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Abstract. In this paper, a comparison between two current-based Integral Equations
approaches for eddy current problems is presented. In particular, the very well-known and
widely adopted loop-current formulation (or electric vector potential formulation) is compared
to the less common J–ϕ formulation. Pros and cons of the two formulations with respect to
the problem size are discussed, as well as the adoption of low-rank approximation techniques.
Although rarely considered in the literature, it is shown that the J–ϕ formulation may offer some
useful advantages when large problems are considered. Indeed, for large–scale problems, while
the computational efforts required by the two formulations are comparable, the J–ϕ formulation
does not require any particular attention when non-simply connected domains are considered.

1. Introduction
In recent years, the interest in Integral Equation (IE) methods for the solution of 3-D
electromagnetic (EM) problems has significantly increased. Indeed, with respect to the well-
known and well established Finite Element Method (FEM), IE methods do not require the
discretization of air domains (or, more generally, domains with the electromagnetic properties of
vacuum), thus reducing the number of required unknowns [1]. Moreover, thanks to this feature,
the construction of the mesh is also simplified, which is a particularly important task when
complex geometries with small air gaps are analysed, such as large scale thermonuclear fusion
devices [2, 3] or new generation electronic devices based on surface mounted technology [4, 5].

Depending on the frequency of the problem, different IE formulations can be used. For instance,
when the frequency and the geometry of devices allow for exploiting the magneto-quasistatic
assumption, formulations like the ones proposed in [6, 7, 8] can be used. Instead, for higher
frequencies or, in general, when propagation effects can be neglected but capacitive effects must
be considered, other formulations like the Partial Element Equivalent Circuit (PEEC) method
can be used [9, 10, 11]. Finally, when the frequency is so high that propagation effects must be
considered, depending on the kind of the problem, other IE formulations can be used [12, 13, 14].

The main problem of all IE methods is the generation of dense matrices representing the
mutual interactions between the unknowns. Generally, the memory required for the storage of
such dense matrices grows quadratically with the number of the unknowns, thus reducing the
efficiency and applicability of IE methods for large scale problems if no remedy is applied. Also
the time required for the generation of the dense matrices grows quadratically with the number
of the unknowns, and thus cannot be completely ignored [15]. Moreover, the computational cost
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required for the solution of the final IE system of equations is also significantly affected by the
presence of fully populated matrices. Indeed, if direct solvers are adopted, the computational
cost may grow with a O(N3) complexity, where N is the number of unknowns. Instead, if an
iterative solver is adopted, it is of fundamental importance to use an efficient preconditioner to
limit the number of iterations; indeed, at each iteration, matrix-vector products involving the
fully populated matrices are performed [16].

Fortunately, the intense research on low-rank compression techniques of the last years has
led to several efficient techniques to solve this problem. Indeed, although they are dense, the
fully-populated matrices arising from IE methods generally possess a Hierarchical Off-Diagonal
Low-Rank (HODLR) structure, which can be exploited to represent them in data sparse formats
[3, 2]. For instance, several methods based on, e.g., Hierarchical (H) matrices and H-Semi-
Separable (HSS) matrices have been proposed to drastically reduce the memory required for
the storage of such dense matrices, while keeping the accuracy high [17, 18] and also allowing
for standard algebraic operations like matrix-matrix summation, matrix-vector product, and
matrix inversion and factorization. The main idea of this kind of data-sparse formats is to
represent the dense matrices with a hierarchical structure constructed on the basis of some
specific criterion (i.e., algebraically and/or geometrically based). The hierarchical structure is
obtained by successively partitioning rows and columns of the dense matrix, until the obtained
matrix blocks satisfy an admissibility criterion, and therefore they are good candidates for the
application of low-rank compression techniques such as Adaptive Cross Approximation (ACA)
[19] or other more sophisticated methods. Thanks to low-rank compression techniques, several
analyses by means of IE methods involving large scale devices [2, 20, 21] have been possible,
which otherwise would have been computationally demanding and possibly prohibitive.

