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INTRODUCTION

High-resolution esophageal 
manometry (HREM) is the gold 
standard procedure used for 
the diagnosis of esophageal 
motility disorders (EMD) [1, 
2]. High-resolution esophageal 
manometry employs solid-state 
or water-perfused catheters with 
up to 36 circumferential sensors 
that provide color pressure 
topography maps that depict 
the pressures created in the 
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ABSTRACT

Background & Aims: High-resolution esophageal manometry (HREM) is the gold standard procedure used 
for the diagnosis of esophageal motility disorders (EMD). Artificial intelligence (AI) might provide an efficient 
solution for the automatic diagnosis of EMD by improving the subjective interpretation of HREM images. 
The aim of our study was to develop an AI-based system, using neural networks, for the automatic diagnosis 
of HREM images, based on one wet swallow raw image. 
Methods: In the first phase of the study, the manometry recordings of our patients were retrospectively analyzed 
by three experienced gastroenterologists, to verify and confirm the correct diagnosis. In the second phase of 
the study raw images were used to train an artificial neural network. We selected only those tracings with ten 
test swallows that were available for analysis, including a total of 1570 images. We had 10 diagnosis categories, 
as follows: normal, type I achalasia, type II achalasia, type III achalasia, esophago-gastric junction outflow 
obstruction, jackhammer oesophagus, absent contractility, distal esophageal spasm, ineffective esophageal 
motility, and fragmented peristalsis, based on Chicago classification v3.0 for EMDs. 
Results:  The raw images were cropped, binarized, and automatically divided in 3 parts: training, testing, 
validation. We used Inception V3 CNN model, pre-trained on ImageNet. We developed a custom classification 
layer, that allowed the CNN to classify each wet swallow image from the HREM system into one of the diagnosis 
categories mentioned above. Our algorithm was highly accurate, with an overall precision of more than 93%. 
Conclusion: Our neural network approach using HREM images resulted in a high accuracy automatic 
diagnosis of EMDs. 

Key words: artificial intelligence − convolutional neural network − Chicago classification−  esophageal motility 
disorder diagnosis − high-resolution esophageal manometry − machine learning. 

Abbreviations: AI: artificial intelligence; CNN: convolutional neural networks; DL: deep learning; EMD: 
esophageal motility disorders; HREM: high resolution esophageal manometry; IRP: 4s-integrated relaxation 
pressure; LES: lower esophageal sphincter.

esophageal body because of muscle contractions during 
swallowing [1, 2].

The diagnosis of EMDs is based on a Chicago classification 
algorithm [2], using different parameters, including the 
4s-integrated relaxation pressure (IRP), distal latency and 
distal contractile integral. All these parameters are returned 
automatically by the software, but they require human 
intervention for the correct positioning of the different 
markers in the HREM plots. For example, upper and lower 
borders of the lower esophageal sphincter (LES) are established 
by the physician, and the presence of a hiatus hernia (i.e. a 
clear separation between the LES and crural diaphragm, the 
two anatomic components constituting the esophagogastric 
junction) makes things more difficult. The contractile 
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deceleration point [3], a marker used to determine distal 
latency which makes the difference between normal and 
spastic swallows, is another marker on the HREM recording 
that is operator dependent. Inevitably, this may lead to intra 
and inter-observer variability [4, 5], leading in some cases 
to a different diagnosis, and thus inappropriate treatment 
recommendations. One study reported a moderate overall 
inter-observer agreement (kappa=0.51), with higher values 
for type I and II achalasia (kappa >0.7), and smaller for any 
diagnosis (kappa=0.34). The overall agreement varied with 
the number of studies performed by the physician [4], so the 
experience of the physician is another important parameter 
that may influence the final diagnosis. Hence, despite the 
available algorithm, different physicians would establish a 
different final diagnosis on the same tracing [1, 2]. 

In several application fields, automated image processing 
and computer vision have gained immense appeal in recent 
years (e.g., medicine, industry, autonomous driving, robotics, 
etc.). This is largely a consequence of recent breakthroughs in 
a variety of computer vision-related tasks, including image 
classification, image segmentation, object identification and 
detection, 3D scene reconstruction, etc. Deep learning (DL) 
methods, including convolutional neural networks (CNN), 
virtually always provide high-quality results [6].

