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Abstract 

Natural and man-made disasters are source of significant concern for privates and public au-

thorities worldwide since they commonly imply relevant costs for repairing damaged struc-

tures and infrastructure and for a rapid recovery of the involved region’s economy. In this 

context, the Catastrophe Bonds (CAT bonds) are risk-linked securities adopted by insurers to 

transfer potential high losses to the capital markets. Despite their growing importance, CAT 

bond pricing formulations and risk-managing solutions based on this financial tool are still 

limited. For these reasons, this paper wants to propose a general methodology for designing 

a CAT bond-based loss-coverage scheme for a distributed portfolio, with a pricing formula-

tion able to consider uncertainties deriving from model parameters. The framework is applied 

to the residential building stock of Italy, proposing an ad-hoc CAT bond-based coverage 

scheme that consider three different levels of default risk.  
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1 INTRODUCTION 

Natural and man-made are source of significant concern for privates and public authorities 

worldwide since they commonly imply relevant costs for repairing damaged structures and 

infrastructure and for a rapid recovery of the involved region’s economy [1]. Every year, 

floods, earthquakes, tornadoes, and windstorms [2] cause billion dollars losses [3]. Further-

more, losses are expected increasing over time, given the growing urbanization and concen-

tration of population ([4] and [5]). When dealing with natural disasters, losses are strictly 

spatially and temporally correlated, leading to potential huge losses that are difficult to be 

covered by insurances or public authorities. For this reason, reinsurance companies, i.e. com-

panies that take on all or part of the risk covered under a policy issued by a first level of in-

surance companies, that usually have large portfolios, or public governments need to provide 

coverage of these potential high losses by adopting sophisticated so-called Alternative Risk 

Transfer products (ART) [6]. One ART solution is represented by the insurance-linked secu-

ritization, an alternative way for transforming catastrophe risk into securities (i.e., catastrophe 

bonds) and selling them to financial entities able to absorb such high levels of losses (i.e., the 

financial market). CAT bonds offer a significant supply for reinsurance surpassing the capaci-

ty of traditional providers and are therefore well suited to provide coverage for substantial 

losses [7]. So, in case of default, the principal is used to pay the losses of the issuing company, 

otherwise the capital is returned to the investor at maturity and coupons are also paid as coun-

terweight to the assumed risk. An important aspect in designing an earthquake CAT bond, is 

the definition of the trigger event. Usually, a common trigger is the exceedance of a loss 

threshold, that is the one adopted in this study. Recently, [8] proposed a risk-based CAT bond 

pricing procedure able to consider the propagation of parameter uncertainties on the default 

probability of a CAT bond and on the pricing, while [9] showed a general methodology for 

addressing the design of a CAT bond-based coverage for a spatially distributed portfolio. This 

paper presents the outcomes of [9] in which a CAT bond-based coverage scheme against loss-

es induced by seismic events all over the entire national boarders was priced for the residen-

tial building stock in Italy. Further details can be found in [9]. 

2 PROPOSED FRAMEWORK 

The design of a possible CAT bond-based coverage scheme, can be subdivided in four 

main steps, illustrated in Figure 1. The procedure is general and can be easily adapted for de-

signing a CAT bond-based coverage against different hazard by different issuing companies. 

 

 
Figure 1: General framework for the designing of a CAT-bond based coverage scheme. 
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2.1 Definition of the target losses 

In the first step of the proposed procedure, the issuing company has to identify the spatial-

ly distributed portfolio that has to be covered with the CAT bonds. In most of cases, public 

governments may want to cover the entire national territory, while private company may want 

to cover the insured portfolio. In many cases, the issuing company can decide to cover only a 

part of the portfolio, commonly the most exposed at risk. Secondly, the kind of losses to be 

covered with the CAT bond has to be identified. This decision is very case specific and par-

ticularly important, since the trigger event is based on the exceedance of this losses. Com-

monly, public authorities may consider to cover losses associate to direct structural damage 

on buildings, while a private issuing company, which offers multi-loss and multi-hazard cov-

erage, has to carefully evaluate the losses to be insured. 

