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Abstract 
A large fraction of peptides or protein regions are disordered in isolation and fold upon binding. 
These regions, also called MoRFs, SLiMs or LIPs, are often associated with signaling and 
regulation processes. However, despite their importance, only a limited number of examples 
are available in public databases and their automatic detection at the proteome level is 
problematic. Here we present FLIPPER, an automatic method for the detection of structurally 
linear sub-regions or peptides that interact with another chain in a protein complex. FLIPPER 
is a random forest classification that takes the protein structure as input and provides the 
propensity of each amino acid to be part of a LIP region. Models are built taking into 
consideration structural features such as intra- and inter-chain contacts, secondary structure, 
solvent accessibility in both bound and unbound state, structural linearity and chain length. 
FLIPPER is accurate when evaluated on non-redundant independent datasets, 99% precision 
and 99% sensitivity on PixelDB-25 and 87% precision and 88% sensitivity on DIBS-25. Finally, 
we used FLIPPER to process the entire Protein Data Bank and identified different classes of 
LIPs based on different binding modes and partner molecules. We provide a detailed 
description of these LIP categories and show that a large fraction of these regions are not 
detected by disorder predictors. All FLIPPER predictions are integrated in the MobiDB 4.0 
database. 

FLIPPER software is available at URL: https://github.com/BioComputingUP/FLIPPER. 
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Highlights 
● IDPs/IDRs exhibit a wide diversity of binding modes 
● LIPs are functional regions with specific structural features  
● FLIPPER is an accurate and fast LIP predictor from PDB structure complexes 
● Different types of LIPs can be identified depending on the interaction partners 
● FLIPPER provides the largest high quality data set of LIPs 

  



 

 

Introduction 
Intrinsically disordered proteins and regions (IDPs/IDRs) do not fold into a well-defined native 
structure but rather populate functional states defined by heterogeneous ensembles of rapidly 
interchanging conformations [1,2]. They play a key role in many biological processes as DNA 
and RNA binding, transcription, translation, cell-cycle regulation and signaling thanks to their 
unique binding modes, remaining unfolded or partially unfolded during interactions [3]. 
IDPs/IDRs binding events imply structural transitions from dynamic unbounded states to more 
constrained protein states [4]. In some cases, the IDPs retain a high level of flexibility and 
dynamism even in the bound state, in a phenomenon known as fuzziness [5–7]. Despite the 
same IDR can exhibit a variety of binding modes depending on the interaction partner [7,8], 
the majority of bound IDRs tends to adopt defined or partially defined secondary structure 
[1,9].  

Short and structurally linear binding interfaces in IDRs are known as molecular recognition 
features (MoRFs), protean segments (ProS), short linear motifs (SLiMs) or linear interacting 
peptides (LIPs) [10–13]. These regions are crucial to cell physiology [9], but different 
definitions and names correspond to slightly different subtypes. MoRFs and LIPs are generally 
used to indicate the structural properties of these regions, thus embracing the vast majority of 
binding modes adopted by IDPs/IDRs. On the other end, SLiMs, also called miniMotifs [10], 
are strictly associated to well defined functional roles, e.g. cell signaling regulation. SLiMs are 
shorter (3-10 amino acids) and well conserved by convergent evolution [9,14,15]. ProS is a 
term only used by the IDEAL database [16] and it refers to those protein segments able to 
switch from disordered to ordered state upon binding. 

Another well defined class of IDRs are those involved in domain-swapping and intertwined 
associations [17,18]. They are found in homo-oligomeric protein complexes where two or more 
identical chains exchange structural elements. Domain-swapping has important biological 
consequences such as formation of large protein aggregates and protein function modulation 
[18]. 

Different (or similar) types of LIPs are available in specialized manually curated databases. 
DIBS and MFIB provide examples of LIPs folding when binding a globular protein or another 
LIP, respectively [19,20], and collect examples directly from the Protein Data Bank (PDB) [21]. 
ELM collects SLiMs from different types of experiments (not only PDBs) and identifies key 
positions linked to function [10]. FuzDB provides examples of fuzzy interactions, e.g. binding 
IDRs, which preserve a disordered behaviour in the bound state [22] from the literature. 
DisProt and IDEAL collect information about binding regions and folding upon binding regions 
from the literature but they do not provide information about binding modes [16,23]. All these 
resources are of high quality and provide a valuable source of information for the 
implementation of sequence-based LIP prediction methods [24–27] [28]. However, training 
data cover a tiny fraction of LIPs available in the PDB and sequence predictors suffer a low 
sensitivity when evaluated on independent datasets [29]. 