Deep learning, a subset of artificial intelligence (AI) 
techniques, has transformed the image processing industry. The 
availability of high-performance computing infrastructures 
(e.g., parallel computers, cloud systems, GPUs, multi-core 
processors, etc.) plus the accessibility of vast quantities of 
publicly available data make DL a viable solution in a variety 
of domains [6].

Deep learning might provide a viable answer to improve 
HREM’s subjective interpretation problems because a 
significant quantity of raw manometry data paired with 
neural networks might be utilized to detect the distinct 
patterns that differentiate EMDs [6]. Deep learning-based 
systems were applied in different fields of gastroenterology, 
such as in colon polyps’ detection, digital pathology or for 
the assessment of radiological images, assessment of liver 
fibrosis, or differentiation of pancreatic cancer from chronic 
pancreatitis [6].

Given the high amount of data from pressure variations 
in time, HREM is another field in gastroenterology, in which 
a DL-based system, able to perform a completely automatic 
analysis of manometry tracings, would facilitate data 
interpretation and represent a cost-efficient future perspective 
[7, 8]. A DL system might be taught to diagnose EMDs based 
on raw manometry images. In this way, even in the absence of 
an available physician specialized in manometry interpretation, 
one can have a rapid prediction/or a rapid diagnosis of 
the motility disorder, if any. Therefore, our study aimed to 
develop a DL-based system, using neural networks, for the 
automatic diagnosis of HREM images. Our system did not 
use any manometry parameters (that are part of the Chicago 
algorithm, like IRP, DL, etc.) instead, it used as the input raw 
manometry images. We used a CNN such as InceptionV3 [9, 
10] for feature extraction and a custom made fully connected 
layer for classifying these features into 10 esophageal disorder 
classes. More specifically we trained and tested a pre-trained 

InceptionV3 CNN to be able to classify one wet swallow raw 
image of HREM into ten esophageal disorder classes. 

METHODS

This study was retrospective. We used our manometry 
database, which included manometry tracings performed at 
our department, between November 2014 and February 2021, 
in a regional tertiary hospital. The Ethics Committee of the 
University of Medicine and Pharmacy, Cluj-Napoca approved 
the study (11900/27.04.2021).

High Resolution Esophageal Manometry Procedure
The HREMs with pressure topography were performed after 

8-h fasting, using the ISOLAB manometry system (Standard 
Instruments, Germany). The system used solid-state probes, 
with 36 circumferential sensors, spaced at 1 cm. The probe was 
placed trans-nasally, with at least 3 sensors in the stomach, and 
the test was performed with the patients in supine position, 
with the thorax angulated at 30o. Ten wet swallows, 5 ml each 
were performed. For each test swallow, a marker, represented 
by a white vertical line (“wet swallow” marker), was placed 
during the recording, by the examiner, to later differentiate wet 
from dry swallows. Only wet swallows were analyzed. All the 
tracings were analyzed by one gastroenterologist specialized 
in HREM interpretation (T.S.-B.). The swallows were analyzed, 
and a conclusion for each study was established, based on 
Chicago v 3.0 classification. Between March and May 2021, we 
screened our manometry database, and we selected the studies 
that had 10 correct test swallows, to create the image database. 
Traditionally, at least 10 wet swallows are considered sufficient 
to assess the esophageal motility. Therefore, studies with 7-9 
correct swallows were excluded. 

The classifications in the study cohort were retrospectively 
analyzed by other two experienced motility experts (G.C. and 
E.S.), to verify and confirm the correct diagnosis. In cases 
of disagreement, consensus was established after analyzing 
together the recordings. 