2.2 Definition of the covered area 

When the portfolio is distributed over a wide territory, different risk levels can be identi-

fied within the same region. In this context, a common practice is to practice is to tailor CAT 

bonds associated to different risk levels, in order to meet the needs of different types of inves-

tors. An area with many significant events leads to calibrating high-risk CAT bonds with re-

lated high gains for risk-seeking investors, while with rare and lowly impacting losses leads to 

low-risk CAT bonds. If a portfolio is uniformly distributed on a wide area with a quite homo-

geneous vulnerability and exposure, the subdivision can be guided by the hazard of interest. 

In this latter case, CAT bond default risk will be strictly connected to the hazard. 

2.3 Calibration of the distributions’ parameters 

The third phase consist in the calibration of the distribution’s parameters. In particular, the 

two distributions involved in the price computations are distribution of the expected losses 

and the Poisson process, representing the occurrence of the events. Regarding the loss distri-

bution, rarely enough historical data of extreme events are available, and thus computer simu-

lations are needed to predict potential losses that can arise for the portfolio of interest. 

Furthermore, when historical data are available, often they refer to old events for which struc-

tural vulnerability and exposure were different from the current ones, highlighting the need of 

simulations. Based on the specific considered loss, suitable loss models must be adopted. 

2.4 CAT bond computation 

This work adopts stochastic processes for CAT bond pricing. in this case, one common 

method is to model the credit default probability which follows the way of pricing credit de-

rivatives in finance, and to assume the time to be continuous. The catastrophe process is thus 

modelled as a compound doubly stochastic Poisson process ( )M s , where the potentially cat-

astrophic events follow a doubly stochastic Poisson process, and the associated losses iX  are 

assumed independent and generated from a common cumulative distribution function (CDF). 

Clearly, this distribution function has to correctly fit the observed claims. The CAT bond’s 

default occurs when the accumulated losses ( )L t  exceed the money threshold level D before 

the expiration time T. Under these assumptions, the price for zero-coupon zc

tV  (i.e. debt secu-

rity that does not pay interest but renders profit only at maturity) and coupon c

tV  CAT bond 

(i.e. debt security that includes attached coupons and pays periodic interest payments during 

its lifetime and its nominal value at maturity), can be computed as discounted expected value 

of the future payoff. More formally, the credit default probability can be computed as 



L. Hofer, M.A. Zanini and P. Gardoni 

( ) ( ), ; P ;fP T D L T D=   Θ Θ , where  ,P LΘ= Θ Θ represents the parameters characterizing 

the Poisson process PΘ  and the loss distribution LΘ . The inclusion of Θ  allows the analyst 

to take into account in the formulation the uncertainty of the model parameters and thus com-

puting also the 
fP  and price bounds. Thus, conditioning on the number of events, and consid-

ering the independence between the Poisson point process and the incurred losses previous 

equation becomes ( ) ( ) ( )
1

, ; 1 ; ;n

f X L Pn
P T D F D P M T n



=
 = −  =   Θ Θ Θ , where 

( );n

X LF D Θ  is the n-fold convolution of the loss distribution evaluated in D and represents the 

CDF of 1X  + 2X  + … + nX  ([10], [11]). This formulation is general and can be applied to 

every loss distribution type. Fig. 2 shows the procedure for CAT bond pricing based on a 

fixed accepted level of risk. First, the issuer defines a quantile q on the 
fP  distribution and 

finds the related CAT bond pricing surface, characterized by a constant risk value for each T-

D combination. This procedure allows computing the entire 
fP  and zc c

tV −  distribution, or the 

value corresponding to a specific quantile q, for each T-D combination. 

 

 
Figure 2: Relationship between fP , f,dP  and tV , t,dV  given a quantile q. 