In this framework, the choice of the formulation is of paramount importance since it directly
affects the efficiency of the solution strategy and also the performances of applying low-rank
compression techniques. In this regard, the present paper aims at comparing two different IE
formulations for eddy-current problems. The first one, very well-known, exploits the divergence
free condition of the electric current by introducing an electric vector potential [16, 6]. Such
formulation is also sometimes referred to the loop-currents formulation [22]. The other formulation,
less frequently used, keeps the current density and the electric scalar potential as the problem
unknowns [23], and can be seen as a particular form of the PEEC method where capacitive
effects are neglected, i.e., the magneto-quasistatic assumption is exploited. The two formulations
have pros and cons which are discussed in this paper considering the standard TEAM problem
7 [24] and a second test case consisting in an axisymmetric metallic conductor, resembling the
typical geometry of a D-shaped vacuum vessel employed in thermonuclear fusion devices.

2. Basic Formulation
The starting point for both formulations is the well known Electric Field Integral Equation
(EFIE) [25]

E(r) = −iωA(r)−∇ϕ(r) + Eext(r), (1)

where E is the electric field, A is the magnetic vector potential, and ϕ is the scalar electric
potential. In (1), r is the field point, i is the imaginary unit, and ω is the angular frequency.

The magnetic vector potential, A, is obtained from the current density vector distribution, J,
from the well–known integral expression [26]

A(r) = µ0

∫
Ω

J(r′)g(r, r′)dΩ, (2)

where r′ is the integration point, Ω is the conductive domain, and

g(r, r′) =
1

4π||r− r′||
, (3)
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is the static Green’s function of vacuum [27].
Equation (1), is then complemented by the Ohm’s law

E(r) = ρ(r)J(r), (4)

which is a local relation between E and J, for r ∈ Ω, and ρ is the electric resistivity.
Since we are considering eddy-current problems, the magneto-quasistatic assumption can be

exploited. Therefore, the following equation also holds:

∇ · J(r) = 0. (5)

The above equations are the starting point of the two formulations that are discussed and
compared in the following. It is useful to provide a common discretization; thus, a mesh consisting
of, e.g., tetrahedral, hexahedral, or polyhedral elements is now considered.

The electric current density J can be then expanded by means of vector face shape functions:

J(r) =

Nf∑
k=1

wk(r)jk, (6)

where wk is the kth vector shape function, jk is the flux of J through the kth internal face of
the mesh. Unknowns jk, with k = 1, · · · , Nf , are stored in the array j (Nf is the number of
internal faces of the mesh). The electric scalar potential is also expanded as in [28] by using
piece-wise constant basis functions. Therefore, the array Φ of size Nv (where Nv is the number of
mesh elements) is also introduced, which stores the unknowns related to ϕ. Following a Galerkin
scheme as in [22, 29], the array eext corresponding to Eext is also introduced.

By using such expansions, equations (1)–(5) can be represented in equivalent matrix form:

(R + iωL)j + GΦ = eext, (7)

GT j = 0, (8)

where R and L are the equivalent (sparse) resistance and (dense) inductance matrices [22] of
dimension Nf ×Nf , respectively, and G is the volumes–faces incidence matrix [28] of dimension
Nf ×Nv.

3. Loop–Currents Formulation
The very well–known loop–currents formulation (or electric vector potential formulation) strongly
enforces the divergence–free condition of J, i.e., (5), by expressing it as the linear combination
of divergence–free loop–currents. As thoroughly discussed in [2], two main approaches can be
adopted: 1) global loop-currents are identified by inspecting the equivalent dual graph of the
problem (for instance using a reduced row echelon form, see [2] for more details), and 2) the
current density is written as the curl of an electric vector potential, i.e., in terms of array of
unknowns,

j = Ct + Hi, (9)

where t is the array related to the electric vector potential T, such as J = ∇ × T, and C is
the curl faces-edges incidence matrix (where, according to [30], a set of edges forming a tree
has been removed in order to impose a gauge on T). The method based on (9) presents several
advantages with respect to using global loop-currents as unknowns. Therefore, in the following,
the formulation based on the electric vector potential is considered.

