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Abstract—We propose a class of neural models for graphs
that do not rely on backpropagation for training, thus making
learning more biologically plausible and amenable to parallel
implementation in hardware. The base component of our architec-
ture is a generalization of Gated Linear Networks which allows
the adoption of multiple graph convolutions. Specifically, each
neuron is defined as a set of graph convolution filters (weight
vectors) and a gating mechanism that, given a node and its
topological context, selects the weight vector to use for processing
the node’s attributes. Two different graph processing schemes
are studied, i.e., a message-passing aggregation scheme where the
gating mechanism is embedded directly into the graph convolution,
and a multi-resolution one where neighbouring nodes at different
topological distances are jointly processed by a single graph
convolution layer. We also compare the effectiveness of different
alternatives for defining the context function of a node, i.e.,
based on hyper-planes or on prototypes. A theoretical result
on the expressiveness of the proposed models is also reported.
We experimented our backpropagation-free graph convolutional
neural architectures on commonly adopted node classification
datasets, and show competitive performances compared to the
backpropagation-based counterparts.

Index Terms—Graph Convolutional Networks, Graph Neural
Network, Deep Learning, Structured Data, Machine Learning on
Graphs

I. INTRODUCTION

In the last years, several definitions of neural architectures
capable to deal with data in structured form, such as graphs,
have been presented [1], [2]. The vast majority of graph
neural networks in literature are based on the idea of message
passing [3], in which the representation of a node at layer l (or
time t if the network is recurrent) is defined as a transformation
of the label of the same node and of its neighbors at layer
l − 1 (t− 1).

While many works focused on defining alternative architec-
tures, at the best of author’s knowledge all of them rely on back-
propagation to learn the networks’ weights. Backpropagation is
a powerful and effective method to train deep neural networks
(NNs), that has been successfully applied almost ubiquitously
in recent years. When the amount of available data is not huge,
however, the standard approach of training a non-linear NN
with backpropagation may quickly lead to overfit the training
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data. This is in clear contrast to how humans learn, since we do
not require nearly the amount of training data modern NNs do
to learn how to generalize [4]. Moreover, the backpropagation
mechanism is not biologically plausible [5], [6], suggesting
that the brain may use different learning algorithms.

Recently, some alternative definitions of multilayer neu-
ral networks that do not rely on backpropagation for their
training [4], [6] have been proposed. They define local
learning rules where each neuron, given its inputs, is trained
independently from the rest of the network exploiting a global
error signal. This approach allows these networks to: (i) be
more biologically plausible (i.e. from the current knowledge
about the functioning of animal neurons, it seems implausible
for a neuron to have access to the connections in a brain area
responsible for a subsequent processing step); (ii) be more
sample efficient/simplify the overall training procedure, since
each neuron solves an independent (possibly convex) problem;

The aim of this paper is to explore a contamination between
these two cutting-edge research fields, studying how to define
neural networks for graph processing that do not rely on
backpropagation for their training.

Our exploration is based on the recently proposed Gated
Linear Networks (GLN) [4], a family of backpropagation-free
neural networks that have been developed for online learning
and that have shown promising results. The main characteristic
of such networks is that, contrarily to the mainstream approach,
the non-linearity is achieved via a gating mechanism instead
of element-wise non-linear functions. More specifically, each
neuron receives a context vector as additional input, that is
used to select one weight vector in a pre-defined set. The only
non-linearity lies in such gating mechanism. In fact, once the
weight vector is selected, each neuron behaves linearly. The
resulting network is a piece-wise linear model (similarly to
ReLU networks). While the gating mechanism is not trained,
each neuron learns to predict (by modifying the weights) a
binary output, and can be trained independently from the rest
of the network. In the case of multi-class classification, a
one-vs-all approach is exploited.

In order to define neural networks capable of processing
graph data, we explore two possible generalizations of the
above mechanism. The first one is based on the approach
adopted by many graph convolutional networks, in which the
network architecture reflects the structure of the input graph,



and node representations are refined at each layer according
to the local graph topology via an aggregation operation over
neighboring nodes. For this generalization, we also provide a
theoretical result on the incremental expressiveness of our
models. The second one is inspired to the so-call multi-
resolution architecture on which the graph convolutional layer is
defined by exploiting the power series of the diffusion operator
(also known as Graph-Augmented Multi-Layer Perceptrons
(GA-MLPs) [7], or Polynomial-Based Graph Convolutional
(PGC) [8]). These models are able to simultaneously and
directly consider all topological receptive fields up to k-hops.
Moreover, the application of the gating mechanism turns out
to be decoupled from the graph topology.

The properties inherited from GLNs ensure that our models
are (at least in principle) as expressive as their backpropagation-
based counterparts, with a significantly easier training phase.
Nonetheless, several choices have to be made, such as which
neighbor aggregation mechanism to adopt, how to define the
contexts on graphs, and how to define the gating mechanism in
an efficient way on graphs for limiting the number of parameters
of the network while obtaining good predictive performances.

