how

different a given probability measure is from a target one. An

established tool to perform this comparison is the loss function.

For any given ν ∈ P(IN ), we define the Fourier Loss

Function Lν : P(IN ) → [0,∞) as

Lν(µ) := F
2(µ, ν). (14)

We are able to explicitly express the gradient and the Hessian

matrix of this function.

Proposition 4. For any probability measure ν, the function

Lν is twice differentiable. Moreover, its gradient and Hessian

matrix are expressed through the explicit formulae:

(∇Lν)l(µ) =
∂Lν

∂µl

(µ) = 2

N−1∑

j=0

(µj − νj) · Re
(
b̂j−l

)
(15)

and

(HLν)h,l(µ) =
∂2Lν

∂µh∂µl

(µ) = 2Re
(
b̂h−l

)
, (16)

where b̂ is the Fourier Transform of the vector b.

In particular, Lν is a convex function for any ν ∈ P(IN ).

B. Statistical interpretation

We now show how the minimisation of the Fourier Dis-

crepancy is related to the maximum likelihood estimator in

classification models with a random noise. This is a classic

framework in machine learning, where we often assume the

existence of an underlying probabilistic model that generates

the data [9], [42]. This model is typically expressed as

yi = f(xi; θ) + ǫi, i = 1, . . . ,m, (17)

where (x1, y1), . . . , (xm, ym) are the data, ǫ1, . . . , ǫm are i.i.d.

random noises, f is a function that specifies the model structure,

and θ is the parameter that has to be optimised.

Let us suppose that, for every i = 1, . . . ,m, ǫ̂i ∼ CN (0,Σ),
where CN (0,Σ) is the circularly-symmetric complex normal

distribution with zero mean and covariance matrix Σ, defined

as Σ := diag
(
2σ2β

)
, for some σ > 0, and where β is given

by

β :=

(
0, 12, . . . ,

∣∣∣∣
N

2
− 1

∣∣∣∣
2

,

∣∣∣∣
N2

2

∣∣∣∣,
∣∣∣∣
N

2
− 1

∣∣∣∣
2

, . . . , 12
)
.

For a complete discussion on complex normal distributions,

we refer to [43].

The likelihood of the observations (x, y) = (xi, yi)i=1,...,m

is then given by

P(y|x, θ) =
m∏

i=1

P(yi = fi + ǫi)

=

m∏

i=1

P(ŷi = f̂i + ǫ̂i)

= C ·
m∏

i=1

exp

[
−1

2
(ŷi − f̂i)

HΣ−1(ŷi − f̂i)

]

= C · exp
[
− 1

2σ2

m∑

i=1

F
2(yi, fi)

]
, (18)
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provided that the mass of yi is the same as fi, for every

i = 1, . . . ,m. The vector (ŷi − f̂i)
H denotes the conjugate

transpose of (ŷi − f̂i) and C is a positive constant that does

not depend on the data.

By taking the logarithm in (18), we obtain the following

result.

Theorem 1. Let us consider a model of the form (17),

where (x1, y1), . . . , (xm, ym) are the data and ǫ1, . . . , ǫm are

distributed as described above. Then, the value of θ maximising

the likelihood of the data is the one minimising the Fourier

Discrepancy

1

m

m∑

i=1

Lδyi
(f(xi; θ)) .

Notice that the structure of the covariance matrix Σ measures

how the error on the kth frequency is weighted. As the variance

grows, we are more willing to accept discrepancies between the

real value of the frequency and the predicted one. In particular,

for k = 0, we have a null variance Gaussian (i.e. a Dirac’s

delta). Therefore the model does not admit any error on the

null frequency: µ and ν must have the same mass.

IV. TIGHT BOUNDS

In this section, we study the tight bounds for the Fourier

Discrepancy in terms of the Total Variation distance.

A first result is given in Proposition 1. However, what we

aim to find are the lower and upper tight bounds, respectively

CL(θ) and CU (θ), defined, for any given θ ∈ (0, 1], as

CL(θ) := inf
µ,ν:TV (µ,ν)=θ

F(µ, ν), (19)

CU (θ) := sup
µ,ν:TV (µ,ν)=θ

F(µ, ν). (20)

Due to the linearity of the DFT, we have that

F(µ, ν)2 =

N
2∑

k=1

| ̂(µ− ν)k|2
|k|2 ,

we then set ∆ := µ−ν and express both TV and F as functions

of ∆, rather than µ and ν.

We now introduce and study the space of null sum measures.

Definition 4. We say that a real measure ∆ is a null sum

measure if
N−1∑

i=0

∆i = 0.

We denote by Θ the set of all the null sum measures.