In this work we present the Fast Linear Interacting Peptides Predictor (FLIPPER), to accurately 
detect LIPs in protein structure complexes. FLIPPER is a random forest classification that 
takes the protein structure as input and provides the propensity of each amino acid to be part 
of a LIP region. Models are built taking into consideration structural features such as intra- and 
inter-chain contacts, secondary structure, solvent accessibility in both bound and unbound 
state, structural linearity and chain length. FLIPPER provides accurate predictions and 
outperforms the Mobi 2.0 method [12] when evaluated on independent datasets. In this work 
we also used FLIPPER to scan the entire PDB. We identified and classified different LIP 

https://www.zotero.org/google-docs/?kh9FMl
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https://www.zotero.org/google-docs/?jfO4a5
https://www.zotero.org/google-docs/?AYtmd6
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flavours (types) on the basis of their interaction partners. All FLIPPER predictions are available 
from the MobiDB 4.0 database [30].  

Results 

LIP structural features 

FLIPPER was trained on a set of structural features (see Methods) which are effective in 
discriminating LIP from non-LIP residues. Figure 1 shows the feature value distributions for 
LIP and non-LIP residues in the training set. Despite all distributions being significantly 
different when comparing positives and negatives (Kolmogorov-Smirnov P-values < 0.001) 
some features provide a stronger separation. Indeed, these features are intrinsically similar 
and correlate strongly, namely inter-chain contacts and relative solvent accessibility (Suppl. 
Figure S1). Feature importance from the final model is reported in Suppl. Figure S2. 

LIP residues have a higher content of inter-chain over intra-chain contacts and a higher RSA 
and delta RSA compared to non-LIP residues. LIPs display higher structural linearity (see 
definition in methods), while secondary structure elements like helices and sheets are more 
equally distributed between LIP and non-LIP residues. As expected, LIPs show an elevated 
prevalence of coil due to their intrinsic flexibility and propensity to be unstructured. 

FLIPPER evaluation 

The evaluation on the training set and on the two independent datasets (PixelDB-25 and DIBS-
25) and a comparison with the Mobi 2.0 software is provided in Table 2. Additional data about 
cross-validation is provided in Suppl. Table S2. Mobi 2.0 contains a module to detect LIPs in 
PDB structure complexes by simply evaluating the intra-/inter-chain contacts ratio [12]. 
FLIPPER outperforms Mobi 2.0, showing significantly higher score for all metrics except 
specificity. Mobi 2.0 generally provides a limited number of false positives but a lot of false 
negatives. The evaluation dataset is unbalanced toward negative examples and since the high 
number of predicted true negatives the specificity is similar to the one obtained by FLIPPER 
(Table 1). FLIPPER reaches an MCC of 0.99 for PixelDB-25 and 0.86 for DIBS-25, which is 
comparable with the one obtained in cross-validation. The overall performance on PixelDB-25 
is slightly better compared to DIBS-25. This could be explained by the fact that DIBS is focused 
on a special class of LIPs, those within intrinsically disordered regions and that fold upon 
binding. Meanwhile PixelDB contains LIPs that represent a broader range of binding modes. 
FLIPPER and Mobi 2.0 present high and similar values of specificity, however FLIPPER shows 
significantly lower values of false negative rate and a better sensitivity. This indicates FLIPPER 
is able to spot a larger fraction of LIPs residues which remained undetected by Mobi 2.0. All 
performance results on filtered datasets are comparable when considering the full PixelDB 
and DIBS (see Suppl. Table S3). 

https://www.zotero.org/google-docs/?KEoxXY
https://www.zotero.org/google-docs/?OhosM9


 

 

Manually inspecting some of the obtained predictions, we saw that most of the errors are 
concentrated on residues flanking LIPs. There is one case that brings down the performance 
in cross-validation which is the PDB 1RF8, chain B (Figure 2) from the ANCHOR data set. 
That chain contains a LIP that completely wraps the receptor. FLIPPER correctly classifies 
half of the residues but misses those LIP residues which have a high number of intra-chain 
contacts and low linearity. 

LIP flavours 

FLIPPER was used to scan the entire PDB (version July 2020) and depending on the different 
interaction types and partners, we defined types, or flavours, of LIPs (Figure 3). The LIP 
flavours can be grouped in homo- and hetero-LIPs. Homo-LIPs (which correspond to the 
Homo flavour) interact with identical chains forming homo oligomers. Hetero-LIPs are more 
heterogeneous and interact with one or more different proteins, and/or nucleic acid polymers.  

In order to have a better overview of the landscape of the different types of LIPs, we combined 
PDB predictions at the protein level. Each PDB chain was mapped to the corresponding 
UniProt sequence [31] by using the SIFTS service [32]. The LIP consensus definition 
corresponds to the union of all LIP regions detected in different PDB chains mapping to the 
same protein sequence.   