 

Following [12], the solid line in Fig. 2 represents a predictive ( )fP T,D  or point ( )fP T,D  es-

timate of ( ), ;fP T D Θ : ( )fP T,D  is computed as expected value of ( ), ;fP T D Θ  over Θ , 

while ( )fP T,D  is obtained by using a point estimate of Θ  (i.e. Θ=Θ , where Θ  could be the 

mean or median). Similarly to fP , ( )tV T,D  (or ( )tV T,D ) is a predictive (or point) estimate of 

the CAT bond price obtained from ( )fP T,D  (or ( )fP T,D ). For each T-D combination, q is 

the probability that the default probability fP  is smaller than the probability f,dP  assumed for 

the pricing design as the fixed risk, where d in the subscript stands for design value, and rep-

resented in Fig. 2 by a dotted line. f,dP  is then needed for the calculation of the related CAT 

bond design price t,dV  on the price distribution tV . Assuming a quantile of the fP  distribution 

implies considering the same probability for the bond to be under-priced. Formally, this con-

dition is given by 

 

 , ,f f d t t dP P P P V V q    =  =    (1) 

For computing 
,f dP  for a given quantile q, the 

fP  distribution is thus needed. Since nested 

reliability calculations are required for the computation of the ( ), ;fP T D Θ  distribution due to 
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uncertainties in the model parameter, approximated quantiles obtained by first-order analysis 

can be used [12]. The design default probability 
,f dP  can thus be calculated as 

 ( ) ( ) ( ), , , ,f dP T D T d k T D  =  − −    (2) 

where Φ(∙) is the standard normal cumulative density function, ( ),T d  is the reliability in-

dex calculated as ( ) ( )1, 1 ,fT d P T D −  =  −
 

 (or similarly ( ) ( )1, 1 ,fT d P T D −  =  −
 

) 

and k   represents the quantile of the β distribution reflecting the acceptable level of risk. 

From the assumed quantile q, the constant term k can be computed as ( )1 1k q−= − . Follow-

ing [12]the variance ( ),T D  of the reliability index ( ), ;T D Θ  can then be approximated 

by using a first-order Taylor series expansion around ΘM , where ΘM  is the mean vector Θ  

 ( ) ( ) ( )2 , , ,
T

T D T D T D   Θ ΘΘ ΘΣ  (3) 

where ΘΘΣ  is the covariance matrix of the model parameters and ( ),T D
Θ

 is the gradient 

column vector of ( ), ;T D Θ  at ΘM . The vector ΘM  can be estimated either with the maxi-

mum likelihood estimation method or, more precisely, with the Bayesian updating technique, 

as the posterior mean vector. As for ΘM , the covariance matrix can be computed in a simpli-

fied way as the negative of the inverse of the Hessian of the log-likelihood function [13] or, 

again, more precisely with the Bayesian updating technique. The gradient of   in Equation (3) 

is computed applying the chain rule to the definition of reliability index, while the gradient of 

fP  can be computed numerically using the definition of derivative. Once f,dP  is calculated, 

the corresponding CAT bond price can be computed according to [8] as discounted expected 

value of the future payoff under the risk-neutral measure (or equivalent martingale measure), 

considering an arbitrage-free opportunities financial market. For both zero-coupon and cou-

pon CAT bond, the bond principal is assumed to be completely lost, in case the bond is trig-

gered. Given the threshold D, the price of the zero-coupon CAT bond zc
t,dV  paying the 

principal Z at maturity time T and correspondent to the assumed quantile q is 

 ( )
( )

( )
|

, ,, 1 ,

T

t
r d

zc

t d t f dV T D E e F Z P T D
 −   =  −   

 
 (4) 

where ( )r   represents the stochastic discount factor. Finally, the price of the coupon CAT 

bond ( ), ,c

t dV T D  paying the principal value PV at maturity, and coupon payments C(s), which 

cease if the bond is triggered, can be obtained as 

 

 

( )
( )

( )

( )
( ) ( )

, ,

,

, | 1 ,

| 1 ,

T

t

T

t
t

r d
c

t d t f d

T r d

t f d
t

V T D E e F PV P T D

E e F C s P s D ds

 

 

−

−

   =  − +   
 

   + −   
 



 (5) 
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Note that when k is assumed equal to +/-1, the approximate 15% and 85% percentile bounds 

of fP  and consequently of zc

tV  (or c

tV ) containing 70% of the probability, are computed. The 

complete mathematical derivation of the pricing technique here summarized can be found in 

[8] and [9]. 
 