In (9), H is a proper change of basis matrix which maps the extra global unknowns i into
j for multiply–connected domains [31, 32]. Actually, i is an array storing unknowns related to
loop currents around holes of the multiply-connected domains (see [2] for more details).
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By using (9), (8) is automatically satisfied. Then, by inserting (9) into (7) and projecting the
resulting equations by using CT and HT , one finally obtains:[

Rcc + iωLcc Rch + iωLch

Rhc + iωLhc Rhh + iωLhh

] [
t
i

]
=

[
CTeext
HTeext

]
, (10)

where
Rcc = CTRC, Rch = CTRH, Rhc = HTRC, Rhh = HTRH, (11)

Lcc = CTLC, Lch = CTLH, Lhc = HTLC, Lhh = HTLH. (12)

Matrices Rcc and Lcc are the resistance and inductance matrices related to t (i.e., local loop-
currents) and they can be constructed as shown in [6] without actually passing through R and
L. Instead, Rhh and Lhh are matrices related to i, i.e., loops around holes in multiply-connected
domains. The remaining matrices in (11) and (12) represent mutual resistive and inductive
coupling between t and i.

When the number of unknowns is small enough, (10) can be solved with a standard direct
solver based on, e.g., the LU factorization. However, the memory required to store the system
matrix (10) grows quadratically with the number of unknowns and the computation time for
factorizing (10) grows with a O(N3) complexity. Therefore, solving (10) by using a direct solver
becomes prohibitive with the increase of the number of unknowns and different approaches
based on iterative solvers should be preferred. However, the preconditioning of such iterative
solvers applied to (10) is still a topic of active research and, usually, a simple preconditioner
is constructed from (10) by considering only the resistive terms and the self and close-mutual
inductive interactions, while neglecting all the other coefficients and thus leading to a sparse
preconditioner. However, generally, the efficiency of this preconditioner worsens with the increase
of the frequency since the importance of the mutual inductance’s grows with the increase of the
frequency.

Another more sophisticated approach consists on using H–matrices coupled with ACA or
Singular Value Decomposition (SVD) for representing (10) in a data–sparse format and exploiting
H–LU decomposition for speeding up the iterative solver, while keeping the memory requirement
low [33, 19]. As shown in [2], such approach is efficient; however, undoubtedly, it is quite complex
when non-simply connected domains are considered. Indeed, as thoroughly discussed in [2], the
method adopted for constructing the H–matrices must allow for independently treating matrix
blocks related to t and i, since, in general, blocks related to i may not be low-rank.

Although this is theoretically possible, such approach is quite complex and some kind of
H-matrices (e.g., HODLR and HSS) hardly treat such heterogeneous matrix structure. Moreover,
in general, such heterogeneous structure negatively affects the compression performances and the
efficiency of the H-LU factorization.

4. J-ϕ Formulation
Starting from the discussion of Section 2, an alternative numerical method can be developed.
Indeed, similarly to the PEEC formulation [22, 34], (7) and (8) can be directly used to set up a
system of equations in the unknowns j and Φ, i.e.,[

R + iωL G
GT 0

] [
j
Φ

]
=

[
eext
jinj

]
, (13)

where jinj is the array corresponding to possible injected currents which can be easily considered
in the proposed formulation. It is worth noting that a potential for each separated domain must
be set to zero in order to give a reference to the electric scalar potential.
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In the literature, (13) is rarely considered for solving magneto-quasistatic problems since,
generally, the loop-currents formulation is preferred. Indeed, with respect to the formulation in
Section 3 (i.e., system (10)), (13) requires a larger number of equations/unknowns (i.e., Nf +Nv

with respect to Ne − Nn required by (10), where Ne is the number of edges of the mesh and
Nn is the number of nodes). Moreover, (13) has an heterogeneous structure consisting of dense,
sparse, and zero blocks, resulting into a saddle-point system.

Despite these drawbacks, differently from the loop–currents formulation, multiply-connected
domains can be considered by (13) without any additional computational effort.