LIPs predicted in the PDB and consensus statistics are provided in Table 3. FLIPPER 
identified a total of 20,009 different PDBs complexes with 65,020 PDB chains containing at 
least one LIP. FLIPPER predicted a total of 77,579 LIPs with a median length of 14 residues 
and minimum length of five residues (PDB, Table 3). A total of 12,910 LIPs in 8,661 different 
proteins were identified using the consensus strategy (Consensus, Table 3). Around 26.4% 
(2,284) of the proteins have more than one LIP and 89.5% (7,757) proteins have LIPs of only 
one flavour (Suppl. Figure S3). The most abundant flavours are Proteins and Homo. A few 
LIPs interact with DNA/RNA (Nucleic Acids) and another fraction of LIPs interact with both 
DNA/RNA and proteins (Mixed), for example those PDB chains which are part of ribosomes 
and transcription factors. The Homo and Protein flavours represent 53.8% and 30.6% of the 
entire dataset respectively, while only 843 (9.7%) proteins have LIPs interacting with nucleic 
acids. The longest consensus LIPs are in the Mixed class, followed by Protein, Homo and 
Nucleic Acids classes (Consensus, Table 3 and Suppl. Figure S4). 

Structural properties of different LIP flavours  

In order to analyze and compare the properties of different LIPs classes a series of general 
statistics at the protein level (consensus) are provided. The secondary structure content, RSA, 
delta RSA, chain linearity, intra- and inter-chain contacts and FLIPPER score distributions are 
shown in Figure 4 for the different LIP classes. For that analysis, since structural features are 
derived from PDB data, when multiple LIPs map to the same protein and overlap, only the 
longest one is considered as representative of that LIP. This operation removed the 
redundancy of identical sequences and reduced the number of chains from ca. 65 thousands 
to 8,661 (Table 3). All statistics have been performed considering only representative chains. 
Figure 4 also shows the Non-LIP category as a control, which includes all non-LIP residues in 
the selected PDB chains.  

https://www.zotero.org/google-docs/?b5PGKz
https://www.zotero.org/google-docs/?uP4L4C


 

 

Homo LIPs 

As expected, Homo LIPs have a statistically significant higher fraction of alpha-helix and beta-
strand (Kolmogorov-smirnov test p-value < 0.01) compared to the other flavours (Figure 4a). 
This flavour has a structural role, they are commonly found in intertwined homo-oligomers as 
small segments or domains exchanged between different subunits of a protein complex [17]. 
Also, they can participate in domain swapping as “swapped” regions, or be organized in large 
protein aggregates [18,33].  

Figure 3 shows three examples of Homo LIPs. The structure of the p53 oligomerization domain 
[34] (UniProt: P04637, PDB: 1SAF) is composed of four identical protein chains (chains A, B, 
C and D; LIP residues 319-359). The tetramerization domain is located in the intrinsic 
disordered C-terminus of p53 [35] and folds upon oligomerization. This LIP has the highest 
content of alpha helix (about 50%) compared to the other examples and covers the 10% of 
the UniProt protein sequence (Suppl. Table S4). 

The RNA-binding protein FUS (UniProt: P35637, PDB: 5W3N) is a disordered protein which 
participates in liquid-liquid phase separation. The structure (chains A, B, C, D ,F ,G ,H and I; 
LIP residues 37-97) is a self-assembly fibril formed by the low-complexity domain of FUS while 
the rest of the protein remains disordered [36]. Protein chains with the LIPs cover the whole 
protein sequence, presenting large average amounts of inter-contacts and delta RSA due to 
the characteristic fibrillar organization (Suppl. Table S4). 

The chains of the receptor-binding tip of the bacteriophage T4 long-tail fiber (UniProt:P03744, 
PDB:2XGF) are the longest LIPs identified by FLIPPER (PDB residues 864-1021) in the Homo 
subset. The structure is composed of three identical protein chains that exhibit an elongated 
conformation which intertwine at the end of the tip [37]. As expected, this LIP presents the 
highest values of beta sheet content (48%) and linearity compared to the general trend. The 
average FLIPPER score for this example is 0.83, slightly lower than the other two examples 
of Homo LIPs (Suppl. Table S4). 

Nucleic Acids LIPs 

LIP flavours have statistically significant different numbers of inter- and intra-chain contacts 
(Kolmogorov-smirnov test p-value < 0.01), with the exception of Homo and Mixed flavours 
(Figure 4h-i). Interestingly, Nucleic Acids LIPs have more intra-chain contacts while lacking 
secondary structure (Figure 4c) and they are shorter with a median of 10 residues (Table 3). 
Delta RSA is particularly low for this flavour but it is an artifact as DNA and RNA molecules 
are not taken into consideration by DSSP when it calculates solvent accessibility (Figure 4e). 
Most of these LIPs are part of DNA binding proteins, which non-covalently bind and release 
nucleic acids exploring different conformations [38].  