We experimentally evaluate our backpropagation-free graph
convolutional neural architectures on commonly adopted node
classification benchmarks, and verify their competitive perfor-
mance. This work paves the way to novel neural approaches
for graph learning.

II. BACKGROUND

In this section, we introduce the background notation and
knowledge on which our model hinges.

A. Learning on graph nodes

A learning problem on a graph can be formulated as learning
a function that maps nodes to labels. The underlying graph
structure is given as G = (V,E,L), where V = {v1, . . . , vn}
is the set of nodes, E ⊆ V × V is the set of edges connecting
the nodes, and L : V → Rs is a function associating a vector
of attributes to each node. With N (v) we denote the set of
nodes adjacent to v, i.e. N (v) = {u | (v, u) ∈ E}. To simplify
the notation, we define for a fixed graph G the matrix X =
[L(v1), . . . ,L(vn)]⊺

Given a graph G, our training set is composed by the
target information associated to some of the graph nodes,
i.e., {(v, y) | v ∈ W, y ∈ Y} with W ⊂ V . For the sake
of simplicity, in our presentation we will only consider binary
values Y ∈ {0, 1}.

B. Graph Neural Networks

Despite learning from graph data is not a new research
field [9]–[11], in the last years graph neural networks have
emerged as the machine learning model of choice when dealing
with graph problems.

A Graph Neural Network (GNN) is a neural model that
exploits the structure of the graph and the information em-
bedded in feature vectors of each node in order to learn a
representation hv ∈ Rm for each vertex v ∈ V . In many GNN

models, the computation of hv can be divided in two main
steps: aggregate and combine. We can define aggregation and
combination by using two functions, A and C, respectively:
hv = C(L(v),A({L(u) : u ∈ N (v)})).
The choice of aggregation function A and combination function
C defines the type of Graph Convolution (GC) adopted by the
GNN. In [12], the first model that uses graph convolutions is
introduced. In the last few years, several different GCs have
been proposed [13]–[19].

In this work, we build on top of two widely adopted graph
convolutions. The first one is the GCN [13]

H(i) = F
(
D̃− 1

2 (I+A)D̃− 1
2 H(i−1)W(i)

)
, i > 1 (1)

where A denotes the standard adjacency matrix of the graph
G and D̃ a diagonal degree matrix with the diagonal elements
defined as d̃ii = 1 +

∑
j aij . Further, H(i) ∈ Rn×mi is a

matrix containing the representation h
(i)
v of all nodes in the

graph (one per row) at layer i, W(i) ∈ Rmi−1×mi denotes the
matrix of the layer’s parameters, and F is the element-wise
(usually, nonlinear) activation function.

The second graph convolution we consider is a slight
variation of the first model and commonly referred to as
GraphConv [2]:

h(i)
v = F(h(i−1)

v W
(i)
1 +

∑
u∈N (v)

h(i−1)
u W

(i)
2 ),

where W
(i)
1 ,W

(i)
2 ∈ Rmi−1×mi (with m0 = s, the input

dimensionality) are the network parameters.

C. Multi-Resolution GNN
Some recent works in literature exploit the idea of extending

graph convolution layers to increase the receptive field size,
without increasing the depth of the model. The basic idea
underpinning these methods is to consider the case in which
the graph convolution can be expressed as a polynomial of
the powers of a transformation T (·) of the adjacency matrix.
The models based on this idea are able to simultaneously
and directly consider all topological receptive fields up to
l-hops, just like the ones that are obtained by a stack of
graph convolutional layers of depth l, without incurring in the
typical limitations related to the complex interactions among
the parameters of the GC layers. Formally, the idea is to define
a representation as built from the contribution of all topological
receptive fields up to l-hops as:

H = f(T (A)0X, T (A)1X, . . . , T (A)lX), (2)

where T (·) is a transformation of the adjacency matrix, (e.g.,
the Laplacian matrix), and f is a function that aggregates and
transforms the various components obtained from the powers of
T (A), for instance the concatenation, the summation, or even
something more complex, such as a multi-layer perceptron. The
f function can be defined as a parametric function, depending
on a set of parameters θ whose values can be estimated from
data (e.g., when f involves an MLP). Various models that rely
on this idea have been proposed in the last few years [7], [8],
[20]–[24].



D. Backpropagation-free neural networks

In this paper we exploit recently defined neurons that can
be trained locally and independently instead of exploiting
backpropagation. We consider the recently proposed Gated
Linear Networks [25] (GLNs) where the local optimization
problem obtained for each neuron, adopting an appropriate
loss, is convex. Moreover, it has been shown that GLNs can
represent any function that represent a probability arbitrarily
well [26].