Given any pair of probability measures µ and ν, their

difference is a null sum measure. As the following result

shows, up to a multiplicative constant, the converse is also

true.

Proposition 5. Given any non-zero ∆ ∈ Θ and θ ∈ (0, 1],
there exists C > 0 and a pair of probability measures (µ, ν)
such that

µ− ν = C ·∆ and TV (µ, ν) = θ.

Proof. Let C := θ
TV (∆) and ∆̃ := C · ∆, which are well-

defined since TV (∆) 6= 0 for any non-zero ∆.

Then, for the 1−homogeneity of TV , we have that

TV (∆̃) = θ
TV (∆) · TV (∆) = θ.

Let µ̃ and ν̃ be, respectively, the positive and negative part

of ∆̃. Therefore, ∆̃ = µ̃− ν̃ and µ̃i, ν̃i ≥ 0 for any i.

We have that

2θ =
∑

i

|∆̃i| =
∑

i

µ̃i +
∑

i

ν̃i, (21)

and moreover, since ∆̃ is a null sum measure:

0 =
∑

i

∆̃i =
∑

i

µ̃i −
∑

i

ν̃i. (22)

From (21) and (22) follows easily that
∑

i µ̃i =
∑

i ν̃i = θ.

We now define

µ := µ̃+ (1− θ)δ0, ν := ν̃ + (1− θ)δ0.

We have that µ is a probability measure since µi ≥ 0 for

any i and
∑

i µi =
∑

i µ̃i + (1− θ) = 1. The same holds for

ν.

Moreover, µ− ν = ∆̃, hence TV (µ, ν) = TV (∆̃) = θ.

Remark 6. Thanks to Proposition 5, and for the 1-homogeneity

of F, we have that

CL(θ) = inf
∆∈Θ:
∆ 6=0

F

(
θ

TV (∆)
∆

)

= θ · inf
∆∈Θ:
∆ 6=0

F(∆)

TV (∆)
, (23)

and, analogously,

CU (θ) = θ · sup
∆∈Θ:
∆ 6=0

F(∆)

TV (∆)
. (24)

A. Lower tight bound

Let us define the complex vector ωk ∈ CN as

ωk =
(
ei

2πk
N

0, ei
2πk
N

1, . . . , ei
2πk
N

(N−1)
)
.

Since {ωk}k=0,...,N−1 is an orthogonal basis of Cn [40],

for any ∆ ∈ Θ there exists a unique N -tuple of complex

coefficients
(
λ(k)

)
k

such that

∆ =
N−1∑

k=0

λ(k)ωk.

We define

Ξ :=
{
∆ ∈ Θ :

N−1∑

k=0

|λ(k)| = 1
}
. (25)

From (23), and for the 1-homogeneity of both TV and F, we

have that:
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CL(θ) = θ · inf
∆∈Θ:
∆ 6=0

F

(
∆∑
|λ(k)|

)

TV
(

∆∑
|λ(k)|

)
∑ |λ(k)|∑ |λ(k)| ,

= θ · inf
∆∈Ξ

F(∆)

TV (∆)
. (26)

Lemma 2. We have that

sup
∆∈Ξ

TV (∆) =
N

2
, (27)

and the supremum is attained at ∆ = ωN
2

.

Proof. Since |(ωk)j | = |ei 2πjk

N | = 1 for all j and k, we have

that TV (ωk) =
N
2 . Then, for any ∆ ∈ Θ such that

∑ |λ(k)| =
1, we have

TV (∆) = TV
(

N−1
∑

k=0

λ
(k)

ωk

)

=
1

2

N−1
∑

j=0

∣

∣

∣

N−1
∑

k=0

λ
(k)(ωk)j

∣

∣

∣

≤
1

2

N−1
∑

j=0

N−1
∑

k=0

∣

∣

∣
λ
(k)(ωk)j

∣

∣

∣
=

1

2

N−1
∑

k=0

|λ(k)|

N−1
∑

j=0

|(ωk)j |

=
N

2

N−1
∑

k=0

|λ(k)| =
N

2
.

Finally, notice that ωN
2

∈ Θ since
(
ωN

2

)
j
= eiπj = (−1)j ,

therefore ωN
2

is real and
∑N−1

j=0

(
ωN

2

)
j
= 0.

Lemma 3. For any ∆ ∈ Θ, the Fourier Discrepancy is given

by

F
2(∆) = N2

( N
2 −1∑

k=1

|λ(k)|2
k2

+
|λ(N

2 )|2
|N |2

)
. (28)

Proof. For any j = 0, . . . , N − 1, we have that the DFT of ωj

is given by

(̂ωj)k =

N−1∑

l=0

e−i 2π
N

lk(ωj)l =

N−1∑

l=0

e−i 2π
N

l(k−j) = Nδk−j .