The structure of a truncated form of HMG-I/HMG-Y protein bound to DNA (UniProt: P17096, 
PDB: 2EZD chain A) is another example of folding upon binding, where the LIP is identified 
between the residues 7-20 in the PDB (Figure 3). In absence of DNA, this protein is fully 
disordered [39] and the LIP identified by FLIPPER is annotated as a  structural transition 
region in the DisProt database [23] (identifier of a region evidence in DisProt: DP00040r006). 
It can be also observed that the LIP is partially unfolded, maintaining its flexibility after binding. 
Indeed, all its residues are defined as coil (Suppl. Table S4). 

https://www.zotero.org/google-docs/?QdJ1xW
https://www.zotero.org/google-docs/?V1IyCy
https://www.zotero.org/google-docs/?3nYlP4
https://www.zotero.org/google-docs/?pJfTP4
https://www.zotero.org/google-docs/?exajaZ
https://www.zotero.org/google-docs/?SHVqXL
https://www.zotero.org/google-docs/?5hJAq8
https://www.zotero.org/google-docs/?YnXD6W
https://www.zotero.org/google-docs/?mFejO0


 

 

Protein LIPs 

Protein LIPs have a higher median for RSA, delta RSA, chain linearity (Figure 4 d-f) and lower 
number of intra-chain contacts compared to the other LIP flavours (Figure 4h). They better fit 
FLIPPER definition of a linear peptide and, accordingly, FLIPPER score for this flavour is 
consistently higher indicating that they are easier to predict. They are more heterogeneous 
than Homo LIPs since they interact with one or more different proteins or nucleic acid 
polymers. The median alpha-helix content is comparable to Homo LIPs, however, they have 
less beta-strands and more coiled elements (Kolmogorov-smirnov test p-value < 0.01). These 
regions exist in different conformations depending on the context and can adapt their 
conformation to different interaction partners [28,40]. 

The p27Kip1 kinase inhibitory domain (UniProt: P46527, PDB: 1JSU chain C) is bound to the 
phosphorylated cyclin A-cyclin-dependent kinase 2 (Cdk2) and cyclin A [41]. The extended 
conformation of p27Kip1 is identified as a LIP from residues 25-93 (Figure 3). The extended 
conformation of the p27Kip1 domain is detected by FLIPPER as a LIP from PDB residues 25-
93 (PDB code: 1JSU, chain: C). Since the unbound form of p27Kip1 is intrinsically disordered 
[42], the LIP folds upon binding (DisProt evidence code: DP00040r006) covering the full 
protein sequence (Suppl. Table S4). Moreover, this LIP region contains a Short Linear Motif 
(SLiM) from residues 27-37 identified within the function class Cyclin N-terminal Domain 
Docking Motifs in the ELM database (ELM identifier: DOC_CYCLIN_RXL_1) [10]. 

Mixed LIPs 

LIP lengths statistically differ across subsets (Kolmogorov-smirnov test p-value < 0.01), being 
the Mixed class the one with longest LIPs with a median of 20 residues, and Nucleic Acids 
those with the shortest with a median of 10 residues (Table 3). Mixed LIPs are found on protein 
structures which are mostly part of big macromolecular complexes namely, ribosomes, 
nucleosomes and polymerases. 

The 40S ribosomal protein S3 structure (UniProt: P23396, PDB: 5A2Q chain D) is part of the 
structure complex of the Hepatitis C Virus bound to the Human Ribosome. The LIP is detected 
in residues 206-227 interacting with ribosomal protein S17, the receptor of activated protein C 
kinase 1 (RACK1) and the DNA. The LIP is located at the C-terminal, in a predicted disordered 
region by MobiDB-Lite [43]. Its high content of coil (75%) as well as the disorder prediction 
indicates a strong propensity of this region to be disordered and highly flexible in the unbound 
state (Suppl. Table S4). 

LIPs sequence composition and disorder prediction 

Suppl. Figure S5 shows FLIPPER predicted LIPs, PDB observed and DisProt amino acid 
enrichment by using TrEMBL as a background frequency distribution. DisProt represents the 
reference for IDPs/IDRs amino acid composition and PDB observed (residues with available 
coordinates) represents well structured / globular domains. Pearson’s correlation coefficient 
is 0.59 and 0.40 for FLIPPER/DisProt and FLIPPER/PDB comparisons, respectively. 
Compared to DisProt, LIPs are less enriched in disordered promoting residues (Glutamic Acid 
E, Lysine K, Proline P, Glutamine Q) and less depleted in hydrophobic residues. The most 
significantly depleted LIPs residues (Glycine G, Alanine A, Valine V and Tryptophan W) have 
been shown to be depleted also in DIBS, MFIB, ELM and FuzDB databases [44]. LIPs seem 
to have a composition in between disordered and ordered proteins, but with some specificities 

https://www.zotero.org/google-docs/?OLMVPD
https://www.zotero.org/google-docs/?0lymVk
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https://www.zotero.org/google-docs/?MlpEFd
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https://www.zotero.org/google-docs/?Rdlhje


 

 

like the enriched Arginine (R) and depleted Glycine (G) and Alanine (A). This information could 
be important for sequence based prediction methods. 