3 CASE STUDY 

The exposed framework is applied to design a coverage scheme for the entire residential 

building asset of Italy considering seismic events as relevant natural hazard. In this applica-

tion, the Italian Government is taken as the issuing entity, which adopts CAT bonds for a full 

risk-transfer, considering as lower bound seismic events with magnitude MW ≥ 4.5. The re-

gion of interest is represented by the Italian peninsula, and the target losses are represented by 

the potential direct costs to be sustained for repairing seismic damage to the Italian residential 

building stock. First, Italy is divided in three zones based on the seismic risk maps developed 

by [14]. This zonation (Fig. 3a), based on the seismic risk map and adopting administrative 

borders, assures an almost constant combination of events frequencies and amount of losses 

within each zone, and the exact attribution of each event to the corresponding zone. The cali-

bration of the Poisson process and loss distribution parameters is based on the numerical sim-

ulation of 100’000 years of seismicity within the national territory, because of the limited 

number of real losses and claim data. For the generation of 100’000 years of seismic events, 

the seismogenic source zone model ZS9 of [15] is adopted, together with the seismogenic 

zone parameters of [16]. The shaking scenario associated to each generated event, is comput-

ed in terms of peak ground acceleration with the ground motion prediction equation proposed 

by [17]. According to [14], the seismic vulnerability of the Italian residential building stock is 

characterized by setting a building taxonomy consisting in 8 taxonomy classes (TCs): (i) ma-

sonry structures built before 1919, (ii) masonry structures built post 1919, (iii) gravity load 

designed reinforced concrete (RC) structures with 1-2 storeis, (iv) gravity load designed RC 

structures with 3+ storeis, (v) seismic load designed RC structures with 1-2 storeis, (vi) seis-

mic load designed RC structures with 3+ storeis, (vii) gravity load designed masonry-RC 

structures, (viii) seismic load designed masonry-RC structures. References and parameters of 

each class fragility curve can be retrieved in [14]. The exposure model of the national residen-

tial building stock is defined at municipality-level granularity and data are retrieved from the 

15th census database of the National Institute of Statistics [18]. Fig. 3b and 3c illustrates 

100’000 years of simulated seismicity for the seismogenic zone 905. For the calibration of the 

three sets of distributions parameters, earthquakes occurred inside of each CAT bond zone 

border were then selected. Fig. 3d shows the selected events for each zone, resulting in 

126’414 in Zone 1, 151’245 in Zone 2 and 38’380 in Zone 3. Among the three, Zone 2 has the 

highest intensity since more events occur in it, in the same time window. Lognormal CDFs 

were fitted on the cumulative losses to obtain the loss distribution parameters for each zone 

(Fig. 3e). In the present work, CAT bond price is evaluated at time t = 0, assuming a principal 

equal to 1 €. Two different products were considered for the pricing, a zero-coupon and a 

coupon CAT bond, both with a full loss of the principal in case of bond triggering. In the first 

case, the zero-coupon CAT bond is assumed to be priced at 3.5% over LIBOR so that if no 

trigger event occurs, the total yield is 6%, and consequently Z = 1.06 €. For the coupon CAT 

bond, the yearly coupon payments C(s) = 0.06 € and PV = 1.00 € are considered. A continu-

ous discount rate r equivalent to LIBOR = 2.5% is assumed constant and equal to ln(1.025) 

[19]. Expiration time and threshold level are considered respectively ranging between [0.25, 5] 

years and [0.1, 10] bn €, guaranteeing in this way a sufficiently broad T-D domain for show-
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ing the variation of CAT bond price for a wide range of possible combinations. The bond for 

a zone is triggered when the accumulated losses caused by earthquakes occurred within the 

zone are greater than the set threshold before the set expiration time. 

 

Figure 3: Proposed CAT bond zonation (a), 100’000-years simulated seismicity for SZ #905 (b-c), selected 

events for each Zone (d) and loss data fitting with lognormal distribution (e) (adapted from [9]). 