The main differences of GLNs compared to MLPs are the
following: first, each neuron in a GLN is a Gated Geometric
Mixer. Geometric mixing [27] is an ensemble technique that
assigns a weight to each weak predictor in input. In GLNs,
every unit produces in output its prediction for the target. Given
an input vector of probabilities p = [p1, . . . , pn]

⊤, geometric
mixing is defined as:

σ
(
w⊤σ−1(p)

)
where σ(x) = 1

1+e−x is the sigmoid function, σ−1(x) =
logit(x) = log(x) − log(1 − x) is the logit function (that
is the inverse of the sigmoid function), and both of them are
applied element-wise.

To achieve non-linearity, specifically piecewise-linearity,
GLNs employ a gating mechanism in each neuron. Each neuron
divides its input space in regions. A geometric mixing (that is a
linear model) is associated to each region. The association from
examples to regions is carried by a region assignment function
c. GLNs assume that for each example we have a vectorial
representation available, x ∈ Rd(x)

, and a vector representing
side-information (or context), i.e. z ∈ Rd(z)

. The c function
is defined depending on side-information associated to each
input (in case no side-information is available, it is possible to
set z = x). Each neuron in a GLN solves a convex problem,
and is trained independently to predict the target.

For the sake of simplicity, we omit bias terms in the following
formulations. Given a neuron j at the i-th layer, its output is
defined as:

h
(i)
j,(x,z) = σ

(
σ−1

(
h
(i−1)
(x,z)

)⊤
w

(i)
j,(z)

)
, i > 1 (3)

with h
(0)
(x,z) = σ(x). The vector w

(i)
j,(z) ∈ Rmi−1 stores the

weights associated to the region activated by the context z for
the corresponding neuron. Let us discuss this weight vector
in more detail and the gating mechanism that defines how a
specific set of weights is selected.

Given an example (x, z), we can select the weights of a
single neuron j at the i-th layer as:

w
(i)
j,(z) =

(
Θ

(i)
j c

(i)
j,(z)

)
(4)

where Θ
(i)
j ∈ Rmi−1×k, k is the number of regions (we assume

for simplicity that each neuron in the network considers the
same number of regions), and c

(i)
j,(z) ∈ Rk. Notice that the

main characteristic of a Gated Linear Neuron is that, instead
of having a single weight vector, each GL neuron depends on
a matrix of parameters Θ

(i)
j .

The original paper [25] proposes to implement the gating in
the c functions with an halfspace-gating mechanism. Given a
vector z ∈ Rd(z)

, and a hyperplane with parameters ai ∈ Rd(z)

and bi ∈ R, let us define a context function c̃i : Rd(z) → {0, 1}
as:

c̃i(z) =

{
1 if a⊤i z > bi

0 otherwise

that divides Rd(z)

in two half-spaces, according to the hyper-
plane a⊤i z = bi. We can compose log2(k) (assuming k to be
a power of 2) context functions of the same kind, obtaining
an higher-order context function c̃ : Rd(z) → {0, 1}log2(k),
c̃ = [c̃1, . . . , c̃k]

⊤. We can then easily define a function f map-
ping from {0, 1}log2(k) to {0, . . . , k − 1} ⊂ N, obtaining the
function ĉ : Rd(z) → {0, . . . , k − 1}, ĉ = f ◦ c̃ = f(c̃(z)). We
can exploit the one-hot encoding of the output of such function
and re-define it as c : Rd(z) → {0, 1}k, c = one hot(ĉ).

Given a layer i, each neuron j computes a different function
c
(i)
j : Rd(z) → {0, 1}k. For the j-th neuron at the i-th layer, the

output of the context function applied to z is thus the (one-hot)
vector c(i)j,(z).

E. Layer-wise formulation

Exploiting the definition of a single Gated Linear Neuron in
the previous section, we can define a whole GLN layer. This
formulation will be exploited in the remainder of the paper.
The output for the i-th layer in a GLN (with mi neurons) for
a sample (x, z) is defined as:

h
(i)
(x,z) = σ

(
σ−1

(
h
(i−1)
(x,z)

)⊤
W

(i)
(z)

)
, i > 1 (5)

where
W

(i)
(z) = [w

(i)
1,(z), . . . ,w

(i)
mi,(z)

], (6)

and W
(i)
(z) ∈ Rmi−1×mi .

Several layers can then be stacked. For a binary classification
problem, the last layer will comprise a single neuron, i.e. for
a network with l layers we have W

(l)
(z) = w

(l)
1,(z) , W(l)

(z) ∈
Rml−1×1. The resulting model is, by construction, piecewise-
linear. Specifically, given a context z, the model is (up to a
final activation function) linear and can be written as:

y(x,z) = σ
(
x⊤W

(1)
(z) . . .W

(l−1)
(z) W

(l)
(z)

)
= σ

(
x⊤w(z)

)
(7)

with a weight vector w(z) ∈ Rd(x)

.

III. BACK-PROPAGATION FREE GRAPH NEURAL
NETWORKS

In this section, we define our proposed models, which
generalize GLNs to graph-structured data. Firstly, we show
how to embed the GLN idea into graph convolutions to build
models based on the message-passing paradigm. Then, we
propose a Multi-Resolution approach that allows to keep the
features’ propagation through the graph structure separate from
the processing of the resulting node representations.