To evaluate the propensity of LIPs to be disordered, five different methods were used to 
predict protein disorder. Suppl. Figure S6 shows the fraction of disordered LIPs found in each 
subset by the different methods. A LIP was classified as disordered when more than 50% of 
its residues are disordered. It can be seen that most of the LIPs are predicted as ordered. 
Only the Nucleic Acids subset shows a high tendency to disordered LIPs, supported by most 
predictors. This is related with the fact that disordered predictors have their intrinsic bias to 
particular flavours of protein disorder [45], depending on how they were trained. Particularly, 
VSL2b is one of the methods with the highest False Positive Rates, however it does not over-
predict disorder [46]. VSL2b is the unique method that predicts most of the LIPs as disordered 
in the different subsets. This analysis also highlights the complexity at sequence level of these 
regions for the current state-of-the-art disorder predictors, since LIPs don’t have the classic 
sequence signature of IDPs/IDRs and as it was observed before, their composition is in 
between structured and disordered proteins. 

Comparison with curated databases 
High-quality data about intrinsically disordered binding regions are stored in different manually 
curated databases which cover a wide range of different binding modes such as folding upon 
binding, short linear motifs, fuzzy interactions and mutual folding induced by binding. The 
amount of proteins included in curated databases is way lower compared to FLIPPER dataset 
and it is interesting to evaluate whether FLIPPER predictions can be used to guide biocuration. 
In Table 4 FLIPPER predictions are compared with curated LIPs. Overlapping (true positives), 
missed (false negatives) and overpredicted (false positives) residues are provided as 
percentages considering the union of predicted and curated LIP residues. Underpredicted 
residues can be explained by the fact that a fraction of curated LIPs are inaccessible to 
FLIPPER since not covered by any PDB experiment. This is particularly true for DisProt and 
IDEAL which collects experimental evidence from a large number of different techniques. 
Other differences arise from the different types and definition of the regions captured in the 
databases. ELM for example concentrates on short functional motifs and FuzDB on regions 
which perform transient interactions which are difficult to capture in PDB structures, often 
defined in regions of missing residues. MFIB and DIBS are the most similar databases with 
ca. 50% of common residues. The similarity can be explained by the fact the starting point for 
curating new entries is the PDB. Underprediction, instead, can be explained by the fact that 
biocurators tend to define the full chain as a LIP, whereas FLIPPER focuses on interacting 
positions, e.g. excluding N- / C-terminal tails. Despite all these differences the overpredicted 
fraction (22.2% / 18,496 residues) and all new predicted proteins (7,487) are worth inspecting 
to integrate novel functional evidence in curated databases. 

Repeat domains are poorly represented by the LIP definition. RepeatsDB [47] provides 
annotations and classification of tandem repeat structures from the PDB. We found that only 
the 5.0% (704) of the RepeatsDB PDB chains are predicted by FLIPPER and that only in the 
3.5% (513) of those chains contain repeated regions overlapping LIP predictions. We think 
that the structural characteristics of tandem repeat protein structures are substantially different 
from LIPs, since they have a regular well-folded structure with high density of intra-chain 
contacts. 

https://www.zotero.org/google-docs/?vmGGft
https://www.zotero.org/google-docs/?ZQC6bM
https://www.zotero.org/google-docs/?DYUonL


 

 

Discussion and conclusion 
The majority of intrinsically disordered proteins and regions (IDP/IDRs) are involved in key 
cellular processes thanks to their binding modes. In order to better understand how these 
interactions occur at structural level we developed FLIPPER to automatically identify the 
structurally linear sub-regions or peptides in protein complexes. The method is a random forest 
classifier trained on eight different structural features. Linearity, fraction of coil regions, intra- 
and inter-chain contacts, have been shown to discriminate well LIPs from non-LIPs residues 
(Figure 1). FLIPPER can accurately identify LIPs on structure complexes composed of 
proteins and nucleic acid chains. It shows high precision and sensitivity, a low false positive 
rate and good generalization on unseen examples (Table 2).  

FLIPPER has been used to explore the landscape of LIPs flavours, or types, by processing 
the entire PDB. Homo LIPs, found in homo-oligomers, are mainly involved in domain swapping 
and intertwined homo complexes. Hetero LIPs, depending on the type of interacting partner, 
have a different fraction of secondary structures and solvent accessibility, while sharing 
comparable linearity and inter- and intra- contacts values (Figure 4). Indeed, the latter strongly 
explain the difference between homo and hetero LIPs, no matter the kind of binding partner 
involved. 

LIPs show an amino acid composition in between ordered and disordered. This is also 
reflected by  state-of-the-art disorder predictors  that classify most of the LIPs as not 
disordered. 