Thus, if the number of unknowns is small enough, (13) can be solved with a standard direct
solver based on, e.g., the LU factorization. In this case, (13) can be preferable with respect to
(10) since multiply–connected domains do not require any additional computational effort and
the implementation of complex algorithms.

Instead, when larger problems are considered, an efficient procedure to solve (13) must be
devised to keep the computational effort affordable. A procedure to efficiently solve (13) by
means of an iterative solver (e.g., GMRES) and a proper preconditioner can be developed from
the recent literature [23, 35].

Following [35], a preconditioner can be constructed by replacing the matrix block (1,1) of
(13) with its diagonal and then exploiting the Schur complement technique as usually done in
saddle-point problems (see [23] for more details).

As shown in the numerical results section, this preconditioning approach is very efficient (i.e.,
a limited number of iterations is required by GMRES to reach the convergence). However, when
the Schur complement is performed at each preconditioned–GMRES iteration, the following
system of equations must be solved:

{GT [diag(R + iωL)]−1G}a = b, (14)

where a and b are arrays of dimension Nv.
Since G is very sparse and the inverse of the diagonal of R + iωL is used, the resulting system

(14) is also very sparse. However, when Nv is large, solving (14) can be still computationally
demanding if a direct solver based on matrix-factorization is used. Fortunately, the structure of
(14) is well–suited for using an Algebraic MultiGrid (AMG) solver [36, 37]. The main advantage
of AMG is that it requires a reduced memory since it does not factorize the whole system matrix.
Moreover, solving (14) by means of AMG requires two subsequent steps, i.e., 1) a pre-processing
of the system matrix is performed in order to construct the multigrid levels and, 2) the system is
solved by exploiting such AMG levels. Since AMG is used as preconditioner for solving (13),
system (14) must be solved several times (as many as the number of iterations required by
GMRES to converge) for different b but the left-hand-side is always the same. Therefore, the
construction of the multigrid levels (step 1) can be performed only once and then, at each
GMRES iteration, system (14) is solved by exploiting the same multigrid construction, therefore
significantly reducing the overall computational cost.

Thanks to this solution strategy, (13) can be efficiently solved. Moreover, when large problems
are considered, the dense matrix L can be also represented by using H–matrices as previously
discussed.

5. Loop–Currents Formulation vs J-ϕ Formulation
Although the loop–currents formulation is generally more usually adopted for solving eddy-
currents problems in the framework of IE methods, the two formulations presented in the
previous sections have pros and cons and, depending on the problem, one should be preferable
with respect to the other. In this short section, for the sake of clarity, the pros and cons of the
two methods are briefly discussed.
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The main advantage of the loop–currents formulation is that it requires a reduced number
of unknowns with respect to the J-ϕ formulation. However, handling non-simply connected
domains requires additional computational effort and particular attentions when H–matrices
are adopted [2]. Optimized algorithms for handling non-simply connected domains have been
proposed [31], however, to be very robust, they require the implementation of interval arithmetic
when the linking number between unknowns i are computed [2], which is not an easy task.

Moreover, connections to ports and lumped excitation require to handle the boundary
conditions and connections to external circuit components actually affect the topology of the
problem; therefore the construction of matrix H and the identification of unknowns i should
handle this situation. Namely, one should combine the formulation presented in [38] with the
optimized algorithm to construct matrix H of [2] and, if needed, H-matrices.

The J-ϕ formulation requires a larger number of unknowns; therefore, for small size problems,
the loop-currents formulation can be preferable since it requires a reduced computational effort.
However, the J-ϕ formulation does not require any particular attention for non-simply connected
domains and connections to ports or lumped excitation can be easily considered by following the
same procedures used in the context of the PEEC method [39].

When the dimension of the problem is so large that a direct solver cannot be adopted
and/or the system matrices are too large for the available computer memory by using both the
formulations, the J-ϕ formulation may present some advantages with respect to the other one.
Indeed, when non-simply connected domains are considered, H–matrices can be more easily
applied to the J-ϕ formulation to reduce the memory required for the storage of matrix L and the
solution strategy presented in Section 4, based on Schur complement and AMG preconditioner,
results particularly efficient.