A. Message-Passing GLN

The core concept behind several definitions of Graph Neural
Networks is the aggregation function used to obtain information
about the local graph structure surrounding a graph node. The
simplest aggregation mechanism involves just the summation
over the representations of neighbouring nodes. For this simple
mechanism, we obtain the following definition for a single
layer in a Gated Linear Graph Neural Network:

h
(i)
(v,z) =σ

(
σ−1

(
h
(i−1)
(v,z)

)⊤
W

(i,1)
(z) +

+

 ∑
(u,z′)∈Nv

σ−1
(
h
(i−1)
(u,z′)

)⊤
W

(i,2)
(z)

 , (8)

for i ≥ 1, and h
(0)
v,z = σ(L(v)). The weights W

(i,2)
(z) , W(i,1)

(z) ,

and W
(i)
(z) are defined as per eq. (6) and can be obtained by a

backpropagation-free training. This model can be considered
as a modification of GraphConv proposed in [2] in which
gated geometric mixing has been applied. For this reason we
refer to this model also as Backpropagation Free - GraphConv
(BF-GraphConv). Similarly to common formulations of graph
neural networks, we can express the hidden representation for
all the nodes in the graph as a single matrix. We obtain the
following form of BF-GraphConv:

H
(i)
(z) = σ−1

(
H

(i−1)
(z)

)
W

(i,1)
(z) +Aσ−1

(
H

(i−1)
(z)

)
W

(i,2)
(z) (9)

where H
(i)
(z) ∈ Rn×mi and H

(0)
(z) = σ(X). BF-GraphConv can

therefore be regarded as a piecewise linear GNN depending
on the context information z of the neurons.

Following common definitions of Graph Neural Networks,
we can resort to any message passing mechanism and define the
Gated Linear counterpart. For instance, we can also consider
the GCN presented in eq. (1) which leads to the following
BF-GCN:

H
(i)
(z) = σ

(
D̃− 1

2 (I+A)D̃− 1
2 σ−1

(
H

(i−1)
(z)

)
W

(i)
(z)

)
. (10)

The resulting model can be regarded as a piecewise linear
GCN. In particular, after l layers, the output H

(l)
(z) for the

context z can be written as

H
(l)
(z) = σ

(
(D̃− 1

2 (I+A)D̃− 1
2 )lXw(z)

)
, (11)

i.e., the BF-GCN model with l layers is a generalization of the
simple graph convolutional network (SGC) introduced in [20]
and further investigated in [28], where the vector of weights
w(z) changes based on the input context. Notice that the main
differences between the Gated Linear Graph Neural Networks
and commonly adopted GNN formulations are the local training
and the gating mechanism. A graphical layout of the proposed
architecture is reported in Fig.1.

Input graph

W
(i)
(z)

Message-Passing GLN
h

(i)
(v,z)

y(v)

Fig. 1: A graphical layout of the proposed Message-Passing
GLN, with an expanded view of the GLN neuron.

B. Incremental expressivity of GLNs

The usage of a region assignment function c for the side
information z ∈ Rdz is equivalent to a partitioning P(c) of the
space Rdz into k disjoint regions. We can therefore compare
different GLNs based on the corresponding partitioning of Rdz .
If a partitioning P(c1) is a refinement of a second partitioning
P(c2), we intuitively expect that the GLN corresponding to the
refined partitioning P(c1) is more expressive. In the following,
we will show this intuition for the two gated linear networks
BF-GCN and BF-GraphConv.

Theorem 1. Consider two Gated Linear GNNs (either BF-
GCN or BF-GraphConv) with gated geometric mixing based
on two region assignment functions c1 and c2. We assume that
the partitioning P(c1) is a refinement of the partitioning P(c2).
Then, the Gated Linear GNN based on c1 is more expressive
than the GNN based on c2.

Proof. We will only consider the BF-GCN model. For sim-
plicity, we will also assume that X = x ∈ Rn×1, i.e., that the
dimension of the input variable is s = 1 and, thus, that we
have real-valued weights w(z) ∈ R. Now, let H(c) denote the
set of all possible functions

H(c) =
{
y(z) = σ((D̃− 1

2 (I+A)D̃− 1
2 )l xw(z)) | w(z) ∈ R

}
generated by a BF-GCN network with a region assignment
function c. Let R ∈ P(c2) be one of the regions in the
partitioning given by the function c2. As P(c1) is a refinement
of P(c2) we can decompose R as R = R1 ∪ · · · ∪ Rr with
Ri ∈ P(c1) for i ∈ {1, . . . , r}. Now, if in H(c1) we impose
that wzi

= wzj
if zi ∈ Ri and zj ∈ Rj for i, j ∈ {1, . . . , r},

then every z ∈ R obtains the same weight wz. Thus, we
see that every function in H(c2) can be formulated as a
function in H(c1). On the other hand, if we can choose
wzi

̸= wzj
freely for zi ∈ Ri and zj ∈ Rj we can enforce

y(z1) ̸= y(z2) for zi, zj ∈ R (excluding exceptional cases in
which (D̃− 1

2 (I+A)D̃− 1
2 )lx vanishes on domains linked to

Ri and Rj). Therefore, the set H(c1) is, in general, strictly
larger than H(c2).