For each included study, only one EMD was established. 
Changes of the upper esophageal sphincter, presence of hiatal 
hernia or hypertensive LES were not assessed. Studies who 
did not fit well into one Chicago classification category were 
excluded (for example, esophago-gastric outflow obstruction 
criteria with hypertensive peristalsis-jackhammer esophagus, 
in the same patient). To classify the studies, we used the 
Chicago v3.0 algorithm [2]. We used Unisensor® catheter, 
and the upper normal limit of 4s-IRP was set at 28 mmHg. 
Achalasia diagnosis was established when 4s-IRP was ≥ 28 
mmHg and one of the following criteria was present: a. absence 
of peristaltic waves in 100% of swallows for type I achalasia; b. 
pan-esophageal pressurization in ≥ 20% of swallows and no 
peristaltic waves- for type II achalasia; c. abnormal peristaltic 
waves, with ≥20% spastic waves for type III achalasia. Studies 
with a normal median 4s-IRP, pan-esophageal pressurization 
in ≥ 20% of swallows and no peristaltic waves, were classified 
as type II achalasia. Studies with the same criteria as the 
latter, and at least 1 swallow followed by pan-esophageal 
pressurization, were classified as type I achalasia [2]. Studies 
with normal median 4s-IRP, absence of peristaltic waves 
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and no pressurization were classified as absent contractility, 
irrespective of other clinical, endoscopic, or radiological data 
we might have had regarding the patients. Other studies with 
increased median 4s-IRP (≥ 28 mmHg) and no criteria for 
achalasia, were classified as esophago-gastric junction outflow 
obstruction. The other diagnosis (distal esophageal spasm, 
jackhammer esophagus, ineffective motility, fragmented 
peristalsis, normal manometry) were also established 
according with Chicago criteria v3.0 [2].

Creation of Image Dataset
We selected only those tracings with ten test swallows 

that were available for analysis (n=157 patients; a total 
of 157x10=1570 images): Achalasia Type I -46 patients, 
Achalasia Type II – 34 patients, Achalasia Type III – 3 patients, 
Jackhammer Esophagus – 1 patient, Ineffective Esophageal 
Motility – 22 patients, Absent Contractility – 12 patients, 
Fragmented Peristalsis – 3 patients, Distal Esophageal Spasm 
– 1 patient, EGJ Outflow Obstruction – 10 patients, Normal 
Esophageal Motility – 25 patients. We used the raw data, 
containing only the markers mentioned above (vertical white 
line), before each of the wet swallows. The manometry software 
allowed to store 60s long images of the recording, and these 
represented the raw images. The region of interest (the wet 
swallow) was marked by a white vertical line, placed during 
the procedure. For each patient we created a folder with 10 
images, each image representing a test swallow. 

Each set was then included in one diagnosis category. 
We had 10 diagnosis categories, as follows: normal, type I 
achalasia, type II achalasia, type III achalasia, esophago-gastric 
junction outflow obstruction, jackhammer esophagus, absent 
contractility, distal esophageal spasm, ineffective esophageal 
motility, and fragmented peristalsis, based on Chicago v3.0 of 
classification for EMDs [2].

Metrics
In this paper, we used a variety of measurement criteria 

to provide a comprehensive picture of our approach. These 
metrics were the following:

• Accuracy: The number of correctly classified HREM images 
divided by the total number of images. Accuracy=(TP+TN)/
Total image count, where TP: true positives and TN: true 
negatives;

• Precision: The number of correct predictions over the 
number of correct and in-correct predictions. Precision=TP/
(TP+FP), where FP: false positives;

• Recall: The number of correct predictions over the 
number of all predictions. Recall=TP/(TP+FN), where FN: 
false negatives;

• F1-Score: harmonic mean of Recall and Precision. F1-
Score= 2*[(Precision*Recall)/(Precision+Recall)];

• Confusion Matrix: a summary of the classification task, 
showing the number of correct and incorrect predictions for 
each class.

The metrics presented above (except the confusion matrix) 
were calculated per class of images and the overall evaluation 
metric is the average of them.

Image Pre-Processing
The raw images had more information than needed to 

train an artificial neural network. The region of interest was 
represented by a part of the raw images (10-20 seconds from 
the 60s images, after the white line). Therefore, we cropped 
the raw images to remove the unnecessary part, called “the 
noise”. We used this rule: the upper, lower, and right borders 
were the image borders, and the left border was shown by the 
white vertical line before each test swallow.

In Fig. 1, we used a black rectangle to highlight an area of 
interest. To make it easier for the computer to find this area, we 
removed the gray margins from the top, bottom, and left. This 
technique was already presented in one of our previous papers [8]. 

To find the white line that marks the wet swallow, we 
binarized the image. This resulted in the image shown in Fig. 
2. In the next step, to find the vertical white line, we have 
counted the pixels on the y-axis and chosen the index of the 
number with the most pixels on it. In the following step in 
image processing the original picture was cropped using the 
previously discovered x-position.

Fig. 1. Raw image with the highlighted region of interest.
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Images were rescaled and normalized to have values 
between -1 and 1 since the CNN that we used for classification 
has an input shape of 299x299, which works with values 
between -1 and 1 [8]. Once all the pixel values had been 
standardized to [-1, 1], they were input into the feature 
extraction process.