6. Numerical Results
In this section, the performances of the loop-currents and the J–ϕ formulations are compared
by considering two test cases: 1) the TEAM problem 7 [24] and a second test case consisting
in an axisymmetric metallic conductor, resembling the typical geometry of a D-shaped vacuum
vessel employed in thermonuclear fusion devices. The simulations were run on a Linux machine
equipped with twin Intel Xeon E5-2643 v4 processors (dual 6-core/12-thread, @3.40 GHz) and
512 GB of RAM.

Figure 1. 3D view of model and mesh of the TEAM Workshop Problem 7. Green: exciting coil.
Orange: asymmetrical conductor.
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Figure 2. Comparison of the Bz–component (real part) with the two integral formulations and
results of TEAM Workshop Problem 7, along a reference line.

Table 1. Computational performances of the loop-currents and J-ϕ formulations for the case of
the TEAM Workshop Problem 7.

- Memory Assembling Time Solution Time GMRES Iterations
[GB] [s] [s] [-]

Loop-Currents 22 400 35 13
J-ϕ 40 405 46 13

6.1. TEAM Problem 7
The TEAM Workshop Problem 7 consists of an asymmetrical conductor of resistivity ρ = 0.028
µΩm with a hole, excited by a coil with 2742 At, at 50 Hz (see figure 1). The model of the
conductor consists of 26250 hexahedral elements, resulting into 48376 unknowns (i.e., loop-
currents) for the loop-currents formulation, and 97293 unknowns (i.e., 71043 face currents and
26250 potentials) for the J–ϕ formulation. The exciting field is computed by using analytical
formulas and no low-rank approximation is applied in this example.

The results of the two formulations in terms of the magnetic field along a reference line
described in TEAM Workshop Problem 7 (i.e., line A1-B1) are compared with the ones provided
by the TEAM Workshop Problem 7. This comparison is shown in figure 2. The computed values
are in excellent agreement and they also agree with the trend of experimental points of the
TEAM Workshop Problem 7.

Concerning the computational performances, table 1 shows the comparison of the two
formulations. In both formulations, the problem is solved by using GMRES as iterative solver
and the preconditioning techniques discussed in Section 3 and 4 are adopted. The tolerance
for GMRES has been set to 10−6. As discussed in Section 5, for this small/medium size test
case with only one hole, the loop-currents formulation is preferable to the other one. Figure 3
shows the convergence plot of GMRES solver by using the J-ϕ formulation and the loop-currents
formulation. As can be seen, the two formulations show a very similar convergence profile.

It is worth noting that, in addition to the assembling and solution time, the loop-currents
formulation also requires to construct matrix H which maps the extra global unknowns i into j
for multiply–connected domains. However, in this case, the problem has a single hole and, by
using the optimized algorithm presented in [2], the construction of H is performed in only few
seconds.
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Figure 3. Convergence of GMRES solver for the TEAM Workshop Problem 7 by using the J-ϕ
and the loop-currents formulations.

Figure 4. 3D view of the model of the D-shaped vacuum vessel employed in thermonuclear
fusion devices.

6.2. D-shaped vacuum vessel
The second example consists on the model of a typical D-shaped VV used in thermonuclear fusion
machines, in which a vertical field of 1 T (50 Hz) simulates the magnetizing field of the machine
magnet system. The model is similar to the one considered in [2], however, the model used in this
work has a greater number of ports (i.e., 1242), as shown in figure 4. In particular, the model
consists on 240426 tetrahedral elements, resulting into 152748 unknowns for the loop-current
formulation, and 224319 current unknowns and 240426 scalar potential unknowns for the J–ϕ
formulation.

In this case, the reference solution has been obtained by solving the dense problem arising
from the loop-currents formulation with a direct solver based on LU decomposition and using a
Linux machine equipped with 16-core/32-thread processor (Intel Xeon Gold 6130 @2.10 GHz),
for a total of 256 cores and 3 TB of RAM. The dense system (obtained by using the loop-currents
formulation) required 373 GB of RAM. Low-rank compression techniques based on H-matrices
and ACA implemented in the highly optimized HLibPro library [40] were applied to both the
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Table 2. Computational performances of the loop-currents and J-ϕ formulations for the case of
the D-shaped vacuum vessel.