From Theorem 1, it is easy to show the following corollary.



Corollary 1. Every BF-GCN with more than one region assign-
ment is more expressive than a Simplified Graph Convolutional
Networks (SGC) [20]

H = σ((D̃− 1
2 ÃD̃− 1

2 )lXW) (12)

C. Multi-Resolution-GLN

A different definition of GNN is based on the idea of
exploiting the power series of the diffusion operator in order to
obtain a multi-scale representation of the graph features. The
obtained representation is usually fed to an MLP that projects
it into the output space. Our proposal is to substitute the MLP
with a GLNs architecture.

Considering the explorative purpose of this work we decide
to adopt the most general multi-scale representation definition
proposed in [8]:

Rl,T = [X, T (A)X, T (A)2X, .., T (A)lX],

where T :
⋃∞

j=1(Rj×j → Rj×j) is a generic transformation
of the adjacency matrix that preserves its shape, i.e. T (A) ∈
Rn×n. For instance, T can be defined as the function returning
the Laplacian matrix starting from the adjacency matrix. Then
we can apply the GLN-based classifier. In particular, for
each degree of diffusion operator (up to l) we consider c
neurons, where c is the number of the classes considered in the
classification problem. We recall that each neurons performs a
binary classification problem. Therefore, similar to the message-
passing GLN case, one-vs-rest approaches is exploited.

hi = [h
(i)
j,(Ri,T ,X)]∀j∈[0...c−1]

h = [GeomMean(h0[j], . . . ,hl[j])]∀j∈[0...c−1]. (13)

Note that hi is computed considering only the multi-resolution
representation up to degree i of the diffusion operator. This
allows us to obtain the same effect that the authors have in
[8] where l Multi-Resolution convolutions of degree ranging
from 0 up to l are concatenated. Finally, in order to combine
the results of all the neurons of each class, we compute the
geometric mean.

D. Context functions

The context function presented in Section III and exploited
in (4) is based on random half-space gating. That definition is
suited for online learning, where the training data distribution is
not known beforehand. However, it is not data-driven and may
result in the necessity of defining a high number of context
regions to obtain a sufficiently non-linear model. Notice that the
halfspace gating mechanism depends on some hyperparameters:
in addition to the number of regions k, one has to choose the
parameters of the distribution from which to sample the weights
corresponding to each hyperplane (e.g. mean and variance
assuming they are sampled from a normal distribution). Setting
these hyperparameters may be challenging, since results can
be strongly affected by their choice.

In this section, we propose an alternative approach that can
be exploited in the batch learning scenario and that does not
depend on any parameter but the number of regions to consider.

Dataset #Classes #Edges #Train #Val #Test

Citeseer 6 9228 1995 666 666
Cora 7 10556 1624 542 542
Pubmed 3 88651 11829 3944 3944
WikiCS 10 216123 7021 2340 2340

TABLE I: Datasets statistics. The columns #Train, #Val, and
#Test report the number of nodes in the training, validation
and test sets, respectively.

In particular, we propose to define a partition of the space
based on a set of prototypes [29]. Each point in the space
is assigned to its closest prototype, obtaining a Voronoi
tessellation. Note that half-space gating generates a division of
the context space that can be represented as a planar straight-
line graph (PSLG) instead. It is possible to show that any
PSLG coincides with the Voronoi diagram of some set S of
points (i.e. prototypes) [30]. Similarly to the half-space gating
mechanism, the prototypes are not learned. However, instead
of randomly generating them, we propose to sample at random
among the training examples. This ensures that each prototype
will lie on the input data manifold. Moreover, as mentioned
before, this approach relieves us from many hyper-parameter
choices.

Let P(i)
j ∈ R2m×mz be the matrix of prototypes. We can

formally define the context vector c(i)(z) ∈ {0, 1}ci as:

c
(i)
j,(z) = one hot(argmin(2 dist(P

(i)
j , z))

where 2 dist computes the 2-norm distance between each row
of P(i)

j and z is the context vector.

IV. EXPERIMENTAL RESULTS

We empirically validated the proposed backpropagation-free
graph neural networks on four widely adopted datasets of
node classification: Citeseer, Cora, Pubmed and WikiCS [31].
For what concerns the first three datasets, each of them is
a single graph, where nodes represent documents and node
features are sparse bag-of-words feature vectors. Specifically,
in Citeseer, Cora, and Pubmed the task requires to classify the
research topics of papers. Each node represents a scientific
publication described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from a dictionary.
The WikiCS dataset is a graph where the nodes represent
Wikipedia Computer Science articles and the edges represent
the hyperlinks among them. Also in this case the node features
are derived from the text, but differently from the other
considered datasets, here they are calculated as the average of
pre-trained GloVe word embeddings. For each dataset, we split
the nodes in training (60%), validation (20%), and test (20%)
sets. Relevant statistics of the dataset are reported in Table I.