Hence, for the linearity of the DFT:

∆̂k =

N−1∑

j=0

λ(j)(̂ωj)k = N

N−1∑

j=0

λ(j)δk−j = Nλ(k).

Lemma 4. We have that

inf
∆∈Ξ

F(∆) = 1,

and the infimum is attained at ∆ = ωN
2

.

Proof. Let ∆ ∈ Ξ. Then λ(0) =
∑

j ∆j = 0. Moreover, since

∆ is real, we have that ∆̂k = ∆̂N−k for any k = 1, . . . , N−1,

hence |λ(k)| = |λ(N−k)|. If we define

γj :=

{
2|λ(j)| for j = 1, . . . , N

2 − 1,

|λ(N
2 )| for j = N

2 ,

from (28) we obtain

F
2(∆) =

(N
2

)2 N
2∑

k=1

γ2
k

k2
,

while the constraint (25) is written as

N
2∑

j=1

γj = 1.

It is easy to see that the minimum is achieved when γN
2
= 1

and γj = 0 for j = 1, . . . , N
2 − 1. Therefore ∆ = ωN

2
∈ Ξ,

and F(∆) = 1.

Combining (26) with Lemma 2 and Lemma 4, we infer that

the lower tight bound is attained at ∆ = [−1, 1,−1, 1, . . . , 1].
Thanks to Proposition 5, we can conclude with the following

theorem.

Theorem 5. The lower tight buond CL(θ) is given by

CL(θ) =
2θ

N
, (29)

and is attained at

µ =
2θ

N
[1, 0, 1, 0, . . . , 0] + (1− θ)δ0,

ν =
2θ

N
[0, 1, 0, 1, . . . , 1] + (1− θ)δ0.

B. Upper tight bound

First, we introduce a suitable class of null sum measures.

Definition 5. For any i, j ∈ {0, . . . , N − 1}, we define the

measure ηi,j as

ηi,j := δi − δj .

Theorem 6. Let ∆ be a null sum measure on {0, . . . , N − 1}.

Then, we can express ∆ as ∆ = TV (∆) ·∆′, where ∆′ is a

convex combination of {ηik,jk}k such that, for any pair ηik,jk
and ηik′ ,jk′

, we have

ik 6= jk′ (30)

for any k 6= k′.

Proof. Let ∆ be a null sum measure. Without loss of generality,

we can reorder the values of ∆ as follows:

∆ = (α1, . . . , αr,−β1, . . . ,−βl, 0, . . . , 0),

where r + l ≤ N , αi, βj > 0, αi ≤ αi+1, βj ≤ βj+1, for any

i and j, and
∑

αi =
∑

βj .

Without loss of generality, we assume that

α1 ≤ β1.

Hence, we can write

∆ = α1η0,r +∆(1),

where

∆(1) = (0, α
(1)
2 , . . . , α(1)

r ,−β
(1)
1 , . . . ,−β

(1)
l , 0, . . . , 0)

: = (0, α2, . . . , αr,−(β1 − α1),−β2, . . . ,−βl, 0, . . . , 0).
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Next, we compare α
(1)
2 and β

(1)
1 and repeat the process until

every entry vanishes. At the end, we find

∆ = λ1η0,r + · · ·+ λkηr−1,N−1

=:
∑

k

λkηik,jk . (31)

Notice that each ηi,j in (31) is such that i < r and j ≥ r

by construction, which implies condition (30).

Since by hypothesis, for any l = 0, . . . , N − 1, all the l-th

entries (ηik,jk)i have the same sign, we can write

|∆l| =
∣∣∣
∑

k

λk(ηik,jk)l

∣∣∣ =
∑

k

λk|(ηik,jk)l|.

Therefore:

TV (∆) =
1

2

∑

l

|∆l| =
1

2

∑

l

∑

k

λk|(ηik,jk)l|

=
1

2

∑

k

∑

l

λk|(ηik,jk)l|

=
1

2

∑

k

λk

∑

l

|(ηik,jk)l| =
∑

k

λk,

since
∑

l |(ηi,j)l| = 2 for any i, j. To conclude, it suffices to

set

∆′ :=
1

TV (∆)
∆ =

∑

k

λ̃kηik,jk ,

where λ̃k := λk∑
l
λl

> 0, and
∑

k λ̃k = 1.

Theorem 7. There exist i⋆, j⋆ ∈ {0, . . . , N −1} such that, for

any θ ∈ (0, 1]:

θ · ηi⋆,j⋆ = argmax
TV (∆)=θ

F(∆). (32)

Proof. First, let us define

(i⋆, j⋆) := argmax
i,j∈{0,...,N−1}

F(ηi,j), (33)

which exists since the maximum is taken over a finite set. For

any θ ∈ (0, 1] and any null sum measure ∆ with TV (∆) = θ,

thanks to Theorem 6, we can write ∆ = θ ·∑k λkηik,jk .