In conclusion, FLIPPER identifies LIPs in protein structure complexes, providing a residue by 
residue LIP propensity. FLIPPER captures the wide conformational variability of LIPs available 
in the entire PDB. FLIPPER predictions can be used to build new training sets for sequence-
based methods able to identify different LIPs flavours. Moreover, FLIPPER predictions can 
guide the selection of targets to be curated in IDP databases. The FLIPPER software is 
available at URL: https://github.com/BioComputingUP/FLIPPER. All FLIPPER predictions are 
available in MobiDB 4.0. 

 

Material and Methods 

Algorithm 

FLIPPER is a random forest classifier based on the Scikit-learn library [48]. FLIPPER 
considers an ensemble of 20 different decision trees, with no fixed maximum depth. Every leaf 
of a tree represents a split of the dataset created applying a cutoff on a residue feature (see 
features paragraph). To reduce overfitting, FLIPPER was trained with an early stopping 
procedure in which a new leaf is created when one split covers at least 0.05% of the training 
residues. The algorithm optimizes the split of positive (LIP) and negative (non-LIP) residues 
finding the best combination of leaves and thresholds.  

Split quality is estimated with Gini impurity [49], given by the formula: 

𝐺 =#
!∈#

𝑝(𝑖) ⋅ [1 − 𝑝(𝑖)] 

https://github.com/BioComputingUP/FLIPPER
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Where C is the set of classes, LIP and no-LIP, and 𝑝(𝑖) the probability of a target to belong to 
class i. When G equals to zero the separation of the classes is perfect. A node split is accepted 
if it lowers the impurity. A change in impurity is weighted by the total number of examples as 
follows: 

 

𝑛/𝑁 ∗ 𝐺(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒) 	−	𝑛$/𝑛 ∗ 𝐺(𝑅𝑖𝑔ℎ𝑡𝑁𝑜𝑑𝑒) − 𝑛%/𝑛 ∗ 𝐺(𝐿𝑒𝑓𝑡𝑁𝑜𝑑𝑒) 

 

Where N is the total number of targets, n is the number of targets represented by the current 
node and nr and nl are the number of targets in the right and left nodes. 

FLIPPER applies two postprocessing steps to get the final binary classification of the residues 
starting from the LIP probability provided by the random forest classification. A smoothing step 
is applied using a sliding window of size 𝑤 = 2 ∗ 𝑐 + 1centered on a target residue. The new 
probability is obtained as follows: 

 

𝑠(𝑥) 	= 	
1

1	 + 	𝑚𝑖𝑛(𝑙	 − 	1, 𝑥 + 𝑐) 	− 	𝑚𝑎𝑥	(0, 𝑥 − 𝑐)
	 #
&!'(%)*,,-.)

!0&1,(2,,).)

𝑠(𝑖) 

 

with 𝑥	 ∈ 	 [0, 𝑙 − 1], being l the length of the signal. By default FLIPPER classifies as LIP, 
those residues with a score higher than 0.5. The second step is a gap filling pass which 
removes all discontinuities.  

Other types of classifiers (MLP and SVM) were tested obtaining similar results, the random 
forest was chosen because it generates models that can be interpreted.  

FLIPPER on average processes one PDB file in less than a second, the computational cost is 
mainly taken by Input/Output operations.  

Features 

FLIPPER models are trained considering a set of features which can be calculated from the 
protein structure. For each residue structural local properties are captured by calculating the 
following features: 

● Inter- and intra-chain contacts. Two residues are considered in contact when the 
distance between two atoms is lower than 3.8 Å. Only long range intra-chain contacts 
were considered with a sequence separation of at least 7 residues. Both the count and 
the average over a window are considered.  

● Three state secondary structure content considering alpha-helix (“G,” “I,” “H”), beta-
strand (“E”, “B”) and irregular/coil (“T”, “S”, unassigned residues) as assigned by [50] 
DSSP and averaged over a window. 

● Relative Solvent Accessibility (RSA) calculated as ASA/MaxASA, where the ASA is 
provided by DSSP and MaxASA is taken from [51], averaged over a window. 
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● Delta RSA calculated considering the RSA difference between the chain in isolation 
and in complex, averaged over a window. Since DSSP does not consider non-standard 
peptidic molecules, the delta RSA is always zero for LIP residues interacting with DNA, 
RNA or other ligands. 

● Structural linearity, the spatial distance between Cα of the first and last residues of a 
fixed sequence separation, divided by the window length. The theoretical maximum 
linearity is 3.8 Å (distance of two consecutive Cα without torsions). In practice, a value 
larger than 1.0 Å indicates linearity. 

● Chain length. The length of chain capped at 100 residues and divided by 100. 

For contacts and secondary structure features, the window size was set to 11 residues. For 
RSA, delta RSA and linearity the window size was 41 residues.  