We developed all the models involved in the comparison
using PyTorch Geometric [32]. As baseline models, we
considered the GCN and the GraphConv convolutions. For these
models we exploit the implementation provided by PyTorch
Geometric. In addition we also evaluate as a baseline a multi-
resolution architecture (MRGNN) that exploits the same graph



augmented representation of the proposed backpropagation-
free Multi-Resolution-GLN, followed by an MLP that projects
the node representations to the output space. All the baseline
models are trained in an end-to-end fashion using the back-
propagation algorithm.

Furthermore, we do not limit our exploration of
backpropagation-free models, and in particular the multi-
layer ones (BF-GCN and BF-GraphConv), to the standard
methodology that uses the input X as context, but we also
assess the effects of using each node’s inputs, i.e. the hidden
representation computed at the previous layer label (H) as a
context for all gated neurons. For all the datasets, we solve
the resulting optimization problems with the Adam algorithm
(a variant of stochastic gradient descent with momentum
and adaptive learning rate).We used early stopping (with the
patience set to 15 epochs) and model checkpoint, monitoring
the accuracy on the validation set. We set the maximum
number of epochs to 250. All the baseline experiments involved
softmax activation function applied to the last layer. The results
were obtained by performing 5 runs for each model. For our
experiments, we adopted a machine equipped with: 2 x Intel(R)
Xeon(R) CPU E5-2630L v3, 192GB of RAM and a Nvidia
Tesla V100. For more details please check the publicly available
code1.

A. Model selection

Before discussing the results of the proposed
backpropagation-free graph neural networks, we would
like to point out that for many reasons, the results reported
in literature for different graph convolutions are not always
comparable one to each other. A key aspect to consider is
the procedure adopted to select the hyper-parameters (such
as learning rate, regularization, network architecture, etc.).
Many papers report, for each dataset, the best performance
(on the test set) obtained after testing many hyper-parameter
configurations. This procedure favours complex methods that
depend on many hyper-parameters, since they have a larger set
of trials to select from compared to simpler methods. However,
the predictive performances computed in this way are not
unbiased estimations of the true error, thus these results
are not comparable to other model selection methods [33].
Another methodology used in many papers is to validate only
a subset of the hyper parameters of the model, while many
others are kept fixed. Unfortunately the values set for the
hyper-parameters not considered in the validation process
significantly impact the final results.

We recall that the contribution of this paper is not to present
yet another graph neural network architecture performing
slightly better than other alternatives. Instead, we want to show
that it is possible to match the performance of different graph
convolutional neural networks (and thus to perform an effective
representation learning) even not relying on backpropagation.

For these reasons, we decided to focus on three widely
adopted graph convolutions, and run all the experiments using

1https://github.com/lpasa/BF-GNN

hyper-parameter values

m 2, 4, 8, 16, 24, 32, 64
l 1, 2, 3, 4, 5, 6, 7, 8
k 1, 2, 4, 8, 16

learning rate 0.1, 0.2, 0.01, 0.001
weight decay 0, 5−4, 5−3

drop out 0, 0.2, 0.5
T (A) A,L

TABLE II: Sets of hyper-parameters values used for model
selection via grid search.

the same fair model selection procedure, where we select all
the hyper-parameters of each method on the validation set.
The hyper-parameters of the model (number of hidden units,
number of layers, learning rate, weight decay, and dropout
only for backpropagation-based models) were selected by using
a limited grid search, where the explored sets of values do
change based on the considered dataset. We performed some
preliminary tests in order to select the set of values taken into
account for each hyper-parameter. In Table II, we report the
sets of hyper-parameter values used for the grid search. In order
to perform a fair comparison among the proposed models and
the baselines, we use the same hyper parameter grid for all
the models. To ensure a fair comparison between baseline and
the proposed model that adopts a one-vs-rest approach, for
the baselines we also consider the model where the number
of hidden is the values reported in Table II multiplied by
the number of classes of the considered task. As evaluation
measure to perform model selection, we used the average
accuracy computed on the validation set, while we report in
Table III the average accuracy on the test set along with the
hyper-parameters selected by the validation process.