Data was divided into three parts: one for training (70%, 
1100 images), another one (15% - 235 images), and a third one 
(15% - 235 images) for testing and validation. We acquired 
reliable assessment ratings by using three separate datasets 
that ensured the model has never seen the test set.

To develop the final model, the CNN model must be 
trained several times (using the training dataset) while 
receiving interim input on its quality using the test dataset. 
The intermediate input is utilized during the training phase to 
improve the model. Following the completion of the model, the 
validation dataset is utilized to validate the findings. Having 

three independent datasets ensures that the validation set is 
never available to the model, enabling reliable assessment 
scores to be generated. The training set contains the bulk of 
the necessary training data. The test set is used during training 
to assess the model‘s ability to interpret pictures it has never 
seen before. Since the test set is actively used in model building 
and training, it is essential to retain a distinct dataset. At the 
completion of the research, assessment metrics were used to 
the validation set to determine how well the model would 
perform in the actual world.

Transfer Learning
To train a CNN from scratch, it would be necessary to 

gather a huge number of tagged medical pictures. Transfer 
Learning is an effective method for dealing with tiny data [9]. 
Our starting point in Transfer Learning for the classification 
of HREM images was another model that had been developed 

Fig. 2. Binarized image.

Fig. 3. Solution architecture.
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to deal with another classifier issue for which there was a 
substantially larger amount of labeled training data. Pre-trained 
on ImageNet, the InceptionV3 the CNN model was utilized 
in our approach. More than a hundred thousand photos are 
organized into 1,000 distinct classifications in the ImageNet 
dataset [10].

Solution Architecture
To finish, we developed a custom classification layer using 

a Global Average Layer with a dropout of 20% to minimize 
overfitting issues, as well as a final fully connected layer 
comprising 10 neurons for each of our 10 classes. With a batch 
size of 32 pictures and a randomized data set for each epoch, 
the model was trained using Adam optimizer [11]. 

RESULTS

For each wet swallow image from the HREM system from 
the test set the CNN classified it into 10 diagnosis categories. 
Those were compared with the correct diagnosis and the 
precision, recall and F1-Score were computed and displayed 
in Table I. To reach these findings, the model was fed new test 
data that it had never seen before.

a patient. Dwelling into specific diagnosis categories, the 
interpretation was only fair for some disorders such as type II 
and type III achalasia. In some cases, the distinction between 
the two entities might be difficult even by the experienced 
examiner [4, 5, 13]. Overall accuracy and precision (94%) 
and recall (93%) with our system were very good and are 
comparable to other solutions previously published [14-17]. 

Only a few studies have used AI-based systems for the 
automatic diagnosis of EMDs. For example, Kou et al. [14] 
used DL to model swallow-level data, to identify the swallowing 
type. The results were better for pressurization type (normal, 
compartmental or panesophageal pressurization), with 
accuracy of 0.87 for test dataset, compared to the swallow 
type (accuracy of 0.64 for test dataset) [14]. In another study 
which combined DL and machine learning [15], the authors 
developed 3 models based on CNNs. The models were blended, 
and the best prediction was of 0.92 for the diagnosis of EMDs. 
Frigo et al. [16], created a database with parameters both from 
normal manometries, and EMDs. Using a decision support 
system and based on the similarity between the database and 
patients‘ parameters, the correct diagnoses were observed 
in 86% of cases. In another study [17], the authors tried to 
make real-time predictions on the the esophageal function. 
It could be normal, or there could be a minor or a major 
motility disorder. The solution had a good accuracy (91.3%) 
in identifying the presence of a motility disorder. However, in 
this study, the system did not return a final EMD diagnosis. 

In one of our previous studies [8], we tried to use AI to 
fully automate EMDs diagnosis, by splitting the problem in 
two parts. First, we learned the system to recognize correct 
versus wrong probe positioning, and to discriminate between 
normal and high IRP, like a human expert would do in the 
analysis of the manometry tracings. The accuracy was of 90% 
[8]. The second step would be to learn the system to recognize 
different patterns of esophageal peristalsis and based on those 
to achieve to the final diagnosis. This approach would imitate 
a human expert, that uses the Chicago algorithm for the 
diagnosis of EMDs.    