Datasets 

The FLIPPER training set is composed of 70 different PDB structures which include 123 
protein chains, 53 of which do not contain any LIPs (Table 1). PDB chains are not redundant 
at the sequence level with a maximum of 35% sequence identity (Suppl. Table S1). Most of 
the PDB examples come from the ANCHOR training datasets [27]. Since FLIPPER is 
implemented to detect linear regions in close contact with the partner, we visually inspected 
each structure and revised the ANCHOR dataset definition by narrowing LIPs region 
boundaries where necessary. The training set was integrated to include 27 chains (PDB IDs 
and chain IDs: 1dev_A, 1dev_B, 1t08_C, 1ee5_A, 1ycq_A, 1ycq_B, 2fym_A, 2fym_B, 1iwq_A, 
1iwq_B, 1fv1_C, 2nl9_A, 2nl9_B, 1nx1_A, 1nx1_C, 1p4b_H, 1p4b_B, 2d1x_P, 2d1x_A, 
1ee5_B, 5c2v_A, 1mnm_C, 4gkh_I, 2d1x_P, 2d1x_A, 4n4c_A, 1bh5_A) with both LIPs and 
globular domains. These cases were manually chosen from MobiDB 3.0 [52] which contains 
LIPs annotations provided by the Mobi 2.0 method [12].  

Two different validation sets were built from the PixelDB [53] and DIBS [20] databases (Table 
1). PixelDB contains peptide ligands bound with one or more receptors, clustered by structural 
similarity of the peptide-binding protein. DIBS contains examples of IDP chains which form 
complexes with globular chains. PDB chains with more than 25% sequence similarity with the 
training set were removed by using BLASTclust [54]. The resulting PixelDB-25 dataset 
contains 1,244 proteins and DIBS-25 828 proteins (Table 1). 

Curated LIP (or IDR) annotations provided by DisProt, IDEAL, MFIB, DIBS, FuzDB and ELM 
databases were downloaded from MobiDB (version 2020_09) [30]. 

Training and evaluation 

FLIPPER was trained with a 10-fold cross-validation and the output is generated averaging 
over all 10 models. Hyper parameters were manually set based on a grid search evaluated on 
the whole training set. FLIPPER performance on 10-fold cross-validation on training set is 
provided in the Suppl. Table S2. In the same table is also reported the performance in cross-
validation shuffling labels in the LIP70 database before performing the cross-validation. The 
comparison with other methods, Mobi 2.0, was performed against PixelDB-25 and DIBS-25 
datasets. All evaluations are performed by residue, considering as positives those belonging 
to PDB chains classified as peptides in PixelDB and as disordered in DIBS. The following 
performance measures were calculated: balanced accuracy (BAC), F1-score, Matthews’ 
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correlation coefficient (MCC), positive predictive value (PPV) or precision, true negative rate 
(TNR) or specificity and true positive rate (TPR) or recall. 

Disorder prediction 

Disorder predictions were downloaded from MobiDB (version 2020_09) [30]. The following 
methods were considered: MobiDB-Lite (single consensus-based prediction; [43]), ESpritz X-
ray [55], IUpred-long [56] and VSL2b [57]. These methods have different performance 
regarding disorder predictions, being MobiDB-lite the most restrictive with the lower rate of 
false positives. Meanwhile, VSL2b is more permissive to predict disorder and ESpritz has the 
best average prediction performance. Consensus-50 was also obtained from MobiDB, which 
is less restrictive than MobiDB-Lite (agreement on a given residue being disordered by more 
than 50% of the predictors) and shows a better performance than individual disorder predictors 
[58,59]. 
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Tables 

Dataset Proteins  PDB chains LIPs non-LIPs LIP residues non-LIP residues 

Training 113 123 70 53 1,725 12,922 (1,203)* 

PixelDB 1,313 3,465 1,952 1,513 25,575 395,712 

PixelDB-25 1,244 2,947 1,436 1,511 24,836  329,945 

DIBS 906 1,639 765 874 13,279 155,267 

DIBS-25 828 1,409 706 703 11,600 115,824 

 

Table 1. Datasets composition. “Proteins” corresponds to the number of different 
UniProtKB accessions mapping to PDB chains. “LIPs” and “non-LIPs” contain the number of 
PDB chains with LIP and non-LIP regions. (*) Non-LIP residues in the same chain containing 
a LIP. For both PixelDB and DIBS, LIPs cover the full PDB chain.  

 

Dataset  Method  MCC Accuracy F1 Score 

False 
Negative 

Rate 
(FNR) 

Precision 
(PPV) 

Specificity 
(TNR) 

Sensitivity 
(TPR) 

Training 
FLIPPER 0.949 0.975 0.955 0.043 0.954 0.994 0.957 

Mobi 2.0 0.556 0.729 0.587 0.518 0.750 0.976 0.482 

PixelDB-25 
FLIPPER 0.985 0.992 0.986 0.015 0.987 0.999 0.985 

Mobi 2.0 0.704 0.815 0.721 0.357 0.820 0.987 0.643 

DIBS-25 
FLIPPER 0.857 0.931 0.87 0.124 0.865 0.986 0.876 

Mobi 2.0 0.634 0.779 0.661 0.422 0.771 0.98 0.578 

 

Table 2. FLIPPER prediction evaluation. FLIPPER performance is compared with Mobi2 
on the FLIPPER training set, PixelDB-25 and DIBS-25. 