B. Discussion

The results obtained by the backpropagation-free graph
neural networks, namely BF-GCN, BF-GraphConv, and BF-
MRGNN, are in general comparable and sometimes higher
than the ones of the baselines trained with backpropagation.
We recall that the backpropagation-free alternatives are signifi-
cantly easier to train since they optimize convex optimization
problems (one for each neuron, that can be parallelized),
compared to the single but significantly more complex nonlinear
problem optimized by the baselines. In Table III we report
the results obtained validating all the hyper-parameters on
the validation set. For each method and dataset we report
the average accuracy and the standard deviation over 5 runs.
Let us start discussing the GCN convolution mechanism,
where the results of backpropagation-based (GCN) and the
proposed backpropagation-free (BF-GCN) models with the
two alternative context definitions, i.e. H and X are reported.
Moreover, for BF-GCN (as for the all backpropagation-free
models) we experimented with both the context function based
on random half-space gating and our proposal of defining the
partition of the space based on a set of prototypes (context
function column in Table III). In this case, the backpropagation-



free models perform slightly better than the backpropagation
counterpart in 2 datasets out of four. In all the cases, the
methods are less than one standard deviation apart. We can
conclude that, in this case, all the backpropagation-free models
based on GCN are capable of learning a representation that
is comparably expressive to the one of the backpropagation-
based GCN. With this convolution mechanism there is not a
clear advantage of using either H or X as contexts. These
results show that the proposed backpropagation-free methods
are pretty resilient and show consistent performance even with
significantly different choices of the context space. Moreover,
the results suggest that the prototype-based context function
allows to reach slightly better performance in terms of accuracy
compared to half-space gating.

Let us now consider the GraphConv convolution mechanism.
In this case, backpropagation-free models show slight but
consistent accuracy improvements on the Citeseer (up to
1.1%) and the Cora (up to 1.4%) datasets. On Pubmed, their
results are at most 2.8% lower than the baseline GraphConv,
while on WikiCS all the backpropagation-free variants improve
over GraphConv, showing an accuracy improvement up to
5.5%. Notice that the differences in these last two cases are
greater than one standard deviation. We can notice that with
GraphConv, using H as context tends to provide slightly higher
performances compared to using X. Analyzing the accuracy, no
clear advantages can be noticed in using the prototypes-based
context function instead of a half-space gating mechanism.

For what concerns BF-MRGNN the results obtained on
Citeseer show a significant improvement with respect to
its counterpart trained via backpropagation, i.e. MRGNN.
Specifically, BF-MRGNN with prototypes as contexts achieved
the overall best results in the Citeseer dataset, improving 3.4%
over MRGNN. On the other datasets, the accuracy difference
between MRGNN and its backpropagation-free versions is
within the standard deviation interval. Note that in the BF-
MRGNN, due to its definition (eq. (13)), only X can be used
as context.

We can conclude that the proposed backpropagation-free
graph convolutions are competitive with their backpropagation-
based counterparts, while inheriting all the advantages of
backpropagation-free methods.

For what concerns the comparison between the two consid-
ered gating mechanisms (halfspace and prototype), we obtained
no strong evidence in term of accuracy in favour of using one
approach over the other. However, the prototype approach does
have an advantage in reducing the number of hyperparameters.
In fact, it is not straightforward to define the half-space
gating hyperparameters, as random initialization of hyperplanes
introduces a strong assumption on the data distribution. In our
experiments, we decided to keep the same parameters used in
[4] for the distribution from which the weights corresponding
to each hyperplane are sampled, since modifying them even
slightly seemed to impact the predictive performance. On the
other hand, the proposed prototype-based context function
allows to initialize the gating mechanism in a data-driven
way, which turns out to be very simple since we can just

uniformly sample them from the training set. Finally, in terms
of time complexity the BackPropagation-free models present
a huge advantage with respect to the standard GNN. Indeed,
the computation (both forward and backward step) of each
neuron is independent from all the others, thus it is possible to
perform the computation of each unit in parallel. Considering
the Message-Passing GLNs, the layerwise construction of the
model allows all neurons in the same layer to be computed
in parallel. This constraint is overcome by the BL-MRGNN
where all the nodes are completely independent, and thus it is
possible to parallelize the computation on all neurons.

C. Computed representation

In Figure 2 we plot the representation of each node of the
four considered datasets, and its representations obtained by
exploiting a layer of BF-GCN using context H and context X
and adopting the context functions based on random half-space
gating and the prototypes-based mechanism. The configurations
considered to generate these figures are selected thought the
validation phase (i.e., the ones reported in Table III.). All the
figures are generated using UMAP [34]. The color of each
node represents the class to which it belongs to. In Figure 2,
the first plot of each row represents the manifold of the input
space. In Cora and Citeseer datasets the positioning of the
nodes is chaotic, while in Pubmed and WikiCs it is possible to
note some areas where the nodes of a certain class are grouped.

The second and third plots of each row show the spatial
representation obtained by the BF-GCN after the second hidden
layer, using X or H as a context and the random half-space
gating mechanism. Similarly, the fourth and the fifth plots of
each row concerns the spatial representation obtained by the
BF-GCN adopting the prototypes-based mechanism context
function, considering X or H as contexts, respectively. We do
not consider the first layer, since in both cases the context is
the same (the input embedding).