Some studies analyzed the efficiency of an AI-based 
system to automatically analyze pharyngeal changes and the 
upper esophageal sphincter, trying to differentiate swallowing 
patterns and to recognize abnormal swallowing. For this 
reason, those studies cannot be compared to our study, as there 
was no reference to the clasification of EMD or to the Chicago 
clasification [18-24]. 

In this paper, we used another approach. The system was 
trained with images belonging to 10 different classes, without 
considering the IRP or peristalsis patterns as in our previous 
work [8]. The algorithm we developed is highly accurate, 
with a precision of more than 93%. However, these results 
are based on a single image analysis, the system predicting in 
which diagnosis category would the image belong. It is worth 
noting that after training the CNN with manometry images, 
the response in the case of new images is almost instantaneous, 
under 1 second; therefore, the execution time is considerably 
shorter when using AI. 

Our study has some limitations. The exclusion of studies 
that did not fit well into one Chicago classification category 
could induce a diagnosis purity bias. Nevertheless, the number 

Table I. Evaluation metrics

Class Precision Recall F1-Score

Achalasia type I 95% 97% 96%

Achalasia type II 100% 80% 89%

Achalasia type III 100% 100% 100%

Jackhammer Esophagus 100% 67% 80%

Inefficient esophageal motility 95% 100% 97%

Absent contractility 100% 86% 92%

Fragmented peristalsis 100% 100% 100%

Distal esophageal spasm 67% 100% 80%

Obstruction of the eso-gastric 
junction

90% 100% 95%

Normal manometry 94% 99% 97%

Overall 94% 93% 95%

We created a confusion matrix calculated on the test 
dataset, presented in Fig. 4.

DISCUSSION

The approach for this pilot study was different compared 
to the common way the diagnosis for EMDs is made using 
HREM. Normally ten wet swallows are used for a patient by 
a trained physician to establish the presence of a motility 
disorder. In our study we assessed the accuracy of a CNN 
to establish the diagnosis for an EMD, based on a single wet 
swallow image.

 Overall the diagnostic accuracy of the CNN system that 
makes the diagnosis per one image and which was presented in 
this paper was  very high. The accuracy of this system could be 
further increased by using 10 images per patient and a voting 
system. The diagnosis would be chosen by taking the majority 
vote from the classes identified for each of the 10 images of 
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of these occurrences was small. Moreover, due to the small 
number of recordings, it was preferred to give clear examples to 
improve the training of the neural network. Other limitations 
come from the nature of the images. The image type used 
by our Neural Networks-based system for training, testing, 
and validation, may vary significantly depending on the 
high-resolution manometer device used for recording. Our 
images were obtained with only one type of device, in one 
manometry center, so no differences in image type existed, and 
the outcome was not affected. Another limitation comes from 
the small number of recordings (a total of 1570 images) used to 
develop the algorithm. Some of the EMDs (second; therefore, 
distal esophageal spasm, jackhammer esophagus, fragmented 
peristalsis) are generally rare in occurrence, and were also quite 
rare in our cohort, making the number of analyzed images even 
smaller. In addition, we included in the analysis, only patients 
with 10 correct swallows. We plan a larger multicentric study, 
therefore with a higher number of images, and in addition with 
images obtained with different manometry systems, to see if 
our solution is still valid. In future projects we intend to test 
the solution with patients that have more than one disorder 
according to the Chicago classification. In this study, these 
patients were excluded. 

The tracings were classified based on Chicago classification 
v3.0, which was available when the tests were performed. The 
other studies published on this topic, also used this version of the 
Chicago classification [8, 14-17]. The updated version v. 4.0 has 
already addressed some of the weakness of the former version 
[12]. Moreover, the last iteration of Chicago classification set 
up a brand-new protocol of examination which includes both 
supine and upright position, administration of a solid meal, 
and clinical correlates which could not be considered in the 
actual study. This last version of the Chicago classification has 
not been implemented in routine clinical practice, yet. In the 
future, AI will support the integration of information obtained 
from clinical findings, endoscopy, HREM and endoluminal 
functional lumen imaging probe, to come to a clinically 
relevant, yet comprehensive conclusion.  

CONCLUSIONS

Our neural network approach using images obtained 
from HREM can obtain an automatic diagnosis of EMD with 
high accuracy. Therefore, the implementation of an AI-based 
algorithm is a useful diagnosis tool, when an experienced 
physician in manometry is not available. 
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