  



 

 

 

Type 
PDB Consensus 

PDBs PDB 
chains LIPs LIP 

residues 
Median 

LIP 
length 

Proteins LIPs LIP 
residues 

Median 
LIP 

length 
Homo 8,541 27,365 32,208 610,740 14 3,239 4,399 88,049 14 

Protein 11,735 34,436 39,216 790,117 14 5,423 7,369 155,247 15 

Nucleic Acids 583 1,503 1,704 20,873 8 307 355 4,818 10 

Mixed 1,175 4,012 4,451 96,870 17 664 787 19,355 20 

Total 20,009* 65,020* 77,579 1,518,600 14 8,661* 12,910 267,469 15 

 

Table 3. Dataset composition of the LIPs classes. At the PDB level (PDB) LIPs are 
considered independently in each PDB chain. At the consensus level (Consensus) LIPs 
found on PDBs mapping to the same UniProt accession are merged together. (*) The total is 
less than the sum of the column since the same protein can have LIPs of different types.   

 

Database Proteins* LIPs° Residues^ (%) 

 Common Common Under Over Common Under Over 

MFIB 172 (69.9%)  174 5 44 51.9 40.5 7.6 

DIBS 473 (94.8%) 513 9 236 49.5 20.5 30.0 

IDEAL 166 (80.6%) 151 46 150 29.9 42.0 28.1 

DisProt 260 (53.3%) 216 76 186 18.6 67.2 14.2 

ELM 692 (33.2%) 501 699 692 14.2 18.9 66.9 

FuzDB 52 (50.5%) 39 43 73 5.7 75.2 19.1 

Total 1,174 (40.4%) 1,062 723 765 26.8 51.1 22.2 
 

Table 4: FLIPPER consensus performance on manually curated databases. (*) The 
number of database proteins predicted by FLIPPER. In parenthesis the database 
percentage. (°) Common is the number of database regions that overlap by at least one 
residue with FLIPPER predictions. Under and Over represent the number of regions not 
predicted by FLIPPER and those predicted but not overlapping with any database regions, 
respectively. (^) The percentage of overlapping (Common), underpredicted/missed (Under) 
and overpredicted (Over). Percentages are calculated over the union of database and 
predicted residues. Both FLIPPER and database regions are merged at the protein level as 
in Table 3. For the total line all databases regions were merged together. 

  



 

 

Figures 

 

 
Figure 1. Features distributions in the training set. The density plots represent feature 
values for LIP and non-LIP residues in the training set. Density values are automatically 
calculated with the geom_density() function of the ggplot2 R package [60]. Intra- and Inter-
chains contacts are expressed in a logarithmic scale. Distributions of positive and negative 
classes, to a lesser extent for helix and beta, are statistically different for all features 
(Kolmogorov-Smirnov P-value < 0.001). 
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Figure 2. FLIPPER worst prediction on the training set. A fragment of the Eukaryotic 
initiation factor 4F subunit p150, component of the eIF4F complex of Saccharomyces 
cerevisiae, is shown in cartoon representation (PDB 1RF8, chain B). The LIP in the training 
set is defined from residue 240 to 307. FLIPPER underpredicted LIP residues but did not 
make any false positive prediction. True positives residues are 42 (blue) and false positives 
are 26 (red). The large central mispredicted region (red) is apparently more distant from the 
partner chain compared to the rest of LIP residues. 



 

 

 
Figure 3. LIPs classification schema. LIPs classification and one example per category 
are shown. The color representation is as follows: blue LIP residues, green the PDB chain 
that contains the LIP, grey the protein chain/s interacting with the LIP and red the residues 
involved in the interaction with the LIP. Since FLIPPER identifies all protein chains of the 
Homo subset as LIP, only one is colored in blue for clarity. 

 

 

 



 

 

 

Figure 4. Features distributions in LIPs classes. Average feature values were considered 
for each consensus LIP in a particular subset. Non-LIP residues were taken from chains 
containing at least one LIP. A representative PDB and chain was chosen for those 
consensus LIPs with more than one PDB and chain associated.  

 

 

 



 

 

 

Figure 5. Fraction of disordered LIPs in the classes. A LIP is considered disordered if 
more than 50% of its residues are predicted to be disordered by the corresponding method. 
MobiDB-lite is a consensus which considers predictions from 8 different methods. 
Consensus-50 corresponds to a majority vote on the same set of predictions considered by 
MobiDB-lite. 