 

Fig. 4 shows the probability of failure fP  surfaces for Zones 1, 2 and 3, together with the 

bounds deriving from considering the parameters uncertainties and containing the 80% of the 

probability. Two cross sections of the surface are also shown, corresponding to planes with T 

= 2 years, and D = 3 bn €. As a general behaviour common for all the three zones, for a given 

expiration time T, fP  decreases as the threshold level D increases, whereas for a given thresh-

old level D, fP  increases from 0 to 1 over time. fP  of Zone 1 and Zone 2 are comparable 
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since despite a slightly lower expected loss, Zone 2 has a higher Poisson intensity due to a 

wider zone area and consequently more events inside. Zone 3 has the lowest fP  due to a 

combination of lower expected losses and less expected events. 

 

Figure 4. Failure probability surface for the three Zones (adapted from [9]). 

Fig. 5a shows the zero-coupon CAT bond pricing surfaces zcV  paying Z = 1.06 € at maturity, 

for each Zone. In this case, for a given threshold level D, the CAT bond value decreases over 

time, whereas for a set expiration time T, the CAT bond value increases as the threshold level 

D increases. The prices reflect the related failure probabilities: price of Zone 3 is the highest 

since it is associated with the lowest probability of exceed a given money. Higher gains pro-

vided by the bonds are associated to higher failure probabilities. Fig. 5b illustrates the case of 

the coupon CAT bond, evidencing how the overall trend is similar to the zero-coupon one due 

to the high ratio intercurrent between the principal and the entity of coupons. Numerical re-

sults are the combination of two contributions: as time passes, the chance of receiving more 

coupon payments is bigger, but at the same time, the possibility of losing the principal in-

creases. Both the zero-coupon CAT bond and the coupon CAT bond price reflect the different 

seismic risk-levels of the three zones. For a given T-D combination, the price for a bond in 

Zone 1 and Zone 2 is the lowest while the price in Zone 3 is the highest. 
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Figure 5. Zero-coupon (a) and coupon (b) CAT bond price for the three Zones (adapted from [9]). 

 

Finally, a sensitivity analysis on the role of the parameters uncertainties on the final variabil-

ity is performed. In particular, the aim of this analysis is to evaluate the uncertainty of which 

parameter mostly influences the overall dispersion. The analysis is performed for the Zero-

coupon CAT bond price of Zone 1, in correspondence of four points of the T-D domain: 

a) T = 2 years – D = 2 bn € 

b) T = 4 years – D = 2 bn € 

c) T = 4 years – D = 6 bn € 

d) T = 2 years – D = 6 bn €. 

In particular, for each T-D combination, six covariance matrices have been assumed for test-

ing all the possible combinations of setting equal to zero the variances. AA shows that most 

of the total variability comes from the uncertainty of the parameter of the lognormal distribu-

tion representing losses due to earthquake, and this happens in all the four investigated points 

of the pricing surface. 

 

Figure 6. Sensitivity analysis for four points of the T-D domain (adapted from [9]). 
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4 CONCLUSION 

This paper presented a general framework for designing a CAT bond coverage system for 

a distributed portfolio subject to significant losses arising from different possible sources, 

commonly natural hazards. The flexibility of the proposed methodology allows its adoption 

by different issuing entities, against various types of losses induced by natural or man-made 

hazards. For the CAT bond price computation, this paper adopts the mathematical formulation 

for CAT bond pricing based on a reliability assessment of the fP  underlying the pricing pro-

cess. In this way, it is possible to obtain a complete knowledge of the default probability and 

CAT bond price distribution, for a given combination of loss threshold and expiration time. 

The related CAT bond pricing surface is characterized by a constant reliability for each expi-

ration time T - threshold level D combination. The general framework is applied to a case-

study in which a possible CAT bond-based coverage configuration is designed for the resi-

dential building portfolio of Italy against earthquake-induced structural losses. In the applica-

tion, the Italian territory was subdivided in three zones, based on the Italian seismic risk map, 

and three different CAT bonds, characterized by different levels of default risk, were priced. 

The outcomes showed the effect of the CAT bond zonation on the final price computation, 

and the importance of considering uncertainty in the model parameters in defining a CAT 

bond pricing. This work can be considered the first original attempt currently retrievable in 

scientific literature aimed at a rational management of significant losses induced to the Italian 

residential building stock by seismic events. 
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