- Memory Assembling Time Solution Time Generating H GMRES Iterations
[GB] [s] [s] [s] [-]

Loop-Currents 34 7426 3316 9726 14
J-ϕ 38 6812 3596 0 15

loop-currents and the J-ϕ formulations as described in Section 3 and Section 4, respectively.
The computational performances of the two formulations are reported in table 2. As can be

seen, for this large-scale problem the two formulations show comparable performances, with the
main difference that the loop-currents formulation require a non-negligible computation time to
construct matrix H (as suggetsed in [2], 50 basepoints have been used to construct H). Indeed,
although the systems arising from the two formulations have different number of unknowns, the
one obtained from the J-ϕ formulation (which is the bigger one) can be efficiently compressed by
using H-matrices and ACA. This is because, differently from the J-ϕ formulation, the system of
equations arising from the loop-current formulation has an heterogeneous structure due to the
presence of the global unknowns i which are required because the model is non-simply connected.
Moreover, by imposing the same accuracy for the ACA, the mutual inductance coefficients
between loop–currents (i.e., t) are less compressible with respect to ones corresponding to face
currents (i.e., j) because of the different support and orientation of the shape functions. The
accuracy of the two formulations with respect to the dense (reference) case was very good, i.e.,
errors below 1% in the system solution were obtained from both the formulations.

The comparison indicates that, for large scale problems and excluding the non-negligible time
required to construct H in the loop-currents formulation, the computational efforts required by
the two formulations are comparable when H–matrices are used. However, the loop-currents
formulation requires a particular attention when non-simply connected domains are considered,
especially when H–matrices are adopted. Indeed, in this paper the optimized algorithm of [2]
has been used.

Thus, we conclude that, aside the pre-processing time required by the loop-currents formulation
when non-simply connected domains are involved, the two formulations show comparable results
and they can be both adopted for the study of eddy currents problems. However, it is worth
noting that connections to ports and lumped circuits can be easily considered with the J-ϕ
formulation, while in the loop-currents formulation this would require to modify the algorithm
for the construction of matrix H, which is not a trivial task. Indeed, connections to ports may
modify the topology of the problem and this must be considered when H is construed.

7. Conclusions
In this paper, two current-based IE approaches for eddy current problems have been compared.
In particular, the very well-known and widely adopted loop-current formulation (or electric
vector potential formulation) is compared to the less common J–ϕ formulation. Pros and cons
of the two formulations with respect to the problem size are discussed, as well as the adoption
of low-rank approximation techniques. The loop-current formulation based on electric vector
potential shows several advantages since it requires a minor number of unknowns. This is a
particularly useful feature since, because of the full matrices, the memory requirement grows
quadratically with the number of unknowns, whereas the computation time for the system
solution grows with O(N3) if no compression techniques are applied. The main drawback of
such formulation is that non-simply connected domains must be carefully treated, and this is
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particularly important when low-rank compression techniques are applied. Moreover, connections
to ports and lumped excitation further complicate the use of low-rank compression techniques
when non-simply connected domains are considered in the loop-currents formulations.

On the contrary, the main drawback of the J-ϕ formulation is that it requires a larger number
of unknowns with respect to the loop-currents formulation. However, non-simply connected
domains does not require any further computational effort and an efficient preconditioning
strategy based on Schur complement and AMG solver recently proposed in the literature [23, 35]
allows for reducing the overall computational cost required by the solution of the final system
of equations. Finally, in the J-ϕ formulation connections to ports and lumped circuit can be
easily considered and, thanks to the local support of the basis functions, low-rank compression
techniques can be efficiently applied to compress the full inductance matrix, and thus reducing
the overall memory requirement.

In this work, Volume Integral Equation methods have been considered. However, similar
considerations hold for corresponding formulations developed by applying equivalent surface
models [41].
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