All the models that we examined have only two hidden
layers, and thus the second one has as many hidden units
as the number of classes. In Cora and Citeseer, the obtained
embeddings are in different positions but the model tends
to separate the classes similarly in both cases. Moreover,
the type of context function does not significantly affect the
representation. In both cases, using X seems to be preferable
since the division between the classes seems sharper than using
H. However, these differences are very slight, given the very
slightly difference in the predictive performances of the two
models. Differently, in WikiCS and Pubmed, the use of the
different context functions significantly influences the obtained
representation. On Pubmed, the separation between the classes
seems not sharp, but there are three clusters where most of
the samples of each class are grouped. On these datasets, the
prototype context function approach seems to enhance the
spatial separation of classes. Differently, In WikiCS we see a
more chaotic division. This behavior can be due to the high
number of edges of the Graph of WikiCS. Indeed, having
a stronger connection between nodes influence significantly
the result of a convolution operator. Note that, using the



Model context function context Citeseer Cora Pubmed WikiCS

GCN - - 76.6±1.0 87.5±0.9 88.5±0.3 81.6±0.7
GraphConv - - 75.1±1.6 87.1±0.5 88.9±0.4 76.8±1.3
MRGNN - - 74.15±1.6 86.5±0.8 87.15±0.9 80.6±0.7

BF-GCN

Halfspace
H

76.0±1.4 87.7±0.5 88.1±0.3 79.8±0.8
(2, 16, 2) (1, 16, 2) (1, 8, 2) (2, 6, 2)

X
76.3±1.8 88.0±0.5 88.1±0.4 80.7±0.7
(2, 24, 2) (2, 16, 2) (2, 4, 2) (2, 6, 8)

Proto
H

77.0±0.4 87.8±0.3 88.1±0.7 81.0±0.9
(2, 16, 4) (2, 8, 2) (2, 32, 4) (2, 4, 16)

X
76.9±2.0 88.0±0.4 88.0±0.6 80.4±0.8
(2, 8, 1) (2, 32, 2) (2, 8, 2) (2, 6, 16)

BF-GraphConv

Halfspace
H

76.5±0.9 88.0±1.0 86.8±0.9 80.6±0.4
(1, 32, 2) (2, 24, 2) (2, 2, 2) (4, 8, 2)

X
76.3±1.8 88.0±1.1 86.5±0.4 80.5±0.5
(2, 24, 2) (1, 16, 2) (2, 8, 4) (2, 6, 2)

Proto
H

76.2±1.2 88.5±1.3 86.1±0.2 81.4±0.8
(2, 8, 2) (2, 8, 1) (2, 32, 4) (2, 32, 2)

X
74.9±0.6 87.8±1.1 86.5±0.3 82.3±0.7
(2, 16, 2) (2, 8, 4) (2, 16, 4) (2, 8, 16)

BF-MRGNN
Halfspace - 76.3±1.5 87.6±0.6 87.6±0.5 78.4±0.7

(3, 2) (3, 2) (2, 2) (3, 4)

Proto - 77.5±1.0 87.1±0.9 87.9±0.4 79.4±0.6
(2, 2) (3, 2) (2, 2) (2, 2)

TABLE III: Accuracy comparison between the Back-propagation-free models and standard models. The model selection is
preformed considering the results obtained on the validation set. Under each result we report the hyper-parameters selected via
validation process: (l, m, k) for the BF-GCN and BF-GraphConv and (l,k) for the BF-MRGNN.

halfspace gating approach, the version using H as context,
while apparently providing a worse representation compared
to the counterpart using X, is actually the one performing
better from the accuracy point of view. It is worth noticing
that both the adopted manifold learning method (UMAP) and
the hyper-parameters of the model can influence the obtained
plots.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we explored a novel locally trainable graph
convolutional operator dubbed backpropagation-free graph
convolutional network. The proposed GC is inspired by Gated
Linear Networks and extends them to be applied to graph-
structured data. It relies on a representation space of graph
nodes that is shattered into different subspaces according to
the node context. Indeed, each neuron that composes the
GC operator is defined as a set of weight vectors. A gating
mechanism within each neuron selects the weight vector to use
for processing the input, based on its context. This mechanism
allows training each neuron independently, without using back-
propagation, resulting in a set of convex problems to solve. We
analyzed the strengths and the weaknesses of two variants of our
approach exploiting both the common message-passing based
convolutions (GCN and GraphConv) and a multi-resolution
graph architecture (MRGNN). It is worth noticing that the
proposed approach is not limited to the considered graph
operators but it can be applied to any graph convolution
operator. We empirically assessed the performances of BF-GCN,
BG-GraphConv and BF-MRGNN on four commonly adopted
node classification benchmarks, and verified their competitive

performances. Moreover, we analyzed the behavior of such
models considering different options for shattering the context
space associated to graph nodes. In our implementation, we
use layer-wise training via Stochastic Gradient Descent (SDG),
but many other methods can be exploited to solve the resulting
convex problem., making it suitable for online and continual
learning scenarios. Indeed, we plan to explore the application
of the proposed backpropagation-free graph neural networks
to continuous learning tasks in the near future.
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