From the 1-homogeneity and the convexity of F, we obtain:

F(∆) = F

(
θ ·
∑

k

λkηik,jk

)
= θ · F

(∑

k

λkηik,jk

)

≤ θ ·
∑

k

λkF (ηik,jk) ≤ θ ·
∑

k

λkF (ηi⋆,j⋆)

= θ · F (ηi⋆,j⋆) = F (θ · ηi⋆,j⋆) .

As a straightforward consequence, we get the following

result.

Corollary 1. The upper tight bound CU (θ) is given by

CU (θ) = θ · F(ηi⋆,j⋆). (34)

Corollary 1 allows to search for the upper tight bound over

a finite set of points. By explicit computation of the Fourier

Discrepancy (see Appendix B), we have that

F
2(ηj,l) =

N
2 −1∑

k=1

2− 2 cos
(2π|j − l|

N
k
)

k2
+
2− 2 cos(π|j − l|)

N2
.

Notice that F(ηj,l) depends on j and l only through d :=
|j − l|. Hence, we can further restrict to measures of the form

η0,d, with d ∈ {1, . . . , N − 1}. By studying the derivatives

with respect to d, it is possible to show that d∗ = N
2 is a local

minimum for the function g : [0, N ] → R, defined as:

g(d) :=

N
2 −1∑

k=1

cos
(2πd

N
k
)

k2
+

cos(πd)

N2
. (35)

We close our paper with the following open conjecture.

Conjecture 1. d∗ = N
2 is a global minimum for g.

If our conjecture was true, we would have

CU (θ) = θ ·

√√√√√
N
2 −1∑

k=1

2− 2(−1)k

k2
+

2− 2(−1)
N
2

N2
.
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APPENDIX A

PROOF OF PROPOSITION 1

Proof. Let us fix two probability measures µ and ν over IN .

By definition, we have

F(µ, ν)2 =

N
2 −1∑

k=1

∣∣∑N−1
j=0 (µj − νj)(e

−2πi j

N
k)
∣∣2

|k|2

+

∣∣∑N−1
j=0 (µj − νj)(e

−iπj)
∣∣2

|N |2

≤
N
2∑

k=1

∣∣∑N−1
j=0 |µj − νj ||e−2πi j

N
k|
∣∣2

|k|2 (36)

=

N
2∑

k=1

∣∣∑N−1
j=0 |µj − νj |

∣∣2

|k|2

= 4TV (µ, ν)2

N
2∑

k=1

1

k2

≤ 4TV (µ, ν)2
+∞∑

k=1

1

k2

=
4π2

6
TV (µ, ν)2,

where inequality (36) follows from the fact that N−2 ≤
(
N
2

)−2
.

The proof is concluded by taking the square root on both

sides.

APPENDIX B

COMPUTING F(ηj,l)

Let us consider null sum measures of the form ηl,j . We

recall that ηl,j := δl − δj . Since

η̂l,j = Ω · ηl,j ,

we have

η̂l,j = Θl −Θj , (37)

where Θk is the k−th column of the matrix Ω. By the definition

of Ω we have

Θl =
(
ei

2πl
N

0, ei
2πl
N

1, . . . , ei
2πl
N

(N−1)
)
,

therefore, the value F(ηl,j)
2 is then given by

F(ηl,j)
2 =

N
2 −1∑

k=1

|(Θl −Θj)k|2
k2

+
|(Θl −Θj)N

2
|2

|N |2 . (38)

Let us now compute explicitly |(Θl − Θj)k|2 for a given k.

We have

(Θl −Θj)k = cos

(
2πl

N
k

)
− cos

(
2πj

N
k

)

+ i sin

(
2πl

N
k

)
− i sin

(
2πj

N
k

)
,

therefore

|(Θl −Θj)k|2 =

(
cos

(
2πl

N
k

)
− cos

(
2πj

N
k

))2

+

(
sin

(
2πl

N
k

)
− sin

(
2πj

N
k

))2

= 2− 2

(
cos

(
2πl

N
k

)
cos

(
2πj

N
k

)

+ sin

(
2πl

N
k

)
sin

(
2πj

N
k

))

= 2− 2 cos

(
2π(j − l)

N
k

)
, (39)

where the equality in (39) comes from the following trigono-

metric identity:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

Therefore

F
2(ηj,l) =

N
2
−1

∑

k=1

2− 2 cos
(2π|j − l|

N
k
)

k2
+

2− 2 cos(π|j − l|)

N2
.

(